US20060095138A1 - Composites and methods for treating bone - Google Patents

Composites and methods for treating bone Download PDF

Info

Publication number
US20060095138A1
US20060095138A1 US11/148,973 US14897305A US2006095138A1 US 20060095138 A1 US20060095138 A1 US 20060095138A1 US 14897305 A US14897305 A US 14897305A US 2006095138 A1 US2006095138 A1 US 2006095138A1
Authority
US
United States
Prior art keywords
bone
flowable
introducing
media
flowable media
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/148,973
Inventor
Csaba Truckai
John Shadduck
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dfine Inc
Original Assignee
Csaba Truckai
Shadduck John H
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Csaba Truckai, Shadduck John H filed Critical Csaba Truckai
Priority to US11/148,973 priority Critical patent/US20060095138A1/en
Publication of US20060095138A1 publication Critical patent/US20060095138A1/en
Assigned to DFINE, INC. reassignment DFINE, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SHADDUCK, JOHN, TRUCKAI, CSABA
Priority to US12/942,936 priority patent/US8163031B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7094Solid vertebral fillers; devices for inserting such fillers
    • A61B17/7095Solid vertebral fillers; devices for inserting such fillers the filler comprising unlinked macroscopic particles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/686Plugs, i.e. elements forming interface between bone hole and implant or fastener, e.g. screw
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • A61F2/30965Reinforcing the prosthesis by embedding particles or fibres during moulding or dipping
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/32Joints for the hip
    • A61F2/36Femoral heads ; Femoral endoprostheses
    • A61F2/3662Femoral shafts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • A61F2002/2817Bone stimulation by chemical reactions or by osteogenic or biological products for enhancing ossification, e.g. by bone morphogenetic or morphogenic proteins [BMP] or by transforming growth factors [TGF]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • A61F2002/2835Bone graft implants for filling a bony defect or an endoprosthesis cavity, e.g. by synthetic material or biological material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30003Material related properties of the prosthesis or of a coating on the prosthesis
    • A61F2002/30004Material related properties of the prosthesis or of a coating on the prosthesis the prosthesis being made from materials having different values of a given property at different locations within the same prosthesis
    • A61F2002/30006Material related properties of the prosthesis or of a coating on the prosthesis the prosthesis being made from materials having different values of a given property at different locations within the same prosthesis differing in density or specific weight
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30003Material related properties of the prosthesis or of a coating on the prosthesis
    • A61F2002/30004Material related properties of the prosthesis or of a coating on the prosthesis the prosthesis being made from materials having different values of a given property at different locations within the same prosthesis
    • A61F2002/30011Material related properties of the prosthesis or of a coating on the prosthesis the prosthesis being made from materials having different values of a given property at different locations within the same prosthesis differing in porosity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30003Material related properties of the prosthesis or of a coating on the prosthesis
    • A61F2002/30004Material related properties of the prosthesis or of a coating on the prosthesis the prosthesis being made from materials having different values of a given property at different locations within the same prosthesis
    • A61F2002/30023Material related properties of the prosthesis or of a coating on the prosthesis the prosthesis being made from materials having different values of a given property at different locations within the same prosthesis differing in viscosity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30003Material related properties of the prosthesis or of a coating on the prosthesis
    • A61F2002/3006Properties of materials and coating materials
    • A61F2002/30069Properties of materials and coating materials elastomeric
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30003Material related properties of the prosthesis or of a coating on the prosthesis
    • A61F2002/3006Properties of materials and coating materials
    • A61F2002/3008Properties of materials and coating materials radio-opaque, e.g. radio-opaque markers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30003Material related properties of the prosthesis or of a coating on the prosthesis
    • A61F2002/3006Properties of materials and coating materials
    • A61F2002/30092Properties of materials and coating materials using shape memory or superelastic materials, e.g. nitinol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/30199Three-dimensional shapes
    • A61F2002/30224Three-dimensional shapes cylindrical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30535Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30581Special structural features of bone or joint prostheses not otherwise provided for having a pocket filled with fluid, e.g. liquid
    • A61F2002/30583Special structural features of bone or joint prostheses not otherwise provided for having a pocket filled with fluid, e.g. liquid filled with hardenable fluid, e.g. curable in-situ
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30667Features concerning an interaction with the environment or a particular use of the prosthesis
    • A61F2002/30677Means for introducing or releasing pharmaceutical products, e.g. antibiotics, into the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/3085Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves with a threaded, e.g. self-tapping, bone-engaging surface, e.g. external surface
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • A61F2/30942Designing or manufacturing processes for designing or making customized prostheses, e.g. using templates, CT or NMR scans, finite-element analysis or CAD-CAM techniques
    • A61F2002/30957Designing or manufacturing processes for designing or making customized prostheses, e.g. using templates, CT or NMR scans, finite-element analysis or CAD-CAM techniques using a positive or a negative model, e.g. moulds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • A61F2002/30971Laminates, i.e. layered products
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2210/00Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2210/0014Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof using shape memory or superelastic materials, e.g. nitinol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2210/00Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2210/0085Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof hardenable in situ, e.g. epoxy resins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0063Three-dimensional shapes
    • A61F2230/0069Three-dimensional shapes cylindrical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0015Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in density or specific weight
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0018Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in elasticity, stiffness or compressibility
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0023Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in porosity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0034Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in viscosity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0058Additional features; Implant or prostheses properties not otherwise provided for
    • A61F2250/0096Markers and sensors for detecting a position or changes of a position of an implant, e.g. RF sensors, ultrasound markers
    • A61F2250/0098Markers and sensors for detecting a position or changes of a position of an implant, e.g. RF sensors, ultrasound markers radio-opaque, e.g. radio-opaque markers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00353Bone cement, e.g. polymethylmethacrylate or PMMA
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants

Definitions

  • This invention relates to bone implant materials and methods and more particularly to composite materials including an elastomer component for treating abnormalities in bones such as compression fractures of vertebra, necrosis of femurs, joint implants and the like.
  • An exemplary method includes introducing a flowable composite material into the interior of a bone wherein increasing pressures result in the elastomer component causing a differential apparent viscosity within selected regions across the flowable material to thereby allow controlled application of forces to the bone for reducing a fracture.
  • Osteoporotic fractures are prevalent in the elderly, with an annual estimate of 1.5 million fractures in the United States alone. These include 750,000 vertebral compression fractures (VCFs) and 250,000 hip fractures. The annual cost of osteoporotic fractures in the United States has been estimated at $13.8 billion. The prevalence of VCFs in women age 50 and older has been estimated at 26%. The prevalence increases with age, reaching 40% among 80-year-old women. Medical advances aimed at slowing or arresting bone loss from aging have not provided solutions to this problem. Further, the affected population will grow steadily as life expectancy increases. Osteoporosis affects the entire skeleton but most commonly causes fractures in the spine and hip.
  • Osteoporosis is a pathologic state that literally means “porous bones”. Skeletal bones are made up of a thick cortical shell and a strong inner meshwork, or cancellous bone, of collagen, calcium salts and other minerals. Cancellous bone is similar to a honeycomb, with blood vessels and bone marrow in the spaces. Osteoporosis describes a condition of decreased bone mass that leads to fragile bones which are at an increased risk for fractures.
  • the sponge-like cancellous bone has pores or voids that increase in dimension, making the bone very fragile.
  • bone breakdown occurs continually as the result of osteoclast activity, but the breakdown is balanced by new bone formation by osteoblasts.
  • bone resorption can surpass bone formation thus resulting in deterioration of bone density. Osteoporosis occurs largely without symptoms until a fracture occurs.
  • Vertebroplasty and kyphoplasty are recently developed techniques for treating vertebral compression fractures.
  • Percutaneous vertebroplasty was first reported by a French group in 1987 for the treatment of painful hemangiomas. In the 1990's, percutaneous vertebroplasty was extended to indications including osteoporotic vertebral compression fractures, traumatic compression fractures, and painful vertebral metastasis.
  • bone cement such as PMMA (polymethylmethacrylate) is percutaneously injected into a fractured vertebral body via a trocar and cannula system. The targeted vertebrae are identified under fluoroscopy. A needle is introduced into the vertebral body under fluoroscopic control to allow direct visualization.
  • a transpedicular (through the pedicle of the vertebrae) approach is typically bilateral but can be done unilaterally. The bilateral transpedicular approach is typically used because inadequate PMMA infill is achieved with a unilateral approach.
  • PMMA polymethyl methacrylate
  • the PMMA cement contains radiopaque materials so that when injected under live fluoroscopy, cement localization and leakage can be observed.
  • the visualization of PMMA injection and extravasion are critical to the technique and the physician terminates PMMA injection when leakage is evident.
  • the cement is injected using small syringe-like injectors to allow the physician to manually control the injection pressures.
  • Kyphoplasty is a modification of percutaneous vertebroplasty.
  • Kyphoplasty involves a preliminary step that comprises the percutaneous placement of an inflatable balloon tamp in the vertebral body. Inflation of the balloon creates a cavity in the bone prior to cement injection. Further, the proponents of percutaneous kyphoplasty have suggested that high pressure balloon-tamp inflation can at least partially restore vertebral body height. In kyphoplasty, it has been proposed that PMMA can be injected at lower pressures into the collapsed vertebra since a cavity exists to receive the cement—which is not the case in conventional vertebroplasty.
  • the principal indications for any form of vertebroplasty are osteoporotic vertebral collapse with debilitating pain. Radiography and computed tomography must be performed in the days preceding treatment to determine the extent of vertebral collapse, the presence of epidural or foraminal stenosis caused by bone fragment retropulsion, the presence of cortical destruction or fracture and the visibility and degree of involvement of the pedicles. Leakage of PMMA during vertebroplasty can result in very serious complications including compression of adjacent structures that necessitate emergency decompressive surgery.
  • Leakage or extravasion of PMMA is a critical issue and can be divided into paravertebral leakage, venous infiltration, epidural leakage and intradiscal leakage.
  • the exothermic reaction of PMMA carries potential catastrophic consequences if thermal damage were to extend to the dural sac, cord, and nerve roots.
  • Surgical evacuation of leaked cement in the spinal canal has been reported.
  • leakage of PMMA is related to various clinical factors such as the vertebral compression pattern, and the extent of the cortical fracture, bone mineral density, the interval from injury to operation, the amount of PMMA injected and the location of the injector tip. In one recent study, close to 50% of vertebroplasty cases resulted in leakage of PMMA from the vertebral bodies.
  • PMMA Another disadvantage of PMMA is its inability to undergo remodeling—and the inability to use the PMMA to deliver osteoinductive agents, growth factors, chemotherapeutic agents and the like. Yet another disadvantage of PMMA is the need to add radiopaque agents which lower its viscosity with unclear consequences on its long-term endurance.
  • vertebroplasty lower pressure cement injection
  • kyphoplasty balloon-tamped cementing procedures
  • the direct injection of bone cement simply follows the path of least resistance within the fractured bone.
  • the expansion of a balloon also applies compacting forces along lines of least resistance in the collapsed cancellous bone.
  • the reduction of a vertebral compression fracture is not optimized or controlled in high pressure balloons as forces of balloon expansion occur in multiple directions.
  • the physician In a kyphoplasty procedure, the physician often uses very high pressures (e.g., up to 200 or 300 psi) to inflate the balloon which first crushes and compacts cancellous bone. Expansion of the balloon under high pressures close to cortical bone can fracture the cortical bone, or cause regional damage to the cortical bone that can result in cortical bone necrosis. Such cortical bone damage is highly undesirable and results in weakened cortical endplates.
  • very high pressures e.g., up to 200 or 300 psi
  • Kyphoplasty also does not provide a distraction mechanism capable of 100% vertebral height restoration. Further, the kyphoplasty balloons under very high pressure typically apply forces to vertebral endplates within a central region of the cortical bone that may be weak, rather than distributing forces over the endplate.
  • Embodiments of the present invention meet one or more of the above needs, or other needs, and provide several other advantages in a novel and non-obvious manner.
  • the invention provides systems and method of treating bone abnormalities including vertebral compression fractures, bone tumors and cysts, avascular necrosis of the femoral head and the like.
  • the invention comprises a bone infill system or implant system with a fill material that includes a flowable component and an elastomeric polymer component that is deformable in-situ ( FIG. 1A ).
  • the elastomer component comprises a matrix of base elastomer and a filler of microscale or mesoscale reticulated elements ( FIG. 1B ).
  • the elastomeric component corresponding to the invention performs multiple functions, for example, (i) forming a load-distributing structure between a bone fill material or structure and the elastomer component; (ii) mechanically creating a seal at the interface of cancellous bone and bone fill material or structure to prevent extravasion of a flowable material, (iii) creating a substantially porous layer around the surface of non-porous bone fill material or structures and/or (vi) creating an insulative layer around the surface of an exothermic bone fill material.
  • the elastomer component can be used in bone support treatments or in treatments to move apart cortical bone surfaces as in treating vertebral compression fractures.
  • FIG. 1A is a greatly enlarged sectional view of a flowable composite bone infill material such as PMMA with a volume of elastomeric elements or particles carried therein.
  • FIG. 1B is a greatly enlarged sectional view of an elastomeric element of FIG. 1A with reticulated elements dispersed within the elastomer.
  • FIG. 2A is a schematic view of a spine segment with a vertebra having a compression fracture showing a method of the invention wherein a volume of the flowable media of FIG. 1A is injected under pressure into cancellous bone in a targeted treatment site.
  • FIG. 2B is a schematic view of the spine segment of FIG. 2A showing the pressurized injection of additional flowable wherein the apparent viscosity of the media is altered at surface regions of the plume by outward migration of the elastomeric element to thereby create flow-impermeable surface regions.
  • FIGS. 3A-3B are schematic sectional views of a monolith implant structure fabricated of the composite elastomeric material of FIG. 1B ; with FIG. 3A illustrating the implant structure introduced into a bore in a bone.
  • FIG. 3B illustrate the elastomeric material of FIG. 3A being inserted in the bore in the bone.
  • FIG. 3C illustrates an interference fit bone screw driven into the elastomeric material of FIGS. 3A-3B which distributes loads about the bore in cancellous bone.
  • FIG. 4 is a sectional cut-away view of one an implant segment with multiple layers having different moduli.
  • FIG. 1A illustrates a cross-sectional view of fill material 4 that comprises flowable component 5 with elastomeric polymer component 6 dispersed therein.
  • the flowable component or material 5 is an in-situ hardenable bone cement (e.g., PMMA) that is intermixed with elastomeric component 6 that comprises a plurality of small elastomeric elements, such as silicone particles or elements of another biocompatible polymer.
  • the flowable material 5 and elastomeric elements 6 can be intermixed prior to introduction into bone or contemporaneous with introduction into bone from separate channels in an introducer.
  • the elastomeric elements 6 are typically dimensioned to be small enough to allow their passage within the openings of cancellous bone in a targeted treatment site.
  • the elastomeric elements 6 themselves comprise a composite of base elastomer 10 A and reticulated, open-cell scaffold structures indicated at 10 B.
  • Such reticulated open-cell structures can allow for later bone ingrowth into the surface of the volume of fill material.
  • the term “reticulated” as used herein describes open-cell structures 10 B and means having the appearance of, or functioning as, a wire-like network or a substantially rigid net-like structure.
  • the terms reticulated and trabecular are used interchangeably herein to describe structures having ligaments that bound open cells or closed cells in the interior of the structure.
  • FIG. 2A-2B illustrate a method corresponding to the invention for use in the treatment of a vertebral compression fracture indicated at 13 .
  • an initial volume of fill material 4 comprising a flowable bone cement component 5 and intermixed elastomeric elements 6 is injected under substantial pressure into cancellous bone 14 of the vertebra 15 resulting in plume 18 .
  • the fill material 4 is introduced in a unilateral or bilateral transpedicular approach through cannula 19 as is well known in the art of vertebroplasty.
  • the fill material 4 propagates within the openings in cancellous bone and may also follow pre-existing fracture lines in cancellous bone, for example as may exist following a compression fracture.
  • 2B illustrates the same step of injecting fill material 4 but after a greater volume of material has been introduced resulting in plume 18 of fill material being larger and engaging the cortical bone endplates.
  • the elastomeric elements 6 migrate toward surface region 20 of plume 18 and create a differential in the apparent viscosity of the flowable material across the volume or plume.
  • the term “apparent viscosity” is used herein to describe the flow characteristics of the combination of flowable component 5 and intermixed elastomeric elements 6 .
  • the accumulation of elastomeric elements 6 about surface region 20 also increases.
  • the elastomeric elements 6 can additionally deform and ultimately the pressures cause elastomeric elements 6 to form in-situ a substantially flow-impermeable surface region 20 .
  • the surface region becomes substantially impermeable to flows or extravasion therethrough of flowable component 5 , continued injection of fill material will elastically expand the surface regions and apply expansion forces to the bone.
  • the expansion pressures can expand cancellous bone 14 in which the flowable material 4 has flowed and apply retraction forces to the cortical bone endplates to at least partly reduce a vertebral fracture.
  • an exemplary method corresponding to the invention for treating mammalian bone comprises the following: (a) flowing an initial volume of flowable media into the interior of a bone wherein the media includes a volume of elastomeric elements, and (b) flowing under pressure increasing volumes of the flowable media wherein injection pressures causes a differential apparent viscosity within selected regions across the flowable media.
  • the method further includes causing surface regions 20 of the plume 18 of flowable media to be substantially impermeable to flows therethrough ( FIG. 2B ).
  • the method includes allowing an in-situ polymerizable component of the flowable media to harden to thereby support expanded cancellous bone and to maintain retracted cortical bone in an altered position.
  • the fill material 4 described above includes an elastomer filler composite 6 that carries microscale or mesoscale reticulated elements 10 B ( FIG. 1B ). As the elastomer elements 6 aggregate about surface region 20 of the plume 18 , the reticulated material is proximate to bone and can thus allow for subsequent bone ingrowth. In addition, elastomer elements 6 and surface region 20 create an insulative layer that prevents or moderates heating of the bone external to surface region 20 from an exothermic reaction of a typical bone cement used as flowable component 5 that is interior of surface region 20 .
  • elastomer composite elements 6 can carry radiosensitive and magnetic-sensitive fillers for cooperating with an RF source or an inductive heating source for elevating the polymer to a targeted temperature.
  • the polymeric composition can be substantially transparent or substantially translucent and carry chromophores for cooperating with a light source introduced with the material for heating to material to a selected temperature for increasing the modulus of the material.
  • Such methods of heating surface regions 20 ( FIG. 2B ) in which the elastomer composite elements 6 have aggregated will cause accelerated heating of adjacent interior regions of flowable component 5 .
  • This system can be used to selectively polymerize regions of flowable media 5 adjacent the surface region 20 .
  • the peripheral portions of plume 18 interior of, and within, the aggregated elastomeric elements can be formed into a flow-impermeable layer.
  • the reticulated structures 10 B as in FIG. 1B define a mean cross section which can be expressed in microns.
  • the cells are bounded by polyhedral faces, typically pentagonal or hexagonal, that are formed with five or six ligaments 15 .
  • the cell dimension is selected for enhancing tissue ingrowth, and mean cell cross-sections can range between 10 microns and 200 microns; and more preferably ranges between 20 microns and 100 microns.
  • Such reticulated materials and structures are available from ERG Materials and Aerospace Corp., 900 Stanford Avenue, Oakland Calif. 94608 and Porvair Advanced Materials, Inc., 700 Shepherd Street, Hendersonville N.C. 28792, and are more fully described in co-pending U.S. patent application Ser. No.
  • the elastomeric composition comprises any biocompatible polymer having an elastic modulus ranging between about 10 MPa and 1 KPa.
  • the polymer can be a foam, or a shape memory polymer (SMP) that releases stored energy after heating and moving from a compacted temporary shape to an expanded memory shape.
  • SMP shape memory polymer
  • a description of suitable shape memory polymers is described in U.S. patent application Ser. No. 10/837, 858 titled Orthopedic Implants, Methods of Use and Methods of Fabrication filed May 3, 2004, the contents of which are incorporated herein by this reference in their entirety and should be considered a part of this specification.
  • the elastomer elements 5 are at least one of bioerodible, bioabsorbable or bioexcretable.
  • FIGS. 3A-3C illustrate an alternative embodiment of the invention wherein the composite of an elastomer 10 A and reticulated elements 10 B ( FIG. 1B ) is formed into exemplary implant body 40 A.
  • implant 40 A is fabricated by molding in a suitable dimension for introduction into bore 25 in a bone, indicated as cancellous bone 26 and a cortical bone surface 28 .
  • FIG. 3C illustrates that implant 40 A can have an optional channel or opening 44 for receiving or guiding the positioning of fill material 48 comprising a threaded implant.
  • fill material 48 comprising a threaded implant.
  • a threaded implant 48 can be screwed into the implant wherein the elastomeric implant 40 A and reticulated elements 10 B dispersed therein are compressed to form an interference fit between the bone and implant member 40 A.
  • the insertion of the threaded implant 48 causes self-adjustment of the distribution, location and orientation of the reticulated elements 10 B within the elastomer matrix, thus optimally self-distributing loads between the implant 48 and the bone.
  • a threaded implant would engage the bone highest engagement pressures generally about the apex of the threads.
  • the engagement forces would be distributed about all surfaces of threaded implant 48 —which also preferably has a surface region that is reticulated, roughened or porous.
  • FIG. 4 illustrates another exemplary implant 40 B that is fabricated of an elastomer composite.
  • the composite body has at least two layers 50 a and 50 b that are polymer matrices that carry reticulated elements having different parameters (density, cell dimensions etc.) to provide different elastic moduli.
  • the scope of the invention thus encompasses an implant structure 40 B that has a gradient modulus for transitioning from an interface with cortical bone 55 to the interface with a rigid member 48 which is needed in various implants and reconstructions, such as in hip implants.
  • the elastomeric composite implant 60 can be configured with a plurality of composite regions 62 a and 62 b that provide variations or gradients in material properties for enhancing implant fixation in bone 64 .
  • regions 62 a of the composite are deformable but more rigid than the adjacent regions 62 b .
  • the higher modulus regions will be forced outward more into the bone that other regions 62 b upon insertion of bone screw 68 .
  • the scope of the invention encompasses varying all the obvious properties of different regions of the composite to achieve the desired regional variations or gradients, and include adjusting the: (i) density of ligaments of the reticulated elements dispersed in the matrix; (ii) the overall shape, dimensions and orientations of the reticulated elements; (iii) the pore size of the reticulated elements; (iv) the modulus, deformability and material of the reticulated elements; (v) the percentage volume of reticulated elements in the matrix, (vi) the properties media carried in the pores of the reticulated elements, and (vii) the modulus and other properties of the polymer base material 10 A ( FIG. 1B ).
  • elastomer composites that cooperate with fill materials to control properties of the interface between fill material and bone.
  • the scope of the invention extends to elastomer composites as in FIGS. 2A-2B , 3 A- 3 C and 4 that are introduced into bone wherein a base polymer can be elevated to a transition temperature so that the composite then adjusts its orientation. Upon cooling, the elastomer composite can then freeze in a particular form.
  • reticulated elements in the composite have varied shapes for non-slip engagement between such elements to thereby increase the modulus of the material.
  • the polymeric composition has a transition temperature in the range of 40° C.
  • the transition temperature is a glass transition temperature or a melt temperature.
  • the polymeric matrix can carry radiosensitive or magnetic-sensitive fillers for cooperating with an RF source or an inductive heating source for elevating the polymer to a targeted temperature.
  • the polymeric composition can be substantially transparent or substantially translucent and carry chromophores for cooperating with a light source for heating to material to a selected temperature for elevating the composition to a transition temperature.
  • the fill materials or implants can further carry a radiopaque or radiovisible composition if the material of the reticulated elements is not radiovisible.
  • the fill materials or implants can carry any pharmacological agent or any of the following: antibiotics, cortical bone material, synthetic cortical replacement material, demineralized bone material, autograft and allograft materials.
  • the implant body also can include drugs and agents for inducing bone growth, such as bone morphogenic protein (BMP).
  • BMP bone morphogenic protein
  • the implants can carry the pharmacological agents for immediate or timed release.

