Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20060008850 A1
Publication typeApplication
Application numberUS 11/174,938
Publication date12 Jan 2006
Filing date5 Jul 2005
Priority date2 Jul 2004
Also published asUS8329958
Publication number11174938, 174938, US 2006/0008850 A1, US 2006/008850 A1, US 20060008850 A1, US 20060008850A1, US 2006008850 A1, US 2006008850A1, US-A1-20060008850, US-A1-2006008850, US2006/0008850A1, US2006/008850A1, US20060008850 A1, US20060008850A1, US2006008850 A1, US2006008850A1
InventorsJennifer Riggs-Sauthier, Nnochiri Ekwuribe
Original AssigneeRiggs-Sauthier Jennifer A, Ekwuribe Nnochiri N
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Combinatorial synthesis of PEG oligomer libraries
US 20060008850 A1
Abstract
A simple chain-extending approach was established for the scale-up of the monoprotected monodisperse PEG diol materials. Reactions of THP-(OCH2CH2)n—OMs (n=4, 8, 12) with a large excess of commercially available H—(OCH2CH2)n—OH (n=1-4) under basic conditions led to THP-(OCH2CH2)n—OH (n=5-15). Similarly, Me-(OCH2CH2)n—OH (n=4-11, 13) were prepared from Me-(OCH2CH2)n—OMs (n=3, 7, 11). For the chain elongation steps, 40-80% yields were achieved through extraction purification. PEG oligomer libraries I and II were generated in 50-95% overall yields by alkylation or acylation of THP-(OCH2CH2)n—OH (n=1-15) followed by deprotection. Alkylation of Me-(OCH2CH2)n—OH (n=1-11, 13) with X—(CH2)m—CO2R (X=Br or OMs) and subsequent hydrolysis led to PEG oligomer library III in 30-60% overall yields. Combinatorial purification techniques were adapted to the larger-scale library synthesis. A total of 498 compounds, each with a weight of 2-5 g and a minimum purity of 90%, were synthesized.
Images(1)
Previous page
Next page
Claims(12)
1. An oligomer library comprising one or more of the following:
(a) a first oligomer library comprising 2 or more oligomers comprising hydrophilic and lipophilic substituents coupled by a non-hydrolyzable bond, and comprising a hydroxyl or carboxyllic acid functionality coupled to the hydrophilic substituent;
(b) a second oligomer library comprising 2 or more oligomers comprising hydrophilic and lipophilic substituents coupled by a hydrolyzable bond; and
(c) a third oligomer library comprising 2 or more oligomers comprising hydrophilic and lipophilic substituents coupled by a non-hydrolyzable bond, and comprising a hydroxyl or carboxyllic acid functionality coupled to the lipophilic substituent.
2. The oligomer library of claim 1 comprising 2 or more of the libraries of 1(a), 1(b) and 1(c).
3. The oligomer library of claim 1 comprising all of the libraries of 1(a), 1(b) and 1(c).
4. The oligomer library of claim 1 wherein the hydrophilic and lipophilic substituents of the first oligomer library are coupled by an ether bond.
5. The oligomer library of claim 1 wherein the hydrophilic and lipophilic substituents of the third oligomer library are coupled by an ether bond.
6. The oligomer library of claim 1 wherein the hydrophilic and lipophilic substituents of the second oligomer library are coupled by an ester bond.
7. A method of identifying a new pharmaceutical compound comprising coupling a compound having known pharmaceutical properties to multiple oligomers from the library of claim 1 to yield multiple conjugates and screening the multiple conjugates for pharmaceutical activity.
8. The oligomer library of claim 1 wherein the oligomers are greater than about 95, 96, 97, 98 or 99% monodisperse.
9. A method of identifying a new pharmaceutical compound comprising coupling a compound having known pharmaceutical properties to multiple oligomers from the library of claim 1 to yield multiple conjugates and screening the multiple conjugates for pharmaceutical activity.
10. The method of claim 9 wherein the pharmaceutical compound is a protein or peptide.
11. The method of claim 9 wherein the pharmaceutical compound is a protein or peptide which is less than 20, 25, 30, 35, 40, 45 or 50 amino acids in length.
12. The method of claim 9 wherein the pharmaceutical compound is selected from the group consisting of insulin, GLP-1, exenatide, natriuretic peptides, brain natriuertic peptide, atrial natriuretic peptide, parathyroid hormone, antibodies and antibody fragments, and derivatives of the foregoing.
CH3(CH2)m—(OCH2CH2)n—OH
Compound Formula MW MS Found n m + 1 NBX-I-1-4 C6H14O2 118.18 1 4 NBX-I-1-5 C7H16O2 132.20 1 5 NBX-I-1-6 C8H18O2 146.23 1 6 NBX-I-1-7 C9H20O2 160.26 161.3 1 7 NBX-I-1-8 C10H22O2 174.29 175.4 1 8 NBX-I-1-9 C11H24O2 188.31 189.5 1 9 NBX-I-1-10 C12H26O2 202.34 203.3 1 10 NBX-I-1-11 C13H28O2 216.37 217.4 1 11 NBX-I-1-12 C14H30O2 230.39 231.2 1 12 NBX-I-1-13 C15H32O2 244.42 245.3 1 13 NBX-I-1-14 C16H34O2 258.45 259.4 1 14 NBX-I-1-15 C17H36O2 272.48 273.5 1 15 NBX-I-1-16 C18H38O2 286.50 287.3 1 16 NBX-I-1-17 C19H40O2 300.53 301.7 1 17 NBX-I-1-18 C20H42O2 314.56 332.6 1 18 NBX-I-2-4 C8H18O3 162.23 163.4 2 4 NBX-I-2-5 C9H20O3 176.26 177.2 2 5 NBX-I-2-6 C10H22O3 190.29 191.3 2 6 NBX-I-2-7 C11H24O3 204.31 205.1 2 7 NBX-I-2-8 C12H26O3 218.34 219.2 2 8 NBX-I-2-9 C13H28O3 232.37 233.3 2 9 NBX-I-2-10 C14H30O3 246.39 247.4 2 10 NBX-I-2-11 C15H32O3 260.42 261.2 2 11 NBX-I-2-12 C16H34O3 274.45 275.3 2 12 NBX-I-2-13 C17H36O3 288.47 289.4 2 13 NBX-I-2-14 C18H38O3 302.50 303.5 2 14 NBX-I-2-15 C19H40O3 316.53 317.3 2 15 NBX-I-2-16 C20H42O3 330.56 331.4 2 16 NBX-I-2-17 C21H44O3 344.58 345.5 2 17 NBX-I-2-18 C22H46O3 358.61 359.6 2 18 NBX-I-3-4 C10H22O4 206.28 207.2 3 4 NBX-I-3-5 C11H24O4 220.31 221.3 3 5 NBX-I-3-6 C12H26O4 234.34 235.4 3 6 NBX-I-3-7 C13H28O4 248.37 249.2 3 7 NBX-I-3-8 C14H30O4 262.39 263.3 3 8 NBX-I-3-9 C15H32O4 276.42 277.4 3 9 NBX-I-3-10 C16H34O4 290.45 290.9 3 10 NBX-I-3-11 C17H36O4 304.47 305.6 3 11 NBX-I-3-12 C18H38O4 318.50 319.4 3 12 NBX-I-3-13 C19H40O4 332.53 333.2 3 13 NBX-I-3-14 C20H42O4 346.56 347.3 3 14 NBX-I-3-15 C21H44O4 360.58 361.4 3 15 NBX-I-3-16 C22H46O4 374.61 375.2 3 16 NBX-I-3-17 C23H48O4 388.64 389.3 3 17 NBX-I-3-18 C24H50O4 402.66 403.7 3 18 NBX-I-4-4 C12H26O5 250.34 251.3 4 4 NBX-I-4-5 C13H28O5 264.37 265.4 4 5 NBX-I-4-6 C14H30O5 278.39 279.5 4 6 NBX-I-4-7 C15H32O5 292.42 293.6 4 7 NBX-I-4-8 C16H34O5 306.45 307.4 4 8 NBX-I-4-9 C17H36O5 320.47 321.5 4 9 NBX-I-4-10 C18H38O5 334.50 335.6 4 10 NBX-I-4-11 C19H40O5 348.53 349.4 4 11 NBX-I-4-12 C20H42O5 362.55 363.2 4 12 NBX-I-4-13 C21H44O5 376.58 377.3 4 13 NBX-I-4-14 C22H46O5 390.61 391.4 4 14 NBX-I-4-15 C23H48O5 404.64 405.8 4 15 NBX-I-4-16 C24H50O5 418.66 419.3 4 16 NBX-I-4-17 C25H52O5 432.69 433.4 4 17 NBX-I-4-18 C26H54O5 446.72 447.5 4 18 NBX-I-5-4 C14H30O6 294.39 295.4 5 4 NBX-I-5-5 C15H32O6 308.42 309.5 5 5 NBX-I-5-6 C16H34O6 322.45 323.6 5 6 NBX-I-5-7 C17H36O6 336.47 337.4 5 7 NBX-I-5-8 C18H38O6 350.50 351.5 5 8 NBX-I-5-9 C19H40O6 364.53 365.3 5 9 NBX-I-5-10 C20H42O6 378.55 379.4 5 10 NBX-I-5-11 C21H44O6 392.58 393.5 5 11 NBX-I-5-12 C22H46O6 406.61 407.3 5 12 NBX-I-5-13 C23H48O6 420.64 421.4 5 13 NBX-I-5-14 C24H50O6 434.66 435.8 5 14 NBX-I-5-15 C25H52O6 448.69 449.8 5 15 NBX-I-5-16 C26H54O6 462.72 463.7 5 16 NBX-I-5-17 C27H56O6 476.74 494.6 5 17 NBX-I-5-18 C28H58O6 490.77 491.6 5 18 NBX-I-6-4 C16H34O7 338.45 339.5 6 4 NBX-I-6-5 C17H36O7 352.47 370.4 6 5 NBX-I-6-6 C18H38O7 366.50 384.5 6 6 NBX-I-6-7 C19H40O7 380.53 398.6 6 7 NBX-I-6-8 C20H42O7 394.55 