US20050261451A1 - Latent, high-activity olefin metathesis catalysts containing an N-heterocyclic carbene ligand - Google Patents

Latent, high-activity olefin metathesis catalysts containing an N-heterocyclic carbene ligand Download PDF

Info

Publication number
US20050261451A1
US20050261451A1 US11/094,102 US9410205A US2005261451A1 US 20050261451 A1 US20050261451 A1 US 20050261451A1 US 9410205 A US9410205 A US 9410205A US 2005261451 A1 US2005261451 A1 US 2005261451A1
Authority
US
United States
Prior art keywords
substituted
hydrocarbyl
heteroatom
hydrocarbylene
alkyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/094,102
Inventor
Thay Ung
Yann Schrodi
Mark Trimmer
Andrew Hejl
Daniel Sanders
Robert Grubbs
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
California Institute of Technology CalTech
Materia Inc
Original Assignee
California Institute of Technology CalTech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by California Institute of Technology CalTech filed Critical California Institute of Technology CalTech
Priority to US11/094,102 priority Critical patent/US20050261451A1/en
Publication of US20050261451A1 publication Critical patent/US20050261451A1/en
Assigned to CALIFORNIA INSTITUTE OF TECHNOLOGY reassignment CALIFORNIA INSTITUTE OF TECHNOLOGY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HEJL, ANDREW, GRUBBS, ROBERT H., SANDERS, DANIEL
Assigned to MATERIA, INC. reassignment MATERIA, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SCHRODI, YANN, UNG, THAY, TRIMMER, MARK S.
Priority to US13/779,190 priority patent/US8871879B2/en
Priority to US14/497,387 priority patent/US9238709B2/en
Assigned to NATIONAL INSTITUTES OF HEALTH reassignment NATIONAL INSTITUTES OF HEALTH CONFIRMATORY LICENSE (SEE DOCUMENT FOR DETAILS). Assignors: CALIFORNIA INSTITUTE OF TECHNOLOGY
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/30Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/333Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by isomerisation; by change of size of the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D493/00Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
    • C07D493/02Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings
    • C07D493/10Spiro-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System compounds of the platinum group
    • C07F15/0046Ruthenium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F132/00Homopolymers of cyclic compounds containing no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system
    • C08F132/08Homopolymers of cyclic compounds containing no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system having condensed rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • C08G61/04Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms
    • C08G61/06Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/11Homopolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/33Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain
    • C08G2261/332Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms
    • C08G2261/3325Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms derived from other polycyclic systems
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/418Ring opening metathesis polymerisation [ROMP]

