Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20060161247 A1
Publication typeApplication
Application numberUS 11/384,999
Publication date20 Jul 2006
Filing date20 Mar 2006
Priority date16 Oct 2001
Also published asCA2465677A1, CA2465677C, DE60230171D1, EP1435876A1, EP1435876B1, US7033389, US20030074048, WO2003043539A1
Publication number11384999, 384999, US 2006/0161247 A1, US 2006/161247 A1, US 20060161247 A1, US 20060161247A1, US 2006161247 A1, US 2006161247A1, US-A1-20060161247, US-A1-2006161247, US2006/0161247A1, US2006/161247A1, US20060161247 A1, US20060161247A1, US2006161247 A1, US2006161247A1
InventorsJohn Sherry
Original AssigneeScimed Life Systems, Inc.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Tubular prosthesis for external agent delivery
US 20060161247 A1
Abstract
A tubular prosthesis, which may be an endovascular prothesis, is provided which includes a tubular member (stent or stent/graft combination) and an outer covering having portions sealed to the tubular member. The tubular member is impervious to a pre-determined fluid, particularly an occluding fluid, while the outer cover is pervious to the pre-determined fluid. In one aspect of the present invention, the implantation of the prosthesis allows for occluding fluid to weep from the prosthesis and into a sac of an aneurysm to cause occlusion thereof without introducing the occluding fluid into the blood stream. In this manner, a Type II failure of the prosthesis may be avoided. In other aspects of the invention, therapeutic agents may be delivered and/or a seal may be formed about the prosthesis to prevent a Type I failure.
Images(4)
Previous page
Next page
Claims(28)
1. A method of occluding a sac of an aneurysm, the method comprising the steps of:
implanting endovascularly an endovascular prosthesis which by-passes the aneurysm, said endovascular prosthesis including a tubular member having a wall, said wall being impervious to transmission therethrough of an occluding fluid, and an outer covering having portions sealed to said tubular member, said outer covering being pervious to transmission therethrough of said occluding fluid; and
conveying a dose of occluding fluid into a pocket at least partially defined between said tubular member and said outer covering, said dose being an effective amount to at least partially occlude the sac of the aneurysm, whereby said occluding fluid transmits through said outer covering to at least partially occlude the sac of the aneurysm.
2. A method as in claim 1 further comprising the step of placing a fluid conduit into fluid communication with said pocket.
3. A method as in claim 2, wherein the step of conveying a dose of occluding fluid includes conveying said occluding fluid via said fluid conduit.
4. A method as in claim 2, wherein the step of placing a fluid conduit is performed before the step of implanting endovascularly.
5. A method as in claim 4, further comprising the step of detaching said fluid conduit from said endovascular prosthesis after the step of conveying a dose of occluding fluid.
6. A method as in claim 1, wherein said occluding fluid is an embolic liquid selected from the group consisting of alginates, hyaluronic acid, cyanoacrylates, and admixtures thereof.
7. A method as in claim 1, wherein said occluding fluid is selected from the group consisting of sclerosing agents, polyurethanes, silicones, and admixtures thereof.
8. A method as in claim 1, wherein said occluding fluid includes thrombin.
9. A method as in claim 1, wherein said occluding fluid includes an autologous clot.
10. A method of forming an endovascular prosthesis, the method comprising the steps of:
providing a tubular member which includes a wall, said wall being impervious to transmission therethrough of a pre-determined fluid; and
sealing portions of an outer covering to said tubular member, said outer covering being pervious to transmission therethrough of said pre-determined fluid.
11. A method as in claim 10, further comprising the step of placing a fluid conduit in direct fluid communication with a pocket at least partially defined between said tubular member and said outer covering.
12. A method as in claim 10, further comprising the step of placing a fluid conduit in indirect fluid communication with a pocket at least partially defined between said tubular member and said outer covering.
13. A method as in claim 12, wherein the step of placing a fluid conduit includes mounting a valve in fluid communication with said pocket, and connecting said fluid conduit to said valve.
14. A method as in claim 10, further comprising the step of making said outer covering be pervious to transmission therethrough of said pre-determined fluid.
15. A method as in claim 14, wherein the step of making includes cutting apertures in said outer covering.
16. A method as in claim 14, wherein the step of making includes forming said outer covering with porosity.
17. A method as in claim 10, wherein the step of sealing includes fusing portions of said outer covering to said tubular member.
