US20050161934A1 - Vehicle frame with integrated high pressure fuel tank - Google Patents

Vehicle frame with integrated high pressure fuel tank Download PDF

Info

Publication number
US20050161934A1
US20050161934A1 US10/690,930 US69093003A US2005161934A1 US 20050161934 A1 US20050161934 A1 US 20050161934A1 US 69093003 A US69093003 A US 69093003A US 2005161934 A1 US2005161934 A1 US 2005161934A1
Authority
US
United States
Prior art keywords
tank
tanks
frame
tunnel
frame described
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/690,930
Inventor
Isaac Rife
Timothy Edmunds
Donald Anderson
George Konstantakopoulos
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Old Carco LLC
Original Assignee
DaimlerChrysler Co LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DaimlerChrysler Co LLC filed Critical DaimlerChrysler Co LLC
Priority to US10/690,930 priority Critical patent/US20050161934A1/en
Assigned to DAIMLERCHRYSLER CORPORATION reassignment DAIMLERCHRYSLER CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ANDERSON, DONALD D., EDMUNDS, TIMOTHY, KONSTANTAKOPOULOS, GEORGE, RIFE, ISAAC E
Publication of US20050161934A1 publication Critical patent/US20050161934A1/en
Priority to US11/420,947 priority patent/US7232156B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • B60K15/063Arrangement of tanks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • B60K15/063Arrangement of tanks
    • B60K15/067Mounting of tanks
    • B60K15/07Mounting of tanks of gas tanks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D21/00Understructures, i.e. chassis frame on which a vehicle body may be mounted
    • B62D21/16Understructures, i.e. chassis frame on which a vehicle body may be mounted having fluid storage compartment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • B60K15/03006Gas tanks