Abstract

The invention provides novel organometallic complexes useful as olefin metathesis catalysts. The complexes have an N-heterocyclic carbene ligand and a chelating carbene ligand associated with a Group 8 transition metal center. The molecular structure of the complexes can be altered so as to provide a substantial latency period. The complexes are particularly useful in catalyzing ring closing metathesis of acyclic olefins and ring opening metathesis polymerization of cyclic olefins.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims priority under 35 U.S.C. §119(e)(1) to Provisional U.S. Patent Applications Ser. No. 60/557,742, filed Mar. 29, 2004, and Ser. No. 60/604,158, filed Aug. 23, 2004. The disclosures of the aforementioned provisional patent applications are incorporated by reference herein.
  • TECHNICAL FIELD
  • This invention relates generally to olefin metathesis catalysts, and more particularly pertains to new Group 8 transition metal complexes that are useful as latent olefin metathesis catalysts. The invention has utility in the fields of catalysis, organic synthesis, and organometallic chemistry.
  • BACKGROUND OF THE INVENTION
  • Olefin metathesis catalysis is a powerful technology, which in recent years has received tremendous attention as a versatile method for the formation of carbon-carbon bonds and has numerous applications in organic synthesis and polymer chemistry (R. H. Grubbs, Handbook of Metathesis, Vol. 2 and 3; Wiley V C H, Weinheim, 2003). The family of olefin metathesis reactions includes ring-closing metathesis (RCM), cross metathesis (CM), ring-opening metathesis polymerization (ROMP), and acyclic diene metathesis polymerization (ADMET). The success of olefin metathesis stems from the development of several well-defined transition metal complexes, such as the Schrock molybdenum catalysts and the Grubbs ruthenium and osmium catalysts (see, e.g., Schrock (1999) Tetrahedron 55, 8141-8153; Schrock (1990) Acc. Chem. Res. 23, 158-165; Grubbs et al. (1998) Tetrahedron 54, 4413-4450; Trnka et al. (2001) Acc. Chem. Res. 34, 18-29; Grubbs, Handbook of Metathesis, Vol. 1; Wiley V C H, Weinheim, 2003). Following the discovery of these complexes, a significant amount of olefin metathesis research has focused on tuning the ruthenium and osmium carbene catalysts in order to increase their activity, selectivity, and/or stability. The most common strategy has involved the replacement of mono-dentate ligands with other mono-dentate ligands to provide the catalytic complexes with new and useful properties.
  • The original breakthrough ruthenium catalysts were primarily bisphosphine complexes of the general formula (PR3)2(X)2M=CHR′ wherein M is ruthenium (Ru) or osmium (Os), X represents a halogen (e.g., Cl, Br, or I), R represents an alkyl, cycloalkyl, or aryl group (e.g., butyl, cyclohexyl, or phenyl), and R′ represents an alkyl, alkenyl, or aryl group (e.g., methyl, CH═C(CH3)2, phenyl, etc.) (see Nguyen et al. (1992) J. Am. Chem. Soc. 1992, 114, 3974-3975; Schwab et al. (1995) Angew. Chem., Int. Ed. 34, 2039-2041; Schwab et al. (1996) J. Am. Chem. Soc. 118, 100-110). Examples of these types of catalysts are described in U.S. Pat. Nos. 5,312,940, 5,969,170 and 6,111,121 to Grubbs et al. While such complexes are capable of catalyzing a considerable number of olefin metathesis transformations, these bisphosphine complexes can exhibit lower activity than desired and, under certain conditions, can have limited lifetimes.
  • More recent developments in the field have led to greatly increased activity and stability by replacing one of the phosphine ligands with a bulky N-heterocyclic carbene (NHC) ligand (Scholl et al. (1999) Organic Letters 1, 953-956) to give complexes of the general formula (L)(PR3)(X)2Ru═CHR′, wherein L represents an NHC ligand such as 1,3-dimesitylimidazole-2-ylidene (IMes) and 1,3-dimesityl-4,5-dihydroimidazol-2-ylidene (sIMes), X represents a halogen (e.g., Cl, Br, or I), R represents an alkyl, cycloalkyl, or aryl group (e.g., butyl, cyclohexyl, or phenyl), and R′ represents an alkyl, alkenyl, or aryl group (e.g., methyl, CH═C(CH3)2, phenyl, etc.). Representative structures include complex A (ibid.), complex B (Garber et al. (2000) J. Am. Chem. Soc. 122, 8168-8179), and complex C (Sanford et al. (2001) Organometallics 20, 5314-5318; Love et al. (2002) Angew. Chem., Int. Ed. 41, 4035-4037):
    Figure US20050261451A1-20051124-C00001
  • Unlike prior bisphosphine complexes, the various imidazolylidine catalysts effect the efficient formation of trisubstituted and tetrasubstituted olefins through catalytic metathesis. Examples of these types of catalysts are described in PCT publications WO 99/51344 and WO 00/71554. Further examples of the synthesis and reactivity of some of these active ruthenium complexes are reported by Fürstner et al. (2001) Chem. Eur. J. 7, No. 15, 3236-3253; Blackwell et al. (2000) J. Am. Chem. Soc. 122, 58-71; Chatterjee et al. (2000) J. Am. Chem. Soc. 122, 3783-3784; Chatterjee et al. (2000) Angew. Chem. Int. Ed. 41, 3171-3174; Chatterjee et al. (2003) J. Am. Chem. Soc. 125, 11360-11370. Further tuning of these catalysts led to even higher activity by using bulkier imidazolylidine ligands such as 1,3-bis(2,6-diisopropylphenyl)-4,5-dihydroimidazol-2-ylidenes (Dinger et al. (2002) Adv. Synth. Catal. 344, 671-677) or electron deficient phosphine ligands such as fluorinated aryl phosphines (Love et al. (2003) J. Am. Chem. Soc. 125, 10103-10109).
  • Another example of ligand substitution that has led to enhanced catalyst activity is the replacement of the phosphine ligand in the (L)(PR3)(X)2M=CHR′ complexes with one or two pyridine-type ligands to give compounds of the general formula (L)(L′)n(X)2M=CHR′ wherein n=1 or 2, L represents an imidazolylidine ligand, L′ represents a pyridine (Py) or substituted pyridine ligand, X represents a halogen (e.g., Cl, Br, or I), and R′ represents an alkyl, alkenyl, or aryl group (e.g., methyl, CH═C(CH3)2, phenyl, etc.). These pyridine complexes are extremely fast-initiating and catalyze living ring-opening metathesis polymerizations (Choi et al. (2003) Chem. Int. Ed. 42, 1743-1746) as well as highly challenging processes such as olefin cross metathesis with acrylonitrile (Love et al. (2002) Angew. Chem. Int. Ed. 41, 4035-4037).
  • Yet another example of mono-dentate ligand substitution is the replacement of the halogen ligands with aryl-oxo ligands, which in one example has led to a catalyst with enhanced activity: (L)(L′)n(RO)2Ru═CHR′ wherein n=1, L represents an imidazolylidine ligand, L′ represents a pyridine ligand, R represents a fluorinated aryl group, and R′ represents an alkyl, alkenyl, or aryl group (Conrad et al. (2003) Organometallics 22, 3634-3636).
  • A different strategy to tune olefin metathesis catalysts involves linking two of the ligands that are attached to the metal center. Of particular interest are the chelating carbene species reported by Hoveyda and others (Gaber et al. (2000) J. Am. Chem. Soc. 122, 8168-8179; Kingsbury et al. (1999) J. Am. Chem. Soc. 121, 791-799; Harrity et al. (1997) J. Am. Chem. Soc. 119, 1488-1489; Harrity et al. (1998) J. Am. Chem. Soc. 120, 2343-2351). These catalysts are exceptionally stable and can be purified by column chromatography in air. Representative such catalysts, designated Catalyst PR-1 and PR-2, are illustrated in FIG. 1. Catalyst PR-2 combines excellent stability and enhanced activity, and actively promotes the cross-metathesis of acrylonitrile and terminal olefins in moderate to excellent yields.
  • While most of these efforts have focused on increasing the activity and initiation rate of the ruthenium carbene metathesis catalysts, there remains a need for highly active catalysts that initiate more slowly (i.e., are more latent). This can be a particularly beneficial feature when performing metathesis polymerizations, which, in practice, typically require a significant period of time (the “work-time”) within which to mix, handle, and process the catalyst/resin mixture before it gels or solidifies. For one-part catalyst systems, such as the metal carbene olefin metathesis catalysts, latency is generally achieved through temperature variation. Either the catalyst/resin mixture can be handled at a low enough temperature to sufficiently inhibit polymerization or the catalyst must be designed to be heat-activated to allow sufficient work-time at ambient temperatures.
  • One example of a thermally activated, latent metathesis polymerization catalyst system utilizing slower initiating ruthenium and osmium vinylidene complexes was described in U.S. Pat. No. 6,107,420. However, only a modest degree of control of the latency can be achieved by varying the identity of the substituent groups of the vinylidene ligand and such vinylidene complexes are often not efficient metathesis catalysts for unstrained olefins. Another example of a latent olefin metathesis catalyst that contains a chelating carbene ligand is the 2-pyridylethanyl ruthenium carbene complex (PR3)(Cl)2Ru(CH(CH2)2—C,N-2-C5H4N) by reacting a (PR3)2(Cl)2Ru═CHR′ complex with 2-(3-butenyl)pyridine developed by van der Schaaf (van der Schaaf et al. (2000) J. Organometallic Chemistry 606, 65-74). These types of catalysts are also described in U.S. Pat. No. 6,306,987. Although these catalysts do initiate more slowly than their bis-phosphine counterparts, they lack the high activity of the NHC catalyst systems. A further type of latent olefin metathesis catalysts is described by van der Schaaf in U.S. Pat. No. 6,077,805. These latter catalysts are hexacoordinate ruthenium or osmium complexes wherein two of the six ligands are preferably pyridine ligands.
  • In trying to develop new examples of latent, high-activity catalysts containing NHC ligands, the teaching in the prior art provides no clear direction. U.S. Pat. No. 6,077,805 teaches that hexacoordinate phosphine-ligated complexes of the general structure (PR3)(X)2(L)2M=CHR′, wherein the L ligands are pyridines or substituted pyridines or together are chelating bipyridines, are latent metathesis catalysts. Data presented in U.S. Patent Application Publication Number 2002/0177710 confirm the latency of such catalysts but also show that, in contrast, related hexacoordinate NHC-ligated complexes of the general structure (NHC)(X)2(L)2M=CHR′ are not latent catalysts but, in fact, are actually some of the most rapidly initiating catalysts of this type ever observed (e.g., cf. Choi et al. (2003) Angew. Chem. Int. Ed. 42, 1743-1746 and Love et al. (2002 Angew. Chem. Int. Ed. 41, 4035-4037). U.S. Pat. No. 6,306,987 teaches that phosphine-ligated bridging carbene complexes of the general structure D are latent metathesis catalysts, whereas similar NHC-ligated complexes of the general structure E are not (e.g., Courchay et al. (2003) Macromolecules 36, 8231-8239). These observations suggest that it is difficult to achieve latency with the high-activity catalysts comprising NHC ligands.
    Figure US20050261451A1-20051124-C00002
  • Accordingly, despite advances in the art, there is a continuing need for olefin metathesis catalysts that initiate slowly while maintaining the high activity associated with NHC-based catalysts.
  • SUMMARY OF THE INVENTION
  • The present invention relates to novel high-activity but latent olefin metathesis catalysts that comprise an NHC ligand and a chelating carbene ligand. By careful choice of the chelating carbene ligand, catalysts are provided that have a latency period on the order of minutes to hours, or even longer. It has also been surprisingly discovered that the initiation rate of some of these catalysts can be substantially varied via simple isomerization of the complexes and that the reactivity can be tuned over a wide range by controlling the ratio of the different isomers. The catalysts are particularly useful in the RCM of acyclic olefins and the ROMP of cyclic olefins.
  • The present catalytic complexes generally have the structure of formula (I)
    Figure US20050261451A1-20051124-C00003
      • wherein:
      • the bonds indicated as dashed lines and designated as α and β represent single bonds or unsaturated (e.g., double) bonds, with the proviso that α and β cannot both be unsaturated bonds;
      • M is a Group 8 transition metal, generally ruthenium (Ru) or osmium (Os);
      • R1 and R2 are independently selected from hydrogen, hydrocarbyl, substituted hydrocarbyl, heteroatom-containing hydrocarbyl, substituted heteroatom-containing hydrocarbyl, and functional groups;
      • Q is an organic diradical, i.e., a hydrocarbylene, substituted hydrocarbylene, heteroatom-containing hydrocarbylene, or substituted heteroatom-containing hydrocarbylene linker, and further wherein two or more substituents on adjacent atoms within Q may be linked to form an additional cyclic group;
      • X1 and X2 are anionic ligands, and may be the same or different;
      • L1 is a neutral electron donor ligand, and p is zero or 1;
      • when α is a single bond, L2 is selected from NR7R8, PR7R8, N═CR7R8, and R7C═NR8, where R7 and R8 are independently selected from substituted and/or heteroatom-containing C1-C20 alkyl, C2-C20 alkenyl, C2-C20 alkynyl, and C5-C24 aryl, or R7 and R8 can be taken together to form a heterocyclic ring;
      • when α is an unsaturated bond, e.g., a double bond, L2 is selected from NR7 and PR7, where R7 is as defined previously;
      • Y and Z are linkages independently selected from hydrocarbylene, substituted hydrocarbylene, heteroatom-containing hydrocarbylene, substituted heteroatom-containing hydrocarbylene, —O—, —S—, —NR9—, and —PR9—, wherein R9 is selected from hydrocarbyl, substituted hydrocarbyl, heteroatom-containing hydrocarbyl, and substituted heteroatom-containing hydrocarbyl, and further wherein Y and Z, or L2 and Z, may represent adjacent atoms in an aromatic ring;
      • m is zero or 1; and
      • n is zero or 1,
      • and also include isomers thereof.
  • In another embodiment, a method for carrying out an olefin metathesis reaction is provided using the aforementioned complexes as reaction catalysts.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 provides the molecular structures of two metathesis catalysts of the prior art, indicated as Pr-1 and Pr-2.
  • FIG. 2 provides the molecular structures of two representative catalytic complexes of the invention, indicated as Catalysts 2 a and 2 b.
  • FIG. 3 depicts an ORTEP drawing of the X-ray crystal structure of Catalyst 2 a.
  • FIG. 4 depicts an ORTEP drawing of the X-ray crystal structure of Catalyst 2 b.
  • FIG. 5 provides the molecular structures of two representative catalytic complexes of the invention, indicated as Catalysts 4 and 5.
  • FIG. 6 provides the molecular structures of additional representative catalytic complexes of the invention.
  • FIG. 7 schematically depicts a method for synthesizing representative catalytic complexes 2 a, 4 and 5 of the invention.
  • FIG. 8 schematically depicts a method for synthesizing representative catalytic complexes 2 b of the invention.
  • FIG. 9 provides the molecular structure of additional representative catalytic complexes of the invention.
  • FIG. 10 illustrates the percent of reactant converted versus time for the RCM reaction of diethyldiallyl malonate using catalysts 1, 2 a, 2 b and 12, as described in Example 15.
  • FIG. 11 illustrates the percent of reactant converted versus time for the RCM reaction of diethyldiallyl malonate using catalysts 2 a, 4 and 5, as described in Example 16.
  • FIG. 12 illustrates the percent of reactant converted versus time for the RCM reaction of diethyldiallyl malonate using catalysts 2 a, 7 and 8, as described in Example 17.
  • FIG. 13 illustrates the percent of reactant converted versus time for the RCM reaction of diethyldiallyl malonate using catalysts 7, 8, 9, 10, and 11, as also described in Example 17.
  • FIG. 14 provides the exotherms for the RCM reaction of diethyldiallyl malonate to assess the activity of catalysts 6 and 8, as described in Example 18.
  • FIG. 15 provides the exotherms for the ROMP reaction catalyzed by catalysts 2 a and 2 b, as described in Example 19.
  • FIG. 16 provides the exotherms for the ROMP reaction catalyzed by catalysts 2 a, 2 b and 12, as also described in Example 19.
  • FIG. 17 provides the exotherms for the ROMP reactions catalyzed using different mixtures of 2 a and 2 b, as described in Example 20.
  • FIG. 18 provides the exotherms for the ROMP reaction catalyzed by catalysts 2 a, 7 and 8, as described in Example 21.
  • DETAILED DESCRIPTION OF THE INVENTION
  • It is to be understood that unless otherwise indicated this invention is not limited to specific reactants, reaction conditions, or the like, as such may vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting.
  • As used in the specification and the appended claims, the singular forms “a,” “tan” and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a catalyst” or “a complex” encompasses a combination or mixture of different catalysts or complexes as will as a single catalyst or complex, reference to “a substituent” includes a single substituent as well as two or more substituents that may or may not be the same, and the like.
  • In this specification and in the claims that follow, reference will be made to a number of terms, which shall be defined to have the following meanings:
  • The phrase “having the formula” or “having the structure” is not intended to be limiting and is used in the same way that the term “comprising” is commonly used.
  • The term “alkyl” as used herein refers to a linear, branched, or cyclic saturated hydrocarbon group typically although not necessarily containing 1 to about 20 carbon atoms, preferably 1 to about 12 carbon atoms, such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, t-butyl, octyl, decyl, and the like, as well as cycloalkyl groups such as cyclopentyl, cyclohexyl and the like. Generally, although again not necessarily, alkyl groups herein contain 1 to about 12 carbon atoms. The term “lower alkyl” intends an alkyl group of 1 to 6 carbon atoms, and the specific term “cycloalkyl” intends a cyclic alkyl group, typically having 4 to 8, preferably 5 to 7, carbon atoms. The term “substituted alkyl” refers to alkyl substituted with one or more substituent groups, and the terms “heteroatom-containing alkyl” and “heteroalkyl” refer to alkyl in which at least one carbon atom is replaced with a heteroatom. If not otherwise indicated, the terms “alkyl” and “lower alkyl” include linear, branched, cyclic, unsubstituted, substituted, and/or heteroatom-containing alkyl and lower alkyl, respectively.
  • The term “alkylene” as used herein refers to a difunctional linear, branched, or cyclic alkyl group, where “alkyl” is as defined above.
  • The term “alkenyl” as used herein refers to a linear, branched, or cyclic hydrocarbon group of 2 to about 20 carbon atoms containing at least one double bond, such as ethenyl, n-propenyl, isopropenyl, n-butenyl, isobutenyl, octenyl, decenyl, tetradecenyl, hexadecenyl, eicosenyl, tetracosenyl, and the like. Preferred alkenyl groups herein contain 2 to about 12 carbon atoms. The term “lower alkenyl” intends an alkenyl group of 2 to 6 carbon atoms, and the specific term “cycloalkenyl” intends a cyclic alkenyl group, preferably having 5 to 8 carbon atoms. The term “substituted alkenyl” refers to alkenyl substituted with one or more substituent groups, and the terms “heteroatom-containing alkenyl” and “heteroalkenyl” refer to alkenyl in which at least one carbon atom is replaced with a heteroatom. If not otherwise indicated, the terms “alkenyl” and “lower alkenyl” include linear, branched, cyclic, unsubstituted, substituted, and/or heteroatom-containing alkenyl and lower alkenyl, respectively.
  • The term “alkenylene” as used herein refers to a difunctional linear, branched, or cyclic alkenyl group, where “alkenyl” is as defined above.
  • The term “alkynyl” as used herein refers to a linear or branched hydrocarbon group of 2 to about 20 carbon atoms containing at least one triple bond, such as ethynyl, n-propynyl, and the like. Preferred alkynyl groups herein contain 2 to about 12 carbon atoms. The term “lower alkynyl” intends an alkynyl group of 2 to 6 carbon atoms. The term “substituted alkynyl” refers to alkynyl substituted with one or more substituent groups, and the terms “heteroatom-containing alkynyl” and “heteroalkynyl” refer to alkynyl in which at least one carbon atom is replaced with a heteroatom. If not otherwise indicated, the terms “alkynyl” and “lower alkynyl” include linear, branched, unsubstituted, substituted, and/or heteroatom-containing alkynyl and lower alkynyl, respectively.
  • The term “alkynylene” as used herein refers to a difunctional alkynyl group, where “alkynyl” is as defined above.
  • The term “alkoxy” as used herein intends an alkyl group bound through a single, terminal ether linkage; that is, an “alkoxy” group may be represented as —O-alkyl where alkyl is as defined above. A “lower alkoxy” group intends an alkoxy group containing 1 to 6 carbon atoms. Analogously, “alkenyloxy” and “lower alkenyloxy” respectively refer to an alkenyl and lower alkenyl group bound through a single, terminal ether linkage, and “alkynyloxy” and “lower alkynyloxy” respectively refer to an alkynyl and lower alkynyl group bound through a single, terminal ether linkage.
  • The term “aryl,” as used herein and unless otherwise specified, refers to an aromatic substituent containing a single aromatic ring or multiple aromatic rings that are fused together, directly linked, or indirectly linked (such that the different aromatic rings are bound to a common group such as a methylene or ethylene moiety). Preferred aryl groups contain 5 to 24 carbon atoms, and particularly preferred aryl groups contain 5 to 14 carbon atoms. Exemplary aryl groups contain one aromatic ring or two fused or linked aromatic rings, e.g., phenyl, naphthyl, biphenyl, diphenylether, diphenylamine, benzophenone, and the like. “Substituted aryl” refers to an aryl moiety substituted with one or more substituent groups, and the terms “heteroatom-containing aryl” and “heteroaryl” refer to aryl substituent, in which at least one carbon atom is replaced with a heteroatom, as will be described in further detail infra.
  • The term “aryloxy” as used herein refers to an aryl group bound through a single, terminal ether linkage, wherein “aryl” is as defined above. An “aryloxy” group may be represented as —O-aryl where aryl is as defined above. Preferred aryloxy groups contain 5 to 20 carbon atoms, and particularly preferred aryloxy groups contain 5 to 14 carbon atoms. Examples of aryloxy groups include, without limitation, phenoxy, o-halo-phenoxy, m-halo-phenoxy, p-halo-phenoxy, o-methoxy-phenoxy, m-methoxy-phenoxy, p-methoxy-phenoxy, 2,4-dimethoxy-phenoxy, 3,4,5-trimethoxy-phenoxy, and the like.
  • The term “alkaryl” refers to an aryl group with an alkyl substituent, and the term “aralkyl” refers to an alkyl group with an aryl substituent, wherein “aryl” and “alkyl” are as defined above. Preferred alkaryl and aralkyl groups contain 6 to 24 carbon atoms, and particularly preferred alkaryl and aralkyl groups contain 6 to 16 carbon atoms. Alkaryl groups include, for example, p-methylphenyl, 2,4-dimethylphenyl, p-cyclohexylphenyl, 2,7-dimethylnaphthyl, 7-cyclooctylnaphthyl, 3-ethyl-cyclopenta-1,4-diene, and the like. Examples of aralkyl groups include, without limitation, benzyl, 2-phenyl-ethyl, 3-phenyl-propyl, 4-phenyl-butyl, 5-phenyl-pentyl, 4-phenylcyclohexyl, 4-benzylcyclohexyl, 4-phenylcyclohexylmethyl, 4-benzylcyclohexylmethyl, and the like. The terms “alkaryloxy” and “aralkyloxy” refer to substituents of the formula —OR wherein R is alkaryl or aralkyl, respectively, as just defined.
  • The term “acyl” refers to substituents having the formula —(CO)-alkyl, —(CO)-aryl, or —(CO)-aralkyl, and the term “acyloxy” refers to substituents having the formula —O(CO)-alkyl, —O(CO)-aryl, or —O(CO)-aralkyl, wherein “alkyl,” “aryl, and “aralkyl” are as defined above.
  • The term “cyclic” refers to alicyclic or aromatic substituents that may or may not be substituted and/or heteroatom containing, and that may be monocyclic, bicyclic, or polycyclic. The term “alicyclic” is used in the conventional sense to refer to an aliphatic cyclic moiety, as opposed to an aromatic cyclic moiety, and may be monocyclic, bicyclic, or polycyclic.
  • The terms “halo” and “halogen” are used in the conventional sense to refer to a chloro, bromo, and fluoro or iodo substituent.
  • “Hydrocarbyl” refers to univalent hydrocarbyl radicals containing 1 to about 30 carbon atoms, preferably 1 to about 24 carbon atoms, most preferably 1 to about 12 carbon atoms, including linear, branched, cyclic, saturated, and unsaturated species, such as alkyl groups, alkenyl groups, aryl groups, and the like. The term “lower hydrocarbyl” intends a hydrocarbyl group of 1 to 6 carbon atoms, preferably 1 to 4 carbon atoms, and the term “hydrocarbylene” intends a divalent hydrocarbyl moiety containing 1 to about 30 carbon atoms, preferably 1 to about 24 carbon atoms, most preferably 1 to about 12 carbon atoms, including linear, branched, cyclic, saturated and unsaturated species. The term “lower hydrocarbylene” intends a hydrocarbylene group of 1 to 6 carbon atoms. “Substituted hydrocarbyl” refers to hydrocarbyl substituted with one or more substituent groups, and the terms “heteroatom-containing hydrocarbyl” and “heterohydrocarbyl” refer to hydrocarbyl in which at least one carbon atom is replaced with a heteroatom. Similarly, “substituted hydrocarbylene” refers to hydrocarbylene substituted with one or more substituent groups, and the terms “heteroatom-containing hydrocarbylene” and heterohydrocarbylene” refer to hydrocarbylene in which at least one carbon atom is replaced with a heteroatom. Unless otherwise indicated, the term “hydrocarbyl” and “hydrocarbylene” are to be interpreted as including substituted and/or heteroatom-containing hydrocarbyl and hydrocarbylene moieties, respectively.
  • The term “heteroatom-containing” as in a “heteroatom-containing hydrocarbyl group” refers to a hydrocarbon molecule or a hydrocarbyl molecular fragment in which one or more carbon atoms is replaced with an atom other than carbon, e.g., nitrogen, oxygen, sulfur, phosphorus or silicon, typically nitrogen, oxygen or sulfur. Similarly, the term “heteroalkyl” refers to an alkyl substituent that is heteroatom-containing, the term “heterocyclic” refers to a cyclic substituent that is heteroatom-containing, the terms “heteroaryl” and heteroaromatic” respectively refer to “aryl” and “aromatic” substituents that are heteroatom-containing, and the like. It should be noted that a “heterocyclic” group or compound may or may not be aromatic, and further that “heterocycles” may be monocyclic, bicyclic, or polycyclic as described above with respect to the term “aryl.”
  • By “substituted” as in “substituted hydrocarbyl,” “substituted alkyl,” “substituted aryl,” and the like, as alluded to in some of the aforementioned definitions, is meant that in the hydrocarbyl, alkyl, aryl, or other moiety, at least one hydrogen atom bound to a carbon (or other) atom is replaced with one or more non-hydrogen substituents. Examples of such substituents include, without limitation: functional groups referred to herein as “Fn,” such as halo, hydroxyl, sulfhydryl, C1-C20 alkoxy, C2-C20 alkenyloxy, C2-C20 alkynyloxy, C5-C24 aryloxy, C6-C24 aralkyloxy, C6-C24 alkaryloxy, acyl (including C2-C20 alkylcarbonyl (—CO-alkyl) and C6-C24 arylcarbonyl (—CO-aryl)), acyloxy (—O-acyl, including C2-C20 alkylcarbonyloxy (—O—CO-alkyl) and C6-C24 arylcarbonyloxy (—O—CO-aryl)), C2-C20 alkoxycarbonyl (—(CO)—O-alkyl), C6-C24 aryloxycarbonyl (—(CO)—O-aryl), halocarbonyl (—CO)—X where X is halo), C2-C20 alkylcarbonato (—O—(CO)—O-alkyl), C6-C24 arylcarbonato (—O—(CO)—O-aryl), carboxy (—COOH), carboxylato (—COO), carbamoyl (—(CO)—NH2), mono-(C1-C20 alkyl)-substituted carbamoyl (—(CO)—NH(C1-C20 alkyl)), di-(C1-C20 alkyl)-substituted carbamoyl (—(CO)—N(C1-C20 alkyl)2), mono-(C5-C24 aryl)-substituted carbamoyl (—(CO)—NH-aryl), di-(C5-C24 aryl)-substituted carbamoyl (—(CO)—N(C5-C24 aryl)2), di-N-(C1-C20 alkyl),N—(C5-C24 aryl)-substituted carbamoyl, thiocarbamoyl (—(CS)—NH2), mono-(C1-C20 alkyl)-substituted thiocarbamoyl (—(CO)—NH(C1-C20 alkyl)), di-(C1-C20 alkyl)-substituted thiocarbamoyl (—(CO)—N(C1-C20 alkyl)2), mono-(C5-C24 aryl)-substituted thiocarbamoyl (—(CO)—NH-aryl), di-(C5-C24 aryl)-substituted thiocarbamoyl (—(CO)—N(C5-C24 aryl)2), di-N—(C1-C20 alkyl),N—(C5-C24 aryl)-substituted thiocarbamoyl, carbamido (—NH—(CO)—NH2), cyano(—C≡N), cyanato (—O—C≡N), thiocyanato (—S—C≡N), isocyano (—N+≡C), formyl (—(CO)—H), thioformyl (—(CS)—H), amino (—NH2), mono-(C1-C20 alkyl)-substituted amino, di-(C1-C20 alkyl)-substituted amino, mono-(C5-C24 aryl)-substituted amino, di-(C5-C24 aryl)-substituted amino, C2-C20 alkylamido (—NH—(CO)-alkyl), C6-C24 arylamido (—NH—(CO)-aryl), imino (—CR═NH where R=hydrogen, C1-C20 alkyl, C5-C24 aryl, C6-C24 alkaryl, C6-C24 aralkyl, etc.), C2-C20 alkylimino (—CR═N(alkyl), where R=hydrogen, C1-C20 alkyl, C5-C24 aryl, C6-C24 alkaryl, C6-C24 aralkyl, etc.), arylimino (—CR═N(aryl), where R=hydrogen, C1-C20 alkyl, C5-C24 aryl, C6-C24 alkaryl, C6-C24 aralkyl, etc.), nitro (—NO2), nitroso (—NO), sulfo (—SO2—OH), sulfonato (—SO2—O), C1-C20 alkylsulfanyl (—S-alkyl; also termed “alkylthio”), C5-C24 arylsulfanyl (—S-aryl; also termed “arylthio”), C1-C20 alkyldithio (—S—S-alkyl), C5-C24 aryldithio (—S—S-aryl), C1-C20 alkylsulfinyl (—(SO)-alkyl), C5-C24 arylsulfinyl (—(SO)-aryl), C1-C20 alkylsulfonyl (—SO2-alkyl), C5-C24 arylsulfonyl (—SO2-aryl), boryl (—BH2), borono (—B(OH)2), boronato (—B(OR)2 where R is alkyl or other hydrocarbyl), phosphono (—P(O)(OH)2), phosphonato (—P(O)(O)2), phosphinato (—P(O)(O)), phospho (—PO2), phosphino (—PH2), silyl (—SiR3 wherein R is hydrogen or hydrocarbyl), and silyloxy (—O-silyl), and the hydrocarbyl moieties C1-C20 alkyl (preferably C1-C12 alkyl, more preferably C1-C6 alkyl), C2-C20 alkenyl (preferably C2-C12 alkenyl, more preferably C2-C6 alkenyl), C2-C20 alkynyl (preferably C2-C12 alkynyl, more preferably C2-C6 alkynyl), C5-C24 aryl (preferably C5-C14 aryl), C6-C24 alkaryl (preferably C6-C16 alkaryl), and C6-C24 aralkyl (preferably C6-C16 aralkyl).
  • In addition, the aforementioned functional groups may, if a particular group permits, be further substituted with one or more additional functional groups or with one or more hydrocarbyl moieties such as those specifically enumerated above. Analogously, the above-mentioned hydrocarbyl moieties may be further substituted with one or more functional groups or additional hydrocarbyl moieties such as those specifically enumerated.
  • In the molecular structures herein, the use of bold and dashed lines to denote particular conformation of groups follows the IUPAC convention. A bond indicated by a broken line indicates that the group in question is below the general plane of the molecule as drawn, and a bond indicated by a bold line indicates that the group at the position in question is above the general plane of the molecule as drawn.
  • In one embodiment, then, the invention provides a Group 8 transition metal complex having the structure of formula (I)
    Figure US20050261451A1-20051124-C00004
      • wherein:
      • the bonds indicated as dashed lines and designated as α and β represent single bonds or unsaturated (e.g., double) bonds, with the proviso that α and β cannot both be unsaturated bonds;
      • M is a Group 8 transition metal;
      • R1 and R2 are independently selected from hydrogen, hydrocarbyl, substituted hydrocarbyl, heteroatom-containing hydrocarbyl, substituted heteroatom-containing hydrocarbyl, and functional groups;
      • Q is an organic diradical, i.e., a hydrocarbylene, substituted hydrocarbylene, heteroatom-containing hydrocarbylene, or substituted heteroatom-containing hydrocarbylene linker, and further wherein two or more substituents on adjacent atoms within Q may be linked to form an additional cyclic group;
      • X1 and X2 are anionic ligands, and may be the same or different;
      • L1 is a neutral electron donor ligand, and p is zero or 1;
      • when α is a single bond, L2 is selected from NR7R8, PR7R8, N═CR7R8, and R7C═NR8, where R7 and R8 are independently selected from substituted and/or heteroatom-containing C1-C20 alkyl, C2-C20 alkenyl, C2-C20 alkynyl, and C5-C24 aryl, or R7 and R8 can be taken together to form a heterocyclic ring;
      • when α is an unsaturated bond, e.g., a double bond, L2 is selected from NR7 and PR7, where R7 is as defined previously;
      • Y and Z are linkages independently selected from hydrocarbylene, substituted hydrocarbylene, heteroatom-containing hydrocarbylene, substituted heteroatom-containing hydrocarbylene, —O—, —S—, —NR9—, and —PR9—, wherein R9 is selected from hydrocarbyl, substituted hydrocarbyl, heteroatom-containing hydrocarbyl, and substituted heteroatom-containing hydrocarbyl, and further wherein Y and Z, or L2 and Z, may represent adjacent atoms in an aromatic ring;
      • m is zero or 1; and
      • n is zero or 1,
      • as well as isomers thereof.
  • More particularly:
  • The metal center designated as M is a Group 8 transition metal, preferably ruthenium or osmium. In a particularly preferred embodiment, M is ruthenium.
  • R1 and R2 are independently selected from hydrogen, hydrocarbyl (e.g., C1-C20 alkyl, C2-C20 alkenyl, C2-C20 alkynyl, C5-C24 aryl, C6-C24 alkaryl, C6-C24 aralkyl, etc.), substituted hydrocarbyl (e.g., substituted C1-C20 alkyl, C2-C20 alkenyl, C2-C20 alkynyl, C5-C24 aryl, C6-C24 alkaryl, C6-C24 aralkyl, etc.), heteroatom-containing hydrocarbyl (e.g., heteroatom-containing C1-C20 alkyl, C2-C20 alkenyl, C2-C20 alkynyl, C5-C24 aryl, C6-C24 alkaryl, C6-C24 aralkyl, etc.), substituted heteroatom-containing hydrocarbyl (e.g., substituted heteroatom-containing C1-C20 alkyl, C2-C20 alkenyl, C2-C20 alkynyl, C5-C24 aryl, C6-C24 alkaryl, C6-C24 aralkyl, etc.), and functional groups. When R1 and R2 are aromatic, they are typically although not necessarily composed of one or two aromatic rings, which may or may not be substituted, e.g., R1 and R2 may be phenyl, substituted phenyl, biphenyl, substituted biphenyl, or the like. In one preferred embodiment, R1 and R2 are the same and are each unsubstituted phenyl or phenyl substituted with up to three substituents selected from C1-C20 alkyl, substituted C1-C20 alkyl, C1-C20 heteroalkyl, substituted C1-C20 heteroalkyl, C5-C24 aryl, substituted C5-C24 aryl, C5-C24 heteroaryl, C6-C24 aralkyl, C6-C24 alkaryl, and halide. Preferably, any substituents present are hydrogen, C1-C12 alkyl, C1-C12 alkoxy, C5-C14 aryl, substituted C5-C14 aryl, or halide. More preferably, R1 and R2 are mesityl.
  • In another preferred embodiment, R1 and R2 are independently selected from hydrogen, C1-C20 alkyl, C2-C20 alkenyl, C2-C20 alkynyl, C5-C24 substituted aryl, C1-C20 functionalized alkyl, C2-C20 functionalized alkenyl, C2-C20 functionalized alkynyl, or C5-C24 functionalized substituted aryl where the functional group(s) (“Fn”) may independently be one or more or the following:
  • C1-C20 alkoxy, C5-C24 aryloxy, halo, carboxy (—COOH), acyl (including C2-C20 alkylcarbonyl (—CO-alkyl) and C6-C24 arylcarbonyl (—CO-aryl)), formyl (—(CO)—H), nitro (—NO2), cyano(—C≡N), isocyano (—N+≡C), hydroxyl, acyloxy (—O-acyl, including C2-C20 alkylcarbonyloxy (—O—CO-alkyl) and C6-C24 arylcarbonyloxy (—O—CO-aryl)), C2-C20 alkoxycarbonyl (—(CO)—O-alkyl), C6-C24 aryloxycarbonyl (—(CO)—O-aryl), C1-C20 alkoxy-substituted C1-C20 alkyl, C1-C20 alkoxy-substituted C5-C24 aryl, C5-C24 aryloxy-substituted C1-C20 alkyl, C5-C24 aryloxy-substituted C5-C24 aryl, amino (—NH2), imino (—CR═NH where R=hydrogen, C1-C20 alkyl, C5-C24 aryl, C6-C24 alkaryl, C6-C24 aralkyl, etc.), C2-C20 alkylamido (—NH—(CO)-alkyl), C6-C24 arylamido (—NH—(CO)-aryl), C1-C20 alkylsulfanyl (—S-alkyl; also termed “alkylthio”), C5-C24 arylsulfanyl (—S-aryl; also termed “arylthio”), C1-C20 alkyldithio (—S—S-alkyl), C5-C24 aryldithio (—S—S-aryl), carbamoyl (—(CO)—NH2); C2-C20 alkylcarbamoyl, (—(CO)—NH-alkyl), C6-C20 arylcarbamoyl (—(CO)—NH-aryl), silyl (—SiR3 wherein R is hydrogen or hydrocarbyl), silyloxy (—O-silyl), phosphino (—PH2), phosphonato (—P(O)(O)2), boryl (—BH2), borono (—B(OH)2), or boronato (—B(OR)2 where R is alkyl or other hydrocarbyl).
  • Q is typically selected from hydrocarbylene (e.g., C1-C20 alkylene, C2-C20 alkenylene, C2-C20 alkynylene, C5-C24 arylene, C6-C24 alkarylene, or C6-C24 aralkylene), substituted hydrocarbylene (e.g., substituted C1-C20 alkylene, C2-C20 alkenylene, C2-C20 alkynylene, C5-C24 arylene, C6-C24 alkarylene, or C6-C24 aralkylene), heteroatom-containing hydrocarbylene (e.g., C1-C20 heteroalkylene, C2-C20 heteroalkenylene, C2-C20 heteroalkynylene, C5-C24 heteroarylene, heteroatom-containing C6-C24 aralkylene, or heteroatom-containing C6-C24 alkarylene), and substituted heteroatom-containing hydrocarbylene (e.g., substituted C1-C20 heteroalkylene, substituted C2-C20 heteroalkenylene, substituted C2-C20 heteroalkynylene, substituted C5-C24 heteroarylene, substituted heteroatom-containing C6-C24 aralkylene, or substituted heteroatom-containing C6-C24 alkarylene), wherein, as noted elsewhere herein, two or more substituents on adjacent atoms within Q may also be linked to form an additional cyclic structure, which may be similarly substituted to provide a fused polycyclic structure of two to about five cyclic groups. Q is often, although again not necessarily, a two-atom linkage or a three-atom linkage.
  • In a more preferred embodiment, Q is a two-atom linkage having the structure —CR3R4—CR5R6— or —CR═CR5—, preferably —R3R4—CR5R6—, wherein R3, R4, R5, and R6 are independently selected from hydrogen, hydrocarbyl, substituted hydrocarbyl, heteroatom-containing hydrocarbyl, substituted heteroatom-containing hydrocarbyl, and functional groups. Examples of functional groups here include carboxyl, C1-C20 alkoxy, C5-C24 aryloxy, C2-C20 alkoxycarbonyl, C5-C24 alkoxycarbonyl, C2-C24 acyloxy, C1-C20 alkylthio, C5-C24 arylthio, C1-C20 alkylsulfonyl, and C1-C20 alkylsulfinyl, optionally substituted with one or more moieties selected from C1-C12 alkyl, C1-C12 alkoxy, C5-C14 aryl, hydroxyl, sulfhydryl, formyl, and halide. R3, R4, R5, and R6 are preferably independently selected from hydrogen, C1-C12 alkyl, substituted C1-C12 alkyl, C1-C12 heteroalkyl, substituted C1-C12 heteroalkyl, phenyl, and substituted phenyl. Alternatively, any two of R3, R4, R5, and R6 may be linked together to form a substituted or unsubstituted, saturated or unsaturated ring structure, e.g., a C4-C12 alicyclic group or a C5 or C6 aryl group, which may itself be substituted, e.g., with linked or fused alicyclic or aromatic groups, or with other substituents.
  • X1 and X2 are anionic ligands, and may be the same or different, or are linked together to form a cyclic group, typically although not necessarily a five- to eight-membered ring. In preferred embodiments, X1 and X2 are each independently hydrogen, halide, or one of the following groups: C1-C20 alkyl, C5-C24 aryl, C1-C20 alkoxy, C5-C24 aryloxy, C2-C20 alkoxycarbonyl, C6-C24 aryloxycarbonyl, C2-C24 acyl, C2-C24 acyloxy, C1-C20 alkylsulfonato, C5-C24 arylsulfonato, C1-C20 alkylsulfanyl, C5-C24 arylsulfanyl, C1-C20 alkylsulfinyl, C5-C24 arylsulfinyl, carboxyl, carboxylate, or triflate. Optionally, X1 and X2 may be substituted with one or more moieties, if the X1 and/or X2 substituent permits, wherein the substituents are typically although not necessarily selected from C1-C12 alkyl, C1-C12 alkoxy, C5-C24 aryl, and halide, which may, in turn, with the exception of halide, be further substituted with one or more groups selected from halide, C1-C6 alkyl, C1-C6 alkoxy, and phenyl. In more preferred embodiments, X1 and X2 are halide, benzoate, C2-C6 acyl, C2-C6 alkoxycarbonyl, C1-C6 alkyl, phenoxy, C1-C6 alkoxy, C1-C6 alkylsulfanyl, aryl, or C1-C6 alkylsulfonyl. In even more preferred embodiments, X1 and X2 are each halide, CF3CO2, CH3CO2, CFH2CO2, (CH3)3CO, (CF3)2(CH3)CO, (CF3)(CH3)2CO, PhO, MeO, EtO, tosylate, mesylate, or trifluoromethanesulfonate. In the most preferred embodiments, X1 and X2 are each chloride.
  • L1 is a neutral electron donor ligand which is coordinated to the metal center. L1 may be heterocyclic, in which case it is generally selected from:
      • nitrogen-containing heterocycles such as pyridine, bipyridine, pyridazine, pyrimidine, bipyridamine, pyrazine, 1,3,5-triazine, 1,2,4-triazine, 1,2,3-triazine, pyrrole, 2H-pyrrole, 3H-pyrrole, pyrazole, 2H-imidazole, 1,2,3-triazole, 1,2,4-triazole, indole, 3H-indole, 1H-isoindole, cyclopenta(b)pyridine, indazole, quinoline, bisquinoline, isoquinoline, bisisoquinoline, cinnoline, quinazoline, naphthyridine, piperidine, piperazine, pyrrolidine, pyrazolidine, quinuclidine, imidazolidine, picolylimine, purine, benzimidazole, bisimidazole, phenazine, acridine, and carbazole;
      • oxygen-containing heterocycles such as 2H-pyran, 4H-pyran, 2-pyrone, 4-pyrone, 1,2-dioxin, 1,3-dioxin, oxepin, furan, 2H-1-benzopyran, coumarin, coumarone, chromene, chroman-4-one, isochromen-1-one, isochromen-3-one, xanthene, tetrahydrofuran, 1,4-dioxan, and dibenzofuran; and
      • mixed heterocycles such as isoxazole, oxazole, thiazole, isothiazole, 1,2,3-oxadiazole, 1,2,4-oxadiazole, 1,3,4-oxadiazole, 1,2,3,4-oxatriazole, 1,2,3,5-oxatriazole, 3H-1,2,3-dioxazole, 3H-1,2-oxathiole, 1,3-oxathiole, 4H-1,2-oxazine, 2H-1,3-oxazine, 1,4-oxazine, 1,2,5-oxathiazine, o-isooxazine, phenoxazine, phenothiazine, pyrano[3,4-b]pyrrole, indoxazine, benzoxazole, anthranil, and morpholine.
  • L1 may also be an amine, an imine, a phosphine, an ether, or a thioether.
  • Preferably, L1 is selected from pyridines, amines, phosphines, imines, ethers, thioethers, furans, and pyrans.
  • When α is a single bond, L2 is selected from NR7R8, PR7R8, N═CR7R8, and R7C═NR8, where R7 and R8 are independently selected from substituted and/or heteroatom-containing C1-C20 alkyl, C2-C20 alkenyl, C2-C20 alkynyl, C5-C24 aryl, or R7 and R8 taken together can form a cyclic group, e.g., piperidyl (including substituted piperidyl). Any functional groups present on L1, L2, R7, or R8 will generally be selected from the Fn groups set forth above. Examples of preferred such catalysts are those wherein L2 is NR7R8, having the structure of formula (II)
    Figure US20050261451A1-20051124-C00005