18. A method as in claim 10, wherein the step of sealing includes bonding portions of said outer covering to said tubular member.
19. A method of administering a therapeutic agent, the method comprising the steps of:
implanting a tubular prosthesis, said prosthesis including a tubular member having a wall, said wall being impervious to transmission therethrough of a pre-determined therapeutic agent, and an outer covering having portions sealed to said tubular member, said outer covering being pervious to transmission therethrough of said pre-determined therapeutic agent; and
conveying a dose of said pre-determined therapeutic agent into a pocket at least partially defined between said tubular member and said outer covering.
20. A method as in claim 19, further comprising the step of placing a fluid conduit into fluid communication with said pocket.
21. A method as in claim 20, wherein the step of conveying a dose of pre-determined therapeutic agent includes conveying said pre-determined therapeutic agent via said fluid conduit.
22. A method as in claim 20, wherein the step of placing a fluid conduit is performed before the step of implanting endovascularly.
23. A method as in claim 22, further comprising the step of detaching said fluid conduit from said prosthesis after the step of conveying a dose of pre-determined therapeutic agent.
24. A method of at least partially forming a seal between a tubular prosthesis and a bodily passageway, the method comprising the steps of:
implanting a tubular prosthesis into a bodily passageway, said prosthesis including a tubular member having a wall, said wall being impervious to transmission therethrough of an occluding fluid, and an outer covering having portions sealed to said tubular member, said outer covering being pervious to transmission therethrough of said occluding fluid; and
conveying a dose of occluding fluid into a pocket at least partially defined between said tubular member and said outer covering, said dose being an effective amount to at least partially occlude an area about said tubular member so as to at least partially form a seal between said prosthesis and portions of the bodily passageway.
25. A method as in claim 24, wherein said occluding fluid is an embolic liquid selected from the group consisting of alginates, hyaluronic acid, cyanoacrylates, and admixtures thereof.
26. A method as in claim 24, wherein said occluding fluid is selected from the group consisting of sclerosing agents, polyurethanes, silicones, and admixtures thereof.
27. A method as in claim 24, wherein said occluding fluid includes thrombin.
28. A method as in claim 24, wherein said occluding fluid includes an autologous clot.
Description
    CROSS-REFERENCE TO RELATED APPLICATION
  • [0001]
    This application is a divisional application of U.S. application Ser. No. 09/978,988, filed on Oct. 16, 2001, now allowed, the entire contents of which are hereby incorporated by reference.
  • FIELD OF THE INVENTION
  • [0002]
    This invention relates to tubular prostheses, including, but not limited to, endovascular grafts and stent/grafts, for maintaining patency of blood vessels and treating aortic artery aneurysms, and tubular conduits for maintaining patency in other bodily passageways.
  • BACKGROUND OF THE PRIOR ART
  • [0003]
    It is known in the prior art to use endovascular prostheses to treat aortic artery aneurysms (“AAA”). Such treatment includes implanting a stent, or stent/graft, within the diseased vessel to by-pass the anomaly. An aneurysm is a sac formed by the dilation of the wall of the artery, which may be congenital, but usually is caused by disease and, occasionally, by trauma. With reference to FIG. 1, sac 1 of aneurysm A is defined by dilated portions 2 of aortic artery AA. With the collection of blood and other embolic material in the sac 1, and being subjected to hemodynamic pressure, the aneurysm A may rupture, if untreated, causing internal bleeding.
  • [0004]
    Techniques had been developed in the prior art where diseased portions of a blood vessel, such as with an aneurysm, were ablated and replaced with a prosthetic member, such as that shown in U.S. Pat. No. 4,938,740 to Melbin. This technique, however, required open surgery. As an improvement over this technique, endovascular emplacement techniques have been developed to implant grafts and stent/grafts into a vessel from a remote puncture site, thereby obviating the need for open surgery. For example, as shown in FIG. 1, an endovascular prosthesis 3 (stent or stent/graft) is positioned to by-pass the aneurysm A with ends 4, 5 of the prosthesis being in contiguous contact with healthy portions of the aortic artery AA, the prosthesis 3 having been introduced endovascularly (e.g. with a catheter). Accordingly, if the aneurysm A was to rupture, blood flow through the aortic artery AA would be uninterrupted, and internal bleeding generally avoided.