Definitions

  • the present invention relates generally to vehicles that employ a gaseous fuel such as hydrogen, natural gas, or propane. More particularly, the present invention relates to a vehicle frame having an integrated high pressure fuel tank to accommodate hydrogen, natural gas, propane, etc.
  • a gaseous fuel such as hydrogen, natural gas, or propane.
  • CNG compressed natural gas
  • Hybrid vehicles that combine gaseous fueled engines or fuel cells with batteries and electric motors are currently under development. These hybrids are designed with a hydrogen tank in the trunk similar to that described in U.S. Pat. No. 6,536,722.
  • One object of the present invention is an improved gaseous fuel tank.
  • Another object of the present invention is an improved gaseous fuel tank that is integrated into the vehicle frame such that cargo space is available.
  • Still another object of the present invention is an integrated gaseous fuel tank that provides adequate storage for gaseous hydrogen in a hydrogen hybrid vehicle.
  • a frame for a gaseous fueled vehicle comprising: a floor pan, a tunnel positioned centrally and longitudinally in the floor pan extending the full length of the frame, and a tank integrated into and extending the full length of the tunnel.
  • a frame for a gaseous fueled hybrid vehicle comprising: a floor pan, a tunnel positioned centrally and longitudinally in the floor pan extending the full length of the frame, and at least two tanks integrated into the tunnel.
  • FIG. 1 is a cross section of a vehicle showing a centrally positioned tunnel according to the invention.
  • FIG. 2 is a cross section of a vehicle frame showing positioning of the tunnel in relation to the passengers.
  • FIG. 3 is a cross section of a vehicle frame showing the positioning of the tunnel.
  • FIG. 4 is a perspective view of a vehicle frame showing postioning of the tunnel between the seats.
  • FIG. 5 is a perspective view of showing integration of a tunnel in a vehicle frame.
  • FIG. 6 is a cross section of a tunnel showing positioning of the integrated tank and accessory tubes.
  • FIG. 7 is a longitudinal cross section of a variable diameter tank where the variations are uniform about the tank's center line.
  • FIG. 8 is a cross section of the variable diameter tank of FIG. 7 .
  • FIG. 9 is a longitudinal cross section of a variable diameter tank where the variations are offset relative to the tank's center line.
  • FIG. 10 is a cross section of the variable diameter tank of FIG. 9 .
  • a vehicle frame having an integrated high pressure fuel tank or tanks of the present invention can be accomplished with either a production floor pan or a second floor pan that has a large central tunnel.
  • This tunnel is packaged around a high pressure hydrogen gas or compressed natural gas tank longitudinally mounted the length of the frame.
  • the precise sizing and configuration of the tunnel is based on the shape and configuration of the high pressure tank because the tank has the least package flexibility. Additionally, the design and configuration of the tunnel must accommodate the expansion and contraction of the contained tank. (As used herein, the term “tank” is intended to refer to the use of a single or multiple tanks.)
  • a vehicle employing the present invention may be fueled with hydrogen gas, natural gas, propane, or other gaseous fuel.
  • a vehicle may be configured with an internal combustion engine or other type of fueled engine that burns gaseous fuel.
  • the vehicle could be configured to utilize a fuel cell stack to reform the gaseous fuel and generate electricity to power an electric motor or motors.
  • Another vehicle configuration that may use the present invention is a hybrid electric vehicle configured with a fueled engine, electric motor(s), and batteries; or a fuel cell, electric motor(s) and batteries.
  • the high pressure tank of the present invention is designed to safely contain gas at pressures of 10,000 psi or more. Such pressures dictate that the tanks must be cylinders or spheres or a combination thereof.
  • Representative high pressure tanks are described for example in U.S. Pat. Nos. 5,385,263, 5,499,739, 6,401,963, 6,491,882, 6,565,793, the contents of which are specifically incorporated herein by reference. These tanks typically involve a cylinder of metal or plastic wrapped with layers of wound fibers of glass or carbon fiber, for example. Often referred to as composite overwrapped pressure vessels, such reinforced tanks are continually being improved.
  • the present invention is specifically intended to cover the use of ever improving pressure vessels or tanks that will be capable of containing gas at ever increasing pressures.
  • the engine(s) e.g. combustion engine, fuel cell, hybrid, etc.
  • power train in use e.g. front or rear wheel drive with automatic or manual transmission
  • additional equipment e.g. spare tire, crash protection, trunk space, styling, etc.
  • the length of the tank is determined by the distance between the front console and the rear of the vehicle as adjusted by the vehicle equipment and layout (e.g. power train, spare tire, trunk, styling, etc.) that need to be accommodated.
  • the length of available space in the tunnel for the tank and the size of the tank dictates the diameter of the tank, which dictates the effective diameter of the tunnel.
  • the tank would be about 400 mm in diameter and 2000-2500 mm in length. The approximate sizing and positioning of such a tank is illustrated in FIGS. 1 and 2 .
  • a less obvious benefit of a vehicle frame having an integrated high pressure fuel tank is the larger tunnel dictated by the tank increases the chassis' stiffness. This increase in chassis stiffness increases both bending stiffness and torsional stiffness and makes a significant contribution to vehicle handling.
  • Another advantage is that in a traditional five passenger sedan using the invention, the amount of hip room in the front seats and the rear seats directly behind them is only slightly reduced. See, FIGS. 3, 4 , and 5 . Obviously, the larger diameter tunnel in the present invention would reduce the foot space in the center rear seat. However, since this seat is often occupied by a child or a child sitting on a booster seat or a child safety seat, the overall operational impact is negligible.
  • the engine compartment 25 in a vehicle employing the present invention is flexible enough to handle laterally and longitudinally mounted engines or motors and/or a fuel cell stack.
  • Engines and fuel cells that use hydrogen, natural gas, propane, etc. work well with the present invention.
  • the engine, electric motor(s), and fuel cell are reduced in size they are easily mounted in the engine compartment.
  • batteries may be distributed in locations throughout the vehicle or the size or length of the tank may be reduced and all or part of the battery pack may be positioned in the tunnel. (Possible configurations of a battery pack in the tunnel are described in U.S. Pat. No. 5,908,077, the contents of which are specifically incorporated herein by reference.)
  • the present invention is also adaptable to use either traditional or hybrid transmissions or combinations thereof.
  • the present invention easily accommodates traditional front wheel drive, four wheel drive, and all wheel drive powertrains as well as hybrid systems that employ, for example, a traditional front wheel drive transaxle and direct drive electric motors on each rear wheel, direct drive electric motors only, a traditional transaxle and an electric motor, etc.
  • a number of components 35 for the various intended configurations can easily be configured with the tank 30 under the tunnel 10 .
  • the components 35 may be conduits for exhaust, a prop shaft running from the engine to the rear wheels, heating and/or cooling conduits (useful for example in raising and lowering the temperature of the tank 30 if it contains a hydrogen storage material that releases hydrogen gas upon heating, or for cooling very high pressure tanks when the ambient temperature is very high), etc.
  • the size of the components 35 and the tank 30 may be varied as desired. For example, the diameter of the components 35 may be increased and the diameter of the tank 30 decreased if using three equally sized tanks was more desirable.
  • the expansion spring 15 serves to support and fix the tank 30 in the tunnel 10 while simultaneously providing for the expansive deformation of the tank 30 .
  • FIGS. 7-10 illustrate multi-diameter, dumbbell shaped tanks 31 that offer increased storage capacity compared to conventional cylindrical tanks 30 .
  • FIGS. 7 and 8 illustrate a multi-diameter, common axis tank and
  • FIGS. 9 and 10 illustrate a multi-diameter offset axis tank, each having diameters A, B, C, and D, each of which is greater than the diameter X of the main body 32 of the tank.
  • the advantage of this dumbbell configuration is that the main body 32 can dictate the size of the tank tunnel 10 rather than the dumbbell ends 33 .
  • a preferred embodiment of the present invention is a frame 40 for a hybrid fuel cell electric vehicle fueled with hydrogen gas
  • the vehicle comprises a fuel cell stack, storage batteries, and at least one electric motor.
  • the frame includes a floor pan 20 and a tunnel 10 positioned centrally and longitudinally in the floor pan, where the tunnel extends the full length of the frame.
  • the hydrogen gas is stored in a single tank 30 that is integrated into and extends the full length of the tunnel 10 .
  • Such a hybrid vehicle reforms (oxidizes) the hydrogen to produce an electric current which directly powers the electric motor or is stored in the batteries.
  • the batteries may also be charged via regenerative braking and other energy recapture techniques.
  • the tank 30 is axially disposed in the tunnel 10 and circular in cross-section.
  • the tank may be a multi-diameter tank 31 (i.e. have end portions 33 that are larger in cross-sectional area than the central area 32 ) having a common axis Q (i.e. have the terminal ends and the central area centered about the same longitudinal axis Q); or an offset axis R (i.e. have the terminal ends and the central area each centered on different axes that are offset from each other).
  • a common axis Q i.e. have the terminal ends and the central area centered about the same longitudinal axis Q
  • an offset axis R i.e. have the terminal ends and the central area each centered on different axes that are offset from each other.