    wherein Q, R1, R2, R7, R8, X1, X2, L1, Y, Z, β, and p are as defined above. Preferred R7 and R8 substituents in this embodiment are C1-C12 alkyl or C5-C12 aryl, e.g., methyl, isopropyl, t-butyl, cyclohexyl, and phenyl, and preferred Y groups are —CH2—, —CH2CH2— and substituted analogs thereof. Other preferred catalysts, wherein L2 is PR7R8, have the structure of formula (III)
    Figure US20050261451A1-20051124-C00006

    wherein Q, R1, R2, R7, R8, X1, X2, Y, Z, L1, β, and p are as defined above, preferred R7 and R8 substituents are C1-C12 alkyl or C5-C12 aryl, e.g., phenyl, and preferred Y groups are as set forth for complexes of formula (II). Particularly preferred catalytic complexes encompassed by formulae (II) and (III) include, but are not limited to, the following:
    Figure US20050261451A1-20051124-C00007
  • L2 and Z can be linked through an unsaturated bond, i.e., the dashed line indicating a bond at a may also represent a double bond or a bond linking adjacent atoms in an aromatic ring. When L2 and Z are linked through an unsaturated bond, L2 is selected from NR7 and PR7, and preferably is NR7 where R7 is as defined previously. It will be appreciated that when α represents an unsaturated bond, the complex may be contain an imine ligand (i.e., containing the moiety —Z═NR7), or may contain a pyridine ring in which N and Z are adjacent atoms in a pyridyl group. Examples of preferred such catalysts in which the complex contains a pyridine ring or an imine moiety are encompassed by structural formulae (IV) and (V), respectively:
    Figure US20050261451A1-20051124-C00008
  • In formulae (IV) and (V), Q, R1, R2, R7, R8, X1, X2, Y, Z, L1, β, and p are as defined above, preferred R7 substituents are C1-C12 alkyl or C5-C12 aryl, e.g., methyl, isopropyl, t-butyl, cyclohexyl, and phenyl, and preferred Y groups are substituted or unsubstituted methylene or ethylene linkages.
  • Particularly preferred catalytic complexes encompassed by formulae (IV) and (V) include, but are not limited to, the following:
    Figure US20050261451A1-20051124-C00009
    Figure US20050261451A1-20051124-C00010
  • Y and Z are linkages independently selected from hydrocarbylene (e.g., C1-C20 alkylene, C2-C20 alkenylene, C2-C20 alkynylene, C5-C24 arylene, C6-C24 alkarylene, or C6-C24 aralkylene), substituted hydrocarbylene (e.g., substituted C1-C20 alkylene, C2-C20 alkenylene, C2-C20 alkynylene, C5-C24 arylene, C6-C24 alkarylene, or C6-C24 aralkylene), heteroatom-containing hydrocarbylene (e.g., C1-C20 heteroalkylene, C2-C20 heteroalkenylene, C2-C20 heteroalkynylene, C5-C24 heteroarylene, heteroatom-containing C6-C24 aralkylene, or heteroatom-containing C6-C24 alkarylene), substituted heteroatom-containing hydrocarbylene (e.g., substituted C1-C20 heteroalkylene, substituted C2-C20 heteroalkenylene, substituted C2-C20 heteroalkynylene, substituted C5-C24 heteroarylene, substituted heteroatom-containing C6-C24 aralkylene, or substituted heteroatom-containing C6-C24 alkarylene), —O—, —S—, —NR9—, and —PR9—, wherein R3 is selected from hydrogen, hydrocarbyl (e.g., C1-C20 alkyl, C2-C20 alkenyl, C2-C20 alkynyl, C5-C24 aryl, C6-C24 alkaryl, C6-C24 aralkyl, etc.), substituted hydrocarbyl (e.g., substituted C1-C20 alkyl, C2-C20 alkenyl, C2-C20 alkynyl, C5-C24 aryl, C6-C24 alkaryl, C6-C24 aralkyl, etc.), heteroatom-containing hydrocarbyl (e.g., heteroatom-containing C1-C20 alkyl, C2-C20 alkenyl, C2-C20 alkynyl, C5-C24 aryl, C6-C24 alkaryl, C6-C24 aralkyl, etc.), and substituted heteroatom-containing hydrocarbyl (e.g., substituted heteroatom-containing C1-C20 alkyl, C2-C20 alkenyl, C2-C20 alkynyl, C5-C24 aryl, C6-C24 alkaryl, C6-C24 aralkyl, etc.). Any functional groups present on Z, Y, and/or R9 will generally be selected from the Fn moieties above.
  • Organic diradicals that can serve as Y and/or Z include, by way of example, the following groups: methylene (VI), ethylene (VII), vinylene (VIII), phenylene (IX), cyclohexylene (X), and naphthylenes (XI) and (XII).
    Figure US20050261451A1-20051124-C00011

    These organic diradicals may also serve as the linkage Q.
  • In one particularly preferred embodiment of the invention, M is ruthenium, Q is ethylene (II), X1 and X2 are chloride, and p is zero. In a more preferred embodiment, R1 and R2 are mesityl (2,4,6-trimethylphenyl). In an even more preferred embodiment of the invention, n is zero.
  • Exemplary catalysts of the invention are 2 a and 2 b, the molecular structures of which are provided above and in FIG. 2, wherein M is ruthenium, L2 is substituted or unsubstituted pyridyl, R1 and R2 are mesityl (2,4,6-trimethylphenyl), Q is ethylene (II), X1 and X2 are chloride, Y is ethylene (II), m is 1, and n and p are zero. These new catalysts can be prepared by reacting RuCl2(sIMes)(PCy3)(CHPh) (Catalyst 1) and 2-(3-butenyl)pyridine in dichloromethane at 40° C. (see Example 1). It has surprisingly found that depending on the reaction time, catalyst 2 a can be obtained either in pure form or as a mixture of isomers 2 a and 2 b. This finding was quite surprising, because the known ruthenium carbene olefin metathesis catalysts typically have a configuration like that of 2 a, namely a CS symmetric square pyramidal geometry where the apical position is occupied by the carbene ligand, and the equatorial positions by two trans anionic ligands and two trans neutral electron donating ligands. In the case of 2 b, the complex is of C1 symmetry and contains two equatorial cis anionic ligands and two equatorial cis neutral electron donating ligands. X-ray structures were obtained for 2 a and 2 b (see ORTEP diagrams in FIGS. 3 and 4). Catalyst 2 a can also be prepared by reaction of (sIMes)(py)2(Cl)2Ru═CHPh (complex 3) with 1.5 equivalent of 2-(3-butenyl)-pyridine in dichloromethane at room temperature for 30 minutes (Example 2). In addition, this method is amenable to the synthesis of complexes (sIMes)(Cl)2Ru(CH(CH2)2—C,N-2-(4-Me)-C5H3N) and Ru(CH(CH2)2—C,N-2-(6-Me)-C5H3N), also shown in FIG. 7.
  • The catalysts of the invention may be synthesized and used in catalyzing olefin metathesis reactions using the procedures described in the examples herein or variations thereof which will be apparent to one of skill in the art.
  • Another embodiment of the present invention is a method for the use of the present catalysts, including 2 a and 2 b, for the metathesis of olefins. Surprisingly, both isomers exhibit large differences in olefin metathesis activity (e.g., in RCM and ROMP). These activity differences enable tuning of the catalyst by simple isomerization of the complex in lieu of the strategies of the prior art, such as utilization of additives or complicated and time-consuming catalyst design involving ligand exchanges. The catalysts may be attached to a solid support; as understood in the field of catalysis, suitable solid supports may be of synthetic, semi-synthetic, or naturally occurring materials, which may be organic or inorganic, e.g., polymeric, ceramic, or metallic. Attachment to the support will generally, although not necessarily, be covalent, and the covalent linkage may be direct or indirect, if indirect, typically between a functional group on a support surface and a ligand or substituent on the catalytic complex. The reactions are carried out under conditions normally used in olefin metathesis reactions catalyzed by the Grubbs family of metathesis catalysts. See, e.g., U.S. Pat. Nos. 5,312,940, 5,342,909, 5,831,108, 5,969,170, 6,111,121, and 6,211,391 to Grubbs et al.
  • As indicated by the results in the examples, various modifications to the basic catalyst structures herein can increase or decrease latency period as desired.
  • It is to be understood that while the invention has been described in conjunction with the preferred specific embodiments thereof, that the foregoing description as well as the examples that follow are intended to illustrate and not limit the scope of the invention. Other aspects, advantages and modifications within the scope of the invention will be apparent to those skilled in the art to which the invention pertains.
  • All patents, patent applications, and publications mentioned herein are hereby incorporated by reference in their entireties.
  • EXAMPLE 1 Synthesis of Catalyst 2 a: Method A
  • A 250 mL round bottom Schlenk flask equipped with a stir bar was charged with complex 1, (sIMes)(PCy3)(Cl)2Ru═CHPh, (10.0 g; 11.8 mmol). The flask was capped, sparged with argon for 15 minutes, and charged with anhydrous CH2Cl2 (118 mL) via cannula. 2-(3-butenyl)pyridine (2.4 g, 17.7 mmol) was then added via syringe and the reaction mixture was heated to 40° C. for 5-6 hours. The reaction mixture was concentrated to dryness and the residue triturated with degassed, chilled methanol. The solid was collected on a frit and washed with chilled methanol (2×25 mL) to give catalyst 2 a, (sIMes)(Cl)2Ru(CH(CH2)2—C,N-2-C5H4N)—Cs, (5.6 g; 9.4 mmol) as a pale green solid upon drying. Yield: 80%.
  • EXAMPLE 2 Synthesis of Catalyst 2 a: Method B
  • In the glove box a vial was charged with 2-(3-butenyl)pyridine (24 mg, 0.18 mmol) and CH2Cl2 (2 mL). Complex 3, (sIMes)(py)2(Cl)2Ru═CHPh, (86 mg; 0.12 mmol) was then added as a solid and the reaction allowed to stir at room temperature for 30 minutes. The volatiles were removed under vacuum and the residue triturated with hexanes. The solid was collected, washed with hexanes (2×1 mL) and dried under vacuum to give catalyst 2 a, (sIMes)(Cl)2Ru(CH(CH2)2—C,N-2-C5H4N)—C, (60 mg; 0.10 mmol) as a pale green solid upon drying. Yield: 85%. 1H NMR (CD2Cl2): δ 18.46 (t, 3JHH=2.7 Hz, 1 H, Ru═CH), 7.64 (d, 3JHH=4.8 Hz, 1 H, Py), 7.52 (t, 3JHH=7.2 Hz, 1 H, Py), 7.14 (d,3JHH=7.8 Hz, 1H, Py), 7.07 (s, 4 Mes), 6.99 (t, 3JHH=6.9 Hz, 1 H, Py), 4.09 (s, 4 H, sIMes), 3.55 (t, 3JHH=5.7 Hz, 2H, CH2-Py), 2.50 (s, 12 H, Mes-CH3), 2.41 (s, 6 H, Mes-CH3), 1.70 (m, 2 H, Ru═CH—CH2). 13C{1H} NMR (CD2Cl2): δ 339.18 (Ru═CHCH2), 216.52 (Ru—C(N)2), 162.64, 158.34, 149.54, 138.96, 138.83, 136.96, 129.60, 124.51, 121.82, 54.45, 51.92, 34.30, 21.32, 19.58.
  • EXAMPLE 3 Conversion of Catalyst 2 a to Catalyst 2 b
  • In the glove box, a 0.1 M solution of catalyst 2 a in CD2Cl2 was prepared and transferred to an NMR tube, which was capped and taken out of the glove box. The NMR tube was left in an oil bath at 40° C. and the reaction was monitored by 1H NMR spectroscopy. The ratio of 2 b to 2 a in the mixture was 30/70 after 24 hours; 60/40 after 48 hours; 70/30 after 72 hours; and 78/22 after 96 hours.
  • EXAMPLE 4 Conversion of Catalyst 2 b to 2 a
  • In the glove box, a 0.1 M solution of catalyst 2 b in CD2Cl2 was prepared and transferred to an NMR tube, which was capped and taken out of the glove box. The NMR tube was left in an oil bath at 40° C. and the reaction was monitored by 1H NMR spectroscopy. The ratio of 2 b to 2 a in the mixture was 83/17 after 24 hours. 1H NMR spectroscopy also showed that the isomerization of 2 b was accompanied with some catalyst decomposition, making it complicated to analyze the reaction mixture beyond 24 hours.
  • EXAMPLE 5 Synthesis of Catalyst 4
  • In the glove box, a flask was charged with 2-(3-butenyl)-4-methylpyridine (40 mg, 0.27 mmol) and CH2Cl2 (5 mL). Complex 3, (sIMes)(py)2(Cl)2Ru═CHPh, (114 mg; 0.16 mmol) was then added as a solid and the reaction allowed to stir at room temperature for 30 minutes. The volatiles were removed under vacuum and the residue was redissolved in C6H6 (1 mL) and precipitated with pentane (10 mL). The solid was collected, washed with pentane (3×5 mL) and dried under vacuum to give catalyst 4, (sIMes)(Cl)2Ru(CH(CH2)2—C,N-2-(4-Me)-C5H3N)—Cs, (80 mg; 0.13 mmol) as a light brown solid upon drying. Yield: 84%. 1H NMR (CD2Cl2): δ 18.44 (t, 3JHH=3.3 Hz, 1 H, Ru═CH), 7.42 (d, 3JHH=5.7 Hz, 1 H, Py), 7.02 (s, 4 H, Mes), 6.95 (s, 1 H, Py), 6.80 (d, 3JHH=4.2 Hz, 1 H, Py), 4.06 (s, 4 H, sIMes), 3.46 (t, 3JHH=6.0 Hz, 2 H, CH2-Py), 2.45 (s, 12 H, Mes-CH3), 2.37 (s, 6 H, Mes-CH3), 2.27 (s, 3 H, Py-CH3), 1.66 (m, 2 H, Ru═CH—CH2). 13C{1H} NMR (CD2Cl2): δ 339.16 (Ru═CHCH2), 216.91 (Ru—C(N)2), 161.97, 148.96, 148.87, 138.99, 138.83, 129.63, 125.43, 122.98, 54.62, 51.95, 34.13, 21.35, 21.01, 19.64.
  • EXAMPLE 6 Synthesis of Catalyst 5
  • In the glove box, a flask was charged with 2-(3-butenyl)-6-methylpyridine (50 mg, 0.34 mmol) and CH2Cl2 (5 mL). Complex 3, (sIMes)(Py)2(Cl)2Ru═CHPh, (98 mg; 0.14 mmol) was then added as a solid and the reaction allowed to stir at room temperature for 30 minutes. The volatiles were removed under vacuum and the residue was redissolved in C6H6 (1 mL) and precipitated with pentane (10 mL). The solid was collected, washed with pentane (3×5 mL) and dried under vacuum to give catalyst 5, (sIMes)(Cl)2Ru(CH(CH2)2—C,N-2-(6-Me)-C5H3N)—Cs, (57 mg; 0.094 mmol) as a light brown solid upon drying. Yield: 69%. 1H NMR (CD2Cl2): δ 18.33 (t, 3JHH=3.6 Hz, 1 H, Ru═CH), 7.34 (t, 3JHH=7.5 Hz, 1 H, Py), 7.03 (s, 4H, Mes), 6.97 (d, 3JHH=7.8 Hz, 1 H, Py), 6.75 (d, 3JHH=7.8 Hz, 1 H, Py), 4.05 (m, 4 H, SIMes), 2.91 (m, 4 H, Ru═CH—CH2—CH2-Py), 2.61 (br s, 6 H, Mes-CH3), 2.37 (s, 6 H, Mes-CH3), 2.31 (br s, 6 H, Mes-CH3), 2.01 (s, 3 H, Py-CH3). 13C{1H} NMR (CD2Cl2): δ 343.54 (Ru═CHCH2), 218.21 (Ru—C(N)2), 160.62, 160.55, 140.45, 139.29, 138.73, 137.88, 136.65, 129.79, 128.82, 123.03, 122.13, 52.04, 51.24, 34.66, 32.20, 22.86, 21.76, 21.34, 20.37, 18.51.
  • It should be noted that the 1H NMR spectra for catalysts 2 a, 4 and 5 are consistent with complexes of Cs symmetry, where the resonances for each of the para methyl groups of the mesityl rings, the ortho methyl groups of the same rings and the ethylene bridge of the sIMes ligand appear as singlets [the 1H NMR singlets described are consistent with a Cs symmetry and free rotation of the sIMes ligand around the Ru—C bond (on the NMR time-scale)]. The alkylidene proton resonances near 18 ppm appear as triplets due to coupling to the methylene protons (3JHH=2.7-3.6 Hz).
  • EXAMPLE 7 Synthesis of Catalyst 2 b
  • A 220 mL round bottom Schlenk flask equipped with a stir bar was charged with complex 1, (sIMes)(PCy3)(Cl)2Ru═CHPh, (5.0 g; 5.9 mmol). The flask was capped, sparged with argon for 15 minutes, and charged with anhydrous CH2Cl2 (60 mL) via cannula. 2-(3-butenyl)pyridine (1.2 g, 8.9 mmol) was then added via syringe and the reaction mixture was heated to 40° C. for 3-4 days. The reaction mixture was concentrated to dryness and the residue triturated with degassed, chilled methanol (15 mL). The solid was collected on a frit and washed with methanol (2×10 mL) to give catalyst 2 b, (sIMes)(Cl)2Ru(CH(CH2)2—C,N-2-C5H4N)—C1, (1.3 g; 2.2 mmol) as an orange-brown solid upon drying. Yield: 37%. 1H NMR (CD2Cl2): δ 19.14 (t, 3JHH=3.3 Hz, 1 H, Ru═CH), 7.54 (d, 3JHH=7.8 Hz, 1 H, Py), 7.49 (t, 3JHH=5.1 Hz, 1 H, Py), 7.25 (s, 1 H, Mes), 7.06 (s, 1 H, Mes), 7.03 (d, 3JHH=7.8 Hz, 1 H, Py), 6.90 (s, 1 H, Mes), 6.88 (s, 1 H, Mes), 6.81 (t, 3JHH=6.6 Hz, 1 H, Py), 4.15 (m, (m, 2 H, SIMes), 3.90 (m, 2 H, sIMes), 3.00 (m, 2 H, CH2-Py), 2.88 (s, 3 H, Mes-CH3), 2.69 (s, 3 H, Mes-CH3), 2.40 (s, 3 H, Mes-CH3), 2.34 (s, 3 H, Mes-CH3), 1.96 (s, 3 H, Mes-CH3), 1.78 (m, 1 H, Ru═CH—CH2), 1.45 (s, 3 H, Mes-CH3), 1.21 (m, 1 H, Ru═CH—CH2). 13C{1H} NMR (CD2Cl2): δ 319.04 (Ru═CHCH2), 218.94 (Ru—C(N)2), 161.71, 154.02, 139.51, 138.94, 138.32, 137.90, 135.57, 134.97, 132.96, 130.26, 129.53, 129.34, 129.16, 128.65, 122.94, 120.00, 50.54, 49.23, 34.87, 20.52, 20.27, 19.25, 18.92, 18.39, 17.56.
  • Catalyst 2 b appears as a ruthenium carbene of C1 symmetry, displaying six nonequivalent methyl groups on the mesityl rings, four nonequivalent protons on the ethylene bridge of the sIMes ligand and 4 nonequivalent protons on the ethylene bridge of the pyridyl ligand in the 1H NMR spectrum. The carbene resonance of 2 b also appears as a triplet (δ19.14 ppm; 3JHH=3.3 Hz). Pure isolated 2 a, dissolved in CD2Cl2 (0.1 M), is slowly converted to a 22:78 mixture of 2 a:2 b at 40° C. over the course of 96 hours and pure isolated 2 b forms a similar mixture under the same conditions. It may therefore be concluded that 2 a and 2 b are isomers in equilibrium where 2 b is the thermodynamically favored species and Keq=0.28. Attempts to measure the kinetics of the approach to equilibrium were hampered by a decomposition process concurrent with the 2 a2 b isomerization process.
  • Crystals suitable for X-ray analysis were obtained for catalysts 2 a and 2 b (ORTEP views of 2 a and 2 b are shown in FIGS. 9 and 10, respectively). Both complexes display square pyramidal geometries, where the chloride, pyridine and NHC ligands occupy the equatorial positions and the alkylidene occupies the axial position. In 2 a, the chloride ligands are trans one to another [Cl(1)-Ru(1)-Cl(2)=164.41(1)] as are the neutral ligands [C(1)-Ru(1)-N(3)=170.21(4)]. This geometry is typical for ruthenium olefin metathesis catalysts and is consistent with the 1H NMR spectrum of 2 a. On the other hand, 2 b possesses cis chloride ligands (Cl(1)-Ru(1)-Cl(2)=85.93(2)) and cis neutral ligands (C(1)-Ru(1)-N(3)=98.04(8)), which explain the C1 symmetry deduced from the spectroscopic data. This type of ligand arrangement is relatively rare for ruthenium carbene complexes, although it has been observed in a few cases [ruthenium complexes containing chelating bisphosphine ligands and cis chlorides have been described: see, e.g., Hansen et al. (1999) Angew. Chem., Int. Ed. 38, 1273-1276; Hansen et al. (1999) Chem. Eur. J. 5, 557-566; Volland et al. (2001) Organomet. Chem. 617, 288-291; Nieczypor et al. (2001). J. Organomet. Chem. 625, 58-66; Prühs et al. (2004) Organometallics 23, 280-287; Slugovc et al. (2004) Organometallics, 23, 3622-3626. A related complex with cis neutral ligands and cis anionic pentafluorophenoxide ligands has been reported: see Conrad et al. (2003) Organometallics 22, 3634-3636; a related vinylcarbene ruthenium complex containing cis chlorides has also been reported: see Trnka et al. (2001) Organometallics 20, 3845-3847]. The Ru(1)-N(3) distance of 2.1355(9) Å in 2 a is significantly longer than that of 2.098(2) Å in 2 b, due to the trans influence of the NHC ligand. Similarly, the Ru(1)-Cl(2) distance in 2 b (2.3883(6) Å) is longer than that in 2 a (2.3662(3) Å).
  • EXAMPLE 8 Synthesis of Catalyst Ru(C4-PPh2) (6)
  • In the glove box, a flask was charged with (4-pentenyl)diphenyl phosphine (49 mg, 0.19 mmol) and CH2Cl2 (5 mL). Catalyst 3, RuCl2(sIMes)(py)2(CHPh), (127 mg; 0.17 mmol) was then added as a solid and the reaction allowed to stir at room temperature for 30 minutes. The volatiles were removed under vacuum and the residue was washed with pentane (2×2 mL). The solid was redissolved in CH2Cl2 (5 mL) and heated to 40° C. for 12 h, after which volatiles were removed under vacuum. The solid was purified by column chromatography (5% Et2O/pentane, then 25% Et2O/pentane) and dried under vacuum to give catalyst 6. (59 mg; 0.082 mmol) as a light brown solid upon drying. Yield: 47%. 1H NMR (CD2Cl2): δ 18.60 (td, 3JHH=6.3 Hz, 3JPH=1.8 Hz, 1 H, Ru═CH), 7.30 (m, 2 H, PPh2), 7.18 (m, 4 H, PPh2), 6.97 (s, 4 H, Mes), 6.89 (m, 4 H, PPh2), 4.07 (m, 4 H, sIMes), 2.79 (q, 3JHH=6.3 Hz, 2 H, Ru═CH—CH2—CH2), 2.53 (s, 6 H, Mes-CH3), 2.39 (s, 6 H, Mes-CH3), 2.35 (s, 6 H, Mes-CH3), 2.30 (m, 2 H, CH2—CH2—PPh2), 1.53 (m, 2 H, CH2—CH2—CH2—PPh2). 31P{1H} NMR (CD2Cl2): δ 45.49.
  • EXAMPLE 9 Synthesis of Catalyst Ru(Ph-Im) (7)
  • In the glove box, a flask was charged with catalyst 3, RuCl2(sIMes)(py)2(CHPh), (154.7 mg; 0.21 mmol) and CH2Cl2 (5 mL). (2,2-dimethyl-pent-4-enylidene)-phenyl-amine (60 mg, 0.32 mmol) was then added via syringe and the reaction allowed to stir at room temperature for 15 minutes. The volatiles were removed under vacuum and the residue was washed with pentane (2×2 mL). The solid was redissolved in C6H6 (2 mL) and precipitated with pentane (20 mL). The solid was collected, washed with pentane (3×5 mL) and dried under vacuum to give catalyst 7 (115.6 mg; 0.18 mmol) as an olive green solid upon drying. Yield: 83%. 1H NMR (CD2Cl2): δ 18.80 (t, 3JHH=5.4 Hz, 1 H, Ru═CH), 7.64 (s, 1 H, C(═N)H), 7.2-6.9 (m, 9 H, Ar—H), 4.01 (s, 4 H, sIMes), 3.02 (d,3JHH=5.4 Hz, 2 H, RU═CH—CH2—CMe2), 2.5-2.3 (m, 18 H, Mes-CH3), 1.07 (s, 6 H, CMe2). 13C{1H} NMR (CD2Cl2): δ 345.10 (Ru═CHCH2), 218.03 (Ru—C(N)2), 176.96 (Ru—N═C), 149.63, 138.81, 129.82, 129.40, 127.12, 122.48, 64.30, 51.82, 42.69, 26.89, 21.46, 19.28.
  • EXAMPLE 10 Synthesis of Catalyst Ru(Cy-Im) (8)
  • In the glove box, a flask was charged with catalyst 3, RuCl2(sIMes)(py)2(CHPh), (191.5 mg; 0.26 mmol) and CH2Cl2 (5 mL). (2,2-dimethyl-pent-4-enylidene)-cyclohexylamine (74 mg, 0.38 mmol) was then added via syringe and the reaction allowed to stir at room temperature for 15 minutes. The volatiles were removed under vacuum and the residue was washed with pentane (2×2 mL). The solid was redissolved in C6H6 (2 mL) and precipitated with pentane (20 mL). The solid was collected, washed with pentane (3×5 mL) and dried under vacuum to give catalyst 8 (146.1 mg; 0.22 mmol) as an olive green solid upon drying. Yield: 84%. 1H NMR (CD2Cl2): δ 18.56 (t, 3JHH=5.4 Hz, 1 H, Ru═CH), 7.41 (s, 3JHH=5.4 Hz, 1 H, C(═N)H), 7.00 (br s, 4 H, Mes), 4.00 (br s, 4 H, sIMes), 2.96 (d, 3JHH=5.7 Hz, 2 H, Ru═CH—CH2—CMe2), 2.7-2.2 (br m, 12 H, Mes-CH3), 2.34 (s, 6 H, Mes-CH3), 1.7-0.8 (m, 11 H, Cy), 0.91 (s, 6 H, CMe2).
  • EXAMPLE 11 Synthesis of Catalyst Ru(iPr-Im) (9)
  • In the glove box, a flask was charged with Catalyst 3, RuCl2(sIMes)(py)2(CHPh) (239 mg; 0.33 mmol) and CH2Cl2 (5 mL). (2,2-dimethyl-pent-4-enylidene)-isopropyl-amine (76 mg, 0.38 mmol) was then added via syringe and the reaction allowed to stir at room temperature for 15 minutes. The volatiles were removed under vacuum, the residue was redissolved in C6H6 (2 mL) and precipitated with pentane (20 mL). The solid was collected, washed with pentane (3×5 mL) and dried under vacuum to give catalyst 3 (162 mg; 0.26 mmol) as a pale green solid upon drying. Yield: 80%. 1H NMR (CD2Cl2): δ 18.58 (t, 3JHH=5.4 Hz, 1 H, Ru═CH), 7.41 (d, 3JHH=1.5 Hz, 1H, C(═N)H), 6.99 (s, 4 H, Mes), 4.02 (br s, 4 H, sIMes), 3.32 (sept. d, JHH=6.6, 1.5 Hz, 1H, NCH(CH3)2), 2.96 (d, 3JHH=5.4 Hz, 2 H, Ru═CH—CH2—CMe2), 2.42 (br s, 12 H, Mes-CH3), 2.34 (s, 6 H, Mes-CH3), 0.92 (s, 6 H, CMe2). 0.90 (d, 3JHH=6.9 Hz, 6 H, NCH(CH3)2). 13C{1H} NMR (CD2Cl2): δ 345.17 (Ru═CHCH2), 219.54 (Ru—C(N)2) 173.68, 138.91, 129.74, 64.21, 60.78, 51.60, 42.51, 26.96, 22.47, 21.36, 19.36 (br).
  • EXAMPLE 12 Synthesis of Catalyst Ru(tBu-Im) (10)
  • In the glove box, a flask was charged with Catalyst 3, RuCl2(sIMes)(py)2(CHPh) (188 mg; 0.26 mmol) and CH2Cl2 (5 mL). (2,2-dimethyl-pent-4-enylidene)-tert-butyl-amine (56 mg, 0.34 mmol) was then added via syringe and the reaction allowed to stir at room temperature for 15 minutes. The volatiles were removed under vacuum, the residue was redissolved in C6H6 (2 mL) and precipitated with pentane (20 mL). The solid was collected, washed with pentane (3×5 mL) and dried under vacuum to give catalyst 10 (91 mg; 0.14 mmol) as pale green solid upon drying. Yield: 56%. 1H NMR (CD2Cl2): δ 18.37 (t, 3JHH=5.7 Hz, 1 H, Ru═CH), 7.43 (s, 1 H, C(═N)H), 7.04-6.94 (m, 4 H, Mes), 4.10-3.86 (m, 4 H, sIMes), 3.08 (d, 3JHH=5.4 Hz, 2 H, Ru═CH—CH2—CMe2), 2.59 (br s, 6 H, Mes-CH3), 2.34 (s, 6 H, Mes-CH3), 2.26 (br s, 6 H, Mes-CH3), 1.0 (s, 9 H, NCMe3), 0.91 (s, 6 H, CMe2). 13C{1H} NMR (CD2Cl2): δ 345.22 (Ru═CHCH2), 219.82 (Ru—C(N)2), 172.97, 139.83, 139.13, 138.55, 137.92, 136.09, 129.83, 129.74, 64.05, 63.66, 51.75, 51.27, 43.02, 25.89, 26.77, 21.37, 20.21, 18.58.
  • EXAMPLE 13 Synthesis of Catalyst Ru(Me-Im) (11)
  • In the glove box, a flask was charged with Catalyst 3, RuCl2(sIMes)(py)2(CHPh) (143 mg; 0.20 mmol) and CH2Cl2 (5 mL). (2,2-dimethyl-pent-4-enylidene)-methyl-amine (30 mg, 0.24 mmol) was then added via syringe and the reaction allowed to stir at room temperature for 30 minutes. The volatiles were removed under vacuum, the residue was redissolved in C6H6 (2 mL) and precipitated with pentane (20 mL). The solid was collected, washed with pentane (3×5 mL) and dried under vacuum to give catalyst 11 (93 mg; 0.16 mmol) as a green-brown solid upon drying. Yield: 84%. 1H NMR (CD2Cl2): δ 18.80 (t, 3JHH=5.1 Hz, 1 H, Ru═CH), 7.42 (m, 1 H, C(═N)H), 7.00 (br s, 4 H, Mes), 4.05 (s, 4 H, sIMes), 2.73 (d, 4JHH=1.2 Hz, 3 H, C═NMe), 2.69 (d, 3JHH=5.1 Hz, 2 H, Ru═CH—CH2—CMe2), 2.41 (s, 12 H, Mes-CH3), 2.34 (s, 6 H, Mes-CH3), 0.93 (s, 6 H, CMe2). 13C{1H} NMR (CD2Cl2): δ 342.54 (Ru═CHCH2), 218.93 (Ru—C(N)2), 175.29, 139.04, 138.87, 136.52, 129.61, 64.46, 51.85, 46.76, 41.83, 26.88, 21.37, 19.56.
  • EXAMPLE 14 Synthesis of Catalyst 12
  • In the glove box, a flask was charged with Catalyst 3, RuCl2(SIMes)(PCy3)(CHPh) (5.0 g; 5.9 mmol) and CH2Cl2 (60 mL). Ortho-(N,N)-dimethylaminostyrene (1.7 g; 11.8 mmol; 2 equiv), prepared according to a literature procedure (see J. Chem. Soc. 1958, 2302), was added and the reaction mixture was stirred at 40° C. for 24 hours under inert atmosphere. The volatiles were removed under vacuum, the residue was triturated with methanol (10 mL) and the solid collected on a fritted glass filtration funnel. The solid was then washed with additional methanol (2×10 mL) and hexanes (2×10 mL) before it was dried under vacuum to give catalyst 12 (2.8 g; 4.6 mmol) as a green solid. Yield: 78%. 1H NMR (CD2Cl2): δ 16.85 (s, 1 H, Ru═CH), 7.58 (t, 1 H, Ar), 7.22 (d, 1 H, Ar), 7.10 (t, 1 H, Ar), 7.08 (s, 4 H, Mes), 6.82 (d, 1 H, Ar), 4.10 (br s, 4 H, CH2CH2), 2.50 (s, 6 H, Mes-CH3), 2.48 (s, 12 H, Mes-CH3), 2.40 (s, 6 H, NMe2).
  • EXAMPLE 15 Activity of Catalysts 1, 2 a, 2 b and 12: RCM of Diethylallyl Malonate
  • The ring-closing metathesis of diethyldiallyl malonate was used as a test reaction to compare the activity of the different catalysts. For the comparison of catalysts 1, 2 a, 2 b and 12: 1 mol % of catalyst was added to a 0.1 M solution of diethyldiallyl malonate in dichloromethane and the reaction was allowed to proceed at 25° C. and was monitored by gas-chromatography (FIG. 10). As shown in FIG. 10, 2 a is much slower than 1 (<20% conversion after 100 min versus˜100% conversion, respectively, under the conditions used), 2 b is much slower than 2 a (<2% conversion after 100 min under the conditions used), and 12 is much slower than 2 b.
  • EXAMPLE 16 Activity of Catalysts 2 a, 4 and 5: RCM of Diethylallyl Malonate
  • The ring-closing metathesis of diethyldiallyl malonate was used as a test reaction to compare the activity of catalysts 2 a, 4 and 5. In the dry box, 2.5 mol % of catalyst (0.0052 mmol) was dissolved in C6D6 (0.65 mL) in an NMR tube fitted with a teflon septum screw-cap. The resulting solution was allowed to equilibrate in the NMR probe at 40° C. Diethyldiallyl malonate (50 μL, 0.207 mmol, 0.30 M) was injected into the NMR tube neat and the reaction was monitored by 1H NMR spectroscopy (FIG. 11). The olefinic resonances integrals of the product relative to that of the starting material were measured with the residual protio solvent peak used as an internal standard. As shown in FIG. 11, 2 a and 4 show similar reactivity in RCM, but 5 proved to initiate faster than 2 a and 4, presumably due to steric crowding of the ortho methyl group on the pyridine ligand.
  • EXAMPLE 17 Activity of Catalysts 2 a, 7 and 8: RCM of Diethylallyl Malonate
  • As in Example 16, the ring-closing metathesis of diethyldiallyl malonate was used as a test reaction to compare the activity of catalysts 2 a, 7 and 8. In the dry box, 2.5 mol % of catalyst (0.0052 mmol) was dissolved in C6D6 (0.65 mL) in an NMR tube fitted with a teflon septum screw-cap. The resulting solution was allowed to equilibrate in the NMR probe at 40° C. Diethyldiallyl malonate (50 μL, 0.207 mmol, 0.30 M) was injected into the NMR tube neat and the reaction was monitored by 1H NMR spectroscopy (FIG. 12). The olefinic resonances integrals of the product relative to that of the starting material were measured with the residual protio solvent peak used as an internal standard. As shown in FIG. 12, catalyst 7 is faster than 2 a in RCM, while 8 is slower than 2 a.
  • The foregoing test reaction was then re-run to compare catalysts 7, 8, 9, 10, and 11, with the results given in FIG. 13.
  • EXAMPLE 18 Activity of Catalysts 6 and 8: RCM of Diethylallyl Malonate
  • As in Example 16, the ring-closing metathesis of diethyldiallyl malonate was used as a test reaction to compare the activity of catalysts 6 and 8. In the dry box, 2.5 mol % of catalyst (0.0052 mmol) was dissolved in C6D6 (0.65 mL) in an NMR tube fitted with a teflon septum screw-cap. The resulting solution was allowed to equilibrate in the NMR probe at 60° C. Diethyldiallyl malonate (50 μL, 0.207 mmol, 0.30 M) was injected into the NMR tube neat and the reaction was monitored by 1H NMR spectroscopy (FIG. 14). The olefinic resonances integrals of the product relative to that of the starting material were measured with the residual protio solvent peak used as an internal standard.
  • EXAMPLE 19 ROMP of Dicyclopentadiene (DCPD) using Catalysts 2 a and 2 b
  • Dicyclopentadiene containing 3.5% of tricyclopentadiene (100 g) was polymerized by addition of catalyst (monomer/catalyst=30,000:1 mole:mole) at 30° C. The polymerization exotherms for the polymerization catalyzed by catalysts 2 a and 2 b were measured and are shown in FIG. 15. In the same way that catalyst 2 b is much slower that 2 a in RCM, 2 b also initiates the ROMP of DCPD more slowly than 2 a. A ROMP of DCPD using 2 a reaches its exotherm within 3 minutes, while the same polymerization catalyzed by 2 b requires more than 25 minutes.
  • While not intending to be bound by theoretical considerations, the difference in reactivity between 2 a and 2 b may be due to the fact that the pyridine ligand in 2 a is trans to the strongly σ-donating NHC ligand and therefore dissociates to give the active 14-electron species much faster than in 2 b. The difference in activity between 2 a and 2 b may be purely due to a disparity in initiation rates and does not give any clues regarding the conformation of the metallocyclobutane metathesis intermediates. In other words, the fact that 2 a is a faster catalyst than 2 b does not imply that the olefin approaching the 14-electron species must necessarily bind trans to the NHC ligand [see, e.g., Trnka, T. M.; Day, M. W.; Grubbs, R. H. Organometallics 2001, 20, 3845-3847 for a discussion on the conformation of olefin metathesis intermediates]. Substitution on the pyridine ring has a much less dramatic effect on catalytic activity.
  • In the ROMP of DCPD, a reaction less sensitive to small reactivity differences, the three complexes 2 a, 4 and 5 were found to have similar catalytic properties. A further ROMP was run to compare catalysts 2 a, 2 b, and 12, with the results given in FIG. 16.
  • EXAMPLE 20 ROMP of Dicyclopentadiene (DCPD) using Mixtures of Catalysts 2 a and 2 b
  • Dicyclopentadiene containing 3.5% of tricyclopentadiene (100 g) was polymerized by addition of catalyst (monomer/catalyst=40,000:1 mole:mole) at 30° C. The polymerization exotherms for the polymerization catalyzed by mixtures of catalysts 2 a and 2 b at various ratios of the catalysts were measured and are shown in FIG. 17.
  • As shown in FIG. 17, the slow isomerization process and large activity difference between catalysts 2 a and 2 b allows for this catalytic system to be tuned by partially isomerizing 2 a to a 2 a:2 b mixture with the desired initiation rate. Indeed, the use of varying 2 a:2 b mixtures for the ROMP of DCPD allowed for the control of the times to exotherm as shown in FIG. 17.
  • EXAMPLE 21 ROMP of Dicyclopentadiene (DCPD) using Catalysts 2 a, 7 and 8
  • Dicyclopentadiene containing 3.5% of tricyclopentadiene (100 g) was polymerized by addition of catalyst (monomer/catalyst=40,000:1 mole:mole) at 30° C. The polymerization exotherms for the polymerization catalyzed by catalysts 2 a, Ru(Ph-IM) and Ru(Cy-Im) were measured and are shown in FIG. 18.
  • As noted in RCM, catalyst 7 is faster than 2 a, while 8 is slower than 2 a. The same trend was observed in the ROMP of DCPD. These results show that the catalysts that contain an imine ligand Ru(R-Im) (where R is for instance an alkyl or aryl group) can easily be tuned by varying the steric and electronic properties of the R group on the imine.

Claims (15)

1. An organometallic complex comprising a Group 8 transition metal having an N-heterocyclic carbene ligand and an alkylidene group contained within a cyclic structure, wherein the complex is capable of catalyzing an olefin metathesis reaction with a latency period of at least two minutes.
2. The organometallic complex of claim 1, capable of catalyzing an olefin metathesis reaction with a latency period of at least five minutes.
3. The organometallic complex of claim 1, wherein the olefin metathesis reaction is ring closing metathesis.
4. The organometallic complex of claim 1, wherein the olefin metathesis reaction is ring opening metathesis polymerization.
5. The organometallic complex of claim 2, wherein the olefin metathesis reaction is ring closing metathesis.
6. The organometallic complex of claim 2, wherein the olefin metathesis reaction is ring opening metathesis polymerization.
7. A complex having the structure of formula (I)
Figure US20050261451A1-20051124-C00012
wherein:
α and β represent single bonds or unsaturated bonds, with the proviso that α and β cannot both be unsaturated bonds;
M is a Group 8 transition metal;
R1 and R2 are independently selected from hydrogen, hydrocarbyl, substituted hydrocarbyl, heteroatom-containing hydrocarbyl, substituted heteroatom-containing hydrocarbyl, and functional groups;
Q is an organic diradical;
X1 and X2 are anionic ligands, and may be the same or different;
L1 is a neutral electron donor ligand, and p is zero or 1;
when α is a single bond, L2 is selected from NR7R8, PR7R8, N═CR7R8, and R7C═NR8, where R7 and R8 are independently selected from substituted and/or heteroatom-containing C1-C20 alkyl, C2-C20 alkenyl, C2-C20 alkynyl, and C5-C24 aryl, or R7 and R8 can be taken together to form a heterocyclic ring;
when α is an unsaturated bond, L2 is selected from NR7 and PR7, where R7 is as defined previously, or L2 and Z represent adjacent atoms in an aromatic ring;
Y and Z are linkages independently selected from hydrocarbylene, substituted hydrocarbylene, heteroatom-containing hydrocarbylene, substituted heteroatom-containing hydrocarbylene, —O—, —S—, —NR9—, and —PR9—, wherein R9 is selected from hydrocarbyl, substituted hydrocarbyl, heteroatom-containing hydrocarbyl, and substituted heteroatom-containing hydrocarbyl, and further wherein Y and Z may represent adjacent atoms in an aromatic ring;
m is zero or 1; and
n is zero or 1,
as well as isomers thereof.
8. A complex having the structure of formula (II)
Figure US20050261451A1-20051124-C00013
wherein:
β represent a single bond or an unsaturated bond;
M is a Group 8 transition metal;
R1 and R2 are independently selected from hydrogen, hydrocarbyl, substituted hydrocarbyl, heteroatom-containing hydrocarbyl, substituted heteroatom-containing hydrocarbyl, and functional groups;
Q is an organic diradical;
X1 and X2 are anionic ligands, and may be the same or different;
L1 is a neutral electron donor ligand, and p is zero or 1;
R7 and R8 are independently selected from substituted and/or heteroatom-containing C1-C20 alkyl, C2-C20 alkenyl, C2-C20 alkynyl, and C5-C24 aryl, or R7 and R8 can be taken together to form a heterocyclic ring; and
Y and Z are linkages independently selected from hydrocarbylene, substituted hydrocarbylene, heteroatom-containing hydrocarbylene, substituted heteroatom-containing hydrocarbylene, —O—, —S—, —NR9—, and —PR9—, wherein R9 is selected from hydrocarbyl, substituted hydrocarbyl, heteroatom-containing hydrocarbyl, and substituted heteroatom-containing hydrocarbyl, and further wherein Y and Z may represent adjacent atoms in an aromatic ring,
as well as isomers thereof.
9. The complex of claim 8, wherein R7 and R8 are C1-C12 alkyl or C5-C12 aryl, and Y is a substituted or unsubstituted methylene or ethylene linkage.
10. A complex having the structure of formula (III)
Figure US20050261451A1-20051124-C00014
wherein:
β represent a single bond or an unsaturated bond;
M is a Group 8 transition metal;
R1 and R2 are independently selected from hydrogen, hydrocarbyl, substituted hydrocarbyl, heteroatom-containing hydrocarbyl, substituted heteroatom-containing hydrocarbyl, and functional groups;
Q is an organic diradical;
X1 and X2 are anionic ligands, and may be the same or different;
L1 is a neutral electron donor ligand, and p is zero or 1;
R7 and R8 are independently selected from substituted and/or heteroatom-containing C1-C20 alkyl, C2-C20 alkenyl, C2-C20 alkynyl, and C5-C24 aryl, or R7 and R8 can be taken together to form a heterocyclic ring; and
Y and Z are linkages independently selected from hydrocarbylene, substituted hydrocarbylene, heteroatom-containing hydrocarbylene, substituted heteroatom-containing hydrocarbylene, —O—, —S—, —NR9—, and —PR9—, wherein R9 is selected from hydrocarbyl, substituted hydrocarbyl, heteroatom-containing hydrocarbyl, and substituted heteroatom-containing hydrocarbyl, and further wherein Y and Z may represent adjacent atoms in an aromatic ring,
as well as isomers thereof.
11. The complex of claim 10, wherein R7 and R8 are C1-C12 alkyl or C5-C12 aryl, and Y is a substituted or unsubstituted methylene or ethylene linkage.
12. The complex of claim 11, wherein R7 and R8 are phenyl and Y is ethylene.
13. A complex having the structure of formula (IV)
Figure US20050261451A1-20051124-C00015
wherein:
M is a Group 8 transition metal;
R1 and R2 are independently selected from hydrogen, hydrocarbyl, substituted hydrocarbyl, heteroatom-containing hydrocarbyl, substituted heteroatom-containing hydrocarbyl, and functional groups;
Q is an organic diradical;
X1 and X2 are anionic ligands, and may be the same or different;
L1 is a neutral electron donor ligand, and p is zero or 1; and
Y is a linkage selected from hydrocarbylene, substituted hydrocarbylene, heteroatom-containing hydrocarbylene, substituted heteroatom-containing hydrocarbylene, —O—, —S—, —NR9—, and —PR9—, wherein R9 is selected from hydrocarbyl, substituted hydrocarbyl, heteroatom-containing hydrocarbyl, and substituted heteroatom-containing hydrocarbyl,
as well as isomers thereof.
14. A complex having the structure of formula (V)
Figure US20050261451A1-20051124-C00016
wherein:
M is a Group 8 transition metal;
R1 and R2 are independently selected from hydrogen, hydrocarbyl, substituted hydrocarbyl, heteroatom-containing hydrocarbyl, substituted heteroatom-containing hydrocarbyl, and functional groups;
Q is an organic diradical;
X1 and X2 are anionic ligands, and may be the same or different;
L1 is a neutral electron donor ligand, and p is zero or 1; and
R7 is selected from substituted and/or heteroatom-containing C1-C20 alkyl, C2-C20 alkenyl, C2-C20 alkynyl, and C5-C24 aryl; and
Y and Z are linkages independently selected from hydrocarbylene, substituted hydrocarbylene, heteroatom-containing hydrocarbylene, substituted heteroatom-containing hydrocarbylene, —O—, —S—, —NR9—, and —PR9—, wherein R9 is selected from hydrocarbyl, substituted hydrocarbyl, heteroatom-containing hydrocarbyl, and substituted heteroatom-containing hydrocarbyl,
as well as isomers thereof.
15. A method for catalyzing an olefin metathesis reaction, comprising contacting an olefinic reactant with the catalytic complex of any one of claims 1, 7, 8, 9, 10, 11, 12, 13, or 14 under reaction conditions selected to enable olefin metathesis.
US11/094,102 2004-03-29 2005-03-29 Latent, high-activity olefin metathesis catalysts containing an N-heterocyclic carbene ligand Abandoned US20050261451A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/094,102 US20050261451A1 (en) 2004-03-29 2005-03-29 Latent, high-activity olefin metathesis catalysts containing an N-heterocyclic carbene ligand
US13/779,190 US8871879B2 (en) 2004-03-29 2013-02-27 Latent, high-activity olefin metathesis catalysts containing an N-heterocyclic carbene ligand
US14/497,387 US9238709B2 (en) 2004-03-29 2014-09-26 Latent, high-activity olefin metathesis catalysts containing an N-heterocyclic carbene ligand