  • [0005]
    Although considerable success has been enjoyed with stent and stent/graft performance, failures have been noted and predominantly classified in four classes: Types I-IV. Type I failures relate to leaks (referred to as endoleaks) between the vascular prosthesis and the vessel wall. For example, with reference to FIG. 1, a Type I failure would be blood weeping about the end 4 of the prosthesis 3 into the sac 1.
  • [0006]
    A Type II failure involves blood flowing into the aneurysm sac through collateral arteries. Again, with reference to FIG. 1, the sac 1 may be in fluid communication with blood vessels BV, other than the aortic artery AA. Typically, lumbar arteries are in fluid communication (directly or indirectly) with an aneurysm sac. Because blood flow out of the sac 1 is prevented, hemodynamic pressure away from the sac 1 is not present. However, because of hemodynamic pressure within blood vessels in communication with the sac 1, blood flow, nevertheless, is directed into the sac 1 (as shown by arrows). A technique has been developed in the prior art which calls for embolizing the blood vessels BV, such as with embolus coils, thereby isolating the sac 1 from collateral blood flow. However, an additional procedure would be required for embolization.
  • [0007]
    A Type III failure is a mechanical failure, wherein a hole may be ripped into the prosthesis (e.g., excessive wear at a metal/non-metal (fabric or polymer) interface) or poor integrity exists at a connection, or connections, between modular components of a prosthesis, (e.g., extensions may be connected to the prosthesis to obtain improved securement in one or both of the iliac arteries.) For example, as shown in FIG. 1, a hole 6 may be torn into the prosthesis 2, or poor sealing is obtained at the connection between the prosthesis 3 and an extension 7.
  • [0008]
    A Type IV failure relates to excessive prosthesis porosity, wherein blood seeps through the prosthesis regardless of the integrity of sealing and mechanical connections.
  • [0009]
    As can be readily appreciated, even with the successful implantation of an endovascular prosthesis, failures may occur thereafter. It has been found that Type II failures are most prevalent, and may effect up to 30% of all implanted prostheses. Accordingly, there is a clear need for an endovascular prosthesis which can reduce the likelihood, and ideally eliminate, Type II failures.
  • SUMMARY OF THE INVENTION
  • [0010]
    To overcome deficiencies in the prior art, a tubular prosthesis is provided that includes a tubular member, which is impervious to a pre-determined fluid, and an outer covering, which is pervious to the pre-determined fluid. Accordingly, in one aspect of the invention, the prosthesis may be an endovascular prosthesis, and a fluid, which is effective for occluding the sac of an aneurysm, may be introduced by the prosthesis into a space between the tubular member and the outer covering. The fluid will transmit through the outer covering and weep into the sac to cause at least partial occlusion thereof without the occluding fluid being introduced into the blood stream. In this manner, collateral blood flow may be prevented from flowing into the aneurysm sac and collecting therein.
  • [0011]
    A fluid conduit, preferably a microcatheter, is connected to the endovascular prosthesis so as to be in fluid communication with the space defined between the tubular member and the outer covering. It is preferred that the fluid conduit be connected to the prosthesis prior to introduction into the body, with such connection continuing through deployment of the prosthesis and engagement with the vessel. Prior to withdrawal of the deployment device used to implant the prosthesis (e.g. an introducer catheter), occluding fluid is injected through the fluid conduit and between the tubular member and the outer cover with an effective amount of fluid being introduced to achieve at least partial occlusion of the aneurysm sac. With the outer cover being pervious to the fluid, the fluid transmits therethrough. Upon the effective dose having been injected into the space, the fluid conduit is caused to detach from the prosthesis, and withdrawn with any deployment device, such as a guidewire.
  • [0012]
    The tubular member may be of any endovascular prosthetic construction known in the prior art, including graft and stent/graft configurations (including single layer and multi-layer grafts and stent/grafts). The tubular member may be a textile graft, a polymeric graft, or a combination thereof. In addition, the tubular member may have a stent reinforcement (single stent or multiple stents), such stent being self-expanding or expandable by a distensible member, such as a balloon.
  • [0013]
    The outer covering may be formed of a textile, a polymeric film, or a combination thereof. In addition, the outer covering may be made pervious to the occluding fluid through inherent porosity of the constituent material of the outer covering (e.g., porosity of expanded polytetrafluoroethylene (ePTFE)), and/or, more preferably, through cut apertures physically defined in the outer covering. To attempt to achieve even distribution of the occluding fluid, it is desired to make the outer covering increasingly pervious to the fluid at locations further from the fluid conduit.