Abstract

A frame for a gaseous fueled vehicle, said frame comprising: a floor pan, a tunnel positioned centrally and longitudinally in said floor pan extending the full length of said frame, and a tank integrated into said tunnel. The tunnel may also integrate two or more tanks.

Description

    FIELD OF THE INVENTION
  • The present invention relates generally to vehicles that employ a gaseous fuel such as hydrogen, natural gas, or propane. More particularly, the present invention relates to a vehicle frame having an integrated high pressure fuel tank to accommodate hydrogen, natural gas, propane, etc.
  • BACKGROUND OF THE INVENTION
  • The use of hydrogen and other gaseous fuels for vehicles is not new. For example, compressed natural gas (CNG) has occasionally been used as the fuel for internal combustion powered fleet vehicles in markets where CNG represented a low cost, low emission, and relatively high octane fuel source.
  • The allure of hydrogen as a fuel flows from the most basic of chemical formulae: hydrogen plus oxygen equals water. This formula suggests that many of our vehicle related air quality problems could be eliminated simply by fueling future vehicles with hydrogen gas whether they are powered by conventional internal combustion engines, fuel cells, or hybrid fuel cell battery systems.
  • In general, however, a major problem with gaseous fuels has always been how and where to store such fuel in a vehicle. All gaseous fuel must be compressed to some degree to increase its energy density. Compression by itself requires the use of a reinforced storage tank. Unfortunately, even very high compression does not drastically reduce gaseous fuel volume and a relatively large tank is required if the average vehicle is to have a reasonable driving range between fuel fills. Thus, using gaseous fuel on a vehicle requires using a relatively large, reinforced tank.
  • In the past, the use of gaseous fuels has typically been limited to larger vehicles, such as trucks, due in part to the relatively large size of the fuel tanks necessary to provide fuel to power the vehicle over an acceptable range. Such tanks are described in U.S. Pat. No. 5,810,309 (mounting assembly for retrofitting a CNG tank to an existing vehicle by cutting part of the frame); U.S. Pat. No. 6,042,071 (mounting assembly for a large CNG tank that takes over the trunk compartment and accommodates expansion and contraction of the tank); and U.S. Pat. No. 6,536,722 (rack for mounting a number of CNG tanks such as on a bus).
  • Hybrid vehicles that combine gaseous fueled engines or fuel cells with batteries and electric motors are currently under development. These hybrids are designed with a hydrogen tank in the trunk similar to that described in U.S. Pat. No. 6,536,722.
  • Current tank designs for compressed gaseous fuel have a number of drawbacks. For example, gaseous fuel tanks are almost too large to be used in compact vehicles. In mid to full size passenger cars, gaseous fuel tanks require almost all the space in the trunk. In small trucks, part of the cargo area must be used to accommodate a gaseous fuel tank. The problem of accommodating a compressed gas tank is exacerbated in a hybrid vehicle where available storage space is frequently limited by the other systems present.
  • SUMMARY OF THE INVENTION
  • One object of the present invention is an improved gaseous fuel tank.
  • Another object of the present invention is an improved gaseous fuel tank that is integrated into the vehicle frame such that cargo space is available.
  • Still another object of the present invention is an integrated gaseous fuel tank that provides adequate storage for gaseous hydrogen in a hydrogen hybrid vehicle.
  • These and other objects of the invention are satisfied by a frame for a gaseous fueled vehicle, the frame comprising: a floor pan, a tunnel positioned centrally and longitudinally in the floor pan extending the full length of the frame, and a tank integrated into and extending the full length of the tunnel.
  • These objects are also satisfied by a frame for a gaseous fueled hybrid vehicle, the frame comprising: a floor pan, a tunnel positioned centrally and longitudinally in the floor pan extending the full length of the frame, and at least two tanks integrated into the tunnel.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a cross section of a vehicle showing a centrally positioned tunnel according to the invention.
  • FIG. 2 is a cross section of a vehicle frame showing positioning of the tunnel in relation to the passengers.
  • FIG. 3 is a cross section of a vehicle frame showing the positioning of the tunnel.
  • FIG. 4 is a perspective view of a vehicle frame showing postioning of the tunnel between the seats.
  • FIG. 5 is a perspective view of showing integration of a tunnel in a vehicle frame.
  • FIG. 6 is a cross section of a tunnel showing positioning of the integrated tank and accessory tubes.
  • FIG. 7 is a longitudinal cross section of a variable diameter tank where the variations are uniform about the tank's center line.
  • FIG. 8 is a cross section of the variable diameter tank of FIG. 7.
  • FIG. 9 is a longitudinal cross section of a variable diameter tank where the variations are offset relative to the tank's center line.
  • FIG. 10 is a cross section of the variable diameter tank of FIG. 9.
  • DESCRIPTION OF THE INVENTION
  • A vehicle frame having an integrated high pressure fuel tank or tanks of the present invention can be accomplished with either a production floor pan or a second floor pan that has a large central tunnel. This tunnel is packaged around a high pressure hydrogen gas or compressed natural gas tank longitudinally mounted the length of the frame. The precise sizing and configuration of the tunnel is based on the shape and configuration of the high pressure tank because the tank has the least package flexibility. Additionally, the design and configuration of the tunnel must accommodate the expansion and contraction of the contained tank. (As used herein, the term “tank” is intended to refer to the use of a single or multiple tanks.)
  • A vehicle employing the present invention may be fueled with hydrogen gas, natural gas, propane, or other gaseous fuel. Such a vehicle may be configured with an internal combustion engine or other type of fueled engine that burns gaseous fuel. Alternatively, the vehicle could be configured to utilize a fuel cell stack to reform the gaseous fuel and generate electricity to power an electric motor or motors. Another vehicle configuration that may use the present invention is a hybrid electric vehicle configured with a fueled engine, electric motor(s), and batteries; or a fuel cell, electric motor(s) and batteries.