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US55774204P 2004-03-29 2004-03-29
US60415804P 2004-08-23 2004-08-23
US11/094,102 US20050261451A1 (en) 2004-03-29 2005-03-29 Latent, high-activity olefin metathesis catalysts containing an N-heterocyclic carbene ligand

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/779,190 Continuation US8871879B2 (en) 2004-03-29 2013-02-27 Latent, high-activity olefin metathesis catalysts containing an N-heterocyclic carbene ligand

Publications (1)

Publication Number Publication Date
US20050261451A1 true US20050261451A1 (en) 2005-11-24

Family

ID=35064307

Family Applications (3)

Application Number Title Priority Date Filing Date
US11/094,102 Abandoned US20050261451A1 (en) 2004-03-29 2005-03-29 Latent, high-activity olefin metathesis catalysts containing an N-heterocyclic carbene ligand
US13/779,190 Active US8871879B2 (en) 2004-03-29 2013-02-27 Latent, high-activity olefin metathesis catalysts containing an N-heterocyclic carbene ligand
US14/497,387 Active US9238709B2 (en) 2004-03-29 2014-09-26 Latent, high-activity olefin metathesis catalysts containing an N-heterocyclic carbene ligand

Family Applications After (2)

Application Number Title Priority Date Filing Date
US13/779,190 Active US8871879B2 (en) 2004-03-29 2013-02-27 Latent, high-activity olefin metathesis catalysts containing an N-heterocyclic carbene ligand
US14/497,387 Active US9238709B2 (en) 2004-03-29 2014-09-26 Latent, high-activity olefin metathesis catalysts containing an N-heterocyclic carbene ligand

Country Status (8)

Country Link
US (3) US20050261451A1 (en)
EP (1) EP1735352B1 (en)
JP (2) JP2007530706A (en)
AU (1) AU2005228434A1 (en)
BR (1) BRPI0509322A (en)
MX (1) MXPA06011302A (en)
PL (1) PL1735352T3 (en)
WO (1) WO2005094345A2 (en)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100607030B1 (en) 2004-03-26 2006-08-01 롬 앤드 하스 캄파니 Olefin Polymerization Catalyst and Polymerization Process
US20070270621A1 (en) * 2003-01-13 2007-11-22 Millis James R Method for Making Industrial Chemicals
US20080009598A1 (en) * 1998-04-06 2008-01-10 Degussa Ag Alkylidene complexes of ruthenium containing n-heterocyclic carbene ligands; use as highly active, selective catalysts for olefin metathesis
US20090048459A1 (en) * 2006-01-10 2009-02-19 Michael John Tupy Method of making hydrogenated metathesis products
US20090264672A1 (en) * 2006-10-13 2009-10-22 Elevance Renewable Sciences, Inc. Methods of making organic compounds by metathesis
WO2009142535A1 (en) 2008-05-22 2009-11-26 Общество С Ограниченной Ответственностью "Объединённый Центр Исследований И Разработок" Dicyclopentadiene metathesis polymerisation catalyst
US20100145086A1 (en) * 2006-10-13 2010-06-10 Elevance Renewable Sciences, Inc. Synthesis of Terminal Alkenes From Internal Alkenes Via Olefin Metathesis
US20100197920A1 (en) * 2007-06-20 2010-08-05 Agency For Science, Technology And Research N-heterocyclic carbene metallacycle catalysts and methods
US20100282467A1 (en) * 2009-05-05 2010-11-11 Stepan Company Sulfonated internal olefin surfactant for enhanced oil recovery
WO2011005136A1 (en) 2009-07-09 2011-01-13 Общество С Ограниченной Ответственностью "Объединённый Центр Исследований И Разработок" Method for producing polydicyclopentadiene and materials based thereon
WO2011043893A2 (en) * 2009-10-08 2011-04-14 The Regents Of The University Of California Molecular metal-oxo catalysts for generating hydrogen from water
US8067623B2 (en) 2006-07-12 2011-11-29 Elevance Renewable Sciences, Inc. Ring opening cross-metathesis reaction of cyclic olefins with seed oils and the like
US8067610B2 (en) 2006-07-13 2011-11-29 Yann Schrodi Synthesis of terminal alkenes from internal alkenes and ethylene via olefin metathesis
WO2011149388A1 (en) * 2010-05-27 2011-12-01 Закрытое Акционерное Общество "Сибур Холдинг" Ruthenium catalyst for the metathesis polymerization of dicyclopentadiene (embodiments) and method for producing polydicyclopentadiene (embodiments)
EP2398814A2 (en) * 2009-02-18 2011-12-28 Henkel Corporation Thermally switchable ruthenium initiators
WO2013134192A1 (en) * 2012-03-05 2013-09-12 California Institute Of Technology Syntheses of z-olefin-containing lepidopteran insect pheromones
US20140005338A1 (en) * 2011-03-08 2014-01-02 Zeon Corporation Polymerizable composition, resin shaped article, and laminate
EP2742074A1 (en) * 2011-08-12 2014-06-18 ExxonMobil Chemical Patents Inc. Polymers prepared by ring opening/cross metathesis
WO2014134333A1 (en) 2013-02-27 2014-09-04 Materia, Inc. Metal carbene olefin metathesis two catalyst composition
US8846938B2 (en) 2009-05-07 2014-09-30 Umicore Ag & Co. Kg Method for preparation of ruthenium-based metathesis catalysts with chelating alkylidene ligands
US8895771B2 (en) 2006-10-13 2014-11-25 Elevance Renewable Sciences, Inc. Methods of making organic compounds by metathesis and hydrocyanation
WO2015003147A1 (en) * 2013-07-03 2015-01-08 Materia, Inc. Liquid molding compositions
US8993819B2 (en) 2011-07-12 2015-03-31 Basf Se Process for preparing cycloheptene
WO2015076958A1 (en) * 2013-11-22 2015-05-28 Exxonmobil Chemical Patents Inc. Novel polyesters containing polyolefin arms
WO2015115937A1 (en) * 2014-01-29 2015-08-06 Открытое акционерное общество "Нефтяная компания "Роснефть" Dicyclopentadiene metathesis polymerization catalyst in the form of a ruthenium complex and method for producing same
WO2015115939A1 (en) * 2014-01-29 2015-08-06 Открытое акционерное общество "Нефтяная компания "Роснефть" Catalyst for metathesis polymerization of dicyclopentadiene, and preparation method thereof
WO2015115938A1 (en) * 2014-01-29 2015-08-06 Открытое акционерное общество "Нефтяная компания "Роснефть" Ruthenium catalyst for metathesis polymerization of dicyclopentadiene in form of cationic complex, and preparation method thereof
US9181360B2 (en) 2011-08-12 2015-11-10 Exxonmobil Chemical Patents Inc. Polymers prepared by ring opening / cross metathesis
US20160185897A1 (en) * 2013-02-27 2016-06-30 Materia, Inc. Olefin metathesis catalyst compositions comprising at least two metal carbene olefin metathesis catalysts
US9382354B2 (en) 2013-11-22 2016-07-05 Exxonmobil Chemical Patents Inc. Polyesters containing polyolefin arms
WO2017053690A1 (en) * 2015-09-24 2017-03-30 Materia, Inc. Metal carbene olefin metathesis catalysts
WO2017100585A1 (en) * 2015-12-10 2017-06-15 Materia, Inc. Olefin metathesis catalysts
WO2020201314A1 (en) 2019-04-02 2020-10-08 Apeiron Synthesis Spolka Akcyjna New use of metal complexes having organic ligands for activating olefin metathesis ruthenium (pre)catalysts
CN111777647A (en) * 2020-07-31 2020-10-16 山东京博中聚新材料有限公司 Continuous hydrogenation production device and method for carbon-carbon double bonds in conjugated diene polymer
WO2021242636A1 (en) 2020-05-29 2021-12-02 Exxonmobil Chemical Patents Inc. Processes for producing cyclic olefins from polymers and re-polymerization thereof
CN114106057A (en) * 2016-10-19 2022-03-01 优美科股份公司及两合公司 Synthesis and characterization of Ru alkylidene complexes

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL379879A1 (en) 2006-06-07 2007-12-10 Umicore Ag & Co.Kg. Ruthenium and osmium complex, the manner of their production and their application as (pre)catalytic agent of metathesis reaction
WO2008000644A1 (en) * 2006-06-30 2008-01-03 F. Hoffmann-La Roche Ag New ruthenium complexes as catalysts for metahesis reactions
CN101594937B (en) * 2006-11-21 2014-04-30 加州理工学院 Olefin metathesis initiators bearing thiazol-2-ylidene ligands
DE102007020694A1 (en) 2007-05-03 2008-11-06 Evonik Degussa Gmbh Sulfur-containing metathesis catalysts
JP5365625B2 (en) * 2008-03-31 2013-12-11 日本ゼオン株式会社 Polymerizable composition, resin molded body, and cross-linked resin molded body
EP2639219B1 (en) * 2012-03-14 2016-08-10 Umicore AG & Co. KG Ruthenium-based metathesis catalysts and precursors for their preparation
CA3005562A1 (en) 2015-11-18 2017-05-26 Provivi, Inc. Production of fatty olefin derivatives via olefin metathesis
JP6737885B2 (en) 2015-11-18 2020-08-12 プロヴィヴィ インコーポレイテッド Microorganisms and related compounds for the production of insect pheromones
JP2019517797A (en) 2016-06-06 2019-06-27 プロヴィヴィ インコーポレイテッド Semibiosynthetic production of fatty alcohols and fatty aldehydes
CN110914442A (en) 2017-05-17 2020-03-24 普罗维维股份有限公司 Microorganisms for the production of insect pheromones and related compounds
WO2019108969A1 (en) * 2017-12-01 2019-06-06 University Of Florida Research Foundation, Inc. Compositions and methods for stereoregular ring expansion metathesis polymerization
CN109794292B (en) * 2019-01-10 2021-12-07 天津大学 Z-selective ruthenium carbene olefin metathesis catalyst, and preparation method and application thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5312940A (en) * 1992-04-03 1994-05-17 California Institute Of Technology Ruthenium and osmium metal carbene complexes for olefin metathesis polymerization
US5969170A (en) * 1992-04-03 1999-10-19 California Institute Of Technology High activity ruthenium and osmium metal carbene complexes for olefin metathesis reactions
US6077805A (en) * 1997-03-06 2000-06-20 Ciba Specialty Chemicals Corporation Hexacoordinated ruthenium or osmium carbene catalysts
US6107420A (en) * 1998-07-31 2000-08-22 California Institute Of Technology Thermally initiated polymerization of olefins using Ruthenium or osmium vinylidene complexes
US6111121A (en) * 1995-08-03 2000-08-29 California Institute Of Technology High metathesis activity ruthenium and osmium metal carbene complexes
US6306987B1 (en) * 1997-06-27 2001-10-23 Ciba Specialty Chemicals Corporation Ruthenium and osmium catalysts
US20020177710A1 (en) * 2001-03-23 2002-11-28 California Institute Technology; Cymetech, Llc Hexacoordinated ruthenium or osmium metal carbene metathesis catalysts
US6803429B2 (en) * 2001-03-30 2004-10-12 California Institute Of Technology Selective ring-opening cross-metathesis of cycloolefins
US6884859B2 (en) * 2001-08-29 2005-04-26 California Institute Of Technology Ring-opening metathesis polymerization of bridged bicyclic and polycyclic olefins containing two or more heteroatoms

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6417363B1 (en) * 1997-12-04 2002-07-09 Ciba Specialty Chemicals Corporation Heterocyclyl ligand containing ruthenium and osmium catalysts
DE19815275B4 (en) 1998-04-06 2009-06-25 Evonik Degussa Gmbh Alkylidene complexes of ruthenium with N-heterocyclic carbene ligands and their use as highly active, selective catalysts for olefin metathesis
KR100823365B1 (en) 1999-05-24 2008-04-17 캘리포니아 인스티튜트 오브 테크놀로지 Imidazolidine-based metal carbene metathesis catalysts
JP3943015B2 (en) * 2000-08-10 2007-07-11 トラスティーズ オブ ボストン カレッジ Recyclable metathesis catalyst
CN101172952B (en) * 2002-04-29 2013-03-27 陶氏环球技术有限责任公司 Integrate chemical processes for industrial utilization of seed oils

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5312940A (en) * 1992-04-03 1994-05-17 California Institute Of Technology Ruthenium and osmium metal carbene complexes for olefin metathesis polymerization
US5969170A (en) * 1992-04-03 1999-10-19 California Institute Of Technology High activity ruthenium and osmium metal carbene complexes for olefin metathesis reactions
US6111121A (en) * 1995-08-03 2000-08-29 California Institute Of Technology High metathesis activity ruthenium and osmium metal carbene complexes
US6077805A (en) * 1997-03-06 2000-06-20 Ciba Specialty Chemicals Corporation Hexacoordinated ruthenium or osmium carbene catalysts
US6306987B1 (en) * 1997-06-27 2001-10-23 Ciba Specialty Chemicals Corporation Ruthenium and osmium catalysts
US6107420A (en) * 1998-07-31 2000-08-22 California Institute Of Technology Thermally initiated polymerization of olefins using Ruthenium or osmium vinylidene complexes
US20020177710A1 (en) * 2001-03-23 2002-11-28 California Institute Technology; Cymetech, Llc Hexacoordinated ruthenium or osmium metal carbene metathesis catalysts
US6803429B2 (en) * 2001-03-30 2004-10-12 California Institute Of Technology Selective ring-opening cross-metathesis of cycloolefins
US6884859B2 (en) * 2001-08-29 2005-04-26 California Institute Of Technology Ring-opening metathesis polymerization of bridged bicyclic and polycyclic olefins containing two or more heteroatoms

Cited By (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080009598A1 (en) * 1998-04-06 2008-01-10 Degussa Ag Alkylidene complexes of ruthenium containing n-heterocyclic carbene ligands; use as highly active, selective catalysts for olefin metathesis
US7378528B2 (en) * 1998-04-06 2008-05-27 Evonik Degussa Gmbh Alkylidene complexes of ruthenium containing N-heterocyclic carbene ligands; use as highly active, selective catalysts for olefin metathesis
US20080207911A1 (en) * 1998-04-06 2008-08-28 Evonik Degussa Gmbh Alkylidene complexes of ruthenium containing n-heterocyclic carbene ligands; use as highly active, selective catalysts for olefin metathesis
US8153810B2 (en) 1998-04-06 2012-04-10 Evonik Degussa Gmbh Alkylidene complexes of ruthenium containing N-heterocyclic carbene ligands; use as highly active, selective catalysts for olefin metathesis
US7960599B2 (en) 2003-01-13 2011-06-14 Elevance Renewable Sciences, Inc. Method for making industrial chemicals
US20070270621A1 (en) * 2003-01-13 2007-11-22 Millis James R Method for Making Industrial Chemicals
KR100607030B1 (en) 2004-03-26 2006-08-01 롬 앤드 하스 캄파니 Olefin Polymerization Catalyst and Polymerization Process
US20090048459A1 (en) * 2006-01-10 2009-02-19 Michael John Tupy Method of making hydrogenated metathesis products
US8115021B2 (en) 2006-01-10 2012-02-14 Elevance Renewable Sciences, Inc. Method of making hydrogenated metathesis products
US8067623B2 (en) 2006-07-12 2011-11-29 Elevance Renewable Sciences, Inc. Ring opening cross-metathesis reaction of cyclic olefins with seed oils and the like
US9139605B2 (en) 2006-07-13 2015-09-22 Elevance Renewable Sciences, Inc. Synthesis of terminal alkenes from internal alkenes and ethylene via olefin metathesis
US9255117B2 (en) 2006-07-13 2016-02-09 Materia, Inc. Synthesis of terminal alkenes from internal alkenes and ethylene via olefin metathesis
US8481747B2 (en) 2006-07-13 2013-07-09 Elevance Renewable Sciences, Inc. Synthesis of terminal alkenes from internal alkenes and ethylene via olefin metathesis
US8067610B2 (en) 2006-07-13 2011-11-29 Yann Schrodi Synthesis of terminal alkenes from internal alkenes and ethylene via olefin metathesis
US20090264672A1 (en) * 2006-10-13 2009-10-22 Elevance Renewable Sciences, Inc. Methods of making organic compounds by metathesis
US8569560B2 (en) 2006-10-13 2013-10-29 Elevance Renewable Sciences, Inc. Synthesis of terminal alkenes from internal alkenes via olefin metathesis
US20100145086A1 (en) * 2006-10-13 2010-06-10 Elevance Renewable Sciences, Inc. Synthesis of Terminal Alkenes From Internal Alkenes Via Olefin Metathesis
US9120742B2 (en) 2006-10-13 2015-09-01 Elevance Renewable Sciences, Inc. Methods of making organic compounds by metathesis
US8895771B2 (en) 2006-10-13 2014-11-25 Elevance Renewable Sciences, Inc. Methods of making organic compounds by metathesis and hydrocyanation
US10906861B2 (en) 2006-10-13 2021-02-02 Wilmar Trading Pte Ltd Methods of making organic compounds by metathesis
US8501973B2 (en) 2006-10-13 2013-08-06 Elevance Renewable Sciences, Inc. Synthesis of terminal alkenes from internal alkenes via olefin metathesis
US20100197920A1 (en) * 2007-06-20 2010-08-05 Agency For Science, Technology And Research N-heterocyclic carbene metallacycle catalysts and methods
US8492552B2 (en) 2007-06-20 2013-07-23 Agency For Science, Technology And Research N-heterocyclic carbene metallacycle catalysts and methods
WO2009142535A1 (en) 2008-05-22 2009-11-26 Общество С Ограниченной Ответственностью "Объединённый Центр Исследований И Разработок" Dicyclopentadiene metathesis polymerisation catalyst
CN102317298A (en) * 2009-02-18 2012-01-11 汉高公司 Thermally switchable ruthenium initiators
EP2398814A4 (en) * 2009-02-18 2013-02-20 Henkel Corp Thermally switchable ruthenium initiators
EP2398814A2 (en) * 2009-02-18 2011-12-28 Henkel Corporation Thermally switchable ruthenium initiators
US8403044B2 (en) 2009-05-05 2013-03-26 Stepan Company Sulfonated internal olefin surfactant for enhanced oil recovery
US20100282467A1 (en) * 2009-05-05 2010-11-11 Stepan Company Sulfonated internal olefin surfactant for enhanced oil recovery
US8846938B2 (en) 2009-05-07 2014-09-30 Umicore Ag & Co. Kg Method for preparation of ruthenium-based metathesis catalysts with chelating alkylidene ligands
US9562116B2 (en) 2009-05-07 2017-02-07 Umicore Ag & Co. Kg Method for preparation of ruthenium-based metathesis catalysts with chelating alkylidene ligands
WO2011005136A1 (en) 2009-07-09 2011-01-13 Общество С Ограниченной Ответственностью "Объединённый Центр Исследований И Разработок" Method for producing polydicyclopentadiene and materials based thereon
WO2011043893A2 (en) * 2009-10-08 2011-04-14 The Regents Of The University Of California Molecular metal-oxo catalysts for generating hydrogen from water
WO2011043893A3 (en) * 2009-10-08 2011-08-04 The Regents Of The University Of California Molecular metal-oxo catalysts for generating hydrogen from water
WO2011149388A1 (en) * 2010-05-27 2011-12-01 Закрытое Акционерное Общество "Сибур Холдинг" Ruthenium catalyst for the metathesis polymerization of dicyclopentadiene (embodiments) and method for producing polydicyclopentadiene (embodiments)
US20140005338A1 (en) * 2011-03-08 2014-01-02 Zeon Corporation Polymerizable composition, resin shaped article, and laminate
US8993819B2 (en) 2011-07-12 2015-03-31 Basf Se Process for preparing cycloheptene
EP2742074A4 (en) * 2011-08-12 2015-04-01 Exxonmobil Chem Patents Inc Polymers prepared by ring opening/cross metathesis
EP2742074A1 (en) * 2011-08-12 2014-06-18 ExxonMobil Chemical Patents Inc. Polymers prepared by ring opening/cross metathesis
US9181360B2 (en) 2011-08-12 2015-11-10 Exxonmobil Chemical Patents Inc. Polymers prepared by ring opening / cross metathesis
US8987531B2 (en) 2012-03-05 2015-03-24 California Institute Of Technology Syntheses of Z-olefin-containing lepidopteran insect pheromones
WO2013134192A1 (en) * 2012-03-05 2013-09-12 California Institute Of Technology Syntheses of z-olefin-containing lepidopteran insect pheromones
US20160185897A1 (en) * 2013-02-27 2016-06-30 Materia, Inc. Olefin metathesis catalyst compositions comprising at least two metal carbene olefin metathesis catalysts
US9598531B2 (en) * 2013-02-27 2017-03-21 Materia, Inc. Olefin metathesis catalyst compositions comprising at least two metal carbene olefin metathesis catalysts
KR102211385B1 (en) 2013-02-27 2021-02-03 마터리아 인코포레이티드 Metal carbene olefin metathesis two catalyst composition
EP2961778A4 (en) * 2013-02-27 2016-10-05 Materia Inc Metal carbene olefin metathesis two catalyst composition
US20140357820A1 (en) * 2013-02-27 2014-12-04 Materia, Inc. Olefin metathesis catalyst compositions comprising at least two metal carbene olefin metathesis catalysts
KR20150122208A (en) * 2013-02-27 2015-10-30 마터리아 인코포레이티드 Metal carbene olefin metathesis two catalyst composition
WO2014134333A1 (en) 2013-02-27 2014-09-04 Materia, Inc. Metal carbene olefin metathesis two catalyst composition
US9751975B2 (en) 2013-07-03 2017-09-05 Materia, Inc. Liquid molding compositions
EA032286B1 (en) * 2013-07-03 2019-05-31 Материа, Инк. Liquid molding compositions
WO2015003147A1 (en) * 2013-07-03 2015-01-08 Materia, Inc. Liquid molding compositions
CN105492489A (en) * 2013-07-03 2016-04-13 马特里亚公司 Liquid molding compositions
US9382354B2 (en) 2013-11-22 2016-07-05 Exxonmobil Chemical Patents Inc. Polyesters containing polyolefin arms
WO2015076958A1 (en) * 2013-11-22 2015-05-28 Exxonmobil Chemical Patents Inc. Novel polyesters containing polyolefin arms
WO2015115939A1 (en) * 2014-01-29 2015-08-06 Открытое акционерное общество "Нефтяная компания "Роснефть" Catalyst for metathesis polymerization of dicyclopentadiene, and preparation method thereof
WO2015115937A1 (en) * 2014-01-29 2015-08-06 Открытое акционерное общество "Нефтяная компания "Роснефть" Dicyclopentadiene metathesis polymerization catalyst in the form of a ruthenium complex and method for producing same
WO2015115938A1 (en) * 2014-01-29 2015-08-06 Открытое акционерное общество "Нефтяная компания "Роснефть" Ruthenium catalyst for metathesis polymerization of dicyclopentadiene in form of cationic complex, and preparation method thereof
RU2560151C1 (en) * 2014-01-29 2015-08-20 Открытое акционерное общество "Нефтяная компания Роснефть" Ruthenium catalyst of metathesis dicyclopentadiene polymerisation in form of cationic complex and method of obtaining thereof
WO2017053690A1 (en) * 2015-09-24 2017-03-30 Materia, Inc. Metal carbene olefin metathesis catalysts
US10501488B2 (en) 2015-09-24 2019-12-10 Umicore Ag & Co. Kg Metal carbene olefin metathesis catalysts
WO2017100585A1 (en) * 2015-12-10 2017-06-15 Materia, Inc. Olefin metathesis catalysts
US10857530B2 (en) 2015-12-10 2020-12-08 Umicore Ag & Co. Kg Olefin metathesis catalysts
CN114106057A (en) * 2016-10-19 2022-03-01 优美科股份公司及两合公司 Synthesis and characterization of Ru alkylidene complexes
WO2020201314A1 (en) 2019-04-02 2020-10-08 Apeiron Synthesis Spolka Akcyjna New use of metal complexes having organic ligands for activating olefin metathesis ruthenium (pre)catalysts
WO2021242636A1 (en) 2020-05-29 2021-12-02 Exxonmobil Chemical Patents Inc. Processes for producing cyclic olefins from polymers and re-polymerization thereof
CN111777647A (en) * 2020-07-31 2020-10-16 山东京博中聚新材料有限公司 Continuous hydrogenation production device and method for carbon-carbon double bonds in conjugated diene polymer

Also Published As

Publication number Publication date
US20150141603A1 (en) 2015-05-21
JP2007530706A (en) 2007-11-01
EP1735352B1 (en) 2019-08-21
US9238709B2 (en) 2016-01-19
PL1735352T3 (en) 2020-06-29
AU2005228434A1 (en) 2005-10-13
US20130296511A1 (en) 2013-11-07
WO2005094345A3 (en) 2006-06-22
WO2005094345A2 (en) 2005-10-13
JP2012082435A (en) 2012-04-26
EP1735352A2 (en) 2006-12-27
BRPI0509322A (en) 2007-09-04
US8871879B2 (en) 2014-10-28
MXPA06011302A (en) 2007-01-16
JP5622711B2 (en) 2014-11-12
EP1735352A4 (en) 2011-05-11

Similar Documents

Publication Publication Date Title
US9238709B2 (en) Latent, high-activity olefin metathesis catalysts containing an N-heterocyclic carbene ligand
US7598330B2 (en) Cross-metathesis of olefins directly substituted with an electron-withdrawing group using transition metal carbene catalysts
EP1765839B1 (en) Transition metal carbene complexes containing a cationic substituent as catalysts of olefin metathesis reactions
KR100497024B1 (en) High Metathesis Activity Ruthenium and Osmium Metal Carbene Complexes
AU2012206966A1 (en) Z-selective olefin metathesis catalysts and their synthetic procedure
WO2012097379A2 (en) Z-selective olefin metathesis catalysts and their synthetic procedure
US11065609B2 (en) Synthesis and characterization of metathesis catalysts
WO2018034931A1 (en) Metathesis catalysts
WO2020109217A2 (en) Metal organic compounds
AU2011205218B2 (en) Latent, high-activity olefin metathesis catalysts containing an N-heterocyclic carbene ligand
CN101090915A (en) Latent, high-activity olefin metathesis catalysts containing an n-heterocyclic carbene ligand

Legal Events

Date Code Title Description
AS Assignment

Owner name: MATERIA, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:UNG, THAY;SCHRODI, YANN;TRIMMER, MARK S.;REEL/FRAME:018517/0869;SIGNING DATES FROM 20060403 TO 20060602

Owner name: CALIFORNIA INSTITUTE OF TECHNOLOGY, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HEJL, ANDREW;SANDERS, DANIEL;GRUBBS, ROBERT H.;REEL/FRAME:018518/0023;SIGNING DATES FROM 20060402 TO 20060828

STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION

AS Assignment

Owner name: NATIONAL INSTITUTES OF HEALTH, MARYLAND

Free format text: CONFIRMATORY LICENSE;ASSIGNOR:CALIFORNIA INSTITUTE OF TECHNOLOGY;REEL/FRAME:048640/0095

Effective date: 20190319