  • [0014]
    The occluding fluid is preferably a liquid embolic, which may be an alginate, an hyaluronic acid, and/or a cyanoacrylate, or an admixture thereof. Alternatively, a sclerosing agent may be used, as well as cross-linking polymers (polyurethanes, silicones), thrombin, and autologous clot(s). The occluding fluid may be in a liquid state or a gel, and may be formed with solids in a suspension of either state (liquid or gel).
  • [0015]
    In another aspect of the invention, therapeutic agents, with or without the occluding fluid, may be transmitted via the subject invention.
  • [0016]
    The tubular prosthesis may be used as an endovascular prosthesis, as well as, in other applications to maintain patency of a bodily passageway, such as the esophagus, trachea, colon, biliary tract, urinary tract, prostate, and brain.
  • [0017]
    These and other features of the invention would be better understood through a study of the following detailed description and accompanying drawings.
  • BRIEF DESCRIPTION OF DRAWINGS
  • [0018]
    FIG. 1 is a schematic of an aortic artery aneurysm with an endovascular prosthesis by-passing thereby;
  • [0019]
    FIG. 2 shows a first embodiment of a tubular prosthesis of the subject invention;
  • [0020]
    FIG. 3 shows a tubular member for use with the first embodiment of the subject invention;
  • [0021]
    FIG. 4 shows a second embodiment of a tubular prosthesis of the subject invention;
  • [0022]
    FIG. 5 shows a bifurcated Y-shaped tubular member for use with the second embodiment of the subject invention; and
  • [0023]
    FIGS. 6A and 6B are schematics depicting the connections of a fluid conduit to the prosthesis.
  • DETAILED DESCRIPTION OF THE INVENTION
  • [0024]
    With reference to FIGS. 2 and 4, first and second embodiments of a prosthesis 10 are respectively depicted therein. Reference will be made herein to the prosthesis being endovascular, although as pointed out above, the prosthesis may be used in other applications. In each embodiment, the endovascular prosthesis 10 includes a tubular member 12, 12 a and an outer covering 14. The tubular member 12, 12 a is impervious to the transmission therethrough of a pre-determined fluid, particularly an occluding fluid, while the outer covering 14 is pervious to the transmission therethrough of the pre-determined fluid. Accordingly, the prosthesis 10 can be utilized to at least partially occlude the sac of an aneurysm, as described below. The endovascular prosthesis 10 may take any shape or form as required, although commonly, the prosthesis 10 will have a cylindrical shape (as shown in FIG. 2), or a bifurcated Y-shape (as shown in FIG. 4). Although only these two shapes are shown, other shapes are possible.
  • [0025]
    The tubular member 12, 12 a may be of any endovascular prosthetic construction known in the prior art, including graft and stent/graft configurations. With reference to FIG. 3, in the first embodiment, the tubular member 12 has a cylindrical shape with a tubular wall 16 having an outer surface 18 and an inner surface 20 defining a single lumen 22. The tubular member 12 need not be formed as a right cylinder, and may be irregularly formed (e.g. bent; eccentric). In a second embodiment, as shown in FIG. 5, the tubular member 12 a has a bifurcated Y-shape with a first tubular portion 16 a, defining a lumen 22 a, from which extend branches 24 a, 24 b, each defining a lumen 26 in fluid communication with the lumen 22 a. As is readily apparent, the tubular member 12, 12 a defines the general shape of the endovascular prosthesis 10, and thus, the tubular member 12, 12 a is formed to any desired shape of the endovascular prosthesis 10.
  • [0026]
    The tubular member 12, 12 a may be a textile graft, a polymeric graft, or a combination thereof (including single layer and multi-layer configurations). In addition, the tubular member 12, 12 a may have a stent reinforcement, such stent being self-expanding or expandable by a distensible member, such as a balloon (stents S are shown in FIG. 5) (a single stent or multiple stents may be used). Graft and stent/graft designs are well known in the art, and any design compatible with the invention may be used. The tubular member 12, 12 a is shown in each embodiment as a unitary member, regardless of shape. As an alternative, the tubular member 12, 12 a may be formed from modular components and/or have the shape as shown, but connected to extensions as known in the prior art (e.g. the extension 7 shown in FIG. 1).