412.4 6 8 NBX-I-6-9 C21H44O7 408.58 426.5 6 9 NBX-I-6-10 C22H46O7 422.61 423.5 6 10 NBX-I-6-11 C23H48O7 436.63 454.7 6 11 NBX-I-6-12 C24H50O7 450.66 468.5 6 12 NBX-I-6-13 C25H52O7 464.69 482.6 6 13 NBX-I-6-14 C26H54O7 478.72 496.7 6 14 NBX-I-6-15 C27H56O7 492.74 510.5 6 15 NBX-I-6-16 C28H58O7 506.77 524.6 6 16 NBX-I-6-17 C29H60O7 520.80 538.7 6 17 NBX-I-6-18 C30H62O7 534.82 552.6 6 18 NBX-I-7-4 C18H38O8 382.50 383.3 7 4 NBX-I-7-5 C19H40O8 396.53 414.5 7 5 NBX-I-7-6 C20H42O8 410.55 411.5 7 6 NBX-I-7-7 C21H44O8 424.58 442.4 7 7 NBX-I-7-8 C22H46O8 438.61 456.5 7 8 NBX-I-7-9 C23H48O8 452.63 470.6 7 9 NBX-I-7-10 C24H50O8 466.66 484.7 7 10 NBX-I-7-11 C25H52O8 480.69 498.5 7 11 NBX-I-7-12 C26H54O8 494.72 512.6 7 12 NBX-I-7-13 C27H56O8 508.74 526.7 7 13 NBX-I-7-14 C28H58O8 522.77 540.5 7 14 NBX-I-7-15 C29H60O8 536.80 554.7 7 15 NBX-I-7-16 C30H62O8 550.82 568.8 7 16 NBX-I-7-17 C31H64O8 564.85 582.6 7 17 NBX-I-7-18 C32H66O8 578.88 596.4 7 18 NBX-I-8-4 C20H42O9 426.55 444.2 8 4 NBX-I-8-5 C21H44O9 440.58 458.6 8 5 NBX-I-8-6 C22H46O9 454.61 472.4 8 6 NBX-I-8-7 C23H48O9 468.63 486.5 8 7 NBX-I-8-8 C24H50O9 482.66 500.6 8 8 NBX-I-8-9 C25H52O9 496.69 514.4 8 9 NBX-I-8-10 C26H54O9 510.71 511.7 8 10 NBX-I-8-11 C27H56O9 524.74 542.6 8 11 NBX-I-8-12 C28H58O9 538.77 556.5 8 12 NBX-I-8-13 C29H60O9 552.80 570.6 8 13 NBX-I-8-14 C30H62O9 566.82 584.4 8 14 NBX-I-8-15 C31H64O9 580.85 598.5 8 15 NBX-I-8-16 C32H66O9 594.88 612.6 8 16 NBX-I-8-17 C33H68O9 608.90 626.7 8 17 NBX-I-8-18 C34H70O9 622.93 640.8 8 18 NBX-I-9-4 C22H46O10 470.61 488.3 9 4 NBX-I-9-5 C23H48O10 484.63 485.6 9 5 NBX-I-9-6 C24H50O10 498.66 516.5 9 6 NBX-I-9-7 C25H52O10 512.69 530.6 9 7 NBX-I-9-8 C26H54O10 526.71 544.4 9 8 NBX-I-9-9 C27H56O10 540.74 558.6 9 9 NBX-I-9-10 C28H58O10 554.77 572.7 9 10 NBX-I-9-11 C29H60O10 568.80 586.5 9 11 NBX-I-9-12 C30H62O10 582.82 600.6 9 12 NBX-I-9-13 C31H64O10 596.85 614.7 9 13 NBX-I-9-14 C32H66O10 610.88 628.5 9 14 NBX-I-9-15 C33H68O10 624.90 642.6 9 15 NBX-I-9-16 C34H70O10 638.93 656.7 9 16 NBX-I-9-17 C35H72O10 652.96 670.8 9 17 NBX-I-9-18 C36H74O10 666.99 684.6 9 18 NBX-I-10-4 C24H50O11 514.66 532.4 10 4 NBX-I-10-5 C25H52O11 528.69 546.5 10 5 NBX-I-10-6 C26H54O11 542.71 560.7 10 6 NBX-I-10-7 C27H56O11 556.74 574.8 10 7 NBX-I-10-8 C28H58O11 570.77 588.9 10 8 NBX-I-10-9 C29H60O11 584.79 602.7 10 9 NBX-I-10-10 C30H62O11 598.82 616.8 10 10 NBX-I-10-11 C31H64O11 612.85 630.6 10 11 NBX-I-10-12 C32H66O11 626.88 644.7 10 12 NBX-I-10-13 C33H68O11 640.90 658.8 10 13 NBX-I-10-14 C34H70O11 654.93 672.6 10 14 NBX-I-10-15 C35H72O11 668.96 686.4 10 15 NBX-I-10-16 C36H74O11 682.98 700.8 10 16 NBX-I-10-17 C37H76O11 697.01 714.9 10 17 NBX-I-10-18 C38H78O11 711.04 728.7 10 18 NBX-I-11-4 C26H54O12 558.71 576.3 11 4 NBX-I-11-5 C27H56O12 572.74 590.4 11 5 NBX-I-11-6 C28H58O12 586.77 604.5 11 6 NBX-I-11-7 C29H60O12 600.79 618.6 11 7 NBX-I-11-8 C30H62O12 614.82 632.7 11 8 NBX-I-11-9 C31H64O12 628.85 646.5 11 9 NBX-I-11-10 C32H66O12 642.88 660.3 11 10 NBX-I-11-11 C33H68O12 656.90 674.7 11 11 NBX-I-11-12 C34H70O12 670.93 688.8 11 12 NBX-I-11-13 C35H72O12 684.96 702.6 11 13 NBX-I-11-14 C36H74O12 698.98 716.7 11 14 NBX-I-11-15 C37H76O12 713.01 730.8 11 15 NBX-I-11-16 C38H78O12 727.04 744.6 11 16 NBX-I-11-17 C39H80O12 741.07 758.7 11 17 NBX-I-11-18 C40H82O12 755.09 772.8 11 18 NBX-I-12-4 C28H58O13 602.77 620.4 12 4 NBX-I-12-5 C29H60O13 616.79 634.5 12 5 NBX-I-12-6 C30H62O13 630.82 648.6 12 6 NBX-I-12-7 C31H64O13 644.85 662.7 12 7 NBX-I-12-8 C32H66O13 658.88 676.5 12 8 NBX-I-12-9 C33H68O13 672.90 690.6 12 9 NBX-I-12-10 C34H70O13 686.93 687.6 12 10 NBX-I-12-11 C35H72O13 700.96 701.7 12 11 NBX-I-12-12 C36H74O13 714.98 715.8 12 12 NBX-I-12-13 C37H76O13 729.01 729.9 12 13 NBX-I-12-14 C38H78O13 743.04 743.7 12 14 NBX-I-12-15 C39H80O13 757.06 757.8 12 15 NBX-I-12-16 C40H82O13 771.09 771.6 12 16 NBX-I-12-17 C41H84O13 785.12 785.7 12 17 NBX-I-12-18 C42H86O13 799.15 816.6 12 18 NBX-I-13-4 C30H62O14 646.82 664.5 13 4 NBX-I-13-5 C31H64O14 660.85 678.6 13 5 NBX-I-13-6 C32H66O14 674.87 692.7 13 6 NBX-I-13-7 C33H68O14 688.90 706.5 13 7 NBX-I-13-8 C34H70O14 702.93 720.6 13 8 NBX-I-13-9 C35H72O14 716.96 734.7 13 9 NBX-I-13-10 C36H74O14 730.98 748.5 13 10 NBX-I-13-11 C37H76O14 745.01 762.5 13 11 NBX-I-13-12 C38H78O14 759.04 776.9 13 12 NBX-I-13-13 C39H80O14 773.06 790.5 13 13 NBX-I-13-14 C40H82O14 787.09 804.9 13 14 NBX-I-13-15 C41H84O14 801.12 818.7 13 15 NBX-I-13-16 C42H86O14 815.15 832.8 13 16 NBX-I-13-17 C43H88O14 829.17 846.9 13 17 NBX-I-13-18 C44H90O14 843.20 861 13 18 NBX-I-14-4 C32H66O15 690.87 691.4 14 4 NBX-I-14-5 C33H68O15 704.90 705.5 14 5 NBX-I-14-6 C34H70O15 718.93 719.6 14 6 NBX-I-14-7 C35H72O15 732.96 733.7 14 7 NBX-I-14-8 C36H74O15 746.98 747.8 14 8 NBX-I-14-9 C37H76O15 761.01 761.9 14 9 NBX-I-14-10 C38H78O15 775.04 775.8 14 10 NBX-I-14-11 C39H80O15 789.06 789.9 14 11 NBX-I-14-12 C40H82O15 803.09 803.7 14 12 NBX-I-14-13 C41H84O15 817.12 817.8 14 13 NBX-I-14-14 C42H86O15 831.14 831.9 14 14 NBX-I-14-15 C43H88O15 845.17 845.7 14 15 NBX-I-14-16 C44H90O15 859.20 859.8 14 16 NBX-I-14-17 C45H92O15 873.23 873.9 14 17 NBX-I-14-18 C46H94O15 887.25 887.7 14 18 NBX-I-15-4 C34H70O16 734.93 752.4 15 4 NBX-I-15-5 C35H72O16 748.95 766.5 15 5 NBX-I-15-6 C36H74O16 762.98 780.6 15 6 NBX-I-15-7 C37H76O16 777.01 794.7 15 7 NBX-I-15-8 C38H78O16 791.04 808.8 15 8 NBX-I-15-9 C39H80O16 805.06 822.6 15 9 NBX-I-15-10 C40H82O16 819.09 836.7 15 10 NBX-I-15-11 C41H84O16 833.12 850.8 15 11 NBX-I-15-12 C42H86O16 847.14 864.9 15 12 NBX-I-15-13 C43H88O16 861.17 879 15 13 NBX-I-15-14 C44H90O16 875.20 893.1 15 14 NBX-I-15-15 C45H92O16 889.23 906.9 15 15 NBX-I-15-16 C46H94O16 903.25 921 15 16 NBX-I-15-17 C47H96O16 917.28 935.1 15 17 NBX-I-15-18 C48H98O16 931.31 948.9 15 18
CH3(CH2)mCO2—(CH2CH2O)n—H
Compound Formula MW MS Found n m + 2 NBX-II-1-4 C6H12O3 132.16 133.00 1 4 NBX-II-1-5 C7H14O3 146.19 1 5 NBX-II-1-6 C8H16O3 160.21 161.30 1 6 NBX-II-1-7 C9H18O3 174.24 1 7 NBX-II-1-8 C10H20O3 188.27 189.50 1 8 NBX-II-1-9 C11H22O3 202.30 1 9 NBX-II-1-10 C12H24O3 216.32 217.40 1 10 NBX-II-1-12 C14H28O3 244.38 245.30 1 12 NBX-II-1-14 C16H32O3 272.43 273.50 1 14 NBX-II-1-16 C18H36O3 300.49 301.40 1 16 NBX-II-1-18 C20H40O3 328.54 329.60 1 18 NBX-II-2-4 C8H16O4 176.21 177.20 2 4 NBX-II-2-5 C9H18O4 190.24 190.9 2 5 NBX-II-2-6 C10H20O4 204.27 205.1 2 6 NBX-II-2-7 C11H22O4 218.30 218.8 2 7 NBX-II-2-8 C12H24O4 232.32 233.0 2 8 NBX-II-2-9 C13H26O4 246.35 246.7 2 9 NBX-II-2-10 C14H28O4 260.38 261.2 2 10 NBX-II-2-12 C16H32O4 288.43 289.4 2 12 NBX-II-2-14 C18H36O4 316.49 317.3 2 14 NBX-II-2-16 C20H40O4 344.54 345.5 2 16 NBX-II-2-18 C22H44O4 372.59 373.4 2 18 NBX-II-3-4 C10H20O5 220.27 221.3 3 4 NBX-II-3-5 C11H22O5 234.29 234.7 3 5 NBX-II-3-6 C12H24O5 248.32 249.2 3 6 NBX-II-3-7 C13H26O5 262.35 262.9 3 7 NBX-II-3-8 C14H28O5 276.38 277.1 3 8 NBX-II-3-9 C15H30O5 290.40 291.5 3 9 NBX-II-3-10 C16H32O5 304.43 305.3 3 10 NBX-II-3-12 C18H36O5 332.48 333.5 3 12 NBX-II-3-14 C20H40O5 360.54 361.4 3 14 NBX-II-3-16 C22H44O5 388.59 389.3 3 16 NBX-II-3-18 C24H48O5 416.65 417.5 3 18 NBX-II-4-4 C12H24O6 264.32 265.4 4 4 NBX-II-4-5 C13H26O6 278.35 279.5 4 5 NBX-II-4-6 C14H28O6 292.38 293.6 4 6 NBX-II-4-7 C15H30O6 306.40 307.4 4 7 NBX-II-4-8 C16H32O6 320.43 321.5 4 8 NBX-II-4-9 C17H34O6 334.46 335.3 4 9 NBX-II-4-10 C18H36O6 348.48 349.4 4 10 NBX-II-4-12 C20H40O6 376.54 377.6 4 12 NBX-II-4-14 C22H44O6 404.59 405.2 4 14 NBX-II-4-16 C24H48O6 432.65 433.4 4 16 NBX-II-4-18 C26H52O6 460.70 461.6 4 18 NBX-II-5-4 C14H28O7 308.38 309.5 5 4 NBX-II-5-5 C15H30O7 322.40 323.6 5 5 NBX-II-5-6 C16H32O7 336.43 337.4 5 6 NBX-II-5-7 C17H34O7 350.46 351.5 5 7 NBX-II-5-8 C18H36O7 364.48 365.3 5 8 NBX-II-5-9 C19H38O7 378.51 379.4 5 9 NBX-II-5-10 C20H40O7 392.54 393.5 5 10 NBX-II-5-12 C22H44O7 420.59 421.4 5 12 NBX-II-5-14 C24H48O7 448.65 449.8 5 14 NBX-II-5-16 C26H52O7 476.70 477.5 5 16 NBX-II-5-18 C28H56O7 504.75 505.7 5 18 NBX-II-6-4 C16H32O8 352.43 370.4 6 4 NBX-II-6-5 C17H34O8 366.46 367.4 6 5 NBX-II-6-6 C18H36O8 380.48 398.6 6 6 NBX-II-6-7 C19H38O8 394.51 395.3 6 7 NBX-II-6-8 C20H40O8 408.54 426.5 6 8 NBX-II-6-9 C21H42O8 422.56 440.6 6 9 NBX-II-6-10 C22H44O8 436.59 454.7 6 10 NBX-II-6-12 C24H48O8 464.65 482.6 6 12 NBX-II-6-14 C26H52O8 492.70 510.5 6 14 NBX-II-6-16 C28H56O8 520.75 521.3 6 16 NBX-II-6-18 C30H60O8 548.81 549.5 6 18 NBX-II-7-4 C18H36O9 396.48 397.1 7 4 NBX-II-7-5 C19H38O9 410.51 411.5 7 5 NBX-II-7-6 C20H40O9 424.54 425.3 7 6 NBX-II-7-7 C21H42O9 438.56 456.5 7 7 NBX-II-7-8 C22H44O9 452.59 453.5 7 8 NBX-II-7-9 C23H46O9 466.62 484.7 7 9 NBX-II-7-10 C24H48O9 480.64 481.4 7 10 NBX-II-7-12 C26H52O9 508.70 509.6 7 12 NBX-II-7-14 C28H56O9 536.75 537.5 7 14 NBX-II-7-16 C30H60O9 564.81 565.5 7 16 NBX-II-7-18 C32H64O9 592.86 593.7 7 18 NBX-II-8-4 C20H40O10 440.54 441.5 8 4 NBX-II-8-5 C21H42O10 454.56 472.4 8 5 NBX-II-8-6 C22H44O10 468.59 469.4 8 6 NBX-II-8-7 C23H46O10 482.62 500.6 8 7 NBX-II-8-8 C24H48O10 496.64 497.3 8 8 NBX-II-8-9 C25H50O10 510.67 528.5 8 9 NBX-II-8-10 C26H52O10 524.70 525.5 8 10 NBX-II-8-12 C28H56O10 552.75 553.5 8 12 NBX-II-8-14 C30H60O10 580.81 581.4 8 14 NBX-II-8-16 C32H64O10 608.86 609.6 8 16 NBX-II-8-18 C34H68O10 636.92 637.6 8 18 NBX-II-9-4 C22H44O11 484.59 485.3 9 4 NBX-II-9-5 C23H46O11 498.62 516.5 9 5 NBX-II-9-6 C24H48O11 512.64 530.3 9 6 NBX-II-9-7 C25H50O11 526.67 544.4 9 7 NBX-II-9-8 C26H52O11 540.70 558.6 9 8 NBX-II-9-9 C27H54O11 554.72 572.7 9 9 NBX-II-9-10 C28H56O11 568.75 586.5 9 10 NBX-II-9-12 C30H60O11 596.81 614.7 9 12 NBX-II-9-14 C32H64O11 624.86 642.9 9 14 NBX-II-9-16 C34H68O11 652.91 670.8 9 16 NBX-II-9-18 C36H72O11 680.97 698.7 9 18 NBX-II-10-4 C24H48O12 528.64 546.5 10 4 NBX-II-10-5 C25H50O12 542.67 560.7 10 5 NBX-II-10-6 C26H52O12 556.70 574.8 10 6 NBX-II-10-7 C27H54O12 570.72 588.6 10 7 NBX-II-10-8 C28H56O12 584.75 602.7 10 8 NBX-II-10-9 C30H58O12 598.78 616.5 10 9 NBX-II-10-10 C30H60O12 612.81 630.6 10 10 NBX-II-10-12 C32H64O12 640.86 658.8 10 12 NBX-II-10-14 C34H68O12 668.91 686.4 10 14 NBX-II-10-16 C36H72O12 696.97 714.6 10 16 NBX-II-10-18 C38H76O12 725.02 742.8 10 18 NBX-II-11-4 C26H52O13 572.70 590.4 11 4 NBX-II-11-5 C27H54O13 586.72 604.5 11 5 NBX-II-11-6 C28H56O13 600.75 618.6 11 6 NBX-II-11-7 C29H58O13 614.78 632.4 11 7 NBX-II-11-8 C30H60O13 628.80 646.5 11 8 NBX-II-11-9 C31H62O13 642.83 660.6 11 9 NBX-II-11-10 C32H64O13 656.86 674.7 11 10 NBX-II-11-12 C34H68O13 684.91 702.3 11 12 NBX-II-11-14 C36H72O13 712.97 730.8 11 14 NBX-II-11-16 C38H76O13 741.02 758.7 11 16 NBX-II-11-18 C40H80O13 769.08 786.9 11 18 NBX-II-12-4 C28H56O14 616.75 634.5 12 4 NBX-II-12-5 C29H58O14 630.78 648.6 12 5 NBX-II-12-6 C30H60O14 644.80 662.7 12 6 NBX-II-12-7 C31H62O14 658.83 676.5 12 7 NBX-II-12-8 C32H64O14 672.86 690.6 12 8 NBX-II-12-9 C33H66O14 686.89 704.7 12 9 NBX-II-12-10 C34H68O14 700.91 718.8 12 10 NBX-II-12-12 C36H72O14 728.97 729.6 12 12 NBX-II-12-14 C38H76O14 757.02 774.9 12 14 NBX-II-12-16 C40H80O14 785.08 785.7 12 16 NBX-II-12-18 C42H84O14 813.13 830.7 12 18 NBX-II-13-4 C30H60O15 660.80 661.4 13 4 NBX-II-13-5 C31H62O15 674.83 675.5 13 5 NBX-II-13-6 C32H64O15 688.86 689.6 13 6 NBX-II-13-7 C33H66O15 702.88 703.7 13 7 NBX-II-13-8 C34H68O15 716.91 717.5 13 8 NBX-II-13-9 C35H70O15 730.94 731.6 13 9 NBX-II-13-10 C36H72O15 744.97 745.7 13 10 NBX-II-13-12 C38H76O15 773.02 790.8 13 12 NBX-II-13-14 C40H80O15 801.07 801.9 13 14 NBX-II-13-16 C42H84O15 829.13 829.8 13 16 NBX-II-13-18 C44H88O15 857.18 857.7 13 18 NBX-II-14-4 C32H64O16 704.86 705.5 14 4 NBX-II-14-5 C33H16O16 718.88 719.6 14 5 NBX-II-14-6 C34H68O16 732.91 733.7 14 6 NBX-II-14-7 C35H70O16 746.94 747.6 14 7 NBX-II-14-8 C36H72O16 760.97 761.7 14 8 NBX-II-14-9 C37H74O16 774.99 775.8 14 9 NBX-II-14-10 C38H76O16 789.02 789.6 14 10 NBX-II-14-12 C40H80O16 817.07 817.8 14 12 NBX-II-14-14 C42H84O16 845.13 845.7 14 14 NBX-II-14-16 C44H88O16 873.18 873.9 14 16 NBX-II-14-18 C46H92O16 901.24 901.8 14 18 NBX-II-15-4 C34H68O17 748.91 766.5 15 4 NBX-II-15-5 C35H70O17 762.94 780.6 15 5 NBX-II-15-6 C36H72O17 776.97 794.7 15 6 NBX-II-15-7 C37H74O17 790.99 808.8 15 7 NBX-II-15-8 C38H76O17 805.02 822.6 15 8 NBX-II-15-9 C39H78O17 819.05 836.7 15 9 NBX-II-15-10 C40H80O17 833.07 850.8 15 10 NBX-II-15-12 C42H84O17 861.13 879.0 15 12 NBX-II-15-14 C44H88O17 889.18 906.9 15 14 NBX-II-15-16 C46H92O17 917.24 935.1 15 16 NBX-II-15-18 C48H96O17 945.29 963.0 15 18
Me-(OCH2CH2)n—O—(CH2)mCO2H
Compound Formula MW MS Found n m + 1 NBX-III-1-5 C8H16O4 176.21 1 5 NBX-III-1-6 C9H18O4 190.24 1 6 NBX-III-1-7 C10H20O4 204.27 1 7 NBX-1-1-10 C13H26O4 246.35 247.4 1 10 NBX-III-1-11 C14H28O4 260.38 1 11 NBX-III-1-12 C15H30O4 274.40 1 12 NBX-III-1-15 C18H36O4 316.49 1 15 NBX-III-1-16 C19H38O4 330.51 1 16 NBX-III-2-5 C10H20O5 220.27 2 5 NBX-III-2-6 C11H22O5 234.29 235.3 2 6 NBX-III-2-7 C12H24O5 248.32 249.5 2 7 NBX-III-2-10 C15H30O5 290.40 291.5 2 10 NBX-III-2-12 C17H34O5 318.46 319.4 2 12 NBX-III-2-15 C20H40O5 360.54 361.4 2 15 NBX-III-2-16 C21H42O5 374.57 375.5 2 16 NBX-III-3-5 C12H24O6 264.32 265.4 3 5 NBX-III-3-6 C13H26O6 278.35 279.5 3 6 NBX-III-3-7 C14H28O6 292.38 293.6 3 7 NBX-III-3-8 C15H30O6 306.40 307.7 3 8 NBX-III-3-10 C17H34O6 334.46 335.6 3 10 NBX-III-3-11 C18H36O6 348.48 349.4 3 11 NBX-III-3-12 C19H38O6 362.51 363.5 3 12 NBX-III-3-15 C22H44O6 404.59 405.5 3 15 NBX-III-3-16 C23H46O6 418.62 419.3 3 16 NBX-III-4-5 C14H28O7 308.38 309.5 4 5 NBX-III-4-6 C15H30O7 322.40 340.4 4 6 NBX-III-4-7 C16H32O7 336.43 337.4 4 7 NBX-III-4-8 C17H34O7 350.46 368.3 4 8 NBX-III-4-10 C19H38O7 378.51 396.2 4 10 NBX-III-4-11 C20H40O7 392.54 410.6 4 11 NBX-III-4-12 C21H42O7 406.56 424.4 4 12 NBX-III-4-15 C24H48O7 448.65 466.4 4 15 NBX-III-4-16 C25H50O7 462.67 463.4 4 16 NBX-III-5-5 C16H32O8 352.43 370.4 5 5 NBX-III-5-6 C17H34O8 366.46 384.5 5 6 NBX-III-5-7 C18H36O8 380.48 398.3 5 7 NBX-III-5-8 C19H38O8 394.51 412.4 5 8 NBX-III-5-10 C21H42O8 422.56 440.6 5 10 NBX-III-5-11 C22H44O8 436.59 454.4 5 11 NBX-III-5-12 C23H46O8 450.62 468.5 5 12 NBX-III-5-15 C26H52O8 492.70 510.5 5 15 NBX-III-5-16 C27H54O8 506.73 524.6 5 16 NBX-III-6-5 C18H36O9 396.48 414.5 6 5 NBX-III-6-6 C19H38O9 410.51 428.6 6 6 NBX-III-6-7 C20H40O9 424.54 442.4 6 7 NBX-III-6-8 C21H42O9 438.56 456.5 6 8 NBX-III-6-10 C23H46O9 466.62 484.4 6 10 NBX-III-6-11 C24H48O9 480.64 498.5 6 11 NBX-III-6-12 C25H50O9 494.67 512.6 6 12 NBX-III-6-15 C28H56O9 536.75 554.6 6 15 NBX-III-6-16 C29H58O9 550.78 568.7 6 16 NBX-III-7-5 C20H40O10 440.54 458.3 7 5 NBX-III-7-6 C21H42O10 454.56 472.4 7 6 NBX-III-7-7 C22H44O10 468.59 486.5 7 7 NBX-III-7-8 C23H46O10 482.62 500.3 7 8 NBX-III-7-10 C25H50O1O 510.67 528.5 7 10 NBX-III-7-11 C26H52O10 524.70 542.6 7 11 NBX-III-7-12 C27H54O10 538.73 556.4 7 12 NBX-III-7-15 C30H60O10 580.81 598.8 7 15 NBX-III-7-16 C31H62O10 594.83 612.5 7 16 NBX-III-8-5 C22H44O11 484.59 502.4 8 5 NBX-III-8-6 C23H46O11 498.62 516.5 8 