Abstract

A system and method for treating bone abnormalities including vertebral compression fractures and the like. In one vertebroplasty method, a fill material is injected under high pressures into cancellous bone wherein the fill material includes a flowable bone cement component and an elastomeric polymer component that is carried therein. The elastomer component can further carry microscale or mesoscale reticulated elements. Under suitable injection pressures, the elastomeric component ultimately migrates within the flowable material to alter the apparent viscosity across the plume of fill material to accomplish multiple functions. For example, the differential in apparent viscosity across the fill material creates a broad load-distributing layer within cancellous bone for applying retraction forces to cortical bone endplates. The differential in apparent viscosity also transitions into a flow impermeable layer at the interface of cancellous bone and the flowable material to prevent extravasion of the flowable bone cement component.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims benefit of Provisional U.S. Patent Application Ser. No. 60/578,182 filed Jun. 9, 2004 (Docket No. S-7700-030) titled Scaffold Composites and Methods for Treating Abnormalities in Bone, the entire contents of which are hereby incorporated by reference in their entirety and should be considered a part of this specification.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • This invention relates to bone implant materials and methods and more particularly to composite materials including an elastomer component for treating abnormalities in bones such as compression fractures of vertebra, necrosis of femurs, joint implants and the like. An exemplary method includes introducing a flowable composite material into the interior of a bone wherein increasing pressures result in the elastomer component causing a differential apparent viscosity within selected regions across the flowable material to thereby allow controlled application of forces to the bone for reducing a fracture.
  • 2. Description of the Related Art
  • Osteoporotic fractures are prevalent in the elderly, with an annual estimate of 1.5 million fractures in the United States alone. These include 750,000 vertebral compression fractures (VCFs) and 250,000 hip fractures. The annual cost of osteoporotic fractures in the United States has been estimated at $13.8 billion. The prevalence of VCFs in women age 50 and older has been estimated at 26%. The prevalence increases with age, reaching 40% among 80-year-old women. Medical advances aimed at slowing or arresting bone loss from aging have not provided solutions to this problem. Further, the affected population will grow steadily as life expectancy increases. Osteoporosis affects the entire skeleton but most commonly causes fractures in the spine and hip. Spinal or vertebral fractures also have serious consequences, with patients suffering from loss of height, deformity and persistent pain which can significantly impair mobility and quality of life. Fracture pain usually lasts 4 to 6 weeks, with intense pain at the fracture site. Chronic pain often occurs when one level is greatly collapsed or multiple levels are collapsed.
  • Postmenopausal women are predisposed to fractures, such as in the vertebrae, due to a decrease in bone mineral density that accompanies postmenopausal osteoporosis. Osteoporosis is a pathologic state that literally means “porous bones”. Skeletal bones are made up of a thick cortical shell and a strong inner meshwork, or cancellous bone, of collagen, calcium salts and other minerals. Cancellous bone is similar to a honeycomb, with blood vessels and bone marrow in the spaces. Osteoporosis describes a condition of decreased bone mass that leads to fragile bones which are at an increased risk for fractures. In an osteoporotic bone, the sponge-like cancellous bone has pores or voids that increase in dimension, making the bone very fragile. In young, healthy bone tissue, bone breakdown occurs continually as the result of osteoclast activity, but the breakdown is balanced by new bone formation by osteoblasts. In an elderly patient, bone resorption can surpass bone formation thus resulting in deterioration of bone density. Osteoporosis occurs largely without symptoms until a fracture occurs.
  • Vertebroplasty and kyphoplasty are recently developed techniques for treating vertebral compression fractures. Percutaneous vertebroplasty was first reported by a French group in 1987 for the treatment of painful hemangiomas. In the 1990's, percutaneous vertebroplasty was extended to indications including osteoporotic vertebral compression fractures, traumatic compression fractures, and painful vertebral metastasis. In one percutaneous vertebroplasty technique, bone cement such as PMMA (polymethylmethacrylate) is percutaneously injected into a fractured vertebral body via a trocar and cannula system. The targeted vertebrae are identified under fluoroscopy. A needle is introduced into the vertebral body under fluoroscopic control to allow direct visualization. A transpedicular (through the pedicle of the vertebrae) approach is typically bilateral but can be done unilaterally. The bilateral transpedicular approach is typically used because inadequate PMMA infill is achieved with a unilateral approach.
  • In a bilateral approach, approximately 1 to 4 ml of PMMA are injected on each side of the vertebra. Since the PMMA needs to be forced into cancellous bone, the technique requires high pressures and fairly low viscosity cement. Since the cortical bone of the targeted vertebra may have a recent fracture, there is the potential of PMMA leakage. The PMMA cement contains radiopaque materials so that when injected under live fluoroscopy, cement localization and leakage can be observed. The visualization of PMMA injection and extravasion are critical to the technique and the physician terminates PMMA injection when leakage is evident. The cement is injected using small syringe-like injectors to allow the physician to manually control the injection pressures.
  • Kyphoplasty is a modification of percutaneous vertebroplasty. Kyphoplasty involves a preliminary step that comprises the percutaneous placement of an inflatable balloon tamp in the vertebral body. Inflation of the balloon creates a cavity in the bone prior to cement injection. Further, the proponents of percutaneous kyphoplasty have suggested that high pressure balloon-tamp inflation can at least partially restore vertebral body height. In kyphoplasty, it has been proposed that PMMA can be injected at lower pressures into the collapsed vertebra since a cavity exists to receive the cement—which is not the case in conventional vertebroplasty.
  • The principal indications for any form of vertebroplasty are osteoporotic vertebral collapse with debilitating pain. Radiography and computed tomography must be performed in the days preceding treatment to determine the extent of vertebral collapse, the presence of epidural or foraminal stenosis caused by bone fragment retropulsion, the presence of cortical destruction or fracture and the visibility and degree of involvement of the pedicles. Leakage of PMMA during vertebroplasty can result in very serious complications including compression of adjacent structures that necessitate emergency decompressive surgery.
  • Leakage or extravasion of PMMA is a critical issue and can be divided into paravertebral leakage, venous infiltration, epidural leakage and intradiscal leakage. The exothermic reaction of PMMA carries potential catastrophic consequences if thermal damage were to extend to the dural sac, cord, and nerve roots. Surgical evacuation of leaked cement in the spinal canal has been reported. It has been found that leakage of PMMA is related to various clinical factors such as the vertebral compression pattern, and the extent of the cortical fracture, bone mineral density, the interval from injury to operation, the amount of PMMA injected and the location of the injector tip. In one recent study, close to 50% of vertebroplasty cases resulted in leakage of PMMA from the vertebral bodies. See Hyun-Woo Do et al, “The Analysis of Polymethylmethacrylate Leakage after Vertebroplasty for Vertebral Body Compression Fractures”, Jour. of Korean Neurosurg. Soc. Vol. 35, No. 5 (May 2004) pp. 478-82, (http://www.jkns.or.kr/htm/abstract.asp?no=0042004086).
  • Another recent study was directed to the incidence of new VCFs adjacent to the vertebral bodies that were initially treated. Vertebroplasty patients often return with new pain caused by a new vertebral body fracture. Leakage of cement into an adjacent disc space during vertebroplasty increases the risk of a new fracture of adjacent vertebral bodies. See Am. J. Neuroradiol. 2004 February; 25(2):175-80. The study found that 58% of vertebral bodies adjacent to a disc with cement leakage fractured during the follow-up period compared with 12% of vertebral bodies adjacent to a disc without cement leakage.
  • Another life-threatening complication of vertebroplasty is pulmonary embolism. See Bernhard, J. et al., “Asymptomatic diffuse pulmonary embolism caused by acrylic cement: an unusual complication of percutaneous vertebroplasty”, Ann. Rheum. Dis. 2003; 62:85-86. The vapors from PMMA preparation and injection are also cause for concern. See Kirby, B., et al., “Acute bronchospasm due to exposure to polymethylmethacrylate vapors during percutaneous vertebroplasty”, Am. J. Roentgenol. 2003; 180:543-544.
  • Another disadvantage of PMMA is its inability to undergo remodeling—and the inability to use the PMMA to deliver osteoinductive agents, growth factors, chemotherapeutic agents and the like. Yet another disadvantage of PMMA is the need to add radiopaque agents which lower its viscosity with unclear consequences on its long-term endurance.
  • In both higher pressure cement injection (vertebroplasty) and balloon-tamped cementing procedures (kyphoplasty), the methods do not provide for well controlled augmentation of vertebral body height. The direct injection of bone cement simply follows the path of least resistance within the fractured bone. The expansion of a balloon also applies compacting forces along lines of least resistance in the collapsed cancellous bone. Thus, the reduction of a vertebral compression fracture is not optimized or controlled in high pressure balloons as forces of balloon expansion occur in multiple directions.
  • In a kyphoplasty procedure, the physician often uses very high pressures (e.g., up to 200 or 300 psi) to inflate the balloon which first crushes and compacts cancellous bone. Expansion of the balloon under high pressures close to cortical bone can fracture the cortical bone, or cause regional damage to the cortical bone that can result in cortical bone necrosis. Such cortical bone damage is highly undesirable and results in weakened cortical endplates.
  • Kyphoplasty also does not provide a distraction mechanism capable of 100% vertebral height restoration. Further, the kyphoplasty balloons under very high pressure typically apply forces to vertebral endplates within a central region of the cortical bone that may be weak, rather than distributing forces over the endplate.
  • There is a general need to provide systems and methods for use in treatment of vertebral compression fractures that provide a greater degree of control over introduction of bone support material, and that provide better outcomes. Embodiments of the present invention meet one or more of the above needs, or other needs, and provide several other advantages in a novel and non-obvious manner.
  • SUMMARY OF THE INVENTION
  • The invention provides systems and method of treating bone abnormalities including vertebral compression fractures, bone tumors and cysts, avascular necrosis of the femoral head and the like. In one embodiment, the invention comprises a bone infill system or implant system with a fill material that includes a flowable component and an elastomeric polymer component that is deformable in-situ (FIG. 1A). In one embodiment, the elastomer component comprises a matrix of base elastomer and a filler of microscale or mesoscale reticulated elements (FIG. 1B). The elastomeric component corresponding to the invention performs multiple functions, for example, (i) forming a load-distributing structure between a bone fill material or structure and the elastomer component; (ii) mechanically creating a seal at the interface of cancellous bone and bone fill material or structure to prevent extravasion of a flowable material, (iii) creating a substantially porous layer around the surface of non-porous bone fill material or structures and/or (vi) creating an insulative layer around the surface of an exothermic bone fill material. The elastomer component can be used in bone support treatments or in treatments to move apart cortical bone surfaces as in treating vertebral compression fractures.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • In the following detailed description, similar reference numerals are used to depict like elements in the various figures.
  • FIG. 1A is a greatly enlarged sectional view of a flowable composite bone infill material such as PMMA with a volume of elastomeric elements or particles carried therein.
  • FIG. 1B is a greatly enlarged sectional view of an elastomeric element of FIG. 1A with reticulated elements dispersed within the elastomer.
  • FIG. 2A is a schematic view of a spine segment with a vertebra having a compression fracture showing a method of the invention wherein a volume of the flowable media of FIG. 1A is injected under pressure into cancellous bone in a targeted treatment site.
  • FIG. 2B is a schematic view of the spine segment of FIG. 2A showing the pressurized injection of additional flowable wherein the apparent viscosity of the media is altered at surface regions of the plume by outward migration of the elastomeric element to thereby create flow-impermeable surface regions.
  • FIGS. 3A-3B are schematic sectional views of a monolith implant structure fabricated of the composite elastomeric material of FIG. 1B; with FIG. 3A illustrating the implant structure introduced into a bore in a bone.
  • FIG. 3B illustrate the elastomeric material of FIG. 3A being inserted in the bore in the bone.
  • FIG. 3C illustrates an interference fit bone screw driven into the elastomeric material of FIGS. 3A-3B which distributes loads about the bore in cancellous bone.
  • FIG. 4 is a sectional cut-away view of one an implant segment with multiple layers having different moduli.
  • DETAILED DESCRIPTION OF THE INVENTION
  • FIG. 1A illustrates a cross-sectional view of fill material 4 that comprises flowable component 5 with elastomeric polymer component 6 dispersed therein. The flowable component or material 5 is an in-situ hardenable bone cement (e.g., PMMA) that is intermixed with elastomeric component 6 that comprises a plurality of small elastomeric elements, such as silicone particles or elements of another biocompatible polymer. The flowable material 5 and elastomeric elements 6 can be intermixed prior to introduction into bone or contemporaneous with introduction into bone from separate channels in an introducer. The elastomeric elements 6 are typically dimensioned to be small enough to allow their passage within the openings of cancellous bone in a targeted treatment site. In one embodiment as depicted in FIG. 1B, the elastomeric elements 6 themselves comprise a composite of base elastomer 10A and reticulated, open-cell scaffold structures indicated at 10B. Such reticulated open-cell structures can allow for later bone ingrowth into the surface of the volume of fill material. The term “reticulated” as used herein describes open-cell structures 10B and means having the appearance of, or functioning as, a wire-like network or a substantially rigid net-like structure. The terms reticulated and trabecular are used interchangeably herein to describe structures having ligaments that bound open cells or closed cells in the interior of the structure.
  • FIG. 2A-2B illustrate a method corresponding to the invention for use in the treatment of a vertebral compression fracture indicated at 13. In FIG. 2A, an initial volume of fill material 4 comprising a flowable bone cement component 5 and intermixed elastomeric elements 6 is injected under substantial pressure into cancellous bone 14 of the vertebra 15 resulting in plume 18. The fill material 4 is introduced in a unilateral or bilateral transpedicular approach through cannula 19 as is well known in the art of vertebroplasty. The fill material 4 propagates within the openings in cancellous bone and may also follow pre-existing fracture lines in cancellous bone, for example as may exist following a compression fracture. FIG. 2B illustrates the same step of injecting fill material 4 but after a greater volume of material has been introduced resulting in plume 18 of fill material being larger and engaging the cortical bone endplates. In the high pressure injection of a such a composite fill material, the elastomeric elements 6 migrate toward surface region 20 of plume 18 and create a differential in the apparent viscosity of the flowable material across the volume or plume. The term “apparent viscosity” is used herein to describe the flow characteristics of the combination of flowable component 5 and intermixed elastomeric elements 6. As the injection pressures and the resistance to inflows of fill material increase, the accumulation of elastomeric elements 6 about surface region 20 also increases. The elastomeric elements 6 can additionally deform and ultimately the pressures cause elastomeric elements 6 to form in-situ a substantially flow-impermeable surface region 20. As the surface region becomes substantially impermeable to flows or extravasion therethrough of flowable component 5, continued injection of fill material will elastically expand the surface regions and apply expansion forces to the bone. In a vertebral body as in FIG. 2B, the expansion pressures can expand cancellous bone 14 in which the flowable material 4 has flowed and apply retraction forces to the cortical bone endplates to at least partly reduce a vertebral fracture.
  • In general, an exemplary method corresponding to the invention for treating mammalian bone comprises the following: (a) flowing an initial volume of flowable media into the interior of a bone wherein the media includes a volume of elastomeric elements, and (b) flowing under pressure increasing volumes of the flowable media wherein injection pressures causes a differential apparent viscosity within selected regions across the flowable media. The method further includes causing surface regions 20 of the plume 18 of flowable media to be substantially impermeable to flows therethrough (FIG. 2B). The method includes allowing an in-situ polymerizable component of the flowable media to harden to thereby support expanded cancellous bone and to maintain retracted cortical bone in an altered position.
  • In another embodiment, the fill material 4 described above includes an elastomer filler composite 6 that carries microscale or mesoscale reticulated elements 10B (FIG. 1B). As the elastomer elements 6 aggregate about surface region 20 of the plume 18, the reticulated material is proximate to bone and can thus allow for subsequent bone ingrowth. In addition, elastomer elements 6 and surface region 20 create an insulative layer that prevents or moderates heating of the bone external to surface region 20 from an exothermic reaction of a typical bone cement used as flowable component 5 that is interior of surface region 20.
  • In any embodiment, elastomer composite elements 6 can carry radiosensitive and magnetic-sensitive fillers for cooperating with an RF source or an inductive heating source for elevating the polymer to a targeted temperature. Alternatively, the polymeric composition can be substantially transparent or substantially translucent and carry chromophores for cooperating with a light source introduced with the material for heating to material to a selected temperature for increasing the modulus of the material. Thus, such methods of heating surface regions 20 (FIG. 2B) in which the elastomer composite elements 6 have aggregated will cause accelerated heating of adjacent interior regions of flowable component 5. This system can be used to selectively polymerize regions of flowable media 5 adjacent the surface region 20. By this means, the peripheral portions of plume 18 interior of, and within, the aggregated elastomeric elements, can be formed into a flow-impermeable layer.
  • The reticulated structures 10B as in FIG. 1B define a mean cross section which can be expressed in microns. In preferred embodiments, the cells are bounded by polyhedral faces, typically pentagonal or hexagonal, that are formed with five or six ligaments 15. The cell dimension is selected for enhancing tissue ingrowth, and mean cell cross-sections can range between 10 microns and 200 microns; and more preferably ranges between 20 microns and 100 microns. Such reticulated materials and structures are available from ERG Materials and Aerospace Corp., 900 Stanford Avenue, Oakland Calif. 94608 and Porvair Advanced Materials, Inc., 700 Shepherd Street, Hendersonville N.C. 28792, and are more fully described in co-pending U.S. patent application Ser. No. 11/______, filed Jun. 7, 2005 (Docket No. S-7700-020A) titled Implants and Methods for Treating Bone, the contents of which are incorporated herein by this reference in their entirety and should be considered a part of this specification.
  • Referring back to FIGS. 1A and 1B, the elastomeric composition comprises any biocompatible polymer having an elastic modulus ranging between about 10 MPa and 1 KPa. The polymer can be a foam, or a shape memory polymer (SMP) that releases stored energy after heating and moving from a compacted temporary shape to an expanded memory shape. A description of suitable shape memory polymers is described in U.S. patent application Ser. No. 10/837, 858 titled Orthopedic Implants, Methods of Use and Methods of Fabrication filed May 3, 2004, the contents of which are incorporated herein by this reference in their entirety and should be considered a part of this specification. In a preferred embodiment, the elastomer elements 5 are at least one of bioerodible, bioabsorbable or bioexcretable.
  • FIGS. 3A-3C illustrate an alternative embodiment of the invention wherein the composite of an elastomer 10A and reticulated elements 10B (FIG. 1B) is formed into exemplary implant body 40A. In FIGS. 3A and 3B, implant 40A is fabricated by molding in a suitable dimension for introduction into bore 25 in a bone, indicated as cancellous bone 26 and a cortical bone surface 28. FIG. 3C illustrates that implant 40A can have an optional channel or opening 44 for receiving or guiding the positioning of fill material 48 comprising a threaded implant. In FIG. 3C, it can be seen that a threaded implant 48 can be screwed into the implant wherein the elastomeric implant 40A and reticulated elements 10B dispersed therein are compressed to form an interference fit between the bone and implant member 40A. Of particular interest, the insertion of the threaded implant 48 causes self-adjustment of the distribution, location and orientation of the reticulated elements 10B within the elastomer matrix, thus optimally self-distributing loads between the implant 48 and the bone. In the prior art, a threaded implant would engage the bone highest engagement pressures generally about the apex of the threads. In the system as in FIG. 3C, the engagement forces would be distributed about all surfaces of threaded implant 48—which also preferably has a surface region that is reticulated, roughened or porous.
  • FIG. 4 illustrates another exemplary implant 40B that is fabricated of an elastomer composite. In this embodiment, the composite body has at least two layers 50 a and 50 b that are polymer matrices that carry reticulated elements having different parameters (density, cell dimensions etc.) to provide different elastic moduli. The scope of the invention thus encompasses an implant structure 40B that has a gradient modulus for transitioning from an interface with cortical bone 55 to the interface with a rigid member 48 which is needed in various implants and reconstructions, such as in hip implants.
  • In another embodiment depicted in FIGS. 5A and 5B, the elastomeric composite implant 60 can be configured with a plurality of composite regions 62 a and 62 b that provide variations or gradients in material properties for enhancing implant fixation in bone 64. In FIG. 5B, it can be seen that regions 62 a of the composite are deformable but more rigid than the adjacent regions 62 b. Thus, the higher modulus regions will be forced outward more into the bone that other regions 62 b upon insertion of bone screw 68. The scope of the invention encompasses varying all the obvious properties of different regions of the composite to achieve the desired regional variations or gradients, and include adjusting the: (i) density of ligaments of the reticulated elements dispersed in the matrix; (ii) the overall shape, dimensions and orientations of the reticulated elements; (iii) the pore size of the reticulated elements; (iv) the modulus, deformability and material of the reticulated elements; (v) the percentage volume of reticulated elements in the matrix, (vi) the properties media carried in the pores of the reticulated elements, and (vii) the modulus and other properties of the polymer base material 10A (FIG. 1B).
  • The above-described embodiments describe elastomer composites that cooperate with fill materials to control properties of the interface between fill material and bone. The scope of the invention extends to elastomer composites as in FIGS. 2A-2B, 3A-3C and 4 that are introduced into bone wherein a base polymer can be elevated to a transition temperature so that the composite then adjusts its orientation. Upon cooling, the elastomer composite can then freeze in a particular form. In such embodiments, it is preferred that reticulated elements in the composite have varied shapes for non-slip engagement between such elements to thereby increase the modulus of the material. In an exemplary embodiment, the polymeric composition has a transition temperature in the range of 40° C. to 120° C.; and preferably in the range of 40° C. to 80° C. The transition temperature is a glass transition temperature or a melt temperature. Again, the polymeric matrix can carry radiosensitive or magnetic-sensitive fillers for cooperating with an RF source or an inductive heating source for elevating the polymer to a targeted temperature. Alternatively, the polymeric composition can be substantially transparent or substantially translucent and carry chromophores for cooperating with a light source for heating to material to a selected temperature for elevating the composition to a transition temperature.
  • In any embodiment, the fill materials or implants can further carry a radiopaque or radiovisible composition if the material of the reticulated elements is not radiovisible.
  • In any embodiment, the fill materials or implants can carry any pharmacological agent or any of the following: antibiotics, cortical bone material, synthetic cortical replacement material, demineralized bone material, autograft and allograft materials. The implant body also can include drugs and agents for inducing bone growth, such as bone morphogenic protein (BMP). The implants can carry the pharmacological agents for immediate or timed release.
  • The above description of the invention intended to be illustrative and not exhaustive. A number of variations and alternatives will be apparent to one having ordinary skills in the art. Such alternatives and variations are intended to be included within the scope of the claims. Particular features that are presented in dependent claims can be combined and fall within the scope of the invention. The invention also encompasses embodiments as if dependent claims were alternatively written in a multiple dependent claim format with reference to other independent claims.

Claims (20)

1-31. (canceled)
32. A method of treating mammalian bone, comprising introducing a flowable media under pressure into cancellous bone, the media including a volume of elastomeric elements wherein the elastomeric elements cause differential apparent viscosity within regions of the flowable media.
33. The method of claim 32 wherein the elastomeric elements cause surface regions of the flowable media to have substantially higher apparent viscosity than interior regions thereof.
34. The method of claim 32 wherein the elastomeric elements cause surface regions of the flowable media to be substantially less permeable to flows therethrough.
35. The method of claim 32 wherein introducing the flowable media applies expansion forces to the bone substantially without extravasation.
36. The method of claim 32 wherein introducing the flowable media expands the cancellous bone.
37. The method of claim 32 wherein introducing the flowable media includes introducing a hardenable cement.
38. The method of claim 37 including permitting the cement to harden thereby providing support to the cortical bone about the cancellous bone.
39. The method of claim 32 wherein introducing the flowable media reduces a fracture.
40. The method of claim 32 wherein introducing the flowable media moves cortical bone.
41. The method of claim 32 wherein introducing the flowable media increases height of a fractured vertebra.
42. The method of claim 32 further including the step of applying energy to the elastomeric elements to heat the flowable media.
43. The method of claim 42 wherein applying energy is carried out by at least one of a radiofrequency energy source and a light energy source.
44. A method of treating mammalian bone, comprising flowing a volume of flowable composite media into cancellous bone and transforming the surface regions of the flowable composite media to a substantially flow impermeable form while introducing additional flowable media into the interior of volume.
45. The method of claim 44 wherein transforming the surface regions to a substantially flow impermeable form includes causing the aggregation of elastomeric elements in said surface regions.
46. The method of claim 44 wherein transforming the surface regions to a substantially flow impermeable form includes causing the expansion of shape memory polymer elements.
47. The method of claim 44 wherein transforming the surface regions to a substantially flow impermeable form includes delivering energy to said surface regions from a remote energy source.
48. The method of claim 44 wherein flowing the volume of composite media expands cancellous bone.
49. The method of claim 44 wherein flowing the volume of composite media moves cortical bone.
50. A method of treating mammalian bone, comprising:
introducing a volume of elastomeric elements into the interior of a bone; and
introducing a flowable media within the volume of elastomeric elements, wherein the elastomeric elements aggregate in outward regions of a plume of the flowable media to cause said outward regions to be substantially flow-impermeable.
US11/148,973 2004-06-09 2005-06-09 Composites and methods for treating bone Abandoned US20060095138A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/148,973 US20060095138A1 (en) 2004-06-09 2005-06-09 Composites and methods for treating bone
US12/942,936 US8163031B2 (en) 2004-06-09 2010-11-09 Composites and methods for treating bone