  • The high pressure tank of the present invention is designed to safely contain gas at pressures of 10,000 psi or more. Such pressures dictate that the tanks must be cylinders or spheres or a combination thereof. Representative high pressure tanks are described for example in U.S. Pat. Nos. 5,385,263, 5,499,739, 6,401,963, 6,491,882, 6,565,793, the contents of which are specifically incorporated herein by reference. These tanks typically involve a cylinder of metal or plastic wrapped with layers of wound fibers of glass or carbon fiber, for example. Often referred to as composite overwrapped pressure vessels, such reinforced tanks are continually being improved. The present invention is specifically intended to cover the use of ever improving pressure vessels or tanks that will be capable of containing gas at ever increasing pressures.
  • Of additional consideration in formulating the size and shape of the tunnel is the engine(s) (e.g. combustion engine, fuel cell, hybrid, etc.) and power train in use (e.g. front or rear wheel drive with automatic or manual transmission), as well as the kind and location of additional equipment (e.g. spare tire, crash protection, trunk space, styling, etc.). The length of the tank is determined by the distance between the front console and the rear of the vehicle as adjusted by the vehicle equipment and layout (e.g. power train, spare tire, trunk, styling, etc.) that need to be accommodated.
  • If a single tank is used, the length of available space in the tunnel for the tank and the size of the tank (based on the desired range of the vehicle, pressure or the fuel in the tank, etc.) dictates the diameter of the tank, which dictates the effective diameter of the tunnel. For example, using currently technology, for reasonably viable fuel economies for hydrogen gas in a midsized sedan, the tank would be about 400 mm in diameter and 2000-2500 mm in length. The approximate sizing and positioning of such a tank is illustrated in FIGS. 1 and 2.
  • A less obvious benefit of a vehicle frame having an integrated high pressure fuel tank is the larger tunnel dictated by the tank increases the chassis' stiffness. This increase in chassis stiffness increases both bending stiffness and torsional stiffness and makes a significant contribution to vehicle handling.
  • Another advantage is that in a traditional five passenger sedan using the invention, the amount of hip room in the front seats and the rear seats directly behind them is only slightly reduced. See, FIGS. 3, 4, and 5. Obviously, the larger diameter tunnel in the present invention would reduce the foot space in the center rear seat. However, since this seat is often occupied by a child or a child sitting on a booster seat or a child safety seat, the overall operational impact is negligible.
  • The engine compartment 25 in a vehicle employing the present invention is flexible enough to handle laterally and longitudinally mounted engines or motors and/or a fuel cell stack. Engines and fuel cells that use hydrogen, natural gas, propane, etc. work well with the present invention. For hybrid vehicle applications, since the engine, electric motor(s), and fuel cell are reduced in size they are easily mounted in the engine compartment. Also in hybrid vehicle applications, batteries may be distributed in locations throughout the vehicle or the size or length of the tank may be reduced and all or part of the battery pack may be positioned in the tunnel. (Possible configurations of a battery pack in the tunnel are described in U.S. Pat. No. 5,908,077, the contents of which are specifically incorporated herein by reference.)
  • The present invention is also adaptable to use either traditional or hybrid transmissions or combinations thereof. For example the present invention easily accommodates traditional front wheel drive, four wheel drive, and all wheel drive powertrains as well as hybrid systems that employ, for example, a traditional front wheel drive transaxle and direct drive electric motors on each rear wheel, direct drive electric motors only, a traditional transaxle and an electric motor, etc.
  • As illustrated in FIG. 6, a number of components 35 for the various intended configurations can easily be configured with the tank 30 under the tunnel 10. The components 35 may be conduits for exhaust, a prop shaft running from the engine to the rear wheels, heating and/or cooling conduits (useful for example in raising and lowering the temperature of the tank 30 if it contains a hydrogen storage material that releases hydrogen gas upon heating, or for cooling very high pressure tanks when the ambient temperature is very high), etc. It is intended that the size of the components 35 and the tank 30 may be varied as desired. For example, the diameter of the components 35 may be increased and the diameter of the tank 30 decreased if using three equally sized tanks was more desirable.
  • Also illustrated in FIG. 6 is a rubber expansion spring 15. The expansion spring 15 serves to support and fix the tank 30 in the tunnel 10 while simultaneously providing for the expansive deformation of the tank 30.
  • FIGS. 7-10 illustrate multi-diameter, dumbbell shaped tanks 31 that offer increased storage capacity compared to conventional cylindrical tanks 30. FIGS. 7 and 8 illustrate a multi-diameter, common axis tank and FIGS. 9 and 10 illustrate a multi-diameter offset axis tank, each having diameters A, B, C, and D, each of which is greater than the diameter X of the main body 32 of the tank. The advantage of this dumbbell configuration is that the main body 32 can dictate the size of the tank tunnel 10 rather than the dumbbell ends 33.
  • A preferred embodiment of the present invention is a frame 40 for a hybrid fuel cell electric vehicle fueled with hydrogen gas where the vehicle comprises a fuel cell stack, storage batteries, and at least one electric motor. The frame includes a floor pan 20 and a tunnel 10 positioned centrally and longitudinally in the floor pan, where the tunnel extends the full length of the frame. The hydrogen gas is stored in a single tank 30 that is integrated into and extends the full length of the tunnel 10. Such a hybrid vehicle reforms (oxidizes) the hydrogen to produce an electric current which directly powers the electric motor or is stored in the batteries. The batteries may also be charged via regenerative braking and other energy recapture techniques. The tank 30 is axially disposed in the tunnel 10 and circular in cross-section. The tank may be a multi-diameter tank 31 (i.e. have end portions 33 that are larger in cross-sectional area than the central area 32) having a common axis Q (i.e. have the terminal ends and the central area centered about the same longitudinal axis Q); or an offset axis R (i.e. have the terminal ends and the central area each centered on different axes that are offset from each other).
  • Although the invention has been described with reference to specific embodiments thereof, the forms of the invention shown and described are a non-limiting embodiment and various changes and modifications, such as described herein as well those that are obvious to those skilled in the art, may be made without departing from the spirit and scope of the invention as defined in the claims below.

Claims (19)

1. A frame for a gaseous fueled vehicle, said frame comprising:
a floor pan,
a tunnel positioned centrally and longitudinally in said floor pan, extending the full length of said frame, and
a tank integrated with and extending the full length of said tunnel.
2. The frame described in claim 1, where said tank is axially disposed in said tunnel.
3. The frame described in claim 1, where said tank is a high pressure hydrogen storage tank.
4. The frame described in claim 1, where said tank is a compressed natural gas tank.
5. The frame described in claim 1, where said tank is circular in cross-section.
6. The frame described in claim 1, where said tank is circular in cross-section and has a variable diameter.
7. The frame described in claim 1, where said tank has terminal ends and a central area and said terminal ends have a larger cross-sectional area than said central area.
8. The frame described in claim 7, where said tank has a longitudinal axis and said terminal ends and said central area are centered about said longitudinal axis.
9. The frame described in claim 7, where said tank has a longitudinal axis and said central area is centered about said longitudinal axis and said terminal ends are offset from said longitudinal axis.
10. A frame for a gaseous fueled hybrid vehicle, said frame comprising:
a floor pan,
a tunnel positioned centrally and longitudinally in said floor pan, extending the full length of said frame, and
at least two tanks integrated into said tunnel.
11. The frame described in claim 10, where said at least two tanks are axially disposed side to side in said tunnel.
12. The frame described in claim 10, where said at least two tanks are axially disposed end to end in said tunnel.
13. The frame described in claim 10, where said at least two tanks are high pressure hydrogen storage tanks.
14. The frame described in claim 10, where said at least two tanks are compressed natural gas tanks.
15. The frame described in claim 10, where said at least two tanks are circular in cross-section.
16. The frame described in claim 10, where said at least two tanks are circular in cross-section and each has a variable diameter.
17. The frame described in claim 10, where each of said at least two tanks has terminal ends and a central area and said terminal ends of each have a larger cross-sectional area than said central area of each.
18. The frame described in claim 17, where each of said tanks has a longitudinal axis and said terminal ends of each and said central area of each are centered about said longitudinal axis.
19. The frame described in claim 17, where each of said tanks has a longitudinal axis and said central area of each is centered about said longitudinal axis and said terminal ends of each are offset from said longitudinal axis.
US10/690,930 2003-10-22 2003-10-22 Vehicle frame with integrated high pressure fuel tank Abandoned US20050161934A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/690,930 US20050161934A1 (en) 2003-10-22 2003-10-22 Vehicle frame with integrated high pressure fuel tank
US11/420,947 US7232156B2 (en) 2003-10-22 2006-05-30 Vehicle frame with integrated high pressure fuel tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/690,930 US20050161934A1 (en) 2003-10-22 2003-10-22 Vehicle frame with integrated high pressure fuel tank

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/420,947 Division US7232156B2 (en) 2003-10-22 2006-05-30 Vehicle frame with integrated high pressure fuel tank

Publications (1)

Publication Number Publication Date
US20050161934A1 true US20050161934A1 (en) 2005-07-28

Family

ID=34794550

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/690,930 Abandoned US20050161934A1 (en) 2003-10-22 2003-10-22 Vehicle frame with integrated high pressure fuel tank
US11/420,947 Expired - Lifetime US7232156B2 (en) 2003-10-22 2006-05-30 Vehicle frame with integrated high pressure fuel tank

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/420,947 Expired - Lifetime US7232156B2 (en) 2003-10-22 2006-05-30 Vehicle frame with integrated high pressure fuel tank

Country Status (1)

Country Link
US (2) US20050161934A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040140662A1 (en) * 2002-12-18 2004-07-22 Conception Et Developpement Michelin Tank for the high-pressure storage of a fuel on a vehicle
US20040219031A1 (en) * 2003-03-12 2004-11-04 Sista Evoluzione S.R.L. Engine/pump of a pneumatic type for motor vehicles, a propulsion system including this engine, and a motor vehicle using this system
WO2006057765A2 (en) 2004-10-29 2006-06-01 Ford Global Technologies, Llc Vehicle and fuel storage system for a vehicle
US20080023240A1 (en) * 2006-07-28 2008-01-31 Richard Larry Sunsdahl Side-by-side ATV
US20080023249A1 (en) * 2006-07-28 2008-01-31 Richard Larry Sunsdahl Side-by-side ATV
WO2008064757A1 (en) * 2006-11-29 2008-06-05 Daimler Ag Passenger automobile
US20090166110A1 (en) * 2007-12-28 2009-07-02 Gregory Bryce A Material handling vehicle including integrated hydrogen storage
DE102010011578A1 (en) * 2010-03-16 2011-09-22 Bayerische Motoren Werke Aktiengesellschaft motor vehicle
DE102015204910A1 (en) * 2015-03-18 2016-09-22 Bayerische Motoren Werke Aktiengesellschaft Motor vehicle with a pressure vessel
DE102016206845A1 (en) * 2016-04-22 2017-10-26 Bayerische Motoren Werke Aktiengesellschaft Motor vehicle with a pressure vessel for storing a fuel
US9878611B1 (en) 2016-07-29 2018-01-30 GM Global Technology Operations LLC Vehicle with natural gas storage array
US9981693B2 (en) 2015-09-04 2018-05-29 Toyota Jidosha Kabushiki Kaisha Fuel cell vehicle
US10215127B2 (en) 2011-12-07 2019-02-26 Agility Fuel Systems Llc Systems and methods for monitoring and controlling fuel systems
WO2020002470A1 (en) * 2018-06-26 2020-01-02 Plastic Omnium Advanced Innovation And Research Tank liner having two cylindrical sections
US11192447B2 (en) * 2017-10-10 2021-12-07 Worthington Industries, Inc. Volume tank

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8342283B2 (en) 2008-09-29 2013-01-01 Deakin University Pneumatic powertrain for an automotive vehicle
US8313121B2 (en) * 2008-09-29 2012-11-20 Deakin University Chassis for pneumatic vehicle
US8317257B2 (en) * 2008-09-29 2012-11-27 Deakin University Body for pneumatic vehicle
DE102009056852A1 (en) * 2009-12-03 2011-06-09 GM Global Technology Operations LLC, ( n. d. Ges. d. Staates Delaware ), Detroit Motor vehicle and body floor structure for the motor vehicle
US8844760B2 (en) 2012-08-08 2014-09-30 CNG Storage Solutions, LLC Storage vessel for compressed fluids
US9440671B2 (en) 2012-09-20 2016-09-13 Polaris Industries Inc. Vehicle
CN104661903B (en) * 2012-09-20 2017-11-10 北极星工业有限公司 Multifunctional vehicle
US9174531B2 (en) 2013-06-19 2015-11-03 Fca Us Llc Modular fuel storage system
JP6819391B2 (en) * 2017-03-22 2021-01-27 トヨタ自動車株式会社 Fuel cell vehicle
JP6809411B2 (en) * 2017-08-09 2021-01-06 トヨタ自動車株式会社 Vehicle undercarriage
US10787203B2 (en) 2018-01-03 2020-09-29 Ford Global Technologies, Llc Hybrid energy storage and delivery devices for hybrid electric vehicles

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4465254A (en) * 1979-03-08 1984-08-14 Nissan Motor Company, Limited Structure for fitting a tank for an automotive vehicle
US4486044A (en) * 1982-08-06 1984-12-04 Tank-Tote Co. Apparatus for supporting and transporting a gas cylinder
US5370418A (en) * 1993-11-19 1994-12-06 Pugh; Nicholas Integrated chassis and compressed gas fuel system of an automotive vehicle
US5385263A (en) * 1994-05-02 1995-01-31 Aerojet-General Corporation Compressed gas mobile storage module and lightweight composite cylinders
US5443578A (en) * 1993-05-17 1995-08-22 Davis, Jr.; William F. Compressed natural gas fuel tank for vehicles
US5499739A (en) * 1994-01-19 1996-03-19 Atlantic Research Corporation Thermoplastic liner for and method of overwrapping high pressure vessels
US5518272A (en) * 1993-12-28 1996-05-21 Honda Giken Kogyo Kabushiki Kaisha Fuel bomb mounting structure for automobile
US5810309A (en) * 1996-12-26 1998-09-22 New York State Electric & Gas Corporation Natural gas cylinder mounting assembly for a natural gas vehicle, and the method of installation
US5908077A (en) * 1995-01-30 1999-06-01 Chrysler Corporation Environmentally sensitive hybrid vehicle
US6042071A (en) * 1997-04-07 2000-03-28 Honda Giken Kogyo Kabushiki Kaisha Fuel cylinder attaching structure in motorcar
US6041963A (en) * 1997-03-25 2000-03-28 Kabushiki Kaisha Yuyama Seisakusho Ampule collector
US6450463B1 (en) * 1999-10-07 2002-09-17 L'air Liquide, Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Support and positioning structure for gas cyclinders
US6491882B1 (en) * 1998-05-27 2002-12-10 Ato B.V. High-pressure device
US6536722B2 (en) * 2001-05-04 2003-03-25 Dynetek Industries Ltd. Pressure vessel mounting system
US6565793B1 (en) * 1998-09-11 2003-05-20 Essef Corporation Method for fabricating composite pressure vessels
US6692028B2 (en) * 2001-01-20 2004-02-17 Daimlerchrysler Ag Vehicle with fuel tank
US6827371B2 (en) * 2001-03-31 2004-12-07 Bayerische Motoren Werke Aktiengesellschaft Passenger car having a fuel tank mounted between the vehicle seats and method of making and using same
US6923282B2 (en) * 2002-10-01 2005-08-02 General Motors Corporation Chassis subassembly module and method for using same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5822838A (en) 1996-02-01 1998-10-20 Lockheed Martin Corporation High performance, thin metal lined, composite overwrapped pressure vessel

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4465254A (en) * 1979-03-08 1984-08-14 Nissan Motor Company, Limited Structure for fitting a tank for an automotive vehicle
US4486044A (en) * 1982-08-06 1984-12-04 Tank-Tote Co. Apparatus for supporting and transporting a gas cylinder
US6481751B1 (en) * 1993-05-17 2002-11-19 William F. Davis, Jr. Compressed natural gas tank for vehicles
US5443578A (en) * 1993-05-17 1995-08-22 Davis, Jr.; William F. Compressed natural gas fuel tank for vehicles
US5370418A (en) * 1993-11-19 1994-12-06 Pugh; Nicholas Integrated chassis and compressed gas fuel system of an automotive vehicle
US5518272A (en) * 1993-12-28 1996-05-21 Honda Giken Kogyo Kabushiki Kaisha Fuel bomb mounting structure for automobile
US5499739A (en) * 1994-01-19 1996-03-19 Atlantic Research Corporation Thermoplastic liner for and method of overwrapping high pressure vessels
US5385263A (en) * 1994-05-02 1995-01-31 Aerojet-General Corporation Compressed gas mobile storage module and lightweight composite cylinders
US5908077A (en) * 1995-01-30 1999-06-01 Chrysler Corporation Environmentally sensitive hybrid vehicle
US5810309A (en) * 1996-12-26 1998-09-22 New York State Electric & Gas Corporation Natural gas cylinder mounting assembly for a natural gas vehicle, and the method of installation
US6041963A (en) * 1997-03-25 2000-03-28 Kabushiki Kaisha Yuyama Seisakusho Ampule collector
US6042071A (en) * 1997-04-07 2000-03-28 Honda Giken Kogyo Kabushiki Kaisha Fuel cylinder attaching structure in motorcar
US6491882B1 (en) * 1998-05-27 2002-12-10 Ato B.V. High-pressure device
US6565793B1 (en) * 1998-09-11 2003-05-20 Essef Corporation Method for fabricating composite pressure vessels
US6450463B1 (en) * 1999-10-07 2002-09-17 L'air Liquide, Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Support and positioning structure for gas cyclinders
US6692028B2 (en) * 2001-01-20 2004-02-17 Daimlerchrysler Ag Vehicle with fuel tank
US6827371B2 (en) * 2001-03-31 2004-12-07 Bayerische Motoren Werke Aktiengesellschaft Passenger car having a fuel tank mounted between the vehicle seats and method of making and using same
US6536722B2 (en) * 2001-05-04 2003-03-25 Dynetek Industries Ltd. Pressure vessel mounting system
US6923282B2 (en) * 2002-10-01 2005-08-02 General Motors Corporation Chassis subassembly module and method for using same

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040140662A1 (en) * 2002-12-18 2004-07-22 Conception Et Developpement Michelin Tank for the high-pressure storage of a fuel on a vehicle
US20040219031A1 (en) * 2003-03-12 2004-11-04 Sista Evoluzione S.R.L. Engine/pump of a pneumatic type for motor vehicles, a propulsion system including this engine, and a motor vehicle using this system
US20090133948A1 (en) * 2004-10-29 2009-05-28 Ford Global Technologies, Llc Vehicle and fuel storage system for a vehicle
WO2006057765A2 (en) 2004-10-29 2006-06-01 Ford Global Technologies, Llc Vehicle and fuel storage system for a vehicle
US8056928B2 (en) * 2004-10-29 2011-11-15 Ford Global Technologies, Llc Vehicle and fuel storage system for a vehicle
US8382125B2 (en) * 2006-07-28 2013-02-26 Polaris Industries Inc. Side-by-side ATV
US8596405B2 (en) 2006-07-28 2013-12-03 Polaris Industries Inc. Side-by-side ATV
US8827028B2 (en) 2006-07-28 2014-09-09 Polaris Industries Inc. Side-by-side ATV
US20090178871A1 (en) * 2006-07-28 2009-07-16 Richard Larry Sunsdahl Side-by-side atv
US20080023240A1 (en) * 2006-07-28 2008-01-31 Richard Larry Sunsdahl Side-by-side ATV
US20080023249A1 (en) * 2006-07-28 2008-01-31 Richard Larry Sunsdahl Side-by-side ATV
US7819220B2 (en) * 2006-07-28 2010-10-26 Polaris Industries Inc. Side-by-side ATV
US20110048828A1 (en) * 2006-07-28 2011-03-03 Polaris Industries Inc. Side-by-side ATV
US8047574B2 (en) * 2006-11-29 2011-11-01 Daimler Ag Passenger automobile
JP2010510925A (en) * 2006-11-29 2010-04-08 ダイムラー・アクチェンゲゼルシャフト Passenger car
US20090322068A1 (en) * 2006-11-29 2009-12-31 Hoefner Johannes Benedikt Passenger automobile
WO2008064757A1 (en) * 2006-11-29 2008-06-05 Daimler Ag Passenger automobile
US20090166110A1 (en) * 2007-12-28 2009-07-02 Gregory Bryce A Material handling vehicle including integrated hydrogen storage
US8517128B2 (en) 2010-03-16 2013-08-27 Bayerische Motoren Werke Aktiengesellschaft Motor vehicle
DE102010011578A1 (en) * 2010-03-16 2011-09-22 Bayerische Motoren Werke Aktiengesellschaft motor vehicle
US10215127B2 (en) 2011-12-07 2019-02-26 Agility Fuel Systems Llc Systems and methods for monitoring and controlling fuel systems
US10865732B2 (en) 2011-12-07 2020-12-15 Agility Fuel Systems Llc Systems and methods for monitoring and controlling fuel systems
DE102015204910A1 (en) * 2015-03-18 2016-09-22 Bayerische Motoren Werke Aktiengesellschaft Motor vehicle with a pressure vessel
US9981693B2 (en) 2015-09-04 2018-05-29 Toyota Jidosha Kabushiki Kaisha Fuel cell vehicle
DE102016206845A1 (en) * 2016-04-22 2017-10-26 Bayerische Motoren Werke Aktiengesellschaft Motor vehicle with a pressure vessel for storing a fuel
US9878611B1 (en) 2016-07-29 2018-01-30 GM Global Technology Operations LLC Vehicle with natural gas storage array
US11192447B2 (en) * 2017-10-10 2021-12-07 Worthington Industries, Inc. Volume tank
WO2020002470A1 (en) * 2018-06-26 2020-01-02 Plastic Omnium Advanced Innovation And Research Tank liner having two cylindrical sections
CN112219057A (en) * 2018-06-26 2021-01-12 全耐塑料高级创新研究公司 Tank liner with two cylindrical sections
JP2021528611A (en) * 2018-06-26 2021-10-21 プラスチック・オムニウム・アドヴァンスド・イノベーション・アンド・リサーチ Tank liner with two cylindrical sections
US11506335B2 (en) * 2018-06-26 2022-11-22 Plastic Omnium New Energies France Tank liner having two cylindrical sections
JP7332636B2 (en) 2018-06-26 2023-08-23 プラスチック・オムニウム・ニュー・エナジーズ・フランス Tank liner with two cylindrical sections

Also Published As

Publication number Publication date
US7232156B2 (en) 2007-06-19
US20060214415A1 (en) 2006-09-28

Similar Documents

Publication Publication Date Title
US7232156B2 (en) Vehicle frame with integrated high pressure fuel tank
US7303211B2 (en) Fuel cell vehicle architecture
US7556113B2 (en) Vehicle and energy producing and storage system for a vehicle
US6973982B2 (en) Motor structure of an electric vehicle
KR101238506B1 (en) Vehicle and Fuel Storage System for a Vehicle
US6378637B1 (en) Fuel-cell-powered electric automobile
US5673939A (en) Fuel tank for storing and dispensing hydrogen and oxygen gas to a fuel cell
WO2006029415A2 (en) Fuel cell vehicle architecture
US7036616B1 (en) Hydrogen-electric hybrid vehicle construction
US20100248063A1 (en) Hydrogen supply system for fuel cell and method for controlling the same
US20090155648A1 (en) Hydrogen storage system for fuel cell vehicle
US20050211480A1 (en) Long range hydrogen fueled vehicle construction
WO2000041904A1 (en) Vehicle fuel tank arrangement
US8047574B2 (en) Passenger automobile
US20210221223A1 (en) Vehicle
US20060032683A1 (en) Long range and safer electric vehicle configuration
EP1115165A2 (en) Electrochemical cell engine arrangement
CN211468177U (en) Power battery assembly of electric automobile and electric automobile
JP2021075077A (en) Cargo vehicle
CN113165504A (en) Electric vehicle and energy assembly
CN110116614A (en) The memory of hybrid vehicle is arranged
Osborne et al. FordS Zero Emission P2000 Fuel Cell Vehicle
WO2020122091A1 (en) Electric vehicle and energy package
JP2005138699A (en) Fuel tank

Legal Events

Date Code Title Description
AS Assignment

Owner name: DAIMLERCHRYSLER CORPORATION, MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:RIFE, ISAAC E;KONSTANTAKOPOULOS, GEORGE;ANDERSON, DONALD D.;AND OTHERS;REEL/FRAME:014303/0561;SIGNING DATES FROM 20031017 TO 20031020

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION