Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20060079748 A1
Publication typeApplication
Application numberUS 11/081,495
Publication date13 Apr 2006
Filing date17 Mar 2005
Priority date25 Mar 2002
Also published asUS9427254, US20030181810, US20050234334, US20110281064, US20130226210
Publication number081495, 11081495, US 2006/0079748 A1, US 2006/079748 A1, US 20060079748 A1, US 20060079748A1, US 2006079748 A1, US 2006079748A1, US-A1-20060079748, US-A1-2006079748, US2006/0079748A1, US2006/079748A1, US20060079748 A1, US20060079748A1, US2006079748 A1, US2006079748A1
InventorsKieran Murphy, Phillippe Gailloud
Original AssigneeMurphy Kieran P, Gailloud Phillippe E
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Kit for image guided surgical procedures
US 20060079748 A1
Abstract
An embodiment of the present invention provides a kit of parts for use in a surgical procedure performed under image guidance, and particularly under real time image guidance. The kit includes a sterilized drape for use with the chosen imaging machine and which can be used to provide a sterile operating environment when the procedure is performed under the imaging beam. The kit also includes a needle holder that can keep the surgeon's hand away from the imaging beam. The needle holder is operable to hold a needle that is made from a material suitable for piercing tissue, but also substantially preserves the appearance of the needle when it is viewed under the imaging beam.
Images(8)
Previous page
Next page
Claims(6)
1. An imaging machine comprising: a channel for receiving a patient and exposing said patient to a substantially real time imaging beam; and, an attachment means for affixing a sterile drape to said channel, such that when said sterile drape is attached thereto a substantially sterile barrier between said channel and said patient is provided.
2. The machine of claim 1 wherin said attachment means is comprised of a pair of annular lips flanged so as to provide a secure attachment to a pair of annular eleasticed openings of a sterile sleeve.
3. The machine according to claim 1 wherein said beam is selected from the group consisting of CT, MRI, and X-Ray.
4. The machine according to claim 1 wherein a refresh rate of said real-time imaging beam is greater than about thirteen frames per second.
5. The machine according to claim 4 wherein said rate is greater than about thirty frames per second.
6. The machine according to claim 4 wherein said rate is greater than about fifty frames per second.
Description
    PRIORITY CLAIM
  • [0001]
    The present application is a divisional of U.S. Non-Provisional patent application Ser. No. 10/373,835 filed Feb. 27, 2003, which claims priority from U.S. Provisional Patent Application No. 60/366,530 filed Mar. 25, 2002 and U.S. Provisional Patent Application No. 60/366,529 filed Mar. 25, 2002, and for which co-inventor Murphy of the present application is also named as co-inventor. The contents of all of these documents are incorporated herein by reference.
  • FIELD OF THE INVENTION
  • [0002]
    The present invention relates generally to image guided surgery and more particularly relates to a kit of parts, and the individual parts of the kit, for use in navigation during a surgical procedure.
  • BACKGROUND OF THE INVENTION
  • [0003]
    Over one million CT-guided biopsies are performed per year in the US. There are two million ultrasound-guided biopsies a year. Many of these ultrasound biopsies are performed because computerized tomography (“CT”)is not available. Ultrasound is also traditionally faster than CT, as there is the availability of substantially real time imaging. Traditionally, CT required the acquisition of an image, the passage of a needle, the acquisition of another image and the repositioning of the needle to be checked by acquisition of another image. With this process a biopsy could take hours and it was hard to keep track of the needle tip relative to the patient and know if it was necessary to angle up or down to get to the target.
  • [0004]
    The recent availability of CT fluoroscopy has radically changed management of patients. With CT fluoroscopy, cross sectional images of the body are obtained which are refreshed up to thirteen times a second. Further increases in the refresh rate are believed by the inventors to be a reasonable expectation. With some CT scanners three slices can be presented simultaneously, all being refreshed thirteen times a second. This can create a substantially flicker-free image of a needle or device being passed into the patient. This has the potential to increase speed, accuracy and ability to safely deliver needles to sensitive or delicate structures and avoid large blood vessels.
  • [0005]
    However, there are drawbacks and limitations to CT fluoroscopy. These mainly relate to issues of infection due to the procedure and radiation safety for the physician. For example, during the passage of the needle by the physician's hands into the patient under substantially real time x-ray guidance, the physician's hand is in the x-ray beam. This can result in an accumulation of excessive radiation dose to the physician's hand. The physician may perform the procedure repeatedly during his career or even during a single day and this cumulative dose becomes an issue of personal radiation safety.
  • [0006]
    Furthermore, current biopsy needles are composed of metal that generates significant artifacts when used with x-ray detectors of CT quality. These artifacts are related to the density of the metals used in these needles. These artifacts are called beam-hardening artifacts. These artifacts can obscure the intended target or obscure an important structure and possibly make it possible for inadvertent injury of the target. Accordingly, current biopsy needles are not generally suitable for CT image guided surgical procedures.
  • [0007]
    A further disadvantage of the prior art is that needles that are currently used for biopsies typically have the stylet attached to the trocar loosely, yet such a loose attachment can present certain hazards when using such a needle under CT imaging.
  • [0008]
    A further disadvantage of the prior art is that, since CT machines are typically used for simple capturing of images, they are typically non-sterile, and therefore, under CT image guidance procedures, elaborate sterilization can be necessary to reduce risk of patient infection. Simplified sterilization techniques are therefore desirable.
  • SUMMARY OF THE INVENTION
  • [0009]
    It is therefore an object of the invention to provide a kit of parts for image guided surgical procedures that obviates or mitigates at least one of the above-identified disadvantages of the prior art. In an aspect of the invention there is provided a sterile needle holder that allows the transmission of force from the physician's hand to the needle so that the needle can be guided into the patient without requiring the physician to have his hand in the x-ray beam during the procedure. It is presently preferred that the needle holder be made from materials such that artifacts are not generated (or artifacts are desirably reduced) that would obscure the target. (i.e. radio lucent).
  • [0010]
    It is therefore desirable to provide needles of decreased density. The unit of density used for CT is the Hounsfield unit after the inventor of CT, Dr Hounsfield. A Hounsfield unit of Zero is attributed to the density of water on CT, bone is higher in density than water, fat is lower in density than water. Fat therefore has a negative number. According to an aspect of the invention there is provided needles that are composed of metals or composites that are visible on CT but have a reduced likelihood of showing artifacts under CT. Needles are composed of two parts, an outer trocar and an inner stylet. Either one or the other or both can be made of diminished Hounsfield unit density material. It can be thus desirable to construct a stylet made of carbon fiber or plastic. Aluminium or Nitinol or Inconel, are metals that are MRI compatible and may be valuable for CT purposes while at the same time being useful for MRI.
  • [0011]
    In another aspect of the invention there is provided a biopsy needle wherein the stylet is attached to the trocar via a locking means or attachment means, such as a Luer lock.™ or a simple screw system. The locking biopsy needle is thus used under CT image guidance, advanced using the needle holder. The locking needle thus can be unlocked at the desired time and reduce the likelihood of trauma or injury to the patient during navigation under CT image guidance.
  • [0012]
    In another aspect of the invention there is provided a drape that reduces contamination of the operator's hand against the side of the CT scanner. For conventional angiography, a sterilized plastic bag with an elasticated top is placed around the image intensifier and used like a sack. In a CT machine, there is provided a donut-shaped configuration and the patient passes through the central hole of the donut. Preferably, such a drape is disposable, but re-sterilizable drapes are also within the scope of the invention. It is presently preferred that the drape would be like a basketball hoop. In this particular implementation of this aspect of the invention, the basketball-hoop like drape is attachable to the open ends of the CT scanner by any suitable attachment means, such as either or a combination of a) adhesive, b) preplaced hoops affixed to the CT scanner and whereby such hoops would attach by an elasticated band to the drape; c) the drape could be made from a metal that is foldable and therefore transportable, though when released from its package would have a radial force such that it would affix the drape to either side of the CT scanner. Such a material could be Nitinol, from Nitrol Devices and Components, 47533 Westinghouse Drive, Fremont, Calif. 94539.
  • [0013]
    In another aspect of the invention there is provided a kit for use in CT guided image fluoroscopy, comprising: (1) a needle holder for keeping the operator's hand out of the beam; (2) a needle of diminished beam hardening artifact inducing potential; (3) a lock to fix the stylet with regard to the trocar in an appropriate position; and (4) a drape to protect the operator's hand from contamination.
  • [0014]
    In another aspect of the invention there is provided a kit of parts for use in an image guided surgical procedure using a substantially real time imaging machine comprising: a needle holder having a grasping means and a handle depending therefrom, the handle being configured such that the grasping means can be exposed to the imaging beam and an operator's hand can be distal from the imaging beam in relation to the grasping means; a needle attachable to the grasping means and having a rigidity to travel through mammalian tissue to a target area and having a radioopacity that substantially preserves an appearance of the needle when the needle is viewed on a display of the real time imaging machine; and a sleeve for attachment to the real time imaging machine that provides a substantially sterile operating environment for using the needle when attached to to the machine.
  • [0015]
    In a particular implementation of the foregoing aspect, a locking mechanism is associated with at least one of the grasping means and the needle for releasably locking the needle to the needle holder.
  • [0016]
    In another aspect of the invention there is provided a surgical instrument for use in an image guided surgical procedure using a substantially real time imaging machine comprising: a needle holder having a grasping means and a handle depending therefrom, the handle being configured such that the grasping means can be exposed to the imaging beam and an operator's hand can be kept a distance away from the imaging beam; and a needle attachable to the grasping means and having a rigidity to travel through mammalian tissue to a target area and having a radioopacity that substantially preserves an appearance of the needle when the needle is viewed on a display of the real time imaging machine.
  • [0017]
    In a particular implementation of the foregoing aspect, the needle is a trocar comprising a cannula and a stylet receivable within the cannula.
  • [0018]
    In a particular implementation of the foregoing aspect, a locking mechanism is associated with at least one of the grasping means and the needle for releasably locking the needle to the needle holder.
  • [0019]
    In another aspect of the invention there is provided a sterile drape for attachment to a real time imaging machine comprising: a sheet of material for providing a substantially sterile barrier between the imaging machine and a patient; and an attachment means for affixing the body to the imaging machine.
  • [0020]
    In a particular implementation of the foregoing aspect, the sheet of material is plastic and substantially tubular.
  • [0021]
    In a particular implementation of the foregoing aspect, the imaging machine has a pair of annular lips that flare outwardly from a respective opening of the machine and wherein the attachment means comprises an annular shaped elastic integral with each open respective ends of the sheet, each of the elastics for grasping a respective lip.
  • [0022]
    In a particular implementation of the foregoing aspect, the drape is umbrella-like, in that the material is plastic and the attachment means is a series of series of rods integrally affixed to the plastic, the rods made from a springed material such that the sleeve has a first position wherein the sleeve is collapsed and a second position wherein the sleeve is outwardly springed.
  • [0023]
    In a particular implementation of the foregoing aspect, the material is nitinol and the attachment means is acheived through configuring the nitinol to be outwardly springed.
  • [0024]
    In a particular implementation of the foregoing aspect, the attachment means is selected from the group consisting of velcro, ties, or snaps.
  • [0025]
    In another aspect of the invention there is provided an imaging machine comprising a channel for receiving a patient and exposing the patient to a substantially real time imaging beam. The machine also includes an attachment means for affixing a sterile drape to the channel, such that when the sterile drape is attached thereto a substantially sterile barrier between the channel and the patient is provided, thereby providing a substantially sterile environment for the patient.
  • [0026]
    In a particular implementation of the foregoing aspect, the attachment means is comprised of a pair of annular lips flanged so as to provide a secure attachment to a pair of annular elastized openings of a sterile sleeve.
  • [0027]
    In a particular implementation of the foregoing aspect, the beam is selected from the group consisting of CT, MRI, and X-Ray.
  • [0028]
    In a particular implementation of the foregoing aspect, a refresh rate of the real-time imaging beam is greater than, or equal to, about thirteen frames per second. The rate can be greater than about thirty frames per second. The rate can also be greater than about fifty frames per second. In other implementations, however, it is contemplated that the refresh rate can be as low as about one frame per second, depending on the actual procedure being performed and/or the imaging device being used.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0029]
    Embodiments of the invention will now be discussed, by way of example only, with reference to the attached Figures, in which:
  • [0030]
    FIG. 1 is a front perspective view of a CT machine in accordance with an embodiment of the invention;
  • [0031]
    FIG. 2 is a side sectional view of the CT machine of FIG. 1;
  • [0032]
    FIG. 3 is a perspective view of a drape for use with the machine shown in FIG. 1 in accordance with an other embodiment of the invention;
  • [0033]
    FIG. 4 is the side sectional view of FIG. 2 but with the drape of FIG. 3 assembled to the machine;
  • [0034]
    FIG. 5 is a front view the drape of FIG. 3 assembled to the machine shown in FIG. 4, in the direction of the lines V-V of FIG. 4;
  • [0035]
    FIG. 6 is an exploded perspective view of a needle holder in accordance with an embodiment of the invention;
  • [0036]
    FIG. 7 is an assembled view of the needle holder of FIG. 6 just prior to use;
  • [0037]
    FIG. 8 shows the needle holder of FIG. 7 being inserted into a target area of a patient;
  • [0038]
    FIG. 9 shows the stylet of the needle holder of FIG. 7 being removed; and,
  • [0039]
    FIG. 10 is a kit of parts including the drape of FIG. 3 and the needle holder of FIG. 6 in accordance with another embodiment of the invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • [0040]
    Referring now to FIGS. 1 and 2, a computerized tomography (“CT”) imaging machine in accordance with an embodiment of the invention is indicated generally at 30. CT Machine 30 is composed of a chassis 34 and a channel 38 through which a patient is received in order to capture the desired images of the patient and/or perform any desired procedures. A presently preferred CT machine for use in the present embodiment is an imaging machine capable of generating substantially real time images. In order to generate images in substantially real time, the imaging machine can generate images at a rate of about fifty frames per second or greater. However, substantially real time images suitable for the present embodiment can also be generated by machines capable of generating images at a rate of about thirty frames per second or greater. However, substantially real time images suitable for the present embodiment can also be generated by a machine capable of generating images at a rate of about thirteen frames per second or greater. A presently preferred substantially real time imaging machine is the Toshiba Aquillon, a CT machine, which generates images at a rate of about thirteen frames per second for use in performing procedures under CT image guidance.
  • [0041]
    As will be understood by those of skill in the art, chassis 34 in FIGS. 1 and 2 is a simplified representation used for purposes of explaining the present embodiment, and thus also contain the requisite imaging beam technology to provide the desired CT imaging functionality.
  • [0042]
    Thus, machine 30 is further characterized by a pair of annular lips 42 a and 42 b, (or other attachment means) that flare outwardly from a respective opening of channel 38 and away from chassis 34. Each lip 42 attaches to chassis 34 at the periphery of channel 38, where channel 38 meets chassis 34 at the ends of machine 30. Further details on machine 30 and lips 42 and its use will be discussed in greater detail later below.
  • [0043]
    Referring now to FIG. 3, a sterile sleeve is indicated generally at 46, in accordance with another embodiment of the invention. In the present embodiment, sleeve 46 is comprised of a substantially tubular sterilized plastic sheet (or other suitably flexible material that will not interfere with the imaging beam of machine 30). While not shown in the Figures, sleeve 46 is thus typically pre-sterilized and then folded for storage (all while maintaining sterility) within a sterile packaging. The sterile packaging is thus not opened until sleeve 46 is put into use, and only then opened under acceptable and/or desirable sterile conditions.
  • [0044]
    Sleeve 46 is thus further characterized by a pair of annular openings 50 a and 50 b interconnected by a continuous plastic sheet 54. Each opening 50 a and 50 b is further characterized by an elastic 58 a and 58 b encased within the periphery of its respective opening 50 a and 50 b.
  • [0045]
    Referring again to FIGS. 1 and 2, in conjunction with FIG. 3, the length of sheet 54 between each opening 50 a and 50 b is substantially the same as the length between each lip 42 a and 42 b. Further, the diameter of sheet 54 typically will substantially match the variation in the diameter of channel 38 along its length, the diameter of sheet 54 being slightly smaller than the diameter of channel 38 therealong.
  • [0046]
    Referring now to FIGS. 4 and 5, sleeve 46 is shown assembled to machine 30. In order to perform such assembly, the packaging containing sleeve 46 is opened, in sterile conditions, and sleeve 46 is unfolded, just prior to the use of machine 30 for capturing images and/or for performing a procedure under image guidance. Accordingly, to assemble sleeve 46 with machine 30, elastic 58 a of opening 50 a is first stretched and passed over lip 42 a, thereby securing opening 50 a to lip 42 a, and widening opening 50 a so that it is substantially the same size as the opening of channel 38. Next, the remainder of sleeve 46 including sheet 54 and opening 50 b are passed through channel 38 towards and through the opening of channel 38 opposite from lip 42 a. Elastic 58 b is then stretched so that opening 50 b extends over lip 42 b, thereby securing opening 50 b to lip 42 b, thereby completing the assembly of sleeve 46 to machine 30, as seen in FIGS. 4 and 5. Accordingly, CT machine 30 can now be used in a sterile manner. When the use of CT machine 30 is completed, sleeve 46 can simply be disassembled therefrom by substantially reversing the above-described assembly steps, and then disposed of, or re-sterilized, as desired and/or appropriate to provide patient safety.
  • [0047]
    It will now be understood that sleeve 46 and machine 30 are complementary to each other, and thus, the various components and dimensions of sleeve 46 are chosen to correspond with the complementary parts on machine 30. Thus, for example, elastics 58 are chosen to have a material and elasticity such that assembly of an opening 50 to a corresponding lip 42 can be performed with relative ease. In other words, the elasticity is chosen so that the person performing the assembly will not have to apply undue force to actually expand elastic 58 and fit it around lip 42. By the same token the elasticity of elastic 58 is sufficiently strong to ensure a reliable attachment of opening 50 to the corresponding lip 42 during the capturing of images or performance of a surgical procedure under image guidance. Furthermore the diameter of sheet 54 is chosen so as to not substantially reduce the diameter of channel 38 after assembly. The material of sheet 54 is also chosen so as to not interfere with the imaging beam generated by machine 30.
  • [0048]
    It should also now be understood that sheet 54 can be constructed in different shapes to complement different types and shapes of imaging machines that are capable of providing substantially real time images and thereby could benefit from the sterile sleeve of the present invention. In particular, sheet 54 may only have one opening 50, depending on the type of imaging machine with which it is used. By the same token, it will be understood that any variety of mechanical substitutes to the cooperating lips 42 and elastics 58 can be provided, and that such substitutes are within the scope of the invention. Thus, in general, any cooperating attachment means between sleeve 46 and machine 30 can be provided, and such varied cooperating attachment means are within the scope of the invention. For example, of hooks and loops, velcro, ties, and/or snap-buttons or the like can be used as cooperating attachment means. By the same token, it is to be understood that lip 42 (or any suitable mechanical equivalent) can be retrofitted onto existing CT machines, or built directly thereto, as desired.
  • [0049]
    Furthermore, the location of the cooperating attachment means on machine 30 and sleeve 46 need not necessarily be limited to the respective distal ends of machine 30 and sleeve 46, but need only result in the ability to assemble sleeve 46 to machine 30 while leaving a suitable and appropriately substantially sterile passageway within channel 38 for receiving a patient. In another variation of the foregoing, sleeve 46 could be made from a rigid material, or an outwardly springed material, to thereby obviate the need for lip 42 or any means of attachment actually connected to machine 30.
  • [0050]
    Referring now to FIGS. 6-8, a needle system for use under substantially real time image guidance is indicated generally at 100 and is in accordance with another embodiment of the invention. Needle apparatus 100 comprises a needle holder 104 and a trocar 108, which itself is comprised of a stylet 112 and a canula 116.
  • [0051]
    Needle holder 104 is typically made of a plastic or other material that does not appear under CT image guidance (or under the imaging beam of the particular imaging machine being used). Holder 104 is comprised of a handle portion 120 and a grasping portion 124. In a present embodiment, handle portion 120 depends from grasping portion at an angle “A” greater than about ninety degrees, however, handle portion 120 can actually depend from grasping portion 124 at ninety-degrees or any other desired angle, depending on the procedure being performed, and the preferences of the surgeon or other medical professional performing the procedure. In a present embodiment, handle portion 120 is substantially cylindrical, but can be any desired shape and length, again depending on the preferences and/or needs of the procedure and/or surgeon. Grasping portion 124 is also substantially cylindrical, but is further characterized by a hollow channel 130 through which canula 116 can be passed, and it is presently preferred the hollow channel 130 is of a slightly larger diameter than canula 116 to securely hold canula 116 within grasping portion 124. In a present embodiment, grasping portion 124 includes a set of interior threads 128 located on the portion of grasping portion 124 located nearest handle portion 120.
  • [0052]
    Canula 116 is comprised of a hollow shaft 132 with a tip 136. Tip 136 has a desired shape for piercing the target area of the patient in a desired manner. It is presently preferred that shaft 132 be made from a material that is hard enough to pierce the patient's target area, yet also made from a material that presents reduced and/or minimal artifacts when shaft 132 is viewed under a CT imaging beam using a CT machine, (such as machine 30 shown in FIG. 1), such that appearance of shaft 132 is substantially preserved when viewed under such an imaging beam. Canila 116 is also characterized by a set of exterior threads 138 towards the proximal end 140 of canula 116 opposite from tip 136. Exterior threads 138 are thus complementary to interior threads 128 of grasping portion 124, such that trocar 136 can be releasably secured to grasping portion 124. Canula 116 is also characterized by a set of interior threads 144 at the proximal end 140 of canula 116, proximal end 140 also being made from a material that presents reduced and/or minimal artifacts when viewed under a CT imaging beam such that appearance of proximal end 140 is substantially preserved when viewed under such an imaging beam.
  • [0053]
    Stylet 112 is comprised of a needle having a solid shaft 148 including a point 152 at its distal end. Point 152 is complementary to tip 136, and the length of shaft 148 is substantially the same length as shaft 132, such that when stylet 112 is inserted within and assembled to canula 116, point 152 and tip 136 form a contiguous shape. Solid shaft 148 is preferably made from substantially the same material as shaft 132, such that shaft 148 is hard enough and/or rigid to pierce a target area T within the patient, yet also made from a material that presents reduced and/or minimal artifacts and/or no artifacts when shaft 132 is viewed under a CT imaging beam using a CT machine, (such as machine 30 shown in FIG. 1), such that appearance of stylet 112 is substantially preserved when viewed under such an imaging beam. Suitable materials can include, for example, certain carbon fibres, inconel etc. Other materials will now occur to those of skill in art.
  • [0054]
    Stylet 112 is also characterized by a set of exterior threads 156 at the proximal end 160 of stylet 112 opposite from point 152. Proximal end 160 is also made from a material that presents reduced and/or minimal artifacts when viewed under a CT imaging beam, again, such that appearance of proximal end 160 is substantially preserved when viewed under such an imaging beam. Exterior threads 156 are thus complementary to interior threads 144, such that stylet 112 can be releasably secured to canula 116.
  • [0055]
    Use of apparatus 100 is represented in FIG. 1 and FIGS. 7-9. In use, assembled needle apparatus 100 as shown in FIG. 7 is grasped by a surgeon by handle portion 120, towards or at the end of handle portion 120 opposite from grasping portion 124. Thusly grasped, trocar 108 and grasping portion 124 are then placed within the imaging beam (e.g. the beam within channel 38 of machine 30 in FIG. 1) when the machine is “on”, the surgeon being careful to keep his or her hand out of the imaging beam. Trocar 108 is thus viewed on the display of machine 30, and guided to the target area of the patient also located within channel 38. Trocar 108 can thus be used in any desired procedure under such image guidance while keeping the surgeon's hand from harm's way. For example, as seen in FIG. 8, trocar 108 is shown piercing through brain tissue towards a target area T inside the patient. As seen in FIG. 9, stylet 112 is removed from cannula 116 by first disengaging threads 156 from threads 144, thereby leaving leaving a hollow channel between the exterior of the patient and the target area T. This hollow channel can then be used in any desired manner, such as to drain excess cerebral spinal fluid, to treat a clot and/or to insert a catheter according to the shunt implantation method taught in co-inventor Murphy's copending US Formal patent Application entitled “Method, Device and System for Implanting a Shunt” filed on Feb. 11, 2003.
  • [0056]
    It is to be understood that various combinations, subsets and equivalents can be employed in the foregoing description of apparatus 100. For example, any one or more of pairs of threads 156 and 144, or 138 and 128, can be reversed and/or substituted for a Luer-lock.™ system. Furthermore, any one of pairs of threads 156 and 144, or 138 and 128 could be replaced by a clamping mechanism. For example, grasping portion 124 could be replaced with a mechanical clamp that surrounds proximal end 140 of cannula 116.
  • [0057]
    Referring now to FIG. 10, a kit for peforming image guided surgical procedures is indicated generally at 200. Kit 200 comprises a sterile package 204 which includes two sterile compartments 208 and 212. Compartment 208 houses sleeve 46 and compartment 212 houses apparatus 100. Kit 200 can then be distributed to hospitals and clinics. Prior to performing a surgical procedure, compartment 208 can be opened and sleeve 46 applied to the corresponding CT machine. When the patient is prepped, compartment 208 can be opened and the apparatus 100 therein used as previously described. Kit 200 can include such other components as desired to perform a particular procedure under substantially real time image guidance.
  • [0058]
    While only specific combinations of the various features and components of the present invention have been discussed herein, it will be apparent to those of skill in the art that desired subsets of the disclosed features and components and/or alternative combinations of these features and components can be utilized, as desired. For example, while the embodiments discussed herein refer to CT machines, it is to be understood that the teachings herein can be applied to any type of imaging machine capable of generating substantially real time images, such as machines based computerized tomography (“CT”), magnetic resonance (“MR”), or X-Ray.
  • [0059]
    The above-described embodiments of the invention are intended to be examples of the present invention and alterations and modifications may be effected thereto, by those of skill in the art, without departing from the scope of the invention which is defined solely by the claims appended hereto.
Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3721997 *17 Jul 197227 Mar 1973Sterling L O DellProtective garment
US3984696 *11 Dec 19745 Oct 1976Medi-Ray, Inc.Radiation guard for X-ray table
US4062518 *10 Nov 197613 Dec 1977General Electric CompanyX-ray shielding device
US4533356 *12 Dec 19796 Aug 1985Uno Plast A/SSurgical device
US4686962 *3 Jul 198618 Aug 1987Habley Medical Technology CorporationDisposable cartridge assembly for hypodermically implanting a genitourinary prosthesis
US4733665 *7 Nov 198529 Mar 1988Expandable Grafts PartnershipExpandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
US4739762 *3 Nov 198626 Apr 1988Expandable Grafts PartnershipExpandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
US4776337 *26 Jun 198611 Oct 1988Expandable Grafts PartnershipExpandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
US4795458 *2 Jul 19873 Jan 1989Regan Barrie FStent for use following balloon angioplasty
US4994066 *7 Oct 198819 Feb 1991Voss Gene AProstatic stent
US5037427 *30 Oct 19906 Aug 1991Terumo Kabushiki KaishaMethod of implanting a stent within a tubular organ of a living body and of removing same
US5064435 *28 Jun 199012 Nov 1991Schneider (Usa) Inc.Self-expanding prosthesis having stable axial length
US5067957 *27 Sep 198826 Nov 1991Raychem CorporationMethod of inserting medical devices incorporating SIM alloy elements
US5102417 *28 Mar 19887 Apr 1992Expandable Grafts PartnershipExpandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
US5211165 *3 Sep 199118 May 1993General Electric CompanyTracking system to follow the position and orientation of a device with radiofrequency field gradients
US5292339 *29 Apr 19928 Mar 1994Telectronics Pacing Systems, Inc.Implantable pacemaker/cardioverter/defibrillator device and method incorporating multiple bradycardia support pacing rates
US5311883 *6 Nov 199217 May 1994Eleanor ShermanSanitary shield for dedicated mammography apparatus
US5335663 *11 Dec 19929 Aug 1994Tetrad CorporationLaparoscopic probes and probe sheaths useful in ultrasonic imaging applications
US5403341 *24 Jan 19944 Apr 1995Solar; Ronald J.Parallel flow endovascular stent and deployment apparatus therefore
US5482043 *11 May 19949 Jan 1996Zulauf; David R. P.Method and apparatus for telefluoroscopy
US5499418 *25 Nov 199219 Mar 1996Tan; Sze W.Body support for a baby
US5522881 *28 Jun 19944 Jun 1996Meadox Medicals, Inc.Implantable tubular prosthesis having integral cuffs
US5522882 *21 Oct 19944 Jun 1996Impra, Inc.Method and apparatus for balloon expandable stent-graft delivery
US5545150 *6 May 199413 Aug 1996Endoscopic Concepts, Inc.Trocar
US5549635 *3 Apr 199527 Aug 1996Solar, Rita & Gaterud, Ltd.Non-deformable self-expanding parallel flow endovascular stent and deployment apparatus therefore
US5556414 *8 Mar 199517 Sep 1996Wayne State UniversityComposite intraluminal graft
US5562726 *22 Dec 19938 Oct 1996Cook IncorporatedExpandable transluminal graft prosthesis for repair of aneurysm and method for implanting
US5575798 *22 Aug 199519 Nov 1996Koutrouvelis; Panos G.Stereotactic device
US5590655 *15 Dec 19947 Jan 1997Hussman; Karl L.Frameless laser guided stereotactic localization system
US5591195 *30 Oct 19957 Jan 1997Taheri; SydeApparatus and method for engrafting a blood vessel
US5592952 *18 Aug 199514 Jan 1997Bohn; William W.Infection control surgical drape and method of making surgical incision
US5607467 *23 Jun 19934 Mar 1997Froix; MichaelExpandable polymeric stent with memory and delivery apparatus and method
US5609629 *7 Jun 199511 Mar 1997Med Institute, Inc.Coated implantable medical device
US5638819 *29 Aug 199517 Jun 1997Manwaring; Kim H.Method and apparatus for guiding an instrument to a target
US5676159 *5 Nov 199614 Oct 1997Janin GroupUltrasound cover
US5725572 *8 Aug 199710 Mar 1998Advanced Cardiovascular Systems, Inc.Radiopaque stent
US5735892 *18 Aug 19937 Apr 1998W. L. Gore & Associates, Inc.Intraluminal stent graft
US5741333 *3 Apr 199621 Apr 1998Corvita CorporationSelf-expanding stent for a medical device to be introduced into a cavity of a body
US5746765 *17 May 19965 May 1998Nitinol Medical Technologies, Inc.Stent and method and apparatus for forming and delivering the same
US5772669 *27 Sep 199630 Jun 1998Scimed Life Systems, Inc.Stent deployment catheter with retractable sheath
US5788626 *18 Nov 19964 Aug 1998Schneider (Usa) IncMethod of making a stent-graft covered with expanded polytetrafluoroethylene
US5788707 *7 Jun 19954 Aug 1998Scimed Life Systems, Inc.Pull back sleeve system with compression resistant inner shaft
US5797952 *21 Jun 199625 Aug 1998Localmed, Inc.System and method for delivering helical stents
US5800517 *19 Aug 19961 Sep 1998Scimed Life Systems, Inc.Stent delivery system with storage sleeve
US5810870 *7 Jun 199522 Sep 1998W. L. Gore & Associates, Inc.Intraluminal stent graft
US5824045 *21 Oct 199620 Oct 1998Inflow Dynamics Inc.Vascular and endoluminal stents
US5861033 *30 Jan 199719 Jan 1999Atrium Medical CorporationMethod of making controlled porosity expanded polytetrafluoroethylene products and fabrication
US5876448 *13 Mar 19962 Mar 1999Schneider (Usa) Inc.Esophageal stent
US5892238 *2 May 19976 Apr 1999Bionix Development Corp.Radiation therapy shielding assembly
US5899935 *4 Aug 19974 May 1999Schneider (Usa) Inc.Balloon expandable braided stent with restraint
US5902254 *29 Jul 199611 May 1999The Nemours FoundationCathether guidewire
US5922020 *2 Aug 199613 Jul 1999Localmed, Inc.Tubular prosthesis having improved expansion and imaging characteristics
US5925074 *3 Dec 199620 Jul 1999Atrium Medical CorporationVascular endoprosthesis and method
US5957974 *8 Oct 199728 Sep 1999Schneider (Usa) IncStent graft with braided polymeric sleeve
US5980565 *20 Oct 19979 Nov 1999Iowa-India Investments Company LimitedSandwich stent
US5989280 *20 Oct 199423 Nov 1999Scimed Lifesystems, IncStent delivery apparatus and method
US6010529 *3 Dec 19964 Jan 2000Atrium Medical CorporationExpandable shielded vessel support
US6086610 *22 Oct 199611 Jul 2000Nitinol Devices & ComponentsComposite self expanding stent device having a restraining element
US6120536 *13 Jun 199619 Sep 2000Schneider (Usa) Inc.Medical devices with long term non-thrombogenic coatings
US6179878 *14 Oct 199830 Jan 2001Thomas DuerigComposite self expanding stent device having a restraining element
US6236875 *5 Oct 199522 May 2001Surgical Navigation TechnologiesSurgical navigation systems including reference and localization frames
US6270523 *15 Oct 19997 Aug 2001Atrium Medical CorporationExpandable shielded vessel support
US6283125 *19 Nov 19984 Sep 2001Minrad Inc.Sterile drape
US6285902 *10 Feb 19994 Sep 2001Surgical Insights, Inc.Computer assisted targeting device for use in orthopaedic surgery
US6298110 *8 Jun 20002 Oct 2001University Of RochesterCone beam volume CT angiography imaging system and method