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US57818204P 2004-06-09 2004-06-09
US11/148,973 US20060095138A1 (en) 2004-06-09 2005-06-09 Composites and methods for treating bone

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/942,936 Continuation US8163031B2 (en) 2004-06-09 2010-11-09 Composites and methods for treating bone

Publications (1)

Publication Number Publication Date
US20060095138A1 true US20060095138A1 (en) 2006-05-04

Family

ID=36263102

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/148,973 Abandoned US20060095138A1 (en) 2004-06-09 2005-06-09 Composites and methods for treating bone
US12/942,936 Expired - Fee Related US8163031B2 (en) 2004-06-09 2010-11-09 Composites and methods for treating bone

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12/942,936 Expired - Fee Related US8163031B2 (en) 2004-06-09 2010-11-09 Composites and methods for treating bone

Country Status (1)

Country Link
US (2) US20060095138A1 (en)

Cited By (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040247849A1 (en) * 2003-06-05 2004-12-09 Csaba Truckai Polymer composites for biomedical applications and methods of making
US20060122622A1 (en) * 2004-12-06 2006-06-08 Csaba Truckai Bone treatment systems and methods
US20060122624A1 (en) * 2004-12-06 2006-06-08 Csaba Truckai Bone treatment systems and methods
US20060122625A1 (en) * 2004-12-06 2006-06-08 Csaba Truckai Bone treatment systems and methods
US20060122623A1 (en) * 2004-12-06 2006-06-08 Csaba Truckai Bone treatment systems and methods
US20060190078A1 (en) * 2005-02-22 2006-08-24 Fell Barry M Method and system for joint repair
US20070055274A1 (en) * 2005-06-20 2007-03-08 Andreas Appenzeller Apparatus and methods for treating bone
US20070093822A1 (en) * 2005-09-28 2007-04-26 Christof Dutoit Apparatus and methods for vertebral augmentation using linked expandable bodies
US20070093846A1 (en) * 2005-10-12 2007-04-26 Robert Frigg Apparatus and methods for vertebral augmentation
US20070093899A1 (en) * 2005-09-28 2007-04-26 Christof Dutoit Apparatus and methods for treating bone
US20070233146A1 (en) * 2006-01-27 2007-10-04 Stryker Corporation Low pressure delivery system and method for delivering a solid and liquid mixture into a target site for medical treatment
US20080027456A1 (en) * 2006-07-19 2008-01-31 Csaba Truckai Bone treatment systems and methods
WO2008057860A2 (en) * 2006-11-08 2008-05-15 Warsaw Orthopedic, Inc Methods of employing calcium phosphate cement compositions and osteoinductive proteins to effect vertebrae interbody fusion absent an interbody device
US20080154273A1 (en) * 2006-12-08 2008-06-26 Shadduck John H Bone treatment systems and methods
US20080172058A1 (en) * 2007-01-12 2008-07-17 Warsaw Orthopedic, Inc. System and Method for Pressure Mixing Bone Filling Material
US20080172059A1 (en) * 2007-01-12 2008-07-17 Warsaw Orthopedic, Inc. System and Method for Forming Porous Bone Filling Material
US20080172131A1 (en) * 2007-01-12 2008-07-17 Warsaw Orthopedic, Inc. System and Method for Forming Bone Filling Materials With Microparticles
US20080188858A1 (en) * 2007-02-05 2008-08-07 Robert Luzzi Bone treatment systems and methods
WO2008129241A1 (en) 2007-04-19 2008-10-30 Smith & Nephew Plc Fixation device
WO2008130989A2 (en) * 2007-04-19 2008-10-30 Smith & Nephew, Inc. Prosthetic implants
US20080269761A1 (en) * 2007-04-30 2008-10-30 Dfine. Inc. Bone treatment systems and methods
WO2009036576A1 (en) * 2007-09-17 2009-03-26 Synergy Biosurgical Ag Medical implant
US20090247664A1 (en) * 2008-02-01 2009-10-01 Dfine, Inc. Bone treatment systems and methods
US20100016467A1 (en) * 2008-02-01 2010-01-21 Dfine, Inc. Bone treatment systems and methods
US20100030220A1 (en) * 2008-07-31 2010-02-04 Dfine, Inc. Bone treatment systems and methods
US7666226B2 (en) 2005-08-16 2010-02-23 Benvenue Medical, Inc. Spinal tissue distraction devices
US20100069547A1 (en) * 2007-04-19 2010-03-18 Smith & Nephew, Inc. Shape Memory Polymers Containing Degradation Accelerant
US20100070049A1 (en) * 2008-05-06 2010-03-18 O'donnell Patrick Method and apparatus for treating compression fractures in vertebral bodies
US7717918B2 (en) 2004-12-06 2010-05-18 Dfine, Inc. Bone treatment systems and methods
US20100136648A1 (en) * 2007-04-18 2010-06-03 Smith & Nephew, Plc Expansion Moulding of Shape Memory Polymers
US20100145448A1 (en) * 2007-04-19 2010-06-10 Smith & Nephew, Inc. Graft Fixation
US20100198225A1 (en) * 2007-04-17 2010-08-05 Thompson Andrew Nmi Shape memory spine jack
US20100241229A1 (en) * 2007-07-03 2010-09-23 Synergy Biosurgical Ag Medical implant
US7909873B2 (en) 2006-12-15 2011-03-22 Soteira, Inc. Delivery apparatus and methods for vertebrostenting
EP2306913A2 (en) * 2008-03-28 2011-04-13 Osteotech, Inc., Bone anchors for orthopedic applications
US20110144751A1 (en) * 2007-04-19 2011-06-16 Smith & Nephew, Inc Multi-Modal Shape Memory Polymers
WO2012096786A1 (en) * 2011-01-14 2012-07-19 Synthes Usa, Llc Elongated fixation element
US8366773B2 (en) 2005-08-16 2013-02-05 Benvenue Medical, Inc. Apparatus and method for treating bone
US8454617B2 (en) 2005-08-16 2013-06-04 Benvenue Medical, Inc. Devices for treating the spine
US8535327B2 (en) 2009-03-17 2013-09-17 Benvenue Medical, Inc. Delivery apparatus for use with implantable medical devices
US8591583B2 (en) 2005-08-16 2013-11-26 Benvenue Medical, Inc. Devices for treating the spine
US8795369B1 (en) 2010-07-16 2014-08-05 Nuvasive, Inc. Fracture reduction device and methods
US8814873B2 (en) 2011-06-24 2014-08-26 Benvenue Medical, Inc. Devices and methods for treating bone tissue
US9192397B2 (en) 2006-12-15 2015-11-24 Gmedelaware 2 Llc Devices and methods for fracture reduction
US9289240B2 (en) 2005-12-23 2016-03-22 DePuy Synthes Products, Inc. Flexible elongated chain implant and method of supporting body tissue with same
US20160106838A1 (en) * 2013-05-23 2016-04-21 206 Ortho, Inc. Method and apparatus for treating bone fractures, and/or for fortifying and/or augmenting bone, including the provision and use of composite implants
US9402725B2 (en) 2009-11-30 2016-08-02 DePuy Synthes Products, Inc. Expandable implant
US9480485B2 (en) 2006-12-15 2016-11-01 Globus Medical, Inc. Devices and methods for vertebrostenting
US9592317B2 (en) 2005-08-22 2017-03-14 Dfine, Inc. Medical system and method of use
US20170071746A1 (en) * 2006-03-20 2017-03-16 Joshua B. Weiss Implant anchoring device
US9597118B2 (en) 2007-07-20 2017-03-21 Dfine, Inc. Bone anchor apparatus and method
US9788963B2 (en) 2003-02-14 2017-10-17 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
US9820791B2 (en) 2014-08-22 2017-11-21 Kyphon SÀRL Methods of filling bone using bone cement mixing and delivery devices
US9820792B2 (en) 2014-08-22 2017-11-21 Kyphon SÀRL Bone cement mixing and delivery device
US9901657B2 (en) 2008-10-13 2018-02-27 Dfine, Inc. System for use in bone cement preparation and delivery
US10028776B2 (en) 2010-10-20 2018-07-24 206 Ortho, Inc. Method and apparatus for treating bone fractures, and/or for fortifying and/or augmenting bone, including the provision and use of composite implants
US10039584B2 (en) 2008-04-21 2018-08-07 Dfine, Inc. System for use in bone cement preparation and delivery
US10085783B2 (en) 2013-03-14 2018-10-02 Izi Medical Products, Llc Devices and methods for treating bone tissue
US10111696B2 (en) 2011-08-25 2018-10-30 DePuy Synthes Products, Inc. Implant
US10525168B2 (en) 2010-10-20 2020-01-07 206 Ortho, Inc. Method and apparatus for treating bone fractures, and/or for fortifying and/or augmenting bone, including the provision and use of composite implants, and novel composite structures which may be used for medical and non-medical applications
US10525169B2 (en) 2010-10-20 2020-01-07 206 Ortho, Inc. Method and apparatus for treating bone fractures, and/or for fortifying and/or augmenting bone, including the provision and use of composite implants, and novel composite structures which may be used for medical and non-medical applications
US10857261B2 (en) 2010-10-20 2020-12-08 206 Ortho, Inc. Implantable polymer for bone and vascular lesions
US10888433B2 (en) 2016-12-14 2021-01-12 DePuy Synthes Products, Inc. Intervertebral implant inserter and related methods
US10940016B2 (en) 2017-07-05 2021-03-09 Medos International Sarl Expandable intervertebral fusion cage
US10966840B2 (en) 2010-06-24 2021-04-06 DePuy Synthes Products, Inc. Enhanced cage insertion assembly
US10973652B2 (en) 2007-06-26 2021-04-13 DePuy Synthes Products, Inc. Highly lordosed fusion cage
US11000290B1 (en) * 2008-02-12 2021-05-11 David P. Sachs Method for performing a surgical operation on the cervical portion of the spine
US11058796B2 (en) 2010-10-20 2021-07-13 206 Ortho, Inc. Method and apparatus for treating bone fractures, and/or for fortifying and/or augmenting bone, including the provision and use of composite implants, and novel composite structures which may be used for medical and non-medical applications
US11273050B2 (en) 2006-12-07 2022-03-15 DePuy Synthes Products, Inc. Intervertebral implant
US11291483B2 (en) 2010-10-20 2022-04-05 206 Ortho, Inc. Method and apparatus for treating bone fractures, and/or for fortifying and/or augmenting bone, including the provision and use of composite implants
US11344424B2 (en) 2017-06-14 2022-05-31 Medos International Sarl Expandable intervertebral implant and related methods
US11426290B2 (en) 2015-03-06 2022-08-30 DePuy Synthes Products, Inc. Expandable intervertebral implant, system, kit and method
US11426286B2 (en) 2020-03-06 2022-08-30 Eit Emerging Implant Technologies Gmbh Expandable intervertebral implant
US11446155B2 (en) 2017-05-08 2022-09-20 Medos International Sarl Expandable cage
US11446156B2 (en) 2018-10-25 2022-09-20 Medos International Sarl Expandable intervertebral implant, inserter instrument, and related methods
US11452607B2 (en) 2010-10-11 2022-09-27 DePuy Synthes Products, Inc. Expandable interspinous process spacer implant
US11484627B2 (en) 2010-10-20 2022-11-01 206 Ortho, Inc. Method and apparatus for treating bone fractures, and/or for fortifying and/or augmenting bone, including the provision and use of composite implants, and novel composite structures which may be used for medical and non-medical applications
US11497619B2 (en) 2013-03-07 2022-11-15 DePuy Synthes Products, Inc. Intervertebral implant
US11510788B2 (en) 2016-06-28 2022-11-29 Eit Emerging Implant Technologies Gmbh Expandable, angularly adjustable intervertebral cages
US11596522B2 (en) 2016-06-28 2023-03-07 Eit Emerging Implant Technologies Gmbh Expandable and angularly adjustable intervertebral cages with articulating joint
US11602438B2 (en) 2008-04-05 2023-03-14 DePuy Synthes Products, Inc. Expandable intervertebral implant
US11607321B2 (en) 2009-12-10 2023-03-21 DePuy Synthes Products, Inc. Bellows-like expandable interbody fusion cage
US11612491B2 (en) 2009-03-30 2023-03-28 DePuy Synthes Products, Inc. Zero profile spinal fusion cage
US11654033B2 (en) 2010-06-29 2023-05-23 DePuy Synthes Products, Inc. Distractible intervertebral implant
US11737881B2 (en) 2008-01-17 2023-08-29 DePuy Synthes Products, Inc. Expandable intervertebral implant and associated method of manufacturing the same
US11752009B2 (en) 2021-04-06 2023-09-12 Medos International Sarl Expandable intervertebral fusion cage
US11850160B2 (en) 2021-03-26 2023-12-26 Medos International Sarl Expandable lordotic intervertebral fusion cage
US11911287B2 (en) 2010-06-24 2024-02-27 DePuy Synthes Products, Inc. Lateral spondylolisthesis reduction cage

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8361067B2 (en) 2002-09-30 2013-01-29 Relievant Medsystems, Inc. Methods of therapeutically heating a vertebral body to treat back pain
US20050278023A1 (en) 2004-06-10 2005-12-15 Zwirkoski Paul A Method and apparatus for filling a cavity
US10028753B2 (en) 2008-09-26 2018-07-24 Relievant Medsystems, Inc. Spine treatment kits
IT1398443B1 (en) * 2010-02-26 2013-02-22 Lima Lto S P A Ora Limacorporate Spa INTEGRATED PROSTHETIC ELEMENT
WO2013101772A1 (en) 2011-12-30 2013-07-04 Relievant Medsystems, Inc. Systems and methods for treating back pain
US10588691B2 (en) 2012-09-12 2020-03-17 Relievant Medsystems, Inc. Radiofrequency ablation of tissue within a vertebral body
CA2889478C (en) 2012-11-05 2020-11-24 Relievant Medsystems, Inc. Systems and methods for creating curved paths through bone and modulating nerves within the bone
US9585695B2 (en) * 2013-03-15 2017-03-07 Woven Orthopedic Technologies, Llc Surgical screw hole liner devices and related methods
US9724151B2 (en) 2013-08-08 2017-08-08 Relievant Medsystems, Inc. Modulating nerves within bone using bone fasteners
US8956394B1 (en) 2014-08-05 2015-02-17 Woven Orthopedic Technologies, Llc Woven retention devices, systems and methods
US9907593B2 (en) 2014-08-05 2018-03-06 Woven Orthopedic Technologies, Llc Woven retention devices, systems and methods
US9943351B2 (en) 2014-09-16 2018-04-17 Woven Orthopedic Technologies, Llc Woven retention devices, systems, packaging, and related methods
USD740427S1 (en) 2014-10-17 2015-10-06 Woven Orthopedic Technologies, Llc Orthopedic woven retention device
EP3331459A4 (en) 2015-08-05 2019-08-14 Woven Orthopedic Technologies, LLC Tapping devices, systems and methods for use in bone tissue
WO2018023030A1 (en) 2016-07-29 2018-02-01 Zimmer Biomet Spine, Inc. Bone screw threaded enlarger
EP3551105A4 (en) 2016-12-09 2020-07-29 Woven Orthopedic Technologies, LLC Retention devices, lattices and related systems and methods
US20190175329A1 (en) * 2017-12-07 2019-06-13 Paul V. Fenton, Jr. Method and injection system for bone tissue implant
EP4027912A4 (en) 2019-09-12 2023-08-16 Relievant Medsystems, Inc. Systems and methods for tissue modulation