6 NBX-III-8-7 C24H48O11 512.64 530.6 8 7 NBX-III-8-8 C25H50O11 526.67 544.7 8 8 NBX-III-8-10 C27H54O11 554.72 572.6 8 10 NBX-III-8-11 C28H56O11 568.75 586.4 8 11 NBX-III-8-12 C29H58O11 582.78 600.9 8 12 NBX-III-8-15 C32H64O11 624.86 642.8 8 15 NBX-III-8-16 C33H66O11 638.89 656.6 8 16 NBX-III-9-5 C24H48O12 528.64 546.5 9 5 NBX-III-9-6 C25H50O12 542.67 560.6 9 6 NBX-III-9-7 C26H52O12 556.70 574.7 9 7 NBX-III-9-8 C27H54O12 570.72 588.8 9 8 NBX-III-9-10 C29H58O12 598.78 616.7 9 10 NBX-III-9-11 C30H60O12 612.81 630.5 9 11 NBX-III-9-12 C31H62O12 626.83 644.6 9 12 NBX-III-9-15 C34H68O12 668.91 686.4 9 15 NBX-III-9-16 C35H70O12 682.94 700.8 9 16 NBX-III-10-5 C26H52O13 572.70 590.6 10 5 NBX-1-10-6 C27H54O13 586.72 604.5 10 6 NBX-III-10-7 C28H56O13 600.75 618.5 10 7 NBX-III-10-8 C29H58O13 614.78 632.6 10 8 NBX-III-10-10 C31H62O13 642.83 660.5 10 10 NBX-III-10-11 C32H64O13 656.86 674.7 10 11 NBX-III-10-12 C33H66O13 670.89 688.5 10 12 NBX-III-10-15 C36H72O13 712.97 730.5 10 15 NBX-III-10-16 C37H74O13 726.99 744.6 10 16 NBX-III-11-5 C28H56O14 616.75 634.4 11 5 NBX-III-11-6 C29H58O14 630.78 648.5 11 6 NBX-III-11-7 C30H60O14 644.80 662.7 11 7 NBX-III-11-8 C31H62O14 658.83 676.5 11 8 NBX-III-11-10 C33H66O14 686.89 704.7 11 10 NBX-III-11-11 C34H68O14 700.91 718.8 11 11 NBX-III-11-12 C35H70O14 714.94 732.6 11 12 NBX-III-11-15 C38H76O14 757.02 774.9 11 15 NBX-III-11-16 C39H78O14 771.05 788.7 11 16 NBX-III-12-10 C35H70O15 730.94 748.8 12 10 NBX-III-13-5 C32H64O16 704.86 722.7 13 5 NBX-III-13-6 C33H66O16 718.88 736.8 13 6 NBX-III-13-7 C34H68O16 732.91 750.6 13 7 NBX-III-13-8 C35H70O16 746.94 764.4 13 8 NBX-III-13-10 C37H74O16 774.99 792.6 13 10 NBX-III-13-11 C38H76O16 789.02 806.7 13 11 NBX-III-13-12 C39H78O16 803.05 820.5 13 12 NBX-III-13-15 C42H84O16 845.13 863.7 13 15 NBX-III-13-16 C43H86O16 859.16 876.6 13 16
Description
    BACKGROUND OF THE INVENTION
  • [0001]
    Combinatorial chemistry is a powerful and well-established means of generating large collections of organic molecules for drug discovery research.1 With the dawn of the genomics and proteomics era, many of the drug discovery candidates in the future look to be protein, peptide, and perhaps, peptidomimetic based. While extremely potent as therapeutics, protein and peptide drugs are plagued with many stability issues inherent in their complex structures but most notably are their limitations with regards to oral absorption. In research efforts, we have shown that the covalent attachment of proprietary amphiphilic oligomers to protein, peptide, and even small molecule therapeutics alters the physicochemical properties of the drug molecule to overcome those challenges associated with delivery. This conjugation technology has been successfully employed to enable the oral delivery of insulin2a-e and calcitonin2f in addition to demonstrating penetration of the blood brain barrier by enkephalin.2g Delayed onset of action, stability to enzymatic degradation, enhanced bioactivity, and/or extended duration of action have also been observed through these modifications. To further expedite our drug-conjugate discovery process, it became necessary to possess a compound library containing a wide variety of structurally diverse amphiphilic block co-polymer oligomers. More specifically, the structural differences needed to include permutations around the number of poly(ethylene glycol) (PEG) monomers, the type and length of alkyl chain, and the lability of the drug-oligomer bond, i.e. stable or sensitive to hydrolysis or first pass effects. PEG oligomer libraries were thus designed, each bearing a hydrophilic component, a lipophilic component and a drug-attaching site. As required for our drug discovery research efforts, each library compound should have a weight of 2-5 g and a minimum purity of 90%. Usually, the scale of combinatorial library compounds is only milligrams to tens of milligrams. Construction of this type of larger-scale combinatorial libraries has been difficult and rare.
  • DESCRIPTION OF THE INVENTION
  • [0002]
    Library I ( 15 × 15 ) : CH 3 ( CH 2 ) m - ( OCH 2 CH 2 ) n - OH ( n = 1 - 15 ; m = 3 - 17 ) Library II ( 15 × 11 ) : CH 3 ( CH 2 ) m CO 2 - ( OCH 2 CH 2 ) n - OH ( n = 1 - 15 ; m = 2 - 8 , 10 , 12 , 14 , 16 ) Library III ( 13 × 9 ) : Me - ( OCH 2 CH 2 ) n - O ( CH 2 ) m CO 2 H ( n = 1 - 11 , 13 ; m = 4 - 7 , 9 - 11 , 14 , 15 )
  • [0003]
    In library I, the hydrophilic and lipophilic components are connected via a nonhydrolyzable ether bond, with a hydroxyl group at the end for subsequent conjugation to the drug candidates. Exercising a different strategy in library II, the hydrophilic and lipophilic components are joined together by a hydrolyzable ester bond that cleaves once the drug-oligomer conjugate has crossed the gut epithelium into the hydrophilic environment of the bloodstream resulting in a micropegylated drug-conjugate species. Hydrolysis may be designed to occur either by changes in physiological pH or plasma enzymes. When the drug is insulin and the hydrophilic component is a PEG chain, an enhanced bioactivity was often observed.2a Similar to library I, library III contains nonhydrolyzable ether bond between the hydrophilic and lipophilic components; however, it was designed based on different bifunctionalization of PEG diols, the PEG and alkyl moieties were inverted from library I, and oligomer termination occurs via a carboxylic acid group for activation and subsequent drug conjugation. There are potentially 225 compounds for library I, 165 compounds for library II and 108 compounds for library III.
  • [0004]
    PEG materials have been widely used in the synthesis of crown ethers3, surfactants, and new materials4. Due to increased interest in solid-phase organic synthesis, PEG materials have been frequently used in modification of polymer supports.5 Bifunctionalization of monodisperse PEG diols, especially of large molecular weights, has been an interesting research area. Two chemically equivalent hydroxyl groups such as PEG diols are often difficult to differentiate with regards to their reactivity. Here, we report a novel and simple chain elongation strategy for the synthesis of the monofunctionalized monodisperse PEG diols (up to 15 ethylene glycol units), and the application of combinatorial techniques to the construction of the oligomer libraries.
  • [0000]
    Results and Discussion
  • [0000]
    Synthesis of THP-(OCH2CH2)n—OH and Me-(OCH2CH2)n—OH
  • [0005]
    Selective monofunctionalization of symmetrical diols is important in organic synthesis and various synthetic methods have been developed for both monoacylation and monoalkylation.6 Monobenzyl ethers of symmetrical diols were prepared by the use of a Ag2O catalyst6a, or via diisobutylaluminum hydride cleavage of benzylidene acetals.6b The selective monoacylation of symmetrical diols were also achieved by the use of dimethyltin dichloride,6c strongly acidic ion-exchange resins,6d metal sulfates or hydrogen sulfates,6e,6f phase-transfer catalysts,6g inorganic polymer supports,6h or via cyclic compounds.6i,6j Instead of using these methodologies, we determined a more general and economical approach for construction of our larger-scale PEG oligomer libraries I and II was alkylation or acylation of the monoprotected PEG diols followed by deprotection.