US6315791 *23 Dec 199813 Nov 2001Atrium Medical CorporationSelf-expanding prothesis
US6325538 *17 Mar 20004 Dec 2001Christian M. HeeschRadiation field isolator apparatus
US6352561 *23 Dec 19965 Mar 2002W. L. Gore & AssociatesImplant deployment apparatus
US6355058 *30 Dec 199912 Mar 2002Advanced Cardiovascular Systems, Inc.Stent with radiopaque coating consisting of particles in a binder
US6379302 *28 Oct 199930 Apr 2002Surgical Navigation Technologies Inc.Navigation information overlay onto ultrasound imagery
US6400979 *20 Feb 19984 Jun 2002Johns Hopkins UniversityFriction transmission with axial loading and a radiolucent surgical needle driver
US6412851 *29 Aug 20002 Jul 2002Jay BurksRetractable cover for small vehicles
US6423089 *22 Apr 199923 Jul 2002Atrium Medical CorporationVascular endoprosthesis and method
US6447540 *14 Nov 199710 Sep 2002Cook IncorporatedStent deployment device including splittable sleeve containing the stent
US6453185 *17 Mar 200017 Sep 2002Integra Lifesciences, Inc.Ventricular catheter with reduced size connector and method of use
US6456684 *20 Jul 200024 Sep 2002Inki MunSurgical scanning system and process for use thereof
US6475234 *26 Oct 19985 Nov 2002Medinol, Ltd.Balloon expandable covered stents
US6475235 *16 Nov 19995 Nov 2002Iowa-India Investments Company, LimitedEncapsulated stent preform
US6481888 *12 Oct 199919 Nov 2002R. Hank MorganScatter ban drape
US6490467 *26 Jun 19983 Dec 2002Surgical Navigation Technologies, Inc.Surgical navigation systems including reference and localization frames
US6490475 *28 Apr 20003 Dec 2002Ge Medical Systems Global Technology Company, LlcFluoroscopic tracking and visualization system
US6533806 *1 Oct 199918 Mar 2003Scimed Life Systems, Inc.Balloon yielded delivery system and endovascular graft design for easy deployment
US6544041 *6 Oct 20008 Apr 2003Fonar CorporationSimulator for surgical procedures
US6585677 *29 Aug 20011 Jul 2003John A. Cowan, Jr.Shunt
US6629992 *29 Jun 20017 Oct 2003Advanced Cardiovascular Systems, Inc.Sheath for self-expanding stent
US6656213 *20 Jun 20012 Dec 2003Jan Otto SolemStent delivery system
US6689125 *22 Jan 200210 Feb 2004Spinalabs, LlcDevices and methods for the treatment of spinal disorders
US6716238 *10 May 20016 Apr 2004Scimed Life Systems, Inc.Stent with detachable tethers and method of using same
US6740113 *21 May 200225 May 2004Scimed Life Systems, Inc.Balloon expandable stent with a self-expanding portion
US6961606 *19 Oct 20011 Nov 2005Koninklijke Philips Electronics N.V.Multimodality medical imaging system and method with separable detector devices
US20010041928 *4 May 200115 Nov 2001Oregon Health Services UniversityEndovascular stent graft
US20020052640 *29 Jun 20012 May 2002Steve BigusSheath for self-expanding stents
US20020077540 *19 Nov 200120 Jun 2002Kienzle Thomas C.Enhanced graphic features for computer assisted surgery system
US20020183610 *18 Jul 20025 Dec 2002Saint Louis University And Surgical Navigation Technologies, Inc.Bone navigation system
US20020183763 *11 Jul 20025 Dec 2002Callol Joseph R.Stent and catheter assembly and method for treating bifurcations
US20040073286 *22 Jan 200115 Apr 2004Armstrong Joseph P.Deployment system for intraluminal devices
US20040148000 *24 Jan 200329 Jul 2004Bilge Fertac H.Self expanding stent delivery system with balloon
US20040176833 *21 Nov 20039 Sep 2004Cook IncorporatedStent tissue graft prosthesis
US20040176835 *24 Mar 20049 Sep 2004Vrba Anthony C.Medical device delivery system
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US20060069426 *27 Sep 200430 Mar 2006Weinberger Judah ZMethods and devices for extravascular intervention
US20060106406 *18 Nov 200418 May 2006Judah WeinbergerMethods and devices for extravascular intervention
US20080216844 *23 Nov 200711 Sep 2008Cheryl OlfertSterile draping for the bore of a medical imaging system
EP2257222A4 *31 Mar 200913 May 2015Eco Cath Lab Systems IncMethod and apparatus for shielding medical personnel from radiation
WO2008061364A1 *23 Nov 200729 May 2008Imris Inc.Sterile draping for the bore of a medical imaging system
Classifications
U.S. Classification600/407
International ClassificationA61F2/86, A61L31/18, A61B5/05, A61B10/02, A61B19/00, A61B19/08, A61B10/00, A61B17/12, A61B17/34
Cooperative ClassificationY10T428/24273, A61L31/18, A61B10/0233, A61B6/4423, A61B6/03, A61B46/10, A61B90/39, A61B2090/374, A61B2090/3954, A61B2090/376, A61B17/3403
European ClassificationA61B19/08B, A61L31/18, A61B17/34D, A61F2/86