  • [0027]
    The outer covering 14 is disposed on, and preferably sealed to, portions of the outer surface of the tubular member 12, 12 a. In a preferred embodiment, as shown in FIGS. 2 and 4, the outer covering 14 is generally coextensive with the tubular member 12, 12 a. The outer covering 27 is sealed to the tubular member 14 using any technique known to those skilled in the art, including, but not limited to, fusing and bonding. Sealed portions 27 of the outer covering 14 are preferably spaced-apart so that unsealed portions of the outer covering 14 are bounded by the sealed portions 27. In this manner, entrapped space between the tubular member 12, 12 a and the outer covering 14 which is at least partially bounded by the sealed portions 27 of the outer covering 14 defines a pocket 15 for receiving occluding fluid. Optionally, the outer covering 14 can be sealed at multiple locations to define multiple pockets 15. Because of the impervious nature of the tubular member 12, 12 a and the sealed portions 27, the fluid can only escape from the pocket 15 via transmission through the outer covering 14. As shown in FIG. 2, it is preferred to seal the outer covering 14 at portions in proximity to the ends 28 and 30 of the tubular member 12. With respect to the tubular member 12 a, as shown in FIG. 4, it is preferred that the outer covering 14 have sealed portions 27 in proximity to all ends 28 a and 30 a. Accordingly, the pocket 15 is generally coextensive with the tubular member 12, 12 a.
  • [0028]
    As a variation, the outer covering 14 may be formed as a patch which covers only a portion of the tubular member 12, 12 a, as shown in dashed lines in FIG. 2. Although not shown, the outer covering 14 may form an annular band about the tubular member 12, 12 a. Furthermore, multiple outer coverings 14 may be used as patches to form a discontinuous or regular pattern.
  • [0029]
    The outer covering 14 may be formed of a textile, a polymeric film, or a combination thereof. The critical aspect of the outer covering 14 is for it to be pervious to the occluding fluid. The outer covering 14 may be made pervious through inherent porosity of the constituent material of the outer covering, for example due to the porosity of expanded polytetrafluoroethylene (ePTFE). In addition, in a preferred manner of achieving the pervious nature of the outer covering 14, cut apertures 32 may be physically defined in the outer covering 14, as shown in FIG. 4. It is also possible to combine these two approaches.
  • [0030]
    In a preferred embodiment, a fluid conduit 34, preferably a microcatheter, is connected to the endovascular prosthesis 10 so as to convey the occluding fluid thereto. With reference to FIGS. 6 a and 6 b, the fluid conduit 34 may be in direct fluid communication with the pocket 15, with an end 36 of the fluid conduit 34 being located therein. As can be appreciated, to achieve this result, the fluid conduit 34 must breach the sealed portions 27. This can be readily done during manufacturing by causing the sealed portions 27 to be formed about the fluid conduit 34. However, upon removal of the fluid conduit 34, an open passage will be defined through the sealed portions 27. Thus, it is preferred to only use the technique where inherent viscosity of the occluding fluid will prevent leakage of the occluding fluid through the open passage.
  • [0031]
    As a preferred alternative, a valve 38 (preferably one-way) is disposed in communication with the pocket 15, so that the fluid conduit 34 is in indirect communication with the pocket 15 via the valve 38. The construction of the valve 38 and the fluid conduit 34 may be the same as that used with silicone balloon distension, (e.g., the system sold under the trademark “APOLLO” by Target Therapeutics of Fremont, Calif.).
  • [0032]
    In a preferred embodiment, the fluid conduit 34 is connected to the endovascular prosthesis 10 prior to insertion into the human body. After deployment of the endovascular prosthesis 10, using any technique and device known, the fluid conduit 34 preferably remains connected to the prosthesis 10. It is envisioned that a Strecker pull-string type deployment device or a pull-back sheath deployment device would operate well with the subject invention. An effective amount of occluding fluid is conveyed through the fluid conduit 34 into the pocket 15 to at least partially occlude the sac of the aneurysm being treated. With the effective dose having been conveyed, the fluid conduit 34 is caused to be detached, preferably with a sufficiently strong pull of the fluid conduit 34. With the aforementioned prior art silicone balloon distension systems, minimum threshold forces have been developed to achieve such detachment and it is contemplated herein to use similar methodology to require minimum threshold forces for detachment. Once detached, the fluid conduit 34 is removed with any other deployment devices, such as an introducer catheter.
  • [0033]
    The occluding fluid is preferably a liquid embolic, which may be an alginate, an hyaluronic acid, and/or a cyanoacrylate, or an admixture thereof. Alternatively, a sclerosing agent may be used, as well as cross-linking polymers (polyurethanes, silicones), thrombin and autologous clot(s). The occluding fluid may be in a liquid state or gel, and may be formed with solids in a suspension of either state (liquid or gel).
  • [0034]
    With the occluding fluid being disposed within the pocket 15, the fluid may transmit through the outer covering 14 to at least partially occlude the sac of the aneurysm being treated without the fluid being introduced into the blood stream.
  • [0035]
    In another aspect of the invention, therapeutic agents, with or without the occluding fluid, may be transmitted via the subject invention in the same manner described with respect to the occluding fluid, including: anti-thrombogenic agents (such as heparin, heparin derivatives, urokinase, and PPack (dextrophenylalanine proline arginine chloromethylketone); anti-proliferative agents (such as enoxaprin, angiopeptin, or monoclonal antibodies capable of blocking smooth muscle cell proliferation, hirudin, and acetylsalicylic acid); anti-inflammatory agents (such as dexamethasone, prednisolone, corticosterone, budesonide, estrogen, sulfasalazine, and mesalamine); antineoplastic/antiproliferative/anti-miotic agents (such as paclitaxel, 5-fluorouracil, cisplatin, vinblastine, vincristine, epothilones, endostatin, angiostatin and thymidine kinase inhibitors); anesthetic agents (such as lidocaine, bupivacaine, and ropivacaine); anti-coagulants (such as D-Phe-Pro-Arg chloromethyl keton, an RGD peptide-containing compound, heparin, antithrombin compounds, platelet receptor antagonists, anti-thrombin antibodies, anti-platelet receptor antibodies, aspirin, prostaglandin inhibitors, platelet inhibitors and tick antiplatelet peptides); vascular cell growth promotors (such as growth factor inhibitors, growth factor receptor antagonists, transcriptional activators, and translational promotors); vascular cell growth inhibitors (such as growth factor inhibitors, growth factor receptor antagonists, transcriptional repressors, translational repressors, replication inhibitors, inhibitory antibodies, antibodies directed against growth factors, bifunctional molecules consisting of a growth factor and a cytotoxin, bifunctional molecules consisting of an antibody and a cytotoxin); cholesterol-lowering agents; vasodilating agents; and agents which interfere with endogenous vascoactive mechanisms.
  • [0036]
    In a further aspect of the subject invention, the occluding fluid may be introduced via the endovascular prosthesis 10 between the blood vessel wall and the endovascular prosthesis 10 so as to at least partially seal against endoleaks about the prosthesis 10 (i.e., Type I failure). (With other applications of the subject invention, the occluding fluid is disposed between the wall of the bodily passageway and the prostheis 10.) The occluding fluid may create a blood-vessel seal (in whole or in part) with or without occluding the sac of the aneurysm. Preferably, a ring-shaped pocket 15 may be provided in proximity to an end of endovascular prosthesis 10 through which the occluding fluid may be delivered to form the seal; as such, an annular seal may be desirably defined about the prosthesis 10 in proximity to an end so as to restrict endoleaks. The ability to seal against endoleaks is particularly desirable where a blood vessel has an irregularly formed blood vessel.
  • [0037]
    In a further enhancement of the invention, it is preferred that the outer covering 14 be increasingly pervious to the occluding fluid and/or therapeutic agents at further distances from the fluid conduit 34. For example, with reference to FIG. 4, the cut apertures 32 are formed increasingly larger further from the fluid conduit 35 (i.e., as approaching the end 28A) and/or an increasingly greater number of cut apertures 32 is provided further from the fluid conduit 34 (i.e., the density of cut apertures 32 increases with distance from the fluid conduit 34) to provide less resistance to the distribution of the occluding fluid and/or therapeutics being conveyed via the fluid conduit 34. Likewise, the cut apertures 32 are formed increasingly larger and/or greater in number as located further down the branch portion 24 b, to which the fluid conduit 34 is not attached. As an alternative, or as an additional option, the porosity of the constituent material may be gradually increased at further locations from the source of the occluding fluid and/or therapeutic agents to also provide less fluid resistance.
  • [0038]
    Various changes and modifications can be made to the present invention. It is intended that all such changes and modifications come within the scope of the invention as set forth in the following claims.
Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3657744 *8 May 197025 Apr 1972Univ MinnesotaMethod for fixing prosthetic implants in a living body
US4300244 *19 Sep 197917 Nov 1981Carbomedics, Inc.Cardiovascular grafts
US4409172 *13 Feb 198111 Oct 1983Thoratec Laboratories CorporationDevice and method for fabricating multi-layer tubing using a freely suspended mandrel
US4732152 *5 Dec 198522 Mar 1988Medinvent S.A.Device for implantation and a method of implantation in a vessel using such device
US4969458 *6 Jul 198713 Nov 1990Medtronic, Inc.Intracoronary stent and method of simultaneous angioplasty and stent implant
US5049132 *8 Jan 199017 Sep 1991Cordis CorporationBalloon catheter for delivering therapeutic agents
US5078726 *9 Apr 19907 Jan 1992Kreamer Jeffry WGraft stent and method of repairing blood vessels
US5123917 *27 Apr 199023 Jun 1992Lee Peter YExpandable intraluminal vascular graft
US5156620 *4 Feb 199120 Oct 1992Pigott John PIntraluminal graft/stent and balloon catheter for insertion thereof
US5282824 *15 Jun 19921 Feb 1994Cook, IncorporatedPercutaneous stent assembly
US5330500 *17 Oct 199119 Jul 1994Song Ho YSelf-expanding endovascular stent with silicone coating
US5366504 *13 Jul 199222 Nov 1994Boston Scientific CorporationTubular medical prosthesis
US5383926 *23 Nov 199224 Jan 1995Children's Medical Center CorporationRe-expandable endoprosthesis
US5387235 *21 Oct 19927 Feb 1995Cook IncorporatedExpandable transluminal graft prosthesis for repair of aneurysm
US5389106 *29 Oct 199314 Feb 1995Numed, Inc.Impermeable expandable intravascular stent
US5456713 *30 Nov 199310 Oct 1995Cook IncorporatedExpandable transluminal graft prosthesis for repairs of aneurysm and method for implanting
US5507769 *18 Oct 199416 Apr 1996Stentco, Inc.Method and apparatus for forming an endoluminal bifurcated graft
US5507771 *24 Apr 199516 Apr 1996Cook IncorporatedStent assembly
US5522881 *28 Jun 19944 Jun 1996Meadox Medicals, Inc.Implantable tubular prosthesis having integral cuffs
US5545135 *31 Oct 199413 Aug 1996Boston Scientific CorporationPerfusion balloon stent
US5558642 *24 Feb 199424 Sep 1996Scimed Life Systems, Inc.Drug delivery catheter
US5562726 *22 Dec 19938 Oct 1996Cook IncorporatedExpandable transluminal graft prosthesis for repair of aneurysm and method for implanting
US5562727 *7 Oct 19948 Oct 1996Aeroquip CorporationIntraluminal graft and method for insertion thereof
US5607468 *18 Aug 19954 Mar 1997Aeroquip CorporationMethod of manufacturing an intraluminal stenting graft
US5618299 *8 Aug 19958 Apr 1997Advanced Cardiovascular Systems, Inc.Ratcheting stent
US5628784 *17 Jan 199513 May 1997Strecker; Ernst P.Endoprosthesis that can be percutaneously implanted in the body of a patient
US5637086 *7 Sep 199510 Jun 1997Boston Scientific CorporationMethod of delivering a therapeutic agent or diagnostic device using a micro occlusion balloon catheter
US5665117 *21 Mar 19969 Sep 1997Rhodes; Valentine J.Endovascular prosthesis with improved sealing means for aneurysmal arterial disease and method of use
US5685847 *27 Jul 199511 Nov 1997Boston Scientific CorporationStent and therapeutic delivery system
US5693088 *7 Jun 19952 Dec 1997Lazarus; Harrison M.Intraluminal vascular graft
US5697968 *10 Aug 199516 Dec 1997Aeroquip CorporationCheck valve for intraluminal graft
US5735892 *18 Aug 19937 Apr 1998W. L. Gore & Associates, Inc.Intraluminal stent graft
US5785679 *19 Jul 199528 Jul 1998Endotex Interventional Systems, Inc.Methods and apparatus for treating aneurysms and arterio-venous fistulas
US5795331 *24 Jan 199418 Aug 1998Micro Therapeutics, Inc.Balloon catheter for occluding aneurysms of branch vessels
US5797951 *9 Aug 199525 Aug 1998Mueller; Edward GeneExpandable support member
US5824038 *26 Dec 199520 Oct 1998Wall; W. HenryAngioplasty stent
US5824054 *18 Mar 199720 Oct 1998Endotex Interventional Systems, Inc.Coiled sheet graft stent and methods of making and use
US5843033 *29 Sep 19971 Dec 1998Boston Scientific CorporationMultiple hole drug delivery balloon
US5843166 *17 Jan 19971 Dec 1998Meadox Medicals, Inc.Composite graft-stent having pockets for accomodating movement
US5951599 *9 Jul 199714 Sep 1999Scimed Life Systems, Inc.Occlusion system for endovascular treatment of an aneurysm
US6010529 *3 Dec 19964 Jan 2000Atrium Medical CorporationExpandable shielded vessel support
US6096070 *16 May 19961 Aug 2000Med Institute Inc.Coated implantable medical device
US6149641 *23 Dec 199821 Nov 2000Scimed Life Systems, Inc.Local delivery of estrogen for angiogenesis
US6193746 *4 Sep 199627 Feb 2001Ernst Peter StreckerEndoprosthesis that can be percutaneously implanted in the patient's body
US6270523 *15 Oct 19997 Aug 2001Atrium Medical CorporationExpandable shielded vessel support
US6375668 *2 Jun 199923 Apr 2002Hanson S. GiffordDevices and methods for treating vascular malformations
US6379379 *13 Aug 199930 Apr 2002Scimed Life Systems, Inc.Stent with smooth ends
US6379382 *13 Mar 200030 Apr 2002Jun YangStent having cover with drug delivery capability
US6395019 *14 Aug 199828 May 2002Trivascular, Inc.Endovascular graft
US6613084 *28 Nov 20012 Sep 2003Jun YangStent having cover with drug delivery capability
US6656214 *16 Jan 19982 Dec 2003Medtronic Ave, Inc.Methods and apparatus for conformably sealing prostheses within body lumens
US20010027338 *2 Mar 20014 Oct 2001Cook IncorporatedEndovascular device having a stent
US20020052643 *2 Jan 20012 May 2002Wholey Michael H.Tapered endovascular stent graft and method of treating abdominal aortic aneurysms and distal iliac aneurysms
US20020169497 *22 May 200214 Nov 2002Petra WholeyEndovascular stent system and method of providing aneurysm embolization
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US825203631 Jul 200728 Aug 2012Syntheon Cardiology, LlcSealable endovascular implants and methods for their use
US91383359 Jul 201222 Sep 2015Syntheon Cardiology, LlcSurgical implant devices and methods for their manufacture and use
US939310016 Nov 201119 Jul 2016Endologix, Inc.Devices and methods to treat vascular dissections
US940860724 Jun 20109 Aug 2016Edwards Lifesciences Cardiaq LlcSurgical implant devices and methods for their manufacture and use
US956617821 Oct 201214 Feb 2017Edwards Lifesciences Cardiaq LlcActively controllable stent, stent graft, heart valve and method of controlling same
US957910330 Apr 201028 Feb 2017Endologix, Inc.Percutaneous method and device to treat dissections
US958574328 Dec 20117 Mar 2017Edwards Lifesciences Cardiaq LlcSurgical implant devices and methods for their manufacture and use
US20090005760 *31 Jul 20071 Jan 2009Richard George CartledgeSealable endovascular implants and methods for their use
CN105213076A *12 Jun 20146 Jan 2016微创心脉医疗科技(上海)有限公司Artificial aneurysm neck and production method thereof
WO2015188775A1 *12 Jun 201517 Dec 2015微创心脉医疗科技(上海)有限公司Artificial aneurysmal neck and manufacturing method thereof
Classifications
U.S. Classification623/1.44
International ClassificationA61F2/06, A61B17/00, A61F2/00, A61F2/02
Cooperative ClassificationA61F2250/0068, A61F2250/0003, A61F2002/065, A61F2250/0067, A61F2/07, A61F2/89
European ClassificationA61F2/07
Legal Events
DateCodeEventDescription
26 Jun 2013ASAssignment
Owner name: ACACIA RESEARCH GROUP LLC, TEXAS
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BOSTON SCIENTIFIC SCIMED, INC.;REEL/FRAME:030694/0461
Effective date: 20121220
3 Jul 2013ASAssignment
Owner name: LIFESHIELD SCIENCES LLC, TEXAS
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ACACIA RESEARCH GROUP LLC;REEL/FRAME:030740/0225
Effective date: 20130515