Citations (85)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4250887A (en) * 1979-04-18 1981-02-17 Dardik Surgical Associates, P.A. Remote manual injecting apparatus
US4265618A (en) * 1977-09-09 1981-05-05 Solar Energy Technology, Inc. Electrically heated endodontic syringe for injecting thermoplastic material into a root canal cavity
US4280233A (en) * 1979-02-15 1981-07-28 Raab S Bone connective prosthesis comprising a reinforcement element carrying a polymer layer having a varying modulus of elasticity
US4338925A (en) * 1979-12-20 1982-07-13 Jo Miller Pressure injection of bone cement apparatus and method
US4377168A (en) * 1981-02-27 1983-03-22 Wallach Surgical Instruments, Inc. Cryosurgical instrument
US4735625A (en) * 1985-09-11 1988-04-05 Richards Medical Company Bone cement reinforcement and method
US4849223A (en) * 1984-12-28 1989-07-18 Johnson Matthey Public Limited Company Antimicrobial compositions consisting of metallic silver combined with titanium oxide or tantalum oxide
US5037437A (en) * 1990-01-18 1991-08-06 University Of Washington Method of bone preparation for prosthetic fixation
US5108404A (en) * 1989-02-09 1992-04-28 Arie Scholten Surgical protocol for fixation of bone using inflatable device
US5130950A (en) * 1990-05-16 1992-07-14 Schlumberger Technology Corporation Ultrasonic measurement apparatus
US5431654A (en) * 1991-09-30 1995-07-11 Stryker Corporation Bone cement injector
US5514135A (en) * 1993-07-06 1996-05-07 Earle; Michael L. Bone cement delivery gun
US5542928A (en) * 1991-05-17 1996-08-06 Innerdyne, Inc. Method and device for thermal ablation having improved heat transfer
US5788711A (en) * 1996-05-10 1998-08-04 Implex Gmgh Spezialhorgerate Implantable positioning and fixing system for actuator and sensor implants
US6048346A (en) * 1997-08-13 2000-04-11 Kyphon Inc. Systems and methods for injecting flowable materials into bones
US6075067A (en) * 1994-08-15 2000-06-13 Corpipharm Gmbh & Co Cement for medical use, method for producing the cement, and use of the cement
US6171312B1 (en) * 1996-07-18 2001-01-09 Implant Innovations, Inc. Power-driven osteotome tools for compaction of bone tissue
US6231615B1 (en) * 1997-10-14 2001-05-15 Parallax Medical, Inc. Enhanced visibility materials for implantation in hard tissue
US6235043B1 (en) * 1994-01-26 2001-05-22 Kyphon, Inc. Inflatable device for use in surgical protocol relating to fixation of bone
US6236020B1 (en) * 1998-02-06 2001-05-22 Joshua Friedman Heating assembly for preheating dental materials
US6241734B1 (en) * 1998-08-14 2001-06-05 Kyphon, Inc. Systems and methods for placing materials into bone
US6248110B1 (en) * 1994-01-26 2001-06-19 Kyphon, Inc. Systems and methods for treating fractured or diseased bone using expandable bodies
US6261289B1 (en) * 1998-10-26 2001-07-17 Mark Levy Expandable orthopedic device
US6264659B1 (en) * 1999-02-22 2001-07-24 Anthony C. Ross Method of treating an intervertebral disk
US20010011190A1 (en) * 1999-04-01 2001-08-02 Park Joon B. Precoated polymeric prosthesis and process for making same
US6280456B1 (en) * 1997-08-15 2001-08-28 Kyphon Inc Methods for treating bone
US20020026195A1 (en) * 2000-04-07 2002-02-28 Kyphon Inc. Insertion devices and method of use
US6358254B1 (en) * 2000-09-11 2002-03-19 D. Greg Anderson Method and implant for expanding a spinal canal
US20020058947A1 (en) * 2000-02-28 2002-05-16 Stephen Hochschuler Method and apparatus for treating a vertebral body
US6395007B1 (en) * 1999-03-16 2002-05-28 American Osteomedix, Inc. Apparatus and method for fixation of osteoporotic bone
US20020068974A1 (en) * 2000-07-21 2002-06-06 Kuslich Stephen D. Expandable porous mesh bag device and methods of use for reduction, filling, fixation and supporting of bone
US20020082608A1 (en) * 1994-01-26 2002-06-27 Kyphon Inc. Systems and methods using expandable bodies to push apart cortical bone surfaces
US20020099385A1 (en) * 2000-10-25 2002-07-25 Kyphon Inc. Systems and methods for reducing fractured bone using a fracture reduction cannula
US6425923B1 (en) * 2000-03-07 2002-07-30 Zimmer, Inc. Contourable polymer filled implant
US20030032733A1 (en) * 2001-06-28 2003-02-13 Wm. Marsh Rice University Photocrosslinking of diethyl fumarate/poly (propylene fumarate) biomaterials
US20030032929A1 (en) * 1998-12-09 2003-02-13 Mcguckin James F. Hollow curved superelastic medical needle and method
US6524102B2 (en) * 2000-12-08 2003-02-25 Kerry N Davis Method and apparatus for applying thermoplastic border molding to denture impression trays
US20030130373A1 (en) * 2000-08-11 2003-07-10 Dentsply Detrey Gmbh Dental compositions comprising bisacrylamides and use thereof
US20030130738A1 (en) * 2001-11-08 2003-07-10 Arthrocare Corporation System and method for repairing a damaged intervertebral disc
US20040006347A1 (en) * 2002-07-05 2004-01-08 Sproul Michael E. Ultrasonic cannula system
US6676664B1 (en) * 1999-08-05 2004-01-13 Grupo Grifols, S.A. Device for metering hardenable mass for vertebroplastia and other similar bone treatments
US20040024410A1 (en) * 2002-08-02 2004-02-05 Scimed Life Systems, Inc. Media delivery device for bone structures
US6706069B2 (en) * 2001-09-13 2004-03-16 J. Lee Berger Spinal grooved director with built in balloon
US6709149B1 (en) * 1998-12-14 2004-03-23 Ao Research Institute Davos Method of bone cement preparation
US6712852B1 (en) * 2002-09-30 2004-03-30 Depuy Spine, Inc. Laminoplasty cage
US6719773B1 (en) * 1998-06-01 2004-04-13 Kyphon Inc. Expandable structures for deployment in interior body regions
US6723095B2 (en) * 2001-12-28 2004-04-20 Hemodynamics, Inc. Method of spinal fixation using adhesive media
US6726691B2 (en) * 1998-08-14 2004-04-27 Kyphon Inc. Methods for treating fractured and/or diseased bone
US6726991B2 (en) * 2000-06-30 2004-04-27 Eastman Kodak Company Porous polymer particles and method for preparation thereof
US20040083002A1 (en) * 2001-04-06 2004-04-29 Belef William Martin Methods for treating spinal discs
US20040092948A1 (en) * 2002-01-11 2004-05-13 Kyphon Inc. Inflatable device for use in surgical protocol relating to fixation of bone
US6736537B2 (en) * 2001-07-16 2004-05-18 Stryker Instruments Bone cement mixing and delivery device for injection and method thereof
US20040102845A1 (en) * 2002-11-21 2004-05-27 Reynolds Martin A. Methods of performing embolism-free vertebroplasty and devices therefor
US20040110285A1 (en) * 2000-05-31 2004-06-10 Andreas Lendlein Shape memory thermoplastics and polymer networks for tissue engineering
US20040138748A1 (en) * 2000-03-22 2004-07-15 Synthes (Usa) Plugs for filling bony defects
US20050010231A1 (en) * 2003-06-20 2005-01-13 Myers Thomas H. Method and apparatus for strengthening the biomechanical properties of implants
US20050015148A1 (en) * 2003-07-18 2005-01-20 Jansen Lex P. Biocompatible wires and methods of using same to fill bone void
US20050059979A1 (en) * 2003-09-11 2005-03-17 Duran Yetkinler Use of vibration with orthopedic cements
US6872403B2 (en) * 2000-02-01 2005-03-29 University Of Kentucky Research Foundation Polymethylmethacrylate augmented with carbon nanotubes
US20050113843A1 (en) * 2003-11-25 2005-05-26 Arramon Yves P. Remotely actuated system for bone cement delivery
US6899713B2 (en) * 2000-06-23 2005-05-31 Vertelink Corporation Formable orthopedic fixation system
US6985061B2 (en) * 2000-07-24 2006-01-10 Vetco Aibel As Arrangement and method for installing a subsea transformer
US7008433B2 (en) * 2001-02-15 2006-03-07 Depuy Acromed, Inc. Vertebroplasty injection device
US20060052794A1 (en) * 2004-08-17 2006-03-09 Scimed Life Systems, Inc. Apparatus and methods for delivering compounds into vertebrae for vertebroplasty
US20060074433A1 (en) * 2004-08-17 2006-04-06 Scimed Life Systems, Inc. Apparatus and methods for delivering compounds into vertebrae for vertebroplasty
US20060079905A1 (en) * 2003-06-17 2006-04-13 Disc-O-Tech Medical Technologies Ltd. Methods, materials and apparatus for treating bone and other tissue
US20060100635A1 (en) * 1994-01-26 2006-05-11 Kyphon, Inc. Inflatable device for use in surgical protocol relating to fixation of bone
US7044954B2 (en) * 1994-01-26 2006-05-16 Kyphon Inc. Method for treating a vertebral body
US20060122622A1 (en) * 2004-12-06 2006-06-08 Csaba Truckai Bone treatment systems and methods
US20060122614A1 (en) * 2004-12-06 2006-06-08 Csaba Truckai Bone treatment systems and methods
US20060122623A1 (en) * 2004-12-06 2006-06-08 Csaba Truckai Bone treatment systems and methods
US20060122625A1 (en) * 2004-12-06 2006-06-08 Csaba Truckai Bone treatment systems and methods
US20060122624A1 (en) * 2004-12-06 2006-06-08 Csaba Truckai Bone treatment systems and methods
US20060122621A1 (en) * 2004-12-06 2006-06-08 Csaba Truckai Bone treatment systems and methods
US20060150862A1 (en) * 2002-07-10 2006-07-13 Qi Zhao Coatings
US7081125B2 (en) * 1997-03-12 2006-07-25 Neomend, Inc. Universal introducer
US7160020B2 (en) * 2000-10-25 2007-01-09 Kyphon Inc. Methods for mixing and transferring flowable materials
US20070022912A1 (en) * 2000-07-03 2007-02-01 Kyphon Inc. Magnesium Ammonium Phosphate Cement Composition
US20070027230A1 (en) * 2004-03-21 2007-02-01 Disc-O-Tech Medical Technologies Ltd. Methods, materials, and apparatus for treating bone and other tissue
US20070112299A1 (en) * 2005-05-27 2007-05-17 Stryker Corporation Hand-held fluid delivery device with sensors to determine fluid pressure and volume of fluid delivered to intervertebral discs during discography
US20070118144A1 (en) * 2005-09-01 2007-05-24 Csaba Truckai Systems for sensing retrograde flows of bone fill material
US20080103506A1 (en) * 2006-10-30 2008-05-01 Depuy Mitek, Inc. Methods and devices for ligament repair
US20090024161A1 (en) * 2006-02-07 2009-01-22 Bonutti Peter M Methods and devices for utilizing thermal energy to bond, stake and/or remove implants
US7662133B2 (en) * 2003-02-21 2010-02-16 Smith & Nephew, Inc. Spinal fluid introduction
US7708733B2 (en) * 2003-10-20 2010-05-04 Arthrocare Corporation Electrosurgical method and apparatus for removing tissue within a bone body

Family Cites Families (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3349840A (en) 1965-04-05 1967-10-31 Whirlpool Co Fluid flow control apparatus
US4294251A (en) 1978-10-17 1981-10-13 Greenwald A Seth Method of suction lavage
JPS62182146A (en) 1985-10-11 1987-08-10 三井東圧化学株式会社 Hardenable material
DE3674411D1 (en) 1986-11-19 1990-10-25 Experimentelle Chirurgie Lab METHOD AND APPARATUS FOR PREPARING A SELF-HARDENING TWO-COMPONENT POWDER-LIQUID BONE CEMENT.
US4969906A (en) 1987-07-28 1990-11-13 Kronman Joseph H Bone and bony tissue replacement
US4772287A (en) 1987-08-20 1988-09-20 Cedar Surgical, Inc. Prosthetic disc and method of implanting
US4963151A (en) 1988-12-28 1990-10-16 Trustees Of The University Of Pennsylvania Reinforced bone cement, method of production thereof and reinforcing fiber bundles therefor
DE3919534A1 (en) 1989-06-15 1990-12-20 Merck Patent Gmbh METHOD AND DEVICE FOR PREPARING BONE CEMENT
US5292362A (en) 1990-07-27 1994-03-08 The Trustees Of Columbia University In The City Of New York Tissue bonding and sealing composition and method of using the same
DE4033343A1 (en) 1990-10-19 1992-04-23 Draenert Klaus MATERIAL AS THE STARTING MATERIAL FOR THE PRODUCTION OF BONE CEMENT AND METHOD FOR THE PRODUCTION THEREOF
DE4122950C2 (en) 1991-07-11 1994-10-06 Haerle Anton Bone implant with a cavity
IT228979Y1 (en) 1992-03-09 1998-06-05 Giannini Sandro BIODEGRADABLE PROSTHESIS FOR READY FOOT CORRECTION.
US5334626A (en) 1992-07-28 1994-08-02 Zimmer, Inc. Bone cement composition and method of manufacture
US5507814A (en) 1994-03-30 1996-04-16 Northwestern University Orthopedic implant with self-reinforced mantle
US5571189A (en) 1994-05-20 1996-11-05 Kuslich; Stephen D. Expandable fabric implant for stabilizing the spinal motion segment
WO1996011715A1 (en) 1994-10-13 1996-04-25 Kuraray Co., Ltd. Hard-tissue repair composition and supply unit therefor
AU713540B2 (en) 1994-10-25 1999-12-02 Osteonics Corp. Interlocking structural elements and method for bone repair, augmentation and replacement
US5665122A (en) 1995-01-31 1997-09-09 Kambin; Parviz Expandable intervertebral cage and surgical method
US6602248B1 (en) 1995-06-07 2003-08-05 Arthro Care Corp. Methods for repairing damaged intervertebral discs
US6149688A (en) 1995-06-07 2000-11-21 Surgical Dynamics, Inc. Artificial bone graft implant
US5648097A (en) 1995-10-04 1997-07-15 Biotek, Inc. Calcium mineral-based microparticles and method for the production thereof
US6095149A (en) 1996-08-13 2000-08-01 Oratec Interventions, Inc. Method for treating intervertebral disc degeneration
US5769880A (en) 1996-04-12 1998-06-23 Novacept Moisture transport system for contact electrocoagulation
US7357798B2 (en) 1996-07-16 2008-04-15 Arthrocare Corporation Systems and methods for electrosurgical prevention of disc herniations
FR2753368B1 (en) 1996-09-13 1999-01-08 Chauvin Jean Luc EXPANSIONAL OSTEOSYNTHESIS CAGE
AU7178698A (en) 1996-11-15 1998-06-03 Advanced Bio Surfaces, Inc. Biomaterial system for in situ tissue repair
DE19652608C1 (en) 1996-12-18 1998-08-27 Eska Implants Gmbh & Co Prophylaxis implant against fractures of osteoporotically affected bone segments
US5961554A (en) 1996-12-31 1999-10-05 Janson; Frank S Intervertebral spacer
US5954716A (en) 1997-02-19 1999-09-21 Oratec Interventions, Inc Method for modifying the length of a ligament
US5997580A (en) 1997-03-27 1999-12-07 Johnson & Johnson Professional, Inc. Cement restrictor including shape memory material
WO1999030632A1 (en) 1997-12-18 1999-06-24 Comfort Biomedical, Inc. Bone augmentation for prosthetic implants and the like
US6458375B1 (en) 1998-02-27 2002-10-01 Musculoskeletal Transplant Foundation Malleable paste with allograft bone reinforcement for filling bone defects
US6348679B1 (en) 1998-03-17 2002-02-19 Ameritherm, Inc. RF active compositions for use in adhesion, bonding and coating
DE69942858D1 (en) 1998-06-01 2010-11-25 Kyphon S A R L DEFINABLE, PREFORMED STRUCTURES FOR ESTABLISHMENT IN REGIONS INSIDE THE BODY
US7435247B2 (en) 1998-08-11 2008-10-14 Arthrocare Corporation Systems and methods for electrosurgical tissue treatment
US6419704B1 (en) 1999-10-08 2002-07-16 Bret Ferree Artificial intervertebral disc replacement methods and apparatus
EP1328221B1 (en) 1999-08-18 2009-03-25 Intrinsic Therapeutics, Inc. Devices for nucleus pulposus augmentation and retention
US6425919B1 (en) 1999-08-18 2002-07-30 Intrinsic Orthopedics, Inc. Devices and methods of vertebral disc augmentation
US6649888B2 (en) 1999-09-23 2003-11-18 Codaco, Inc. Radio frequency (RF) heating system
US6458127B1 (en) 1999-11-22 2002-10-01 Csaba Truckai Polymer embolic elements with metallic coatings for occlusion of vascular malformations
US6610079B1 (en) 1999-12-14 2003-08-26 Linvatec Corporation Fixation system and method
US6332894B1 (en) 2000-03-07 2001-12-25 Zimmer, Inc. Polymer filled spinal fusion cage
US6447514B1 (en) 2000-03-07 2002-09-10 Zimmer Polymer filled hip fracture fixation device
US6821298B1 (en) 2000-04-18 2004-11-23 Roger P. Jackson Anterior expandable spinal fusion cage system
WO2004043303A2 (en) 2002-11-12 2004-05-27 Regenex Ltd. Expandable devices and methods for tissue expansion, regenerationand fixation
GB2363115A (en) 2000-06-10 2001-12-12 Secr Defence Porous or polycrystalline silicon orthopaedic implants
US6964667B2 (en) 2000-06-23 2005-11-15 Sdgi Holdings, Inc. Formed in place fixation system with thermal acceleration
US6620185B1 (en) 2000-06-27 2003-09-16 Smith & Nephew, Inc. Surgical procedures and instruments
US6316885B1 (en) 2000-07-18 2001-11-13 General Electric Company Single ballast for powering high intensity discharge lamps
US6485436B1 (en) 2000-08-10 2002-11-26 Csaba Truckai Pressure-assisted biopsy needle apparatus and technique
US6312254B1 (en) 2000-09-22 2001-11-06 Joshua Friedman Dispenser for heating and extruding dental material
ES2237611T3 (en) 2000-10-24 2005-08-01 Osteotech, Inc. INJECTABLE COMPOSITION OF VERTEBRAL INCREASE AND METHOD.
US7045125B2 (en) * 2000-10-24 2006-05-16 Vita Special Purpose Corporation Biologically active composites and methods for their production and use
US7306598B2 (en) 2000-11-24 2007-12-11 Dfine, Inc. Polymer matrix devices for treatment of vascular malformations
US6958061B2 (en) 2000-11-24 2005-10-25 Csaba Truckai Microspheres with sacrificial coatings for vaso-occlusive systems
JP4111829B2 (en) 2001-01-11 2008-07-02 リタ メディカル システムズ インコーポレイテッド Bone treatment instrument
US6439439B1 (en) 2001-01-12 2002-08-27 Telios Orthopedic Systems, Inc. Bone cement delivery apparatus and hand-held fluent material dispensing apparatus
DE60207051D1 (en) * 2001-01-26 2005-12-08 Univ Mississippi Medical Ct Ja BONE CEMENT
US6673113B2 (en) 2001-10-18 2004-01-06 Spinecore, Inc. Intervertebral spacer device having arch shaped spring elements
US6375659B1 (en) 2001-02-20 2002-04-23 Vita Licensing, Inc. Method for delivery of biocompatible material
US20070191964A1 (en) 2001-04-04 2007-08-16 Arthrocare Corporation Enhanced visibility materials for implantation in hard tissue
US20020147496A1 (en) 2001-04-06 2002-10-10 Integrated Vascular Systems, Inc. Apparatus for treating spinal discs
US6632235B2 (en) 2001-04-19 2003-10-14 Synthes (U.S.A.) Inflatable device and method for reducing fractures in bone and in treating the spine
PT2055267E (en) 2001-05-01 2013-07-15 Amedica Corp Radiolucent bone graft
US6736815B2 (en) 2001-09-06 2004-05-18 Core Medical, Inc. Apparatus and methods for treating spinal discs
WO2003045274A2 (en) 2001-11-21 2003-06-05 Nuvasive, Inc. Thermopolymer composition and related methods
AU2003205316A1 (en) 2002-01-22 2003-09-02 Sciogen Llc Electrosurgical instrument and method of use
US7273523B2 (en) 2002-06-07 2007-09-25 Kyphon Inc. Strontium-apatite-cement-preparations, cements formed therefrom, and uses thereof
WO2003105673A2 (en) 2002-06-17 2003-12-24 Trimedyne, Inc. Devices and methods for minimally invasive treatment of degenerated spinal discs
US8066713B2 (en) 2003-03-31 2011-11-29 Depuy Spine, Inc. Remotely-activated vertebroplasty injection device
GB2400935B (en) 2003-04-26 2006-02-15 Ibm Configuring memory for a raid storage system
US20040267272A1 (en) 2003-05-12 2004-12-30 Henniges Bruce D Bone cement mixing and delivery system
BRPI0410324A (en) * 2003-05-15 2006-05-23 Biomerix Corp implantable device, elastomeric matrix production lyophilization processes having a cross-linked structure, polymerization for cross-linked elastomeric matrix preparation and cross-linked composite elastomeric implant preparation, and method for treating an orthopedic disorder
US6955691B2 (en) 2003-11-21 2005-10-18 Kyungwon Medical Co., Ltd. Expandable interfusion cage
US7189263B2 (en) 2004-02-03 2007-03-13 Vita Special Purpose Corporation Biocompatible bone graft material
US8235256B2 (en) 2004-02-12 2012-08-07 Kyphon Sarl Manual pump mechanism and delivery system
US20050245938A1 (en) 2004-04-28 2005-11-03 Kochan Jeffrey P Method and apparatus for minimally invasive repair of intervertebral discs and articular joints
US20060229628A1 (en) 2004-10-02 2006-10-12 Csaba Truckai Biomedical treatment systems and methods
US8048083B2 (en) 2004-11-05 2011-11-01 Dfine, Inc. Bone treatment systems and methods
US7851189B2 (en) 2005-03-07 2010-12-14 Boston Scientific Scimed, Inc. Microencapsulated compositions for endoluminal tissue engineering
CN101370465A (en) 2006-01-23 2009-02-18 奥赛恩治疗公司 Bone cement composite containing particles in a non-uniform spatial distribution and devices for implementation
US20080103505A1 (en) 2006-10-26 2008-05-01 Hendrik Raoul Andre Fransen Containment device for site-specific delivery of a therapeutic material and methods of use