  • [0006]
    Recently, there have been several studies on the synthesis of bifunctional monodisperse PEG derivatives (up to 14 ethylene glycol units).7 Monofunctionalized PEG diols and monoprotected PEG diols were joined by conversion of one alcohol to a sulfonate ester or halide followed by Williamson ether synthesis. Removal of the protecting group liberated the hydroxyl group for further functionalizations. Introduction of two different protecting groups in the Williamson ether synthesis followed by selective deprotection led to the monoprotected PEG diols.7c Pure materials were obtained by traditional silica gel chromatography. However, our PEG oligomer libraries required a series of monoprotected PEG diols (n=1-15) at hundred gram to kilogram quantities for use as starting materials. It would be time-consuming to engage in a cycle of protecting and deprotection pathways especially for the larger molecular weight materials. A more efficient strategy requiring only one protecting group was thus developed (Scheme 1). Among the alcohol-protecting groups reported in reactions involving PEG diols,8 we chose the THP group which could be easily introduced in the beginning stages of synthesis and cleanly removed in the final step of the process. Extraction purification procedures were also developed to avoid silica gel chromatography.
  • [0007]
    For the commercially available H—(OCH2CH2)n—OH (n=1-4), the selective monotetrahydropyranylation can be realized by the use of catalysts such as iodine,9a silica chloride,9b ion-exchange resins,9c or alumina impregnated with zinc chloride.9d Alternatively, the mono-protected materials can be prepared by direct reactions incorporating a large excess of the inexpensive PEG diols with 3,4-dihydro-2H-pyran in the presence of a catalytic amount of conc'd HCl (Scheme 1). The latter strategy has been traditionally used in the monofunctionalization of the commercially available PEG diols.10 The di-THP impurities were removed by dissolving the reaction mixtures in aqueous sodium bicarbonate solution followed by several ethyl acetate extractions. The desired products together with a small amount of PEG diol starting materials were recovered from the aqueous layers by dichloromethane extractions. The PEG diol impurities were further removed by extracting the dichloromethane extracts with water. The pure materials were obtained in 40-60% yields. For the synthesis of THP-(OCH2CH2)n—OH (n=5-8), THP-(OCH2CH2)4—OMs was prepared. Reactions of the mesylate with a large excess of H—(OCH2CH2)n—OH (n=1-4) in the presence of KO'Bu in THF led to THP-(OCH2CH2)n—OH (n=5-8). A larger diol/mesylate ratio was found effective to reduce the amount of the dialkylated species produced. Higher reaction temperatures were found useful to drive the alkylation reactions to completion. Similar extraction procedures gave the pure THP-(OCH2CH2)n—OH (n=5-8). Studies have shown the elongation of PEG chain may suffer from depolymerization processes under basic conditions.7d We found a large excess of the PEG diols could efficiently suppress the depolymerization contamination of the products. As illustrated in Scheme 1, the chain extending approach was used repeatedly to synthesize THP-(OCH2CH2)n—OH (n=9-15). For the alkylation steps, modest to good yields (40-80%) were achieved. An alkylation reaction carried out in a 5 L reaction flask can produce up to 350 g of the pure monoprotected PEG diol after extraction purification. Using H—(OCH2CH2)n—OH (n=1-4), we were able to synthesize THP-(OCH2CH2)n—OH (n=1-15) at 150-1000 g scales, which aided in the support of libraries I and II syntheses. Additionally since the THP protecting group can be cleanly removed, this simple chain elongation strategy can also be utilized for the large-scale synthesis of H—(OCH2CH2)n—OH (n=5-15).
  • [0008]
    As shown in Scheme 2, the chain extending strategy was similarly used in the synthesis of Me-(OCH2CH2)n—OH (n=4-15), which were required for the construction of PEG oligomer library III. In the chain elongation steps, 40-80% yields were achieved via extraction purification.
    Synthesis of Library I
  • [0009]
    Gibson studied the phase-transfer synthesis of monoalkyl ethers of poly(ethylene glycols).11 Reactions of primary alkyl chlorides (or bromides) with a slight excess of 50% aqueous sodium hydroxide and 5-10 equiv of poly(ethylene glycols) at 100° C. for 24 h provided 70-90% yields of the monoalkylated materials. This approach could be employed for the synthesis of the monoalkylated species of the commercially available poly(ethylene glycols). However, since these alkylation procedures require a high reaction temperature, we chose not to adopt this approach. Due to the easy access of mono-THP-ethers from commercially available PEG diols, a more general THP-protecting strategy was developed for the synthesis of library I (Scheme 3).
  • [0010]
    To simplify the combinatorial setup, a VARIOMAG MULTIPOINT 15 magnetic stirrer was employed to set 15 reactions simultaneously. Excess base and alkylating reagents were used to drive the alkylation to completion. The reactions were allowed to proceed at room temperature for 2-4 days. After alkylation, the THP-(OCH2CH2)n—OH starting materials were removed by extracting the ethyl acetate solutions of the crude products with 0-50% saturated brine. The nonpolar impurities (mineral oil in NaH, excess RBr and elimination products) were removed by loading the crude materials onto a pad of silica gel, followed by hexane elution. Pure THP-protected products were recovered from silica gel by eluting with 5-20% methanol/ethyl acetate. Fritted glass funnels (350 mL) were set up for parallel silica gel purification. The resulting THP-protected intermediates were treated with conc'd HCl/MeOH/CH2Cl2 (1:50:50), and simple concentration yielded the desired pure deprotected final products. The purities of the final products were established by LC-MS (ELS) and 1H NMR analyses. In total, 225 compounds (15×15) were synthesized in good overall yields (50-90%) and purities (>90%).
  • [0000]
    Synthesis of Library II
  • [0011]
    Two strategies were used in the library II production (Scheme 4). Since the acylation reactions are mild and moderately clean, a synthetic route circumventing protection group strategies was adopted for the commercially available H—(OCH2CH2)n—OH (n=1-4). In the presence of pyridine, reactions involving the addition of the diol (10 equiv) with 1 equiv of acid chlorides led to the monoacylated products. Simple aqueous extraction purification gave the desired final products in good yields (50-90%) and purities (>90%). A total of 44 final compounds (4×11) were prepared by this strategy. For H—(OCH2CH2)n—OH (n=5-15), the THP-protecting strategy was employed for production. Following acylation, the excess acid chlorides were quenched with PS-Trisamine resin. The acid impurities generated by the hydrolysis were removed by washing the dichloromethane solutions of the crude products with 0.3 M NaOH. Pyridine was removed by azeotrope with toluene. Treatment of the resulting THP-protected intermediates with conc'd HCl/MeOH/CH2Cl2 (1:50:50) afforded the deprotected materials. To reduce the potential for transesterification contamination, the deprotection was quenched with sodium bicarbonate after 1 h. The inorganics were removed by filtration to give the pure final products in good yields (50-90%) and purities (>90%). 121 final compounds (11×11) were prepared by this strategy.
    Synthesis of Library III
  • [0012]
    The first step of the library III synthesis is also alkylation (Scheme 5). However, as ester bromide or mesylate alkylating reagents were used approximately 5-15% side products due to transesterification were observed. The purification strategy employed for library I proved ineffective and silica gel chromatography became increasingly difficult. To solve this problem, a reverse transesterification step was added (Scheme 6). After alkylation, the crude products were treated with methanol and a catalytic amount of conc'd sulfuric acid. After standing overnight, the Me-(OCH2CH2)n-esters were converted to methyl esters by releasing the Me-(OCH2CH2)n—OH. The Me-(OCH2CH2)n—OH starting materials were then removed by extracting the ethyl acetate solutions of the crude products with 0-50% saturated brine. The less polar methyl ester impurities were removed by loading the resulting crude products onto silica gel followed by elution with 15-35% ethyl acetate/hexane. The pure methyl ester products were recovered by elution with 10-20% methanol/dichloromethane. Upon hydrolysis, the methyl esters yielded the pure final products after subsequent acidification and dichloromethane extractions. This procedure worked more efficiently for the longer Me-(OCH2CH2)n—OH (n>3) substrates which also were more conducive to silica gel separation. For the shorter Me-(OCH2CH2)n—OH (n<3) substrates, purification by silica gel chromatography still proved difficult due to minimal separation, especially in a combinatorial format.
  • [0013]
    Since transesterification consumed a substantial amount of Me-(OCH2CH2)n—OH starting materials, excess Me-(OCH2CH2)n—OH (1.3 equiv) and base (1.4 equiv) were used to drive the alkylation to completion. A minimal amount of ester hydrolysis was observed during the aqueous work-up due to the use of excess base, predominantly in the case of the short carbon chain esters. Thus, the basic aqueous solutions were first acidified, and both the free acids and corresponding ester products were recovered by dichloromethane extractions. An advantage of the reverse transesterification process was facile conversion of the free acids to the ester products, which improved the overall yields.
  • [0014]
    For the construction of library III, 12 Me-(OCH2CH2)n—OH (n=1-11, 13) and 9 alkylating reagents X—(CH2)m—CO2R (m=4, 5, 6, 7, 9, 10, 11, 14, 15) were selected. Among the other 9 X—(CH2)m—CO2R substrates, 6 bromides were commercially available and used directly in the production. The other 3 substrates were prepared as mesylates from different readily available materials (Scheme 7). For the synthesis of MsO—(CH2)m—CO2Me (m=14, 15), the first step was conversion of the lactones to HO—(CH2)m—CO2Me. During this process, it was not uncommon to observe 5-10% lactone starting materials after reaction completion. The crude hydroxy methyl esters (together with 5-10% lactone impurities) were directly converted to the corresponding mesylates, and the lactone impurities were easily removed by recrystallization from hexane.
  • [0015]
    In the final hydrolysis step, 2 M NaOH was used for the shorter carbon chain substrates (m=4, 5, 6, 7, 9), and saturated LiOH (approximately 2 M) was utilized for the longer carbon chain substrates. The ester substrates were treated with 3-5 equiv of base overnight. The hydrolysis of the longer carbon chain substrates was sluggish and the reaction mixtures were monitored by LC-MS (ELS) to ensure complete hydrolysis. For those incomplete reactions, the mixtures were heated at 60° C. for a few hours to drive the hydrolysis to completion. A total of 108 library III final compounds were synthesized in good overall yields (30-60%) and purities (>90%).
  • SUMMARY
  • [0016]
    A scaleable approach was developed for the preparation of monoprotected monodisperse PEG diols. THP-(OCH2CH2)n—OH (n=5-15) and Me-(OCH2CH2)n—OH (n=4-11, 13) were prepared by reactions of THP-(OCH2CH2)n—OMs (n=4, 8, 12) or Me-(OCH2CH2)n—OMs (n=3, 7, 11) with a large excess of commercially available H—(OCH2CH2)n—OH (n=1-4) under basic conditions. For the alkylation steps, good yields (40-80%) were achieved through extraction purification. PEG oligomer libraries I and II were generated by alkylation or acylation of THP-(OCH2CH2)n—OH (n=1-15) followed by deprotection. Alkylation of Me-(OCH2CH2)n—OH (n=1-11, 13) with X—(CH2)m—CO2R (X=Br or OMs) and subsequent hydrolysis led to PEG oligomer library III. Combinatorial purification gave the libraries I and II in 50-95% overall yields, and the library III in 30-60% overall yields. A total of 498 compounds, each with a weight of 2-5 g and a minimal purity of 90%, were synthesized.
  • EXPERIMENTAL SECTION
  • [0017]
    Reagents and solvents purchased from commercial sources were used as received. VARIOMAG MULTIPOINT 15 magnetic stirrers were used for the combinatorial setup of the room temperature reactions. Proton nuclear magnetic resonance spectra were obtained on either a Bruker AC 300 NMR spectrometer at 300 MHz or a Bruker DRX 500 NMR spectrometer at 500 MHz. Tetramethylsilane was used as an internal reference. LC-MS experiments were run on a Hewlett-Packard 1100 series liquid chromatography system equipped with a SEDEX 55 evaporative light-scattering (ELS) detector and a PE SCIEX API 150 mass chromatographic analyzer. The LC conditions were as follows: a LiChrospher 100 RP-8 column (25 mm×4 mm, 5 μm) was used, and it was eluted with a gradient made up of two solvent mixtures. Solvent A consists of 5 mM aqueous ammonium acetate. Solvent B consists of 5 mM ammonium acetate in acetonitrile. The gradient was run according to the following methods: Method 1, 90:10(A/B) to 100% of B over 8 min, then 100% of B for 1 min; Method 2, 100% of A for 1 min, then 100% of A to 100% of B over 8 min. The flow rate was 1.2 mL/min. The reequilibration time between two injections was 1.5 min. All samples were injected using a Gilson 215 autosampler. The injection volume was 5 μL. The mass spectrometer was set in positive electrospray ionization modes (ES+). Compound purities were assigned on the basis of ELS data.
  • [0000]
    General Procedure for the Preparation of THP-(OCH2CH2)n—OH (n=1-4)
  • [0018]
    A solution of H—(OCH2CH2)n—OH (2.4 mol), 3,4-dihydro-2H-pyran (54.7 mL, 0.6 mol) and 4 drops of concd HCl was stirred for 15 h at room temperature. The mixture was dissolved in 20% satd sodium bicarbonate solution (500-1000 mL), extracted with ethyl acetate (100-200 mL each time) until the di-THP impurity was removed (monitored by TLC). The aqueous layer was then saturated with sodium chloride and extracted with dichloromethane (4×200 mL). The combined organic layers were washed with water (5×100 mL), dried over anhydrous sodium sulfate, and concentrated in vacuo to give the pure product. Additional 5-10% product can be recovered from the aqueous layers by dichloromethane extractions (3×200 mL) followed by aqueous washes (5×60 mL). Yield: 40-60%.
  • [0000]
    General Procedure for the Preparation of THP-(OCH2CH2)n—OMs (n=4, 8, 12) and Me-(OCH2CH2)n—OMs (n=3, 7, 11)
  • [0019]
    To a stirred solution of THP-(OCH2CH2)n—OH (or Me-(OCH2CH2)n—OH) (0.5 mol), triethylamine (125.4 mL, 0.9 mol) in dichloromethane (500 mL) at 0° C., a solution of mesyl chloride (46.4 mL, 0.6 mol) in dichloromethane (100 mL) was added dropwise. (Attention: poor stirring and a fast addition of the mesyl chloride solution may cause the deprotection of THP-(OCH2CH2)n—OH, which subsequently generates a mixture of THP-(OCH2CH2)n—OTHP, THP-(OCH2CH2)n—OMs and Ms-(OCH2CH2)n—OMs) After the addition, the reaction was allowed to warm to room temperature and stirred for 4 h. The mixture was washed with 20% satd brine (2×500 mL), satd sodium bicarbonate solution (500 mL) and 20% satd brine (500 mL), dried over anhydrous sodium sulfate, and concentrated in vacuo to give the product. Yield: 80-99%.
  • [0000]
    General Procedure for the Preparation of THP-(OCH2CH2)n+m—OH from THP-(OCH2CH2)n—OMs (n+m=5-15), and the Preparation of Me-(OCH2CH2)n+m—OH from Me-(OCH2CH2)n—OMs (n+m=4-11, 13)
  • [0020]
    To a solution of H—(OCH2CH2)m—OH (m=1-4, 2-5 mol) in THF (1 L) under nitrogen, potassium t-butoxide (0.55 mol) was added in 3 portions over 30 min. The reaction mixture was stirred mechanically for 1 h. A solution of THP-(OCH2CH2)n—OMs (or Me-(OCH2CH2)n—OMs) (0.5 mol) in THF (500 mL) was added dropwise over 30 min and the reaction was stirred at 65-70° C. for 15 h (Attention: poor stirring may cause overheating and bumping). The reaction mixture was then cooled to room temperature, filtered through a pad of Celite, washed with dichloromethane (3×200 mL) and concentrated in vacuo. The resulting oil was dissolved in 0-100% satd brine (1 L) and washed with ethyl acetate until the impurities were removed (monitored by TLC). The aqueous layer was then saturated with sodium chloride and extracted with dichloromethane (6×150 mL). The combined organic extracts were washed with water (5×100 mL), dried over anhydrous sodium sulfate, and concentrated in vacuo to give the pure product. Extra 5-10% product can be recovered from the aqueous layers by dichloromethane extractions (3×200 mL) followed by aqueous washes (5×60 mL). Yield: 40-80%.
  • [0000]
    Typical Library I Production Procedure Involving THP-(OCH2CH2)n—OH (n=1-15) and CH3(CH2)mBr (m=3-17)
  • [0021]
    To a suspension of sodium hydride (56 mmol) in THF (60 mL) at 0° C. under nitrogen was added THP-(OCH2CH2)n—OH (40 mmol) over 2-3 min. The mixture was allowed to warm to room temperature and stirred for 2 h. The alkyl bromide CH3(CH2)mBr (56 mmol) was added over 2-3 min and the reaction was stirred at room temperature for 2-4 days. When the reaction was completed, the solvent was removed in vacuo. The resulting residue was dissolved in ethyl acetate (400 mL), washed with 0-50% satd brine (3×50 mL), dried over anhydrous sodium sulfate and concentrated. The resulting crude material was loaded onto silica gel (200 mL). The silica gel was then washed with hexane (400 mL) followed by 5-20% methanol/ethyl acetate (600 mL) to elute the desired product. The methanol/ethyl acetate solution was concentrated in vacuo to give the THP-protected intermediate, which was subsequently dissolved in a solution of concd HCl in methanol and dichloromethane (1:50:50, 3 mL per 1 mmol of the THP-protected intermediate). After 2 h, the solvents were removed in vacuo and residual water was removed via azeotrope with toluene (100 mL) to give the final product. Yield: 50-95%.
  • [0022]
    CH3(CH2)10—(OCH2CH2)2—OH: 1H (300 MHz, CDCl3) δ 3.60-3.80 (m, 8H), 3.48 (t, 2H), 2.55 (t, 1H), 1.54-1.70 (m, 2H), 1.22-1.40 (m, 16H), 0.90 (t, 3H). MS(ESI): 261.2 (M+H)+. Purity: >90% (by 1HNMR).
  • [0023]
    CH3(CH2)6—(OCH2CH2)6—OH: 1H (300 MHz, CDCl3) δ 3.58-3.78 (m, 22H), 3.45 (t, 2H), 2.79 (br s, 1H), 1.54-1.65 (m, 2H), 1.22-1.40 (m, 8H), 0.90 (t, 3H). MS(ESI): 398.6 (M+18)+. Purity: >90% (by LC-MS (ELS)).
  • [0024]
    CH3(CH2)17—(OCH2CH2)12—OH: 1H (300 MHz, CDCl3) δ 3.55-3.80 (m, 48H), 3.45 (t, 2H), 2.62 (br s, 1H), 1.52-1.65 (m, 2H), 1.22-1.40 (m, 30H), 0.90 (t, 3H). MS(ESI): 816.6 (M+18)+. Purity: >90% (by LC-MS (ELS)).
  • [0025]
    CH3(CH2)13—(OCH2CH2)14—OH: 1H (300 MHz, CDCl3) δ 3.55-3.78 (m, 56H), 3.45 (t, 2H), 1.52-1.65 (m, 2H), 1.20-1.35 (m, 22H), 0.90 (t, 3H). MS(ESI): 831.9 (M+H)+. Purity: >90% (by LC-MS (ELS)).
  • [0026]
    CH3(CH2)14—(OCH2CH2)15—OH: 1H (300 MHz, CDCl3) δ 3.55-3.80 (m, 60H), 3.45 (t, 2H), 1.52-1.65 (m, 2H), 1.22-1.40 (m, 24H), 0.90 (t, 3H). MS(ESI): 906.9 (M+18)+. Purity: >90% (by LC-MS (ELS)).
  • [0000]
    Typical Library II Production Procedure Involving H—(OCH2CH2)n—OH (n=1-4) and CH3(CH2)mCOCl (m=2-8, 10, 12, 14, 16)
  • [0027]
    To a stirred solution of H—(OCH2CH2)n—OH (100 mmol) and pyridine (20 mmol) in dichloromethane (30 mL) at 0° C. was added CH3(CH2)mCOCl (10 mmol). The mixture was allowed to warm to room temperature and stirred overnight. The suspension was diluted with dichloromethane (100 mL) and washed with water (100 mL), 1 M hydrochloric acid (50 mL), water (50 mL) and 1 M sodium hydroxide (50 mL). Any resulting precipitate was removed by filtration through a pad of Celite. After a final washing with water (60 mL), the organics were dried over anhydrous sodium sulfate and concentrated to give the final product. Yield: 50-95%.
  • [0028]
    CH3(CH2)10CO2—(CH2CH2O)—H: 1H (300 MHz, CDCl3) δ 4.23 (t, 2H), 3.83 (m, 2H), 2.35 (t, 2H), 2.15 (brs, 1H), 1.58-1.70 (m, 2H), 1.20-1.40 (m, 16H), 0.90 (t, 3H). MS(ESI): 245.3 (M+H)+. Purity: >90% (by LC-MS (ELS)).
  • [0029]
    CH3(CH2)16CO2—(CH2CH2O)3—H: 1H (300 MHz, CDCl3) δ 4.28 (t, 2H), 3.60-3.78 (m, 10H), 2.35 (t, 2H), 2.30 (br s, 1H), 1.58-1.70 (m, 2H), 1.20-1.40 (m, 28H), 0.90 (t, 3H). MS(ESI): 417.5 (M+H)+. Purity: >90% (by LC-MS (ELS)).
  • [0000]
    Typical Library II Production Procedure Involving THP-(OCH2CH2)n—OH (n=5-15) and CH3(CH2)mCOCl (m=2-8, 10, 12, 14, 16)
  • [0030]
    To a stirred solution of THP-(OCH2CH2)n—OH (10 mmol) and pyridine (20 mmol) in dichloromethane (30 mL) at 0° C. was added CH3(CH2)mCOCl (11.5 mmol) over 2-3 min. The mixture was allowed to warm to room temperature and stirred overnight. PS-Trisamine resin (4.5 mmol) was added and the reaction mixture was stirred for another 2 h. The resin was removed by filtration and washed with dichloromethane (2×30 mL). The combined organics were washed with water (60 mL) and 0.3 M sodium hydroxide (60 mL). Any resulting precipitate was removed by filtration through a pad of Celite. After a final washing with water (60 mL), the organics were dried over anhydrous sodium sulfate, filtered through silica gel (70 mL), and further eluted with 1-10% methanol/ethyl acetate (400 mL). The combined filtrates were concentrated in vacuo. To the resultant residue, toluene (100 mL) was added, and the solution was again concentrated in vacuo to give the THP-protected intermediate that was free of residual pyridine. The resulting material was then dissolved in a solution of concd hydrochloric acid in methanol and dichloromethane (1:50:50, 3 mL per 1 mmol of the THP-protected intermediate). After approximately 1 h, the reaction was quenched with sodium bicarbonate (5 equiv) and the solvents were removed in vacuo. To the residue was added dichloromethane (100 mL) and the resulting mixture was dried over anhydrous sodium sulfate, and concentrated in vacuo to give the final product. Yield: 50-95%.
  • [0031]
    CH3(CH2)2CO2—(CH2CH2O)5—H: 1H (300 MHz, CDCl3) δ 4.20 (t, 2H), 3.54-3.70 (m, 26H), 3.0 (br s, 1H), 2.28 (t, 2H), 1.55-1.70 (m, 2H), 0.90 (t, 3H). MS(ESI): 309.5 (M+H)+. Purity: >90% (by LC-MS (ELS)).
  • [0032]
    CH3(CH2)2CO2—(CH2CH2O)7—H: 1H (300 MHz, CDCl3) δ 4.22 (t, 2H), 3.60-3.78 (m, 26H), 2.35 (t, 2H), 1.58-1.72 (m, 2H), 0.96 (t, 3H). MS(ESI): 397.1 (M+H)+. Purity: >90% (by LC-MS (ELS)).
  • [0033]
    CH3(CH2)14CO2—(CH2CH2O)7—H: 1H (300 MHz, CDCl3) δ 4.22 (t, 2H), 3.60-3.78 (m, 26H), 2.33 (t, 2H), 1.58-1.70 (m, 2H), 1.18-1.38 (m, 24H), 0.90 (t, 3H). MS(ESI): 565.5 (M+H)+. Purity: >90% (by LC-MS (ELS)).
  • [0034]
    CH3(CH2)12CO2—(CH2CH2O)14—H: 1H (300 MHz, CDCl3) δ 4.22 (t, 2H), 3.60-3.78 (m, 54H), 2.33 (t, 2H), 1.55-1.65 (m, 2H), 1.20-1.38 (m, 20H), 0.88 (t, 3H). MS(ESI): 845.7 (M+H)+. Purity: >90% (by LC-MS (ELS)).
  • [0035]
    CH3(CH2)16CO2—(CH2CH2O)15—H: 1H (300 MHz, CDCl3) δ 4.22 (t, 2H), 3.60-3.80 (m, 58H), 2.35 (t, 2H), 1.58-1.72 (m, 2H), 1.20-1.40 (m, 28H), 0.90 (t, 3H). MS(ESI): 963.0 (M+18)+. Purity: >90% (by LC-MS (ELS)).
  • [0000]
    Preparation of HO—(CH2)11—CO2Me
  • [0036]
    A suspension of HO—(CH2)11—CO2H (45 g, 0.21 mol) and concd sulfuric acid (1 mL) in methanol (1 L) was stirred at room temperature for 3 days. Sodium bicarbonate (8.4 g, 0.1 mol) was then added and the mixture was concentrated by rotary evaporation. To the resulting crude was added dichloromethane (50 mL). The solution was filtered through 150 ml silica gel, and the silica gel was further eluted with dichloromethane (500 mL). The combined organics were concentrated by rotary evaporation to give 46 g (96%) of the title compound.
  • [0000]
    General Procedure for the Preparation of HO—(CH2)m—CO2Me (m=14, 15)
  • [0037]
    A solution of the lactone starting material (0.25 mol) and concd sulfuric acid (1 mL) in methanol (1 L) was stirred at room temperature for 3 days. Sodium bicarbonate (8.4 g, 0.1 mol) was then added and the mixture was concentrated by rotary evaporation. To the resulting crude was added dichloromethane (50 mL). The mixture was filtered through 150 ml silica gel, and the silica gel was further eluted with dichloromethane (500 mL). The combined organics were concentrated by rotary evaporation to give the product, which was found to contain 5-10% of the lactone starting material. This crude material was used in the next step without further purification. Crude yield: >90%.
  • [0000]
    General Procedure for the Preparation of MsO—(CH2)m—CO2Me (m=11, 14, 15)
  • [0038]
    To a stirred solution of HO—(CH2)m—CO2Me (0.2 mol) and triethylamine (41.8 mL, 0.3 mol) in dichloromethane (600 mL) at 0° C., a solution of mesyl chloride (18.6 μL, 0.24 mol) in dichloromethane (50 mL) was added dropwise. After the addition, the mixture was allowed to warm to room temperature and stirred overnight. The crude was washed with water, satd sodium bicarbonate solution and brine, dried over anhydrous sodium sulfate, and concentrated in vacuo to give the product. When m=14 and 15, the pure materials were obtained by recrystallization from hexane. Yield: >90%.
  • [0039]
    m=11, light yellow solid. 1H (300 MHz, CDCl3) δ 4.22 (t, 2H), 3.67 (s, 3H), 3.01 (s, 3H), 2.30 (t, 3H), 1.70-1.80 (m, 2H), 1.68-1.70 (m, 2H), 1.28-1.50 (m, 14H).
  • [0040]
    m=14, white solid. 1H (300 MHz, CDCl3) δ 4.23 (t, 2H), 3.67 (s, 3H), 3.01 (s, 3H), 2.31 (t, 3H), 1.72-1.82 (m, 2H), 1.57-1.72 (m, 2H), 1.24-1.48 (m, 20H).
  • [0041]
    m=15, white solid. 1H (300 MHz, CDCl3) δ 4.22 (t, 2H), 3.67 (s, 3H), 3.01 (s, 3H), 2.30 (t, 3H), 1.71-1.81 (m, 2H), 1.58-1.71 (m, 2H), 1.20-1.48 (m, 22H).
  • [0000]
    Typical Library III Production Procedure Involving Me-(OCH2CH2)n—OH (n=1-11, 13) and Br—(CH2)m—CO2R (m=4-7, 9, 10) [or MsO—(CH2)m—CO2Me (m=11, 14, 15)]
  • [0042]
    To a suspension of sodium hydride (or potassium t-butoxide) (56 mmol) in THF (80 mL) at 0° C. under nitrogen was added Me-(OCH2CH2)n—OH (52 mmol) over 2-3 min. The mixture was allowed to warm to room temperature and stirred for 2 h. The bromo-ester Br—(CH2)m—CO2R (or MsO—(CH2)m—CO2R) (40 mmol) was added over 2-3 min, and the reaction was stirred at room temperature for 2-4 days. The solvent was removed in vacuo and the crude was taken up in water (25 mL). The mixture was acidified with concd hydrochloric acid to pH 3-5, saturated with sodium chloride and extracted with dichloromethane (3×50 mL). The combined extracts were washed with satd brine (20 mL), dried over anhydrous sodium sulfate, and concentrated in vacuo. The resulting residue was treated with methanol (200 mL) and a catalytic amount of concd sulfuric acid (0.5 mL). After 24 h, sodium bicarbonate (5 g) was added to neutralize the sulfuric acid and the mixture was concentrated in vacuo. To the resultant residue was added ethyl acetate (400 mL) and the mixture was washed with 0-50% satd brine (3×50 mL), dried over anhydrous sodium sulfate, and concentrated in vacuo to give the crude methyl ester. The crude ester was then loaded onto silica gel (200 mL), and washed with 15-35% ethyl acetate/hexane followed by 10-20% methanol/dichloromethane to elute the desired product. The pure methyl ester was treated with 2 M sodium hydroxide (or satd lithium hydroxide) (4 equiv) at room temperature for 24-48 h and the reaction was monitored by LC-MS (ELS). If the reaction was incomplete, the mixture was heated at 60° C. for a few hours to drive the hydrolysis to completion. The reaction mixture was then cooled to room temperature and acidified with concd hydrochloric acid to pH 3-5. The acidic aqueous mixture was saturated with sodium chloride and extracted with dichloromethane (5×50 mL). The combined extracts were dried over anhydrous sodium sulfate and concentrated in vacuo to give the final product. Yield: 30-60%.
  • [0043]
    Me-(OCH2CH2)—O(CH2)4CO2H: 1H (500 MHz, CDCl3) δ 3.46-3.67 (m, 6H), 3.38 (s, 3H), 2.40 (t, 2H), 1.65-1.78 (m, 4H). Purity: >90% (by 1H NMR).
  • [0044]
    Me-(OCH2CH2)5—O(CH2)7CO2H: 1H (500 MHz, CDCl3) δ 3.40-3.70 (m, 22H), 3.38 (s, 3H), 2.33 (t, 2H), 1.55-1.70 (m, 4H), 1.30-1.40 (m, 6H). MS(ESI): 412.4 (M+18)+. Purity: >90% (by LC-MS (ELS)).
  • [0045]
    Me-(OCH2CH2)9—O(CH2)7CO2H: 1H (300 MHz, CDCl3) δ 3.40-3.70 (m, 38H), 3.38 (s, 3H), 2.33 (t, 2H), 1.50-1.70 (m, 4H), 1.28-1.40 (m, 6H). MS(ESI): 598.8 (M+18)+. Purity: >90% (by LC-MS (ELS)).
  • [0046]
    Me-(OCH2CH2)9—O(CH2)11CO2H: 1H (300 MHz, CDCl3) δ 3.40-3.70 (m, 38H), 3.38 (s, 3H), 2.33 (t, 2H), 1.50-1.70 (m, 4H), 1.28-1.40 (m, 14H). MS(ESI): 644.6 (M+18)+. Purity: >90% (by LC-MS (ELS)).
  • [0047]
    Me-(OCH2CH2)10—O(CH2)6CO2H: 1H (300 MHz, CDCl3) δ 3.40-3.70 (m, 42H), 3.38 (s, 3H), 2.33 (t, 2H), 1.50-1.70 (m, 4H), 1.32-1.42 (m, 4H). MS(ESI): 618.5 (M+18)+. Purity: >90% (by LC-MS (ELS)).
  • [0048]
    Me-(OCH2CH2)13—O(CH2)4CO2H: 1H (300 MHz, CDCl3) δ 3.45-3.70 (m, 54H), 3.38 (s, 3H), 2.35 (t, 2H), 1.55-1.77 (m, 4H), 1.28-1.40 (m, 6H). MS(ESI): 722.7 (M+18)+. Purity: >90% (by LC-MS (ELS)).
  • [0049]
    Me-(OCH2CH2)13—O(CH2)5CO2H: 1H (300 MHz, CDCl3) δ 3.42-3.70 (m, 54H), 3.38 (s, 3H), 2.33 (t, 2H), 1.55-1.72 (m, 4H), 1.35-1.50 (m, 2H). MS(ESI): 736.8 (M+18)+. Purity: >90% (by LC-MS (ELS)).
  • [0050]
    Me-(OCH2CH2)13—O(CH2)7CO2H: 1H (300 MHz, CDCl3) δ 3.40-3.70 (m, 54H), 3.38 (s, 3H), 2.33 (t, 2H), 1.50-1.70 (m, 4H), 1.28-1.40 (m, 6H). MS(ESI): 764.4 (M+18)+. Purity: >90% (by LC-MS (ELS)).
  • [0051]
    Me-(OCH2CH2)13—O(CH2)10CO2H: 1H (300 MHz, CDCl3) δ 3.40-3.70 (m, 54H), 3.38 (s, 3H), 2.33 (t, 2H), 1.50-1.70 (m, 4H), 1.23-1.40 (m, 12H). MS(ESI): 806.7 (M+18)+. Purity: >90% (by LC-MS (ELS)).
  • [0052]
    Me-(OCH2CH2)13—O(CH2)14CO2H: 1H (300 MHz, CDCl3) δ 3.40-3.70 (m, 54H), 3.38 (s, 3H), 2.33 (t, 2H), 1.50-1.70 (m, 4H), 1.20-1.40 (m, 20H). MS(ESI): 863.7 (M+18)+. Purity: >90% (by LC-MS (ELS)).
  • [0053]
    Me-(OCH2CH2)13—O(CH2)15CO2H: 1H (300 MHz, CDCl3) δ 3.40-3.70 (m, 54H), 3.38 (s, 3H), 2.33 (t, 2H), 1.50-1.70 (m, 4H), 1.20-1.40 (m, 22H). MS(ESI): 876.6 (M+18)+. Purity: >90% (by LC-MS (ELS)).
  • REFERENCES
  • [0000]
    • [1] (a) Dolle, R. E. J. Comb. Chem. 2002, 4, 369. (b) Dolle, R. E. J. Comb. Chem. 2001, 3, 477. (c) Dolle, R. E. J. Comb. Chem. 2000, 2, 383. (d) Dolle, R. E.; Nelson, K. H., Jr. J. Comb. Chem. 1999, 3, 235. (e) Booth, S. Hermkens, P. H. H.; Ottenheijm, H. C. J.; Rees, D. Tetrahedron 1998, 54, 15385. (f) Hermkens, P. H. H.; Ottenheijm, H. C. J.; Rees, D. Tetrahedron 1997, 53, 5647. (g) Hermkens, P. H. H.; Ottenheijm, H. C. J.; Rees, D. Tetrahedron 1996, 52, 4527-4554.
    • [2] (a) Ekwuribe, N.; Ramaswamy, M.; Rajagopalan, J. S. U.S. Pat. No. 6,309,633, 2001. (b) Ekwuribe, N.; Ramaswamy, M.; Radhakrishnan, B.; Allaudeen, H. S. U.S. Pat. No. 6,191,105, 2001. (c) Ekwuribe, N. U.S. Pat. No. 5,681,811, 1997. (d) Ekwuribe, N. N.; Mich, S. U.S. Pat. No. 5,438,040, 1995. (e) Ekwuribe, N.; Price, C.; Ansari, A.; Odenbaugh, A. U.S. Pat. No. 6,713,452, 2004. (g) Ekwuribe, N. N; Mich, S. U.S. Pat. No. 5,359,030, 1994. (f) Ekwuribe, N.; Radhakrishnan, B.; Price, C.; Anderson, W.; Ansari, A.; U.S. Pat. No. 6,703,381, 2004.
    • [3] (a) An, H.; Bradshaw, J. S.; Izatt; R. M. Chem. Rev. 1992, 92, 543. (b) Bradshaw, J. S.; Maas, G. E.; Izatt, R. M.; Christensen; J. J. Chem. Rev. 1979, 79, 37.
    • [4] (a) Feldman, K.; Hähner, G.; Spencer, N. D.; Harder, P.; Grunze, M. J. Am. Chem. Soc. 1999, 121, 10134. (b) Roberts, C.; Chen, C. S.; Mrksich, M.; Martichonok, V.; Ingber, D. E.; Whitesides, G. M. J. Am. Chem. Soc. 1998, 120, 6548. (c) Prime, K. L.; Whitesides, G. M. J. Am. Chem. Soc. 1993, 115, 10714. (d) Prime, K. L.; Whitesides, G. M. Science 1991, 252, 1164.
    • [5] (a) Wilson, M. E.; Paech, K.; Zhou, W.-J.; Kurth, M. J. J. Org. Chem. 1998, 63, 5094. (b) Renil, M.; Meldal, M. Tetrahedron Lett. 1996, 37, 6185. (c) Renil, M.; Nagaraj, R.; Rajasekharan, V. N. Tetrahedron 1994, 50, 6681.
    • [6] (a) Bouzide, A.; Sauvé, G. Tetrahedron Lett. 1997, 38, 5945. (b) Takano, S.; Akiyama, M.; Sato, S.; Ogasawara, K. Chem. Lett. 1983, 1593. (c) Maki, T.; Iwasaki, F.; Matsumura, Y. Tetrahedron Lett. 1998, 39, 5601. (d) Nishiguchi, T.; Fujisaki, S.; Ishii, Y.; Yano, Y.; Nishida, A. J. Org. Chem. 1994, 59, 1191. (e) Nishiguchi, T.; Taya, H. J. Am. Chem. Soc. 1989, 111, 9102. (f) Nishiguchi, T.; Kawamine, K.; Ohtsuka, T. J. Org. Chem. 1992, 57, 312. (g) Zerda, J. D. L.; Barak, G.; Saason, Y. Tetrahedron Lett. 1989, 29, 1533. (h) Leznoff, C. C. Acc. Chem. Res. 1978, 11, 327. (i) Zhu, P. C.; Lin, J.; Pittman, C. U., Jr. J. Org. Chem. 1995, 60, 5729. (j) Bailey, W. F.; Zarcone, L. M. J.; Rivera, A. D. J. Org. Chem. 1995, 60, 2532.
    • [7] (a) Svedhem, S.; Hollander, C.-Å.; Shi, J.; Konradsson, P.; Liedberg, B,; Svensson, S. C. T. J. Org. Chem. 2001, 66, 4494. (b) Chen, Y.; Baker, G. L. J. Org. Chem. 1999, 64, 6870. (c) Burns, C. J.; Field, L. D.; Hashimoto, K.; Petteys, B. J.; Ridley, D. D.; Sandanayake, K. R. A. S. Synth. Commun. 1999, 29, 2337. (d) Boden, N.; Bushby, R. J.; Clarkson, S.; Evans, S. D.; Knowles, P. F.; Marsh, A. Tetrahedron 1997, 53, 10939.
    • [8] (a) Reed, N. N.; Janda, K. D. J. Org. Chem. 2000, 65, 5843. (b) Garcia, J. E.; Guzmán, R. Z. J. Org. Chem. 1997, 62, 8910. (c) Allan, C. B.; Spreer, L. O. J. Org. Chem. 1994, 59, 7695. (d) Coudert, G.; Mpassi, M.; Guillaumet, G.; Selve, C. Synth. Commun. 1986, 6, 19. (e) Keegstra, E. M. D.; Zwikker, J. W.; Roest, M. R.; Jenneskens, L. W. J. Org. Chem. 1992, 57, 6678. (f) Bartsch, R. A.; Cason, C. V.; Czech, B. P. J. Org. Chem. 1989, 54, 857.
    • [9] (a) Deka, K.; Sarma, J. C. J. Org. Chem. 2001, 66, 1947. (b) Ravindranath, N; Ramesh, C.; Ramesh, C.; Das, B. Synlett 2001, 1777. (c) Nishiguchi, T.; Fujisaki, S.; Kuroda, M.; Kajisaki, K.; Saitoh, M. J. Org. Chem. 1998, 63, 8183. (d) Ranu, B. C.; Saha, M. J. Org. Chem. 1994, 59, 8369.
    • [10] (a) Jeong, S. W.; O'Brien, D. F. J. Org. Chem. 2001, 66, 4799. (b) Pale-Grosdemange, P.; Simon, E. S.; Prime, K. L.; Whitesides, G. M. J. Am. Chem. Soc. 1998, 120, 6548. (c) Bertozzi, C. R.; Bednarski, M. D. J. Org. Chem. 1991, 56, 4326. (d) Nakatsuji, Y.; Kameda, N.; Okahara, M. Synthesis 1987, 281.
    • [11] Gibson, T. J. Org. Chem. 1980, 45, 1095.
Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US5877214 *4 Sep 19972 Mar 1999Merck & Co., Inc.Polyaryl-poly(ethylene glycol) supports for solution-phase combinatorial synthesis
US6191105 *27 Oct 199720 Feb 2001Protein Delivery, Inc.Hydrophilic and lipophilic balanced microemulsion formulations of free-form and/or conjugation-stabilized therapeutic agents such as insulin
US6821529 *5 Sep 200123 Nov 2004Deanna Jean NelsonOligo(ethylene glycoll)-terminated 1,2-dithiolanes and their conjugates useful for preparing self-assembled monolayers
US20030083389 *23 Apr 20021 May 2003Kao Weiyun JohnBifunctional-modified hydrogels
Non-Patent Citations
Reference
1 *Arpicco et al., Bioconjugate Chem., 2002, 13:757-765
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US7348166 *9 Sep 200525 Mar 2008Motohiro NakajimaAnti-tumor substances
US84763189 Apr 20082 Jul 2013Symrise AgPolyethylene glycol esters and cosmetic and/or dermatological preparations
US860382710 Jul 200910 Dec 2013Resman AsTracer materials
US930826319 Oct 201212 Apr 2016Seachaid Pharmaceuticals, Inc.Pharmaceutical compositions and uses thereof
US20060258743 *9 Sep 200516 Nov 2006Motohiro NakajimaAnti-tumor substances
US20100006750 *10 Jul 200914 Jan 2010Kolbjorn ZahlsenNovel tracer materials
US20100150854 *9 Apr 200817 Jun 2010Symrise Gmbh & Co., KgPolyethylene glycol esters and cosmetic and/or dermatological preparations
CN104211943A *17 Sep 201417 Dec 2014南京卡邦科技有限公司Method for preparing and separating monodisperse polyethylene glycol
EP2517561A2 *11 Oct 201031 Oct 2012Universidad de VAlladolidAttractant bait for capturing the coleoptera insect monochamus galloprovinvcialis, the pine sawyer
EP2517561A4 *11 Oct 20104 Dec 2013Univ ValladolidAttractant bait for capturing the coleoptera insect monochamus galloprovinvcialis, the pine sawyer
EP3121368A110 Jul 200925 Jan 2017Resman ASNovel tracer materials
WO2008128892A1 *9 Apr 200830 Oct 2008Symrise Gmbh & Co. KgPolyethylene glycol esters and cosmetic and/or dermatological preparations
WO2010005319A110 Jul 200914 Jan 2010Resman AsNovel tracer materials
WO2010121975A1 *19 Apr 201028 Oct 2010Akzo Nobel Chemicals International B.V.Method for preparation of and compositions of low foam, non-gelling, surfactants
Classifications
U.S. Classification435/7.1, 568/679, 506/15, 506/18, 514/1.3, 514/11.9
International ClassificationG01N33/53, C07C41/03
Cooperative ClassificationC07C69/28, C07C43/11
European ClassificationC07C43/11, C07C69/28
Legal Events
DateCodeEventDescription
23 Aug 2005ASAssignment
Owner name: NOBEX CORPORATION, NORTH CAROLINA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:RIGGS-SAUTHIER, JENNIFER;EKWURIBE, NNOCHIRI N.;REEL/FRAME:016434/0019
Effective date: 20050804
9 Mar 2006ASAssignment
Owner name: BIOCON LIMITED, INDIA
Free format text: SECURITY AGREEMENT;ASSIGNOR:NOBEX CORPORATION;REEL/FRAME:017649/0280
Effective date: 20051201
Owner name: BIOCON LIMITED,INDIA
Free format text: SECURITY AGREEMENT;ASSIGNOR:NOBEX CORPORATION;REEL/FRAME:017649/0280
Effective date: 20051201
2 May 2006ASAssignment
Owner name: BIOCON LIMITED, INDIA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NOBEX CORPORATION;REEL/FRAME:017555/0904
Effective date: 20060417
Owner name: BIOCON LIMITED,INDIA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NOBEX CORPORATION;REEL/FRAME:017555/0904
Effective date: 20060417
26 May 2016FPAYFee payment
Year of fee payment: 4