US20050159747A1 - Volar fixation system including guide - Google Patents

Volar fixation system including guide Download PDF

Info

Publication number
US20050159747A1
US20050159747A1 US11/077,833 US7783305A US2005159747A1 US 20050159747 A1 US20050159747 A1 US 20050159747A1 US 7783305 A US7783305 A US 7783305A US 2005159747 A1 US2005159747 A1 US 2005159747A1
Authority
US
United States
Prior art keywords
volar
holes
head portion
fixation system
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/077,833
Inventor
Jorge Orbay
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DePuy Products Inc
Original Assignee
Hand Innovations Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/495,854 external-priority patent/US6358250B1/en
Priority claimed from US09/735,228 external-priority patent/US6440135B2/en
Priority claimed from US10/159,611 external-priority patent/US6730090B2/en
Priority claimed from US10/315,787 external-priority patent/US6706046B2/en
Application filed by Hand Innovations Inc filed Critical Hand Innovations Inc
Priority to US11/077,833 priority Critical patent/US20050159747A1/en
Publication of US20050159747A1 publication Critical patent/US20050159747A1/en
Assigned to HAND INNOVATIONS, LLC reassignment HAND INNOVATIONS, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ORBAY, JORGE L.
Assigned to DEPUY PRODUCTS, INC. reassignment DEPUY PRODUCTS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HAND INNOVATIONS, LLC
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/80Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates
    • A61B17/8061Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates specially adapted for particular bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B17/17Guides or aligning means for drills, mills, pins or wires
    • A61B17/1728Guides or aligning means for drills, mills, pins or wires for holes for bone plates or plate screws
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B17/17Guides or aligning means for drills, mills, pins or wires
    • A61B17/1739Guides or aligning means for drills, mills, pins or wires specially adapted for particular parts of the body
    • A61B17/1782Guides or aligning means for drills, mills, pins or wires specially adapted for particular parts of the body for the hand or wrist
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/72Intramedullary pins, nails or other devices
    • A61B17/7233Intramedullary pins, nails or other devices with special means of locking the nail to the bone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/72Intramedullary pins, nails or other devices
    • A61B17/7291Intramedullary pins, nails or other devices for small bones, e.g. in the foot, ankle, hand or wrist
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/80Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates
    • A61B17/8033Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates having indirect contact with screw heads, or having contact with screw heads maintained with the aid of additional components, e.g. nuts, wedges or head covers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/80Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates
    • A61B17/8033Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates having indirect contact with screw heads, or having contact with screw heads maintained with the aid of additional components, e.g. nuts, wedges or head covers
    • A61B17/8042Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates having indirect contact with screw heads, or having contact with screw heads maintained with the aid of additional components, e.g. nuts, wedges or head covers the additional component being a cover over the screw head
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/80Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates
    • A61B17/8052Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates immobilised relative to screws by interlocking form of the heads and plate holes, e.g. conical or threaded
    • A61B17/8057Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates immobilised relative to screws by interlocking form of the heads and plate holes, e.g. conical or threaded the interlocking form comprising a thread
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/84Fasteners therefor or fasteners being internal fixation devices
    • A61B17/86Pins or screws or threaded wires; nuts therefor
    • A61B17/8625Shanks, i.e. parts contacting bone tissue
    • A61B17/863Shanks, i.e. parts contacting bone tissue with thread interrupted or changing its form along shank, other than constant taper
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B17/17Guides or aligning means for drills, mills, pins or wires
    • A61B17/1725Guides or aligning means for drills, mills, pins or wires for applying transverse screws or pins through intramedullary nails or pins

Definitions

  • This invention relates broadly to surgical devices. More particularly, this invention relates to a bone fixation system, and particularly to a fixation system adapted to fixate a distal radial fracture.
  • a Colles' fracture is a fracture resulting from compressive forces being placed on the distal radius 10 , and which causes backward displacement of the distal fragment 12 and radial deviation of the hand at the wrist 14 .
  • a Colles' fracture will result in multiple bone fragments 16 , 18 , 20 which are movable and out of alignment relative to each other. If not properly treated, such fractures result in permanent wrist deformity. It is therefore important to align the fracture and fixate the bones relative to each other so that proper healing may occur.
  • Alignment and fixation are typically performed by one of several methods: casting, external fixation, interosseous wiring, and plating.
  • Casting is non-invasive, but may not be able to maintain alignment of the fracture where many bone fragments exist. Therefore, as an alternative, external fixators may be used.
  • External fixators utilize a method known as ligamentotaxis, which provides distraction forces across the joint and permits the fracture to be aligned based upon the tension placed on the surrounding ligaments.
  • ligamentotaxis which provides distraction forces across the joint and permits the fracture to be aligned based upon the tension placed on the surrounding ligaments.
  • external fixators can maintain the position of the wrist bones, it may nevertheless be difficult in certain fractures to first provide the bones in proper alignment.
  • external fixators are often not suitable for fractures resulting in multiple bone fragments.
  • Interosseous wiring is an invasive procedure whereby screws are positioned into the various fragments and the screws are then wired together as bracing. This is a difficult and time consuming procedure. Moreover, unless the bracing is quite complex, the fracture may not be properly stabilized.
  • Plating utilizes a stabilizing metal plate typically against the dorsal side of the bones, and a set of parallel pins extending from the plate into the holes drilled in the bone fragments to provide stabilized fixation of the fragments.
  • the currently available plate systems fail to provide desirable alignment and stabilization.
  • a volar fixation system which generally includes a T-shaped plate intended to be positioned against the volar side of the radial bone, a plurality of bone screws for securing the plate along a non-fractured portion of the radial bone, and a plurality of bone pegs which extend from the plate and into bone fragments of a Colles' fracture.
  • the plate is generally a T-shaped plate defining an elongate body, a head portion angled relative to the body, a first side which is intended to contact the bone, and a second side opposite the first side.
  • the body portion includes a plurality of countersunk screw holes for the extension of the bone screws therethrough.
  • the head portion includes a plurality of threaded peg holes for receiving the pegs therethrough.
  • the peg holes are preferably non-linearly arranged.
  • the peg holes are preferably linearly arranged.
  • the peg holes are positioned increasingly distal in a medial to lateral direction along the second side.
  • axes through the holes are oblique relative to each other, and are preferably angled relative to each other in two dimensions.
  • the pegs having a threaded head and a relatively smooth cylindrical shaft.
  • the system preferably also includes a guide plate which temporarily sits on top of the volar plate and includes holes oriented according to the axes of the peg holes for guiding a drill into the bone fragments at the required orientation.
  • the volar plate and guide plate are also preferably provided with mating elements to temporarily stabilize the guide plate on the volar plate during the hole drilling process.
  • the volar plate In use, the volar plate is positioned with its first side against the volar side of the radius and bone screws are inserted through the bone screw holes into the radius to secure the volar plate to the radius. The bone fragments are then aligned and the guide plate is positioned on the second side of the volar plate. A drill, guided by guide holes in the guide plate, drills holes into the bone fragments, and the guide plate is then removed.
  • the pegs are then inserted through the peg holes and into the holes in the bone, and the heads of the pegs are threadably engaged in the volar plate.
  • the volar fixation system thereby secures the bone fragments in their proper orientation.
  • FIG. 1 is an illustration of an extremity subject to a Colles' fracture
  • FIG. 2 is a top volar view of a right hand volar fixation system according to a first embodiment of the invention
  • FIG. 3 is a side view of a bone peg according to the first embodiment of the volar fixation system of the invention
  • FIG. 4 is a side view of a bone screw of the volar fixation system of the invention.
  • FIG. 5 is a side view of the right hand volar plate of the volar fixation system according to the first embodiment of the invention.
  • FIG. 6 is a front end view of the right hand volar plate of the volar fixation system according to the first embodiment of the invention.
  • FIG. 7 is an exploded side view of the right hand volar plate and guide plate according to the first embodiment of the fixation system of the invention.
  • FIG. 8 is a side view of the guide plate positioned on the right hand volar plate to provide drill guide paths in accord with the invention.
  • FIG. 9 is an illustration of the first embodiment of the volar fixation system provided in situ aligning and stabilizing a Colles' fracture
  • FIG. 10 is a top volar view of a left hand volar fixation system according to the second embodiment of the invention.
  • FIG. 11 is a lateral side view of the left hand volar fixation system according to the second embodiment of the invention.
  • FIG. 12 is a bottom view of the left hand volar fixation system according to the second embodiment of the invention.
  • FIG. 13 is an enlarged side elevation of a bone peg according to the second embodiment of the volar fixation system of the invention.
  • FIG. 14 is a proximal end view of the bone peg of FIG. 13 ;
  • FIG. 15 is first partial top view of the head portion of the left hand volar plate according to the second embodiment of the volar fixation system of the invention.
  • FIGS. 16-19 are section views across line 16 - 16 , 17 - 17 , 18 - 18 , and 19 - 19 , respectively in FIG. 15 ;
  • FIG. 20 is second partial top view of the head portion of the left hand volar plate according to the second embodiment of the volar fixation system of the invention.
  • FIGS. 21-24 are section views across line 21 - 21 , 22 - 22 , 23 - 23 , and 24 - 24 , respectively in FIG. 20 .
  • a first embodiment of a volar fixation system 100 for aligning and stabilizing multiple bone fragments in a Colles' fracture generally includes a substantially rigid T-shaped plate 102 intended to be positioned against the volar side of the radial bone, a plurality of preferably self-tapping bone screws 104 for securing the plate 102 along a non-fractured portion of the radial bone, and a plurality of bone pegs 108 which extend from the plate 102 and into bone fragments of a Colles' fracture.
  • the T-shaped plate 102 defines a head portion 116 , an elongate body portion 118 angled relative to the head portion, a first side 120 which is intended to contact the bone, and a second side 122 opposite the first side.
  • the first side 120 at the head portion is preferably planar, as is the first side at the body portion.
  • the first side preferably defines two planar portions.
  • the angle ⁇ between the head portion 116 and the body portion 118 is preferably approximately 18° and bent at a radius of approximately 1.00 inch ( FIG. 5 ).
  • the distal edge 121 of the head portion 116 is preferably angled proximally toward the medial side at an angle a, e.g., 5°, relative to a line P, which is perpendicular to the body portion.
  • the head portion 116 preferably has a width of 0.913 inch and a greatest proximal-distal dimension (i.e., from the corner of angle a to the body portion) of approximately 0.69 inch, and the body portion preferably has a width of 0.375 inch and a length of 1.40 inches.
  • the plate 102 preferably has a thickness of approximately 0.098 inch.
  • the plate 102 is preferably made from a titanium alloy, such as Ti-6A-4V.
  • the body portion 118 includes three preferably countersunk screw holes 124 , 126 , 128 for the extension of the bone screws 104 therethrough.
  • the first screw hole 124 has a center preferably 0.235 inch from the end of the body portion
  • the second screw hole 126 has a center preferably 0.630 inch from the end of the body portion
  • the third screw hole 128 is preferably generally elliptical (or oval) and defines foci-like locations at 1.020 inches and 1.050 inches from the end of the body portion.
  • the head portion 116 includes four threaded peg holes 130 , 132 , 134 , 136 for individually receiving the pegs 108 therethrough.
  • the peg holes 130 , 132 , 134 , 136 are preferably non-linearly arranged along the head portion 116 , and are provided such that the adjacent peg holes are provided further distally in a medial to lateral direction along the second side.
  • the peg holes are preferably arranged along a parabolic curve, with the center of peg hole 130 located approximately 0.321 inch proximal line P and approximately 0.719 inch medial of the lateral edge 137 of the head portion, the center of peg hole 132 located approximately 0.296 inch proximal line P and approximately 0.544 inch medial of the lateral edge 137 , the center of peg hole 134 located approximately 0.250 inch proximal line P and approximately 0.369 inch medial of the lateral edge 137 , and the center of peg hole 136 located approximately 0.191 inch proximal line P and approximately 0.194 inch medial of the lateral edge 137 .
  • the peg holes define axes A 1 , A 2 , A 3 , A 4 which are oblique (not parallel) relative to each other, and more preferably are angled in two dimensions (medial/lateral and proximal/distal) relative to each other; i.e., the pegs once inserted into the peg holes are also angled in two dimensions relative to each other.
  • the first axis A 1 of the first peg hole 130 is preferably directed normal to the first side 120 of the head portion 116 .
  • the axis A 2 of the adjacent peg hole 132 is preferably angled approximately 1-7° distal and lateral relative to the first axis A 1 , and more preferably approximately 2.5° distal and lateral relative to the first axis A 1 .
  • the axis A 3 of the peg hole 134 laterally adjacent the second peg hole 132 is preferably angled approximately 7-13° distal and lateral relative to the first axis A 1 , and more preferably approximately 10° distal and lateral relative to the first axis A 1 .
  • the axis A 4 of the peg hole 134 laterally adjacent the third peg hole 132 is preferably angled approximately 10-30° distal and lateral relative to the first axis A 1 , and more preferably approximately 20° distal and lateral relative to the first axis A 1 .
  • the second side of the head portion 116 , distal of the peg holes 130 , 132 , 134 , 136 is preferably beveled.
  • the pegs 108 preferably approximately 0.872 inch in length, each have a threaded head 138 adapted to threadably engage the threads about the peg holes 130 , 132 , 134 , 136 , and have a relatively smooth non-threaded cylindrical shaft 140 .
  • the shafts 140 are preferably approximately 0.0675 inch in diameter and 0.765 inch in length. Such dimensions permit the pegs to adequately support the bone fragments such that the bone is able to heal correctly.
  • the pegs 108 are also preferably made from titanium alloy, and may be coated in a ceramic, e.g., titanium nitride, to provide a bone interface which will not adversely affect bone healing.
  • the system 100 preferably also includes a guide plate 146 which temporarily sits on the second side 122 of the volar plate 102 and includes guide holes 148 , 150 , 152 , 154 (illustrated in overlapping section in FIG. 8 ) oriented according to the axes A 1 , A 2 , A 3 , A 4 of the peg holes for guiding a drill into the bone fragments at the required orientation. That is, the guide holes together with the peg holes define a drill guide path along the axes with sufficient depth to accurately guide a drill (not shown) to drill holes at the desired pin orientations.
  • the volar plate 102 and guide plate 146 are also preferably provided with mating elements, such as a plurality of holes 156 , 158 on the second side of the volar plate ( FIG. 2 ), and a plurality of protuberances 160 on the mating side of the guide plate ( FIG. 7 ), to temporarily stabilize the guide plate on the volar plate during the hole drilling process.
  • mating elements such as a plurality of holes 156 , 158 on the second side of the volar plate ( FIG. 2 ), and a plurality of protuberances 160 on the mating side of the guide plate ( FIG. 7 ), to temporarily stabilize the guide plate on the volar plate during the hole drilling process.
  • the volar plate 102 is positioned with its first side 120 against the volar side of the radius.
  • Bone screws 104 are inserted through the bone screw holes 124 , 126 , 128 into the radius bone 10 to secure the volar plate 102 to the radius.
  • the bone fragments 16 , 18 , 20 are then aligned with the radius 10 .
  • the guide plate 146 is positioned on the second side of the volar plate.
  • a drill guided by a guide path formed by the peg holes and the guide holes, drills holes into and between the bone fragments 16 , 18 , 20 (and possibly also a portion of the integral radius, depending upon the particular location and extent of the fracture), and the guide plate is then removed.
  • the pegs 108 are then inserted through the peg holes 130 , 132 , 134 , 136 and into the holes drilled into the fragments, and the heads of the pegs are threadably engaged in the volar plate.
  • the pegs 108 extending through the oblique-axis peg holes 130 , 132 , 134 , 136 , are positioned immediately below the subchondral bone of the radius and support the bone fragments for proper healing.
  • the volar fixation system thereby secures the bone fragments in their proper orientation.
  • a second embodiment of a volar plate 210 substantially similar to the first embodiment (with like parts having numbers incremented by 100 ) and used in substantially the same manner as the first embodiment is shown.
  • the plate 210 preferably has a length of approximately 2.35 inches, which is approximately 0.35 inch greater than in the first embodiment. This additional length accommodates an extra bone screw hole 229 in the body of the volar plate such that the volar plate preferably includes four bone screw holes 224 , 226 , 228 , 229 .
  • the additional bone screw in screw hole 229 increases plate stability over the three holes of the first embodiment.
  • the plate 210 preferably tapers in thickness from the body portion 218 to the head portion 216 .
  • a preferred taper provides a proximal body portion 218 thickness of approximately 0.098 inch and head portion 216 thickness of approximately 0.078 inch.
  • the taper decreases the thickness of the head portion 216 relative to the body such that the weight of the volar plate is reduced and an improved tendon clearance is provided.
  • the distal edge of the head portion 216 has an increased taper (preferably approximately 60° relative to a line normal to the head) to a distal edge 221 .
  • the edge 221 is broken (i.e., made blunt) to prevent irritation or disturbance to the surrounding anatomy.
  • the head portion 216 includes four threaded peg holes 230 , 232 , 234 , 236 for individually receiving pegs 208 therethrough ( FIGS. 13 and 14 ), and a guide hole 256 for alignment of a guide plate.
  • the peg holes 230 , 232 , 234 , 236 preferably 0.100 inch in diameter, are preferably linearly arranged along the head portion 216 , and are provided such that the adjacent peg holes are provided further distally in a medial to lateral direction along the first and second sides. Referring to FIG.
  • the center of peg hole 230 is located approximately 0.321 inch proximal line P and approximately 0.750 inch medial of the lateral edge 237 of the head portion
  • the center of peg hole 232 is located approximately 0.306 inch proximal line P and 0.557 inch medial of the lateral edge 237
  • the center of peg hole 234 is located approximately 0.289 inch proximal line P and approximately 0.364 inch medial of the lateral edge 237
  • the center of peg hole 236 is located approximately 0.272 inch proximal line P and approximately 0.171 inch medial of the lateral edge 237 .
  • the distance from each of the peg holes to the distal edge 221 of the volar plate is relatively greater than in the first embodiment, and provides a preferred alignment with respect to the tapered distal edge 221 .
  • the peg holes define axes A 1 , A 2 , A 3 , A 4 which are oblique relative to each other, and more preferably are angled in two dimensions (medial/lateral and proximal/distal) relative to each other; i.e., the pegs 208 once inserted into the peg holes are also angled in two dimensions relative to each other.
  • the first axis A 1 of the first peg hole 230 is preferably directed normal ( FIGS. 16 and 21 ) to the first side 220 of the head portion 216 .
  • the axis A 2 of peg hole 232 is preferably angled approximately 1-7° distal ( FIG.
  • the axis A 3 of peg hole 234 is preferably angled approximately 7-13° distal ( FIG. 18 ) and approximately 7-13° lateral ( FIG. 23 ) relative to axis A 1 , and more preferably approximately 10° both distal and lateral relative to axis A 1 .
  • Axis A 4 of the peg hole 234 is preferably angled approximately 10-30° distal ( FIG. 19 ) and approximately 10-30° lateral ( FIG. 24 ) relative to axis A 1 , and more preferably approximately 20° both distal and lateral relative to axis A 1 .
  • each of the peg holes has a countersunk portion 270 , 272 , 274 , 276 , respectively, for receiving the head 238 of peg 208 .
  • Countersunk portions 270 , 272 are each preferably approximately 0.030 inch deep and threaded according to the head of the pegs, as described below.
  • Countersunk portion 274 is preferably approximately 0.042 inch deep and likewise threaded.
  • Countersunk portion 276 is preferably approximately 0.056 inch deep and also threaded. The respective depths of the countersunk portions are adapted to better accommodate the heads 238 of the pegs 208 relative to the respective axes of the peg holes.
  • the pegs 208 each have a threaded head 