Patent Citations (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4265618A (en) * 1977-09-09 1981-05-05 Solar Energy Technology, Inc. Electrically heated endodontic syringe for injecting thermoplastic material into a root canal cavity
US4280233A (en) * 1979-02-15 1981-07-28 Raab S Bone connective prosthesis comprising a reinforcement element carrying a polymer layer having a varying modulus of elasticity
US4250887A (en) * 1979-04-18 1981-02-17 Dardik Surgical Associates, P.A. Remote manual injecting apparatus
US4338925A (en) * 1979-12-20 1982-07-13 Jo Miller Pressure injection of bone cement apparatus and method
US4377168A (en) * 1981-02-27 1983-03-22 Wallach Surgical Instruments, Inc. Cryosurgical instrument
US4849223A (en) * 1984-12-28 1989-07-18 Johnson Matthey Public Limited Company Antimicrobial compositions consisting of metallic silver combined with titanium oxide or tantalum oxide
US4735625A (en) * 1985-09-11 1988-04-05 Richards Medical Company Bone cement reinforcement and method
US5108404A (en) * 1989-02-09 1992-04-28 Arie Scholten Surgical protocol for fixation of bone using inflatable device
US5037437B1 (en) * 1990-01-18 1998-04-14 Univ Washington Method of bone preparation for prosthetic fixation
US5037437A (en) * 1990-01-18 1991-08-06 University Of Washington Method of bone preparation for prosthetic fixation
US5130950A (en) * 1990-05-16 1992-07-14 Schlumberger Technology Corporation Ultrasonic measurement apparatus
US5542928A (en) * 1991-05-17 1996-08-06 Innerdyne, Inc. Method and device for thermal ablation having improved heat transfer
US5431654A (en) * 1991-09-30 1995-07-11 Stryker Corporation Bone cement injector
US5514135A (en) * 1993-07-06 1996-05-07 Earle; Michael L. Bone cement delivery gun
US7044954B2 (en) * 1994-01-26 2006-05-16 Kyphon Inc. Method for treating a vertebral body
US20020082608A1 (en) * 1994-01-26 2002-06-27 Kyphon Inc. Systems and methods using expandable bodies to push apart cortical bone surfaces
US6235043B1 (en) * 1994-01-26 2001-05-22 Kyphon, Inc. Inflatable device for use in surgical protocol relating to fixation of bone
US20060100635A1 (en) * 1994-01-26 2006-05-11 Kyphon, Inc. Inflatable device for use in surgical protocol relating to fixation of bone
US7241303B2 (en) * 1994-01-26 2007-07-10 Kyphon Inc. Devices and methods using an expandable body with internal restraint for compressing cancellous bone
US6248110B1 (en) * 1994-01-26 2001-06-19 Kyphon, Inc. Systems and methods for treating fractured or diseased bone using expandable bodies
US6075067A (en) * 1994-08-15 2000-06-13 Corpipharm Gmbh & Co Cement for medical use, method for producing the cement, and use of the cement
US5788711A (en) * 1996-05-10 1998-08-04 Implex Gmgh Spezialhorgerate Implantable positioning and fixing system for actuator and sensor implants
US6171312B1 (en) * 1996-07-18 2001-01-09 Implant Innovations, Inc. Power-driven osteotome tools for compaction of bone tissue
US7081125B2 (en) * 1997-03-12 2006-07-25 Neomend, Inc. Universal introducer
US6048346A (en) * 1997-08-13 2000-04-11 Kyphon Inc. Systems and methods for injecting flowable materials into bones
US6280456B1 (en) * 1997-08-15 2001-08-28 Kyphon Inc Methods for treating bone
US20010012968A1 (en) * 1997-10-14 2001-08-09 Howard Preissman Enhanced visibility materials for implantation in hard tissue
US7510579B2 (en) * 1997-10-14 2009-03-31 Arthrocare Corporation Enhanced visibility materials for implantation in hard tissue
US6231615B1 (en) * 1997-10-14 2001-05-15 Parallax Medical, Inc. Enhanced visibility materials for implantation in hard tissue
US6236020B1 (en) * 1998-02-06 2001-05-22 Joshua Friedman Heating assembly for preheating dental materials
US7722624B2 (en) * 1998-06-01 2010-05-25 Kyphon SÀRL Expandable structures for deployment in interior body regions
US6719773B1 (en) * 1998-06-01 2004-04-13 Kyphon Inc. Expandable structures for deployment in interior body regions
US6241734B1 (en) * 1998-08-14 2001-06-05 Kyphon, Inc. Systems and methods for placing materials into bone
US6726691B2 (en) * 1998-08-14 2004-04-27 Kyphon Inc. Methods for treating fractured and/or diseased bone
US6261289B1 (en) * 1998-10-26 2001-07-17 Mark Levy Expandable orthopedic device
US20030032929A1 (en) * 1998-12-09 2003-02-13 Mcguckin James F. Hollow curved superelastic medical needle and method
US6709149B1 (en) * 1998-12-14 2004-03-23 Ao Research Institute Davos Method of bone cement preparation
US6264659B1 (en) * 1999-02-22 2001-07-24 Anthony C. Ross Method of treating an intervertebral disk
US6395007B1 (en) * 1999-03-16 2002-05-28 American Osteomedix, Inc. Apparatus and method for fixation of osteoporotic bone
US6558428B2 (en) * 1999-04-01 2003-05-06 Joon B. Park Precoated polymeric prosthesis and process for making same
US20010011190A1 (en) * 1999-04-01 2001-08-02 Park Joon B. Precoated polymeric prosthesis and process for making same
US6676664B1 (en) * 1999-08-05 2004-01-13 Grupo Grifols, S.A. Device for metering hardenable mass for vertebroplastia and other similar bone treatments
US6872403B2 (en) * 2000-02-01 2005-03-29 University Of Kentucky Research Foundation Polymethylmethacrylate augmented with carbon nanotubes
US20020058947A1 (en) * 2000-02-28 2002-05-16 Stephen Hochschuler Method and apparatus for treating a vertebral body
US6740093B2 (en) * 2000-02-28 2004-05-25 Stephen Hochschuler Method and apparatus for treating a vertebral body
US6425923B1 (en) * 2000-03-07 2002-07-30 Zimmer, Inc. Contourable polymer filled implant
US20040138748A1 (en) * 2000-03-22 2004-07-15 Synthes (Usa) Plugs for filling bony defects
US20020026195A1 (en) * 2000-04-07 2002-02-28 Kyphon Inc. Insertion devices and method of use
US20040110285A1 (en) * 2000-05-31 2004-06-10 Andreas Lendlein Shape memory thermoplastics and polymer networks for tissue engineering
US6899713B2 (en) * 2000-06-23 2005-05-31 Vertelink Corporation Formable orthopedic fixation system
US6726991B2 (en) * 2000-06-30 2004-04-27 Eastman Kodak Company Porous polymer particles and method for preparation thereof
US20070022912A1 (en) * 2000-07-03 2007-02-01 Kyphon Inc. Magnesium Ammonium Phosphate Cement Composition
US20040073308A1 (en) * 2000-07-21 2004-04-15 Spineology, Inc. Expandable porous mesh bag device and methods of use for reduction, filling, fixation, and supporting of bone
US20020068974A1 (en) * 2000-07-21 2002-06-06 Kuslich Stephen D. Expandable porous mesh bag device and methods of use for reduction, filling, fixation and supporting of bone
US6985061B2 (en) * 2000-07-24 2006-01-10 Vetco Aibel As Arrangement and method for installing a subsea transformer
US6767936B2 (en) * 2000-08-11 2004-07-27 Dentsply Detrey Gmbh Dental compositions comprising bisacrylamides and use thereof
US20030130373A1 (en) * 2000-08-11 2003-07-10 Dentsply Detrey Gmbh Dental compositions comprising bisacrylamides and use thereof
US6358254B1 (en) * 2000-09-11 2002-03-19 D. Greg Anderson Method and implant for expanding a spinal canal
US7160020B2 (en) * 2000-10-25 2007-01-09 Kyphon Inc. Methods for mixing and transferring flowable materials
US20020099385A1 (en) * 2000-10-25 2002-07-25 Kyphon Inc. Systems and methods for reducing fractured bone using a fracture reduction cannula
US6524102B2 (en) * 2000-12-08 2003-02-25 Kerry N Davis Method and apparatus for applying thermoplastic border molding to denture impression trays
US7008433B2 (en) * 2001-02-15 2006-03-07 Depuy Acromed, Inc. Vertebroplasty injection device
US20040083002A1 (en) * 2001-04-06 2004-04-29 Belef William Martin Methods for treating spinal discs
US20030032733A1 (en) * 2001-06-28 2003-02-13 Wm. Marsh Rice University Photocrosslinking of diethyl fumarate/poly (propylene fumarate) biomaterials
US6753358B2 (en) * 2001-06-28 2004-06-22 William Marsh Rice University Photocrosslinking of diethyl fumarate/poly(propylene fumarate) biomaterials
US6736537B2 (en) * 2001-07-16 2004-05-18 Stryker Instruments Bone cement mixing and delivery device for injection and method thereof
US6706069B2 (en) * 2001-09-13 2004-03-16 J. Lee Berger Spinal grooved director with built in balloon
US20030130738A1 (en) * 2001-11-08 2003-07-10 Arthrocare Corporation System and method for repairing a damaged intervertebral disc
US6723095B2 (en) * 2001-12-28 2004-04-20 Hemodynamics, Inc. Method of spinal fixation using adhesive media
US20040092948A1 (en) * 2002-01-11 2004-05-13 Kyphon Inc. Inflatable device for use in surgical protocol relating to fixation of bone
US20040006347A1 (en) * 2002-07-05 2004-01-08 Sproul Michael E. Ultrasonic cannula system
US20060150862A1 (en) * 2002-07-10 2006-07-13 Qi Zhao Coatings
US20040024410A1 (en) * 2002-08-02 2004-02-05 Scimed Life Systems, Inc. Media delivery device for bone structures
US6712852B1 (en) * 2002-09-30 2004-03-30 Depuy Spine, Inc. Laminoplasty cage
US20060052743A1 (en) * 2002-11-21 2006-03-09 Reynolds Martin A Methods of performing embolism-free vertebroplasty and devices therefor
US20040102845A1 (en) * 2002-11-21 2004-05-27 Reynolds Martin A. Methods of performing embolism-free vertebroplasty and devices therefor
US7662133B2 (en) * 2003-02-21 2010-02-16 Smith & Nephew, Inc. Spinal fluid introduction
US20060079905A1 (en) * 2003-06-17 2006-04-13 Disc-O-Tech Medical Technologies Ltd. Methods, materials and apparatus for treating bone and other tissue
US20050010231A1 (en) * 2003-06-20 2005-01-13 Myers Thomas H. Method and apparatus for strengthening the biomechanical properties of implants
US20050015148A1 (en) * 2003-07-18 2005-01-20 Jansen Lex P. Biocompatible wires and methods of using same to fill bone void
US20050059979A1 (en) * 2003-09-11 2005-03-17 Duran Yetkinler Use of vibration with orthopedic cements
US7708733B2 (en) * 2003-10-20 2010-05-04 Arthrocare Corporation Electrosurgical method and apparatus for removing tissue within a bone body
US20050113843A1 (en) * 2003-11-25 2005-05-26 Arramon Yves P. Remotely actuated system for bone cement delivery
US20070027230A1 (en) * 2004-03-21 2007-02-01 Disc-O-Tech Medical Technologies Ltd. Methods, materials, and apparatus for treating bone and other tissue
US20060074433A1 (en) * 2004-08-17 2006-04-06 Scimed Life Systems, Inc. Apparatus and methods for delivering compounds into vertebrae for vertebroplasty
US20060052794A1 (en) * 2004-08-17 2006-03-09 Scimed Life Systems, Inc. Apparatus and methods for delivering compounds into vertebrae for vertebroplasty
US20060122625A1 (en) * 2004-12-06 2006-06-08 Csaba Truckai Bone treatment systems and methods
US7678116B2 (en) * 2004-12-06 2010-03-16 Dfine, Inc. Bone treatment systems and methods
US20060122622A1 (en) * 2004-12-06 2006-06-08 Csaba Truckai Bone treatment systems and methods
US20060122621A1 (en) * 2004-12-06 2006-06-08 Csaba Truckai Bone treatment systems and methods
US7717918B2 (en) * 2004-12-06 2010-05-18 Dfine, Inc. Bone treatment systems and methods
US20060122614A1 (en) * 2004-12-06 2006-06-08 Csaba Truckai Bone treatment systems and methods
US20060122623A1 (en) * 2004-12-06 2006-06-08 Csaba Truckai Bone treatment systems and methods
US20060122624A1 (en) * 2004-12-06 2006-06-08 Csaba Truckai Bone treatment systems and methods
US7559932B2 (en) * 2004-12-06 2009-07-14 Dfine, Inc. Bone treatment systems and methods
US20070112299A1 (en) * 2005-05-27 2007-05-17 Stryker Corporation Hand-held fluid delivery device with sensors to determine fluid pressure and volume of fluid delivered to intervertebral discs during discography
US20070162043A1 (en) * 2005-09-01 2007-07-12 Csaba Truckai Methods for sensing retrograde flows of bone fill material
US20070118144A1 (en) * 2005-09-01 2007-05-24 Csaba Truckai Systems for sensing retrograde flows of bone fill material
US20090024161A1 (en) * 2006-02-07 2009-01-22 Bonutti Peter M Methods and devices for utilizing thermal energy to bond, stake and/or remove implants
US20080103506A1 (en) * 2006-10-30 2008-05-01 Depuy Mitek, Inc. Methods and devices for ligament repair

Cited By (228)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10492918B2 (en) 2003-02-14 2019-12-03 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
US10376372B2 (en) 2003-02-14 2019-08-13 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
US10433971B2 (en) 2003-02-14 2019-10-08 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
US10583013B2 (en) 2003-02-14 2020-03-10 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
US11096794B2 (en) 2003-02-14 2021-08-24 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
US10575959B2 (en) 2003-02-14 2020-03-03 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
US11207187B2 (en) 2003-02-14 2021-12-28 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
US10555817B2 (en) 2003-02-14 2020-02-11 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
US11432938B2 (en) 2003-02-14 2022-09-06 DePuy Synthes Products, Inc. In-situ intervertebral fusion device and method
US9925060B2 (en) 2003-02-14 2018-03-27 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
US10786361B2 (en) 2003-02-14 2020-09-29 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
US10639164B2 (en) 2003-02-14 2020-05-05 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
US9788963B2 (en) 2003-02-14 2017-10-17 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
US9801729B2 (en) 2003-02-14 2017-10-31 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
US10085843B2 (en) 2003-02-14 2018-10-02 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
US10420651B2 (en) 2003-02-14 2019-09-24 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
US10405986B2 (en) 2003-02-14 2019-09-10 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
US9814589B2 (en) 2003-02-14 2017-11-14 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
US9814590B2 (en) 2003-02-14 2017-11-14 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
US9808351B2 (en) 2003-02-14 2017-11-07 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
US9907556B2 (en) 2003-06-05 2018-03-06 Dfine, Inc. Polymer composites for biomedical applications and methods of making
US20040247849A1 (en) * 2003-06-05 2004-12-09 Csaba Truckai Polymer composites for biomedical applications and methods of making
US7569626B2 (en) 2003-06-05 2009-08-04 Dfine, Inc. Polymer composites for biomedical applications and methods of making
US20100280520A1 (en) * 2004-12-06 2010-11-04 Dfine, Inc. Bone treatment systems and methods
US10172659B2 (en) 2004-12-06 2019-01-08 Dfine, Inc. Bone treatment systems and methods
US20090275995A1 (en) * 2004-12-06 2009-11-05 Dfine, Inc. Bone treatment systems and methods
US20060122625A1 (en) * 2004-12-06 2006-06-08 Csaba Truckai Bone treatment systems and methods
US9610110B2 (en) 2004-12-06 2017-04-04 Dfine, Inc. Bone treatment systems and methods
US11026734B2 (en) 2004-12-06 2021-06-08 Dfine, Inc. Bone treatment systems and methods
US8348955B2 (en) 2004-12-06 2013-01-08 Dfine, Inc. Bone treatment systems and methods
US8192442B2 (en) 2004-12-06 2012-06-05 Dfine, Inc. Bone treatment systems and methods
US20060122624A1 (en) * 2004-12-06 2006-06-08 Csaba Truckai Bone treatment systems and methods
US8070753B2 (en) 2004-12-06 2011-12-06 Dfine, Inc. Bone treatment systems and methods
US7678116B2 (en) 2004-12-06 2010-03-16 Dfine, Inc. Bone treatment systems and methods
US20060122623A1 (en) * 2004-12-06 2006-06-08 Csaba Truckai Bone treatment systems and methods
US20060122622A1 (en) * 2004-12-06 2006-06-08 Csaba Truckai Bone treatment systems and methods
US7717918B2 (en) 2004-12-06 2010-05-18 Dfine, Inc. Bone treatment systems and methods
US7722620B2 (en) 2004-12-06 2010-05-25 Dfine, Inc. Bone treatment systems and methods
US9005210B2 (en) 2004-12-06 2015-04-14 Dfine, Inc. Bone treatment systems and methods
US8828080B2 (en) 2005-02-22 2014-09-09 Barry M. Fell Method and system for knee joint repair
US20060190078A1 (en) * 2005-02-22 2006-08-24 Fell Barry M Method and system for joint repair
US9750611B2 (en) 2005-02-22 2017-09-05 Barry M. Fell Method and system for knee joint repair
US8080061B2 (en) 2005-06-20 2011-12-20 Synthes Usa, Llc Apparatus and methods for treating bone
US20070055274A1 (en) * 2005-06-20 2007-03-08 Andreas Appenzeller Apparatus and methods for treating bone
US10028840B2 (en) 2005-08-16 2018-07-24 Izi Medical Products, Llc Spinal tissue distraction devices
US9044338B2 (en) 2005-08-16 2015-06-02 Benvenue Medical, Inc. Spinal tissue distraction devices
US9788974B2 (en) 2005-08-16 2017-10-17 Benvenue Medical, Inc. Spinal tissue distraction devices
US7955391B2 (en) 2005-08-16 2011-06-07 Benvenue Medical, Inc. Methods for limiting the movement of material introduced between layers of spinal tissue
US8591583B2 (en) 2005-08-16 2013-11-26 Benvenue Medical, Inc. Devices for treating the spine
US7963993B2 (en) 2005-08-16 2011-06-21 Benvenue Medical, Inc. Methods of distracting tissue layers of the human spine
US7967864B2 (en) 2005-08-16 2011-06-28 Benvenue Medical, Inc. Spinal tissue distraction devices
US7967865B2 (en) 2005-08-16 2011-06-28 Benvenue Medical, Inc. Devices for limiting the movement of material introduced between layers of spinal tissue
US8057544B2 (en) 2005-08-16 2011-11-15 Benvenue Medical, Inc. Methods of distracting tissue layers of the human spine
US7670374B2 (en) 2005-08-16 2010-03-02 Benvenue Medical, Inc. Methods of distracting tissue layers of the human spine
US8961609B2 (en) 2005-08-16 2015-02-24 Benvenue Medical, Inc. Devices for distracting tissue layers of the human spine
US7670375B2 (en) 2005-08-16 2010-03-02 Benvenue Medical, Inc. Methods for limiting the movement of material introduced between layers of spinal tissue
US8808376B2 (en) 2005-08-16 2014-08-19 Benvenue Medical, Inc. Intravertebral implants
US7666227B2 (en) 2005-08-16 2010-02-23 Benvenue Medical, Inc. Devices for limiting the movement of material introduced between layers of spinal tissue
US8801787B2 (en) 2005-08-16 2014-08-12 Benvenue Medical, Inc. Methods of distracting tissue layers of the human spine
US8882836B2 (en) 2005-08-16 2014-11-11 Benvenue Medical, Inc. Apparatus and method for treating bone
US9259326B2 (en) 2005-08-16 2016-02-16 Benvenue Medical, Inc. Spinal tissue distraction devices
US7666226B2 (en) 2005-08-16 2010-02-23 Benvenue Medical, Inc. Spinal tissue distraction devices
US8366773B2 (en) 2005-08-16 2013-02-05 Benvenue Medical, Inc. Apparatus and method for treating bone
US9066808B2 (en) 2005-08-16 2015-06-30 Benvenue Medical, Inc. Method of interdigitating flowable material with bone tissue
US8979929B2 (en) 2005-08-16 2015-03-17 Benvenue Medical, Inc. Spinal tissue distraction devices
US8454617B2 (en) 2005-08-16 2013-06-04 Benvenue Medical, Inc. Devices for treating the spine
US8556978B2 (en) 2005-08-16 2013-10-15 Benvenue Medical, Inc. Devices and methods for treating the vertebral body
US9326866B2 (en) 2005-08-16 2016-05-03 Benvenue Medical, Inc. Devices for treating the spine
US7785368B2 (en) 2005-08-16 2010-08-31 Benvenue Medical, Inc. Spinal tissue distraction devices
US9592317B2 (en) 2005-08-22 2017-03-14 Dfine, Inc. Medical system and method of use
US10278754B2 (en) 2005-08-22 2019-05-07 Dfine, Inc. Bone treatment systems and methods
US9572613B2 (en) 2005-08-22 2017-02-21 Dfine, Inc. Bone treatment systems and methods
US9161797B2 (en) 2005-08-22 2015-10-20 Dfine, Inc. Bone treatment systems and methods
US20100145392A1 (en) * 2005-09-08 2010-06-10 Christof Dutoit Apparatus and methods for vertebral augmentation using linked expandable bodies
US8267971B2 (en) 2005-09-08 2012-09-18 Synthes Usa, Llc Apparatus and methods for vertebral augmentation using linked expandable bodies
US8663294B2 (en) 2005-09-28 2014-03-04 DePuy Synthes Products, LLC Apparatus and methods for vertebral augmentation using linked expandable bodies
US20070093822A1 (en) * 2005-09-28 2007-04-26 Christof Dutoit Apparatus and methods for vertebral augmentation using linked expandable bodies
US20070093899A1 (en) * 2005-09-28 2007-04-26 Christof Dutoit Apparatus and methods for treating bone
US8157806B2 (en) 2005-10-12 2012-04-17 Synthes Usa, Llc Apparatus and methods for vertebral augmentation
US20070093846A1 (en) * 2005-10-12 2007-04-26 Robert Frigg Apparatus and methods for vertebral augmentation
US9289240B2 (en) 2005-12-23 2016-03-22 DePuy Synthes Products, Inc. Flexible elongated chain implant and method of supporting body tissue with same
US10881520B2 (en) 2005-12-23 2021-01-05 DePuy Synthes Products, Inc. Flexible elongated chain implant and method of supporting body tissue with same
US11406508B2 (en) 2005-12-23 2022-08-09 DePuy Synthes Products, Inc. Flexible elongated chain implant and method of supporting body tissue with same
US9956085B2 (en) 2005-12-23 2018-05-01 DePuy Synthes Products, Inc. Flexible elongated chain implant and method of supporting body tissue with same
US11701233B2 (en) 2005-12-23 2023-07-18 DePuy Synthes Products, Inc. Flexible elongated chain implant and method of supporting body tissue with same
US9301792B2 (en) 2006-01-27 2016-04-05 Stryker Corporation Low pressure delivery system and method for delivering a solid and liquid mixture into a target site for medical treatment
US20070233146A1 (en) * 2006-01-27 2007-10-04 Stryker Corporation Low pressure delivery system and method for delivering a solid and liquid mixture into a target site for medical treatment
US10426536B2 (en) 2006-01-27 2019-10-01 Stryker Corporation Method of delivering a plurality of elements and fluent material into a vertebral body
US10507112B2 (en) * 2006-03-20 2019-12-17 Zimmer, Inc. Implant anchoring device
US20170071746A1 (en) * 2006-03-20 2017-03-16 Joshua B. Weiss Implant anchoring device
US20080027456A1 (en) * 2006-07-19 2008-01-31 Csaba Truckai Bone treatment systems and methods
WO2008057860A2 (en) * 2006-11-08 2008-05-15 Warsaw Orthopedic, Inc Methods of employing calcium phosphate cement compositions and osteoinductive proteins to effect vertebrae interbody fusion absent an interbody device
WO2008057860A3 (en) * 2006-11-08 2008-08-07 Warsaw Orthopedic Inc Methods of employing calcium phosphate cement compositions and osteoinductive proteins to effect vertebrae interbody fusion absent an interbody device
US11273050B2 (en) 2006-12-07 2022-03-15 DePuy Synthes Products, Inc. Intervertebral implant
US11712345B2 (en) 2006-12-07 2023-08-01 DePuy Synthes Products, Inc. Intervertebral implant
US11660206B2 (en) 2006-12-07 2023-05-30 DePuy Synthes Products, Inc. Intervertebral implant
US11642229B2 (en) 2006-12-07 2023-05-09 DePuy Synthes Products, Inc. Intervertebral implant
US11497618B2 (en) 2006-12-07 2022-11-15 DePuy Synthes Products, Inc. Intervertebral implant
US11432942B2 (en) 2006-12-07 2022-09-06 DePuy Synthes Products, Inc. Intervertebral implant
US20080154273A1 (en) * 2006-12-08 2008-06-26 Shadduck John H Bone treatment systems and methods
US8696679B2 (en) 2006-12-08 2014-04-15 Dfine, Inc. Bone treatment systems and methods
US9237916B2 (en) 2006-12-15 2016-01-19 Gmedeleware 2 Llc Devices and methods for vertebrostenting
US9192397B2 (en) 2006-12-15 2015-11-24 Gmedelaware 2 Llc Devices and methods for fracture reduction
US8623025B2 (en) 2006-12-15 2014-01-07 Gmedelaware 2 Llc Delivery apparatus and methods for vertebrostenting
US9480485B2 (en) 2006-12-15 2016-11-01 Globus Medical, Inc. Devices and methods for vertebrostenting
US7909873B2 (en) 2006-12-15 2011-03-22 Soteira, Inc. Delivery apparatus and methods for vertebrostenting
US20080172131A1 (en) * 2007-01-12 2008-07-17 Warsaw Orthopedic, Inc. System and Method for Forming Bone Filling Materials With Microparticles
US9220553B2 (en) 2007-01-12 2015-12-29 Warsaw Orthopedic, Inc. System and method for pressure mixing bone filling material
US20080172058A1 (en) * 2007-01-12 2008-07-17 Warsaw Orthopedic, Inc. System and Method for Pressure Mixing Bone Filling Material
US20080172059A1 (en) * 2007-01-12 2008-07-17 Warsaw Orthopedic, Inc. System and Method for Forming Porous Bone Filling Material
US9283016B2 (en) 2007-01-12 2016-03-15 Warsaw Orthopedic, Inc. System and method for forming porous bone filling material
US8268010B2 (en) * 2007-01-12 2012-09-18 Warsaw Orthopedic, Inc. System and method for forming bone filling materials with microparticles
US8840618B2 (en) 2007-01-12 2014-09-23 Warsaw Orthopedic, Inc. System and method for pressure mixing bone filling material
US8926623B2 (en) 2007-01-12 2015-01-06 Warsaw Orthopedic, Inc. System and method for forming porous bone filling material
US20080188858A1 (en) * 2007-02-05 2008-08-07 Robert Luzzi Bone treatment systems and methods
US10426629B2 (en) 2007-02-21 2019-10-01 Benvenue Medical, Inc. Devices for treating the spine
US9642712B2 (en) 2007-02-21 2017-05-09 Benvenue Medical, Inc. Methods for treating the spine
US10285821B2 (en) 2007-02-21 2019-05-14 Benvenue Medical, Inc. Devices for treating the spine
US8968408B2 (en) 2007-02-21 2015-03-03 Benvenue Medical, Inc. Devices for treating the spine
US10575963B2 (en) 2007-02-21 2020-03-03 Benvenue Medical, Inc. Devices for treating the spine
US20100198225A1 (en) * 2007-04-17 2010-08-05 Thompson Andrew Nmi Shape memory spine jack
US9815240B2 (en) 2007-04-18 2017-11-14 Smith & Nephew, Inc. Expansion moulding of shape memory polymers
US20100136648A1 (en) * 2007-04-18 2010-06-03 Smith & Nephew, Plc Expansion Moulding of Shape Memory Polymers
WO2008129241A1 (en) 2007-04-19 2008-10-30 Smith & Nephew Plc Fixation device
US20100145448A1 (en) * 2007-04-19 2010-06-10 Smith & Nephew, Inc. Graft Fixation
US20110144751A1 (en) * 2007-04-19 2011-06-16 Smith & Nephew, Inc Multi-Modal Shape Memory Polymers
US20100069547A1 (en) * 2007-04-19 2010-03-18 Smith & Nephew, Inc. Shape Memory Polymers Containing Degradation Accelerant
US9308293B2 (en) * 2007-04-19 2016-04-12 Smith & Nephew, Inc. Multi-modal shape memory polymers
US9770534B2 (en) 2007-04-19 2017-09-26 Smith & Nephew, Inc. Graft fixation
US20150151023A1 (en) * 2007-04-19 2015-06-04 Smith & Nephew, Inc. Multi-modal shape memory polymers
AU2008240414B2 (en) * 2007-04-19 2013-10-31 Smith & Nephew Plc Fixation device
WO2008130989A2 (en) * 2007-04-19 2008-10-30 Smith & Nephew, Inc. Prosthetic implants
WO2008130989A3 (en) * 2007-04-19 2010-02-04 Smith & Nephew, Inc. Prosthetic implants
US9000066B2 (en) * 2007-04-19 2015-04-07 Smith & Nephew, Inc. Multi-modal shape memory polymers
US8764761B2 (en) 2007-04-30 2014-07-01 Dfine, Inc. Bone treatment systems and methods
US20080269761A1 (en) * 2007-04-30 2008-10-30 Dfine. Inc. Bone treatment systems and methods
US8430887B2 (en) 2007-04-30 2013-04-30 Dfine, Inc. Bone treatment systems and methods
US11622868B2 (en) 2007-06-26 2023-04-11 DePuy Synthes Products, Inc. Highly lordosed fusion cage
US10973652B2 (en) 2007-06-26 2021-04-13 DePuy Synthes Products, Inc. Highly lordosed fusion cage
US20100241229A1 (en) * 2007-07-03 2010-09-23 Synergy Biosurgical Ag Medical implant
US10278747B2 (en) 2007-07-03 2019-05-07 Medacta International S.A. Medical implant
US9398927B2 (en) 2007-07-03 2016-07-26 Synergy Biosurgical Ag Medical implant
US9597118B2 (en) 2007-07-20 2017-03-21 Dfine, Inc. Bone anchor apparatus and method
US20120129131A1 (en) * 2007-09-17 2012-05-24 Synergy Biosurgical Ag Medical implant ii
EP2712634B1 (en) 2007-09-17 2016-06-08 Synergy Biosurgical AG Medical Implant
EP2712634A1 (en) * 2007-09-17 2014-04-02 Synergy Biosurgical AG Medical Implant
WO2009036576A1 (en) * 2007-09-17 2009-03-26 Synergy Biosurgical Ag Medical implant
US9457125B2 (en) * 2007-09-17 2016-10-04 Synergy Biosurgical Ag Medical implant with electromagnetic radiation responsive polymer and related methods
US8777618B2 (en) * 2007-09-17 2014-07-15 Synergy Biosurgical Ag Medical implant II
US20140277568A1 (en) * 2007-09-17 2014-09-18 Synergy Biosurgical Ag Medical Implant II
US11737881B2 (en) 2008-01-17 2023-08-29 DePuy Synthes Products, Inc. Expandable intervertebral implant and associated method of manufacturing the same
US20100016467A1 (en) * 2008-02-01 2010-01-21 Dfine, Inc. Bone treatment systems and methods
US10080817B2 (en) 2008-02-01 2018-09-25 Dfine, Inc. Bone treatment systems and methods
US20090247664A1 (en) * 2008-02-01 2009-10-01 Dfine, Inc. Bone treatment systems and methods
US8487021B2 (en) 2008-02-01 2013-07-16 Dfine, Inc. Bone treatment systems and methods
US9445854B2 (en) 2008-02-01 2016-09-20 Dfine, Inc. Bone treatment systems and methods
US11000290B1 (en) * 2008-02-12 2021-05-11 David P. Sachs Method for performing a surgical operation on the cervical portion of the spine
US9216195B2 (en) 2008-02-28 2015-12-22 Dfine, Inc. Bone treatment systems and methods
US9821085B2 (en) 2008-02-28 2017-11-21 Dfine, Inc. Bone treatment systems and methods
EP2306913A4 (en) * 2008-03-28 2014-06-04 Warsaw Orthopedic Inc Bone anchors for orthopedic applications
EP2306913A2 (en) * 2008-03-28 2011-04-13 Osteotech, Inc., Bone anchors for orthopedic applications
US11712342B2 (en) 2008-04-05 2023-08-01 DePuy Synthes Products, Inc. Expandable intervertebral implant
US11602438B2 (en) 2008-04-05 2023-03-14 DePuy Synthes Products, Inc. Expandable intervertebral implant
US11712341B2 (en) 2008-04-05 2023-08-01 DePuy Synthes Products, Inc. Expandable intervertebral implant
US11701234B2 (en) 2008-04-05 2023-07-18 DePuy Synthes Products, Inc. Expandable intervertebral implant
US11617655B2 (en) 2008-04-05 2023-04-04 DePuy Synthes Products, Inc. Expandable intervertebral implant
US11707359B2 (en) 2008-04-05 2023-07-25 DePuy Synthes Products, Inc. Expandable intervertebral implant
US10039584B2 (en) 2008-04-21 2018-08-07 Dfine, Inc. System for use in bone cement preparation and delivery
US20100070049A1 (en) * 2008-05-06 2010-03-18 O'donnell Patrick Method and apparatus for treating compression fractures in vertebral bodies
US20130079878A1 (en) * 2008-05-06 2013-03-28 Patrick O'Donnell Method and apparatus for treating compression fractures in vertebral bodies
US9687255B2 (en) 2008-06-17 2017-06-27 Globus Medical, Inc. Device and methods for fracture reduction
US10588646B2 (en) 2008-06-17 2020-03-17 Globus Medical, Inc. Devices and methods for fracture reduction
US20100030220A1 (en) * 2008-07-31 2010-02-04 Dfine, Inc. Bone treatment systems and methods
US9901657B2 (en) 2008-10-13 2018-02-27 Dfine, Inc. System for use in bone cement preparation and delivery
US8535327B2 (en) 2009-03-17 2013-09-17 Benvenue Medical, Inc. Delivery apparatus for use with implantable medical devices
US11612491B2 (en) 2009-03-30 2023-03-28 DePuy Synthes Products, Inc. Zero profile spinal fusion cage
US10022228B2 (en) 2009-11-30 2018-07-17 DePuy Synthes Products, Inc. Expandable implant
US9402725B2 (en) 2009-11-30 2016-08-02 DePuy Synthes Products, Inc. Expandable implant
US11607321B2 (en) 2009-12-10 2023-03-21 DePuy Synthes Products, Inc. Bellows-like expandable interbody fusion cage
US10966840B2 (en) 2010-06-24 2021-04-06 DePuy Synthes Products, Inc. Enhanced cage insertion assembly
US11872139B2 (en) 2010-06-24 2024-01-16 DePuy Synthes Products, Inc. Enhanced cage insertion assembly
US11911287B2 (en) 2010-06-24 2024-02-27 DePuy Synthes Products, Inc. Lateral spondylolisthesis reduction cage
US11654033B2 (en) 2010-06-29 2023-05-23 DePuy Synthes Products, Inc. Distractible intervertebral implant
US8795369B1 (en) 2010-07-16 2014-08-05 Nuvasive, Inc. Fracture reduction device and methods
US9144501B1 (en) 2010-07-16 2015-09-29 Nuvasive, Inc. Fracture reduction device and methods
US11452607B2 (en) 2010-10-11 2022-09-27 DePuy Synthes Products, Inc. Expandable interspinous process spacer implant
US10525169B2 (en) 2010-10-20 2020-01-07 206 Ortho, Inc. Method and apparatus for treating bone fractures, and/or for fortifying and/or augmenting bone, including the provision and use of composite implants, and novel composite structures which may be used for medical and non-medical applications
US10517654B2 (en) 2010-10-20 2019-12-31 206 Ortho, Inc. Method and apparatus for treating bone fractures, and/or for fortifying and/or augmenting bone, including the provision and use of composite implants
US10857261B2 (en) 2010-10-20 2020-12-08 206 Ortho, Inc. Implantable polymer for bone and vascular lesions
US11291483B2 (en) 2010-10-20 2022-04-05 206 Ortho, Inc. Method and apparatus for treating bone fractures, and/or for fortifying and/or augmenting bone, including the provision and use of composite implants
US10028776B2 (en) 2010-10-20 2018-07-24 206 Ortho, Inc. Method and apparatus for treating bone fractures, and/or for fortifying and/or augmenting bone, including the provision and use of composite implants
US11351261B2 (en) 2010-10-20 2022-06-07 206 Ortho, Inc. Method and apparatus for treating bone fractures, and/or for fortifying and/or augmenting bone, including the provision and use of composite implants
US11058796B2 (en) 2010-10-20 2021-07-13 206 Ortho, Inc. Method and apparatus for treating bone fractures, and/or for fortifying and/or augmenting bone, including the provision and use of composite implants, and novel composite structures which may be used for medical and non-medical applications
US10525168B2 (en) 2010-10-20 2020-01-07 206 Ortho, Inc. Method and apparatus for treating bone fractures, and/or for fortifying and/or augmenting bone, including the provision and use of composite implants, and novel composite structures which may be used for medical and non-medical applications
US11484627B2 (en) 2010-10-20 2022-11-01 206 Ortho, Inc. Method and apparatus for treating bone fractures, and/or for fortifying and/or augmenting bone, including the provision and use of composite implants, and novel composite structures which may be used for medical and non-medical applications
US11850323B2 (en) 2010-10-20 2023-12-26 206 Ortho, Inc. Implantable polymer for bone and vascular lesions
US9259216B2 (en) 2011-01-14 2016-02-16 DePuy Synthes Products, Inc. Elongated fixation element
TWI494094B (en) * 2011-01-14 2015-08-01 Synthes Gmbh Elongated fixation element
WO2012096786A1 (en) * 2011-01-14 2012-07-19 Synthes Usa, Llc Elongated fixation element
AU2011354625B2 (en) * 2011-01-14 2016-01-07 Synthes Gmbh Elongated fixation element
US9498205B2 (en) 2011-01-14 2016-11-22 DePuy Synthes Products, Inc. Methods for employing elongated fixation elements
CN103327909A (en) * 2011-01-14 2013-09-25 新特斯有限责任公司 Elongated fixation element
US9314252B2 (en) 2011-06-24 2016-04-19 Benvenue Medical, Inc. Devices and methods for treating bone tissue
US8814873B2 (en) 2011-06-24 2014-08-26 Benvenue Medical, Inc. Devices and methods for treating bone tissue
US11179182B2 (en) 2011-08-25 2021-11-23 DePuy Synthes Products, Inc. Method of securing an implant
US10111696B2 (en) 2011-08-25 2018-10-30 DePuy Synthes Products, Inc. Implant
US11850164B2 (en) 2013-03-07 2023-12-26 DePuy Synthes Products, Inc. Intervertebral implant
US11497619B2 (en) 2013-03-07 2022-11-15 DePuy Synthes Products, Inc. Intervertebral implant
US10085783B2 (en) 2013-03-14 2018-10-02 Izi Medical Products, Llc Devices and methods for treating bone tissue
US20160106838A1 (en) * 2013-05-23 2016-04-21 206 Ortho, Inc. Method and apparatus for treating bone fractures, and/or for fortifying and/or augmenting bone, including the provision and use of composite implants
US10010609B2 (en) * 2013-05-23 2018-07-03 206 Ortho, Inc. Method and apparatus for treating bone fractures, and/or for fortifying and/or augmenting bone, including the provision and use of composite implants
US10194965B2 (en) 2014-08-22 2019-02-05 Medtronic Holding Company Sàrl Methods of filling bone using bone cement mixing and delivery devices
US9820791B2 (en) 2014-08-22 2017-11-21 Kyphon SÀRL Methods of filling bone using bone cement mixing and delivery devices
US9820792B2 (en) 2014-08-22 2017-11-21 Kyphon SÀRL Bone cement mixing and delivery device
US10188443B2 (en) 2014-08-22 2019-01-29 Medtronic Holding Company Sárl Bone cement mixing and delivery device
US11426290B2 (en) 2015-03-06 2022-08-30 DePuy Synthes Products, Inc. Expandable intervertebral implant, system, kit and method
US11596522B2 (en) 2016-06-28 2023-03-07 Eit Emerging Implant Technologies Gmbh Expandable and angularly adjustable intervertebral cages with articulating joint
US11596523B2 (en) 2016-06-28 2023-03-07 Eit Emerging Implant Technologies Gmbh Expandable and angularly adjustable articulating intervertebral cages
US11510788B2 (en) 2016-06-28 2022-11-29 Eit Emerging Implant Technologies Gmbh Expandable, angularly adjustable intervertebral cages
US10888433B2 (en) 2016-12-14 2021-01-12 DePuy Synthes Products, Inc. Intervertebral implant inserter and related methods
US11446155B2 (en) 2017-05-08 2022-09-20 Medos International Sarl Expandable cage
US11344424B2 (en) 2017-06-14 2022-05-31 Medos International Sarl Expandable intervertebral implant and related methods
US10940016B2 (en) 2017-07-05 2021-03-09 Medos International Sarl Expandable intervertebral fusion cage
US11446156B2 (en) 2018-10-25 2022-09-20 Medos International Sarl Expandable intervertebral implant, inserter instrument, and related methods
US11806245B2 (en) 2020-03-06 2023-11-07 Eit Emerging Implant Technologies Gmbh Expandable intervertebral implant
US11426286B2 (en) 2020-03-06 2022-08-30 Eit Emerging Implant Technologies Gmbh Expandable intervertebral implant
US11850160B2 (en) 2021-03-26 2023-12-26 Medos International Sarl Expandable lordotic intervertebral fusion cage
US11752009B2 (en) 2021-04-06 2023-09-12 Medos International Sarl Expandable intervertebral fusion cage

Also Published As

Publication number Publication date
US8163031B2 (en) 2012-04-24
US20110054482A1 (en) 2011-03-03

Similar Documents

Publication Publication Date Title
US8163031B2 (en) Composites and methods for treating bone
US8409289B2 (en) Implants and methods for treating bone
US20060106459A1 (en) Bone treatment systems and methods
US8048083B2 (en) Bone treatment systems and methods
US11026734B2 (en) Bone treatment systems and methods
US20060085081A1 (en) Implants and methods for treating bone
US7678116B2 (en) Bone treatment systems and methods
US7559932B2 (en) Bone treatment systems and methods
US8070753B2 (en) Bone treatment systems and methods
US20060229628A1 (en) Biomedical treatment systems and methods
US7717918B2 (en) Bone treatment systems and methods
US20060085009A1 (en) Implants and methods for treating bone
US20060122614A1 (en) Bone treatment systems and methods
US20070185231A1 (en) Bone cement composite containing particles in a non-uniform spatial distribution and devices for implementation
US20090292290A1 (en) Bone treatment systems and methods
WO2006062916A2 (en) Bone treatment systems and methods
US10441336B2 (en) Stabilization of vertebral bodies with bone particle slurry

Legal Events

Date Code Title Description
AS Assignment

Owner name: DFINE, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TRUCKAI, CSABA;SHADDUCK, JOHN;REEL/FRAME:017969/0063

Effective date: 20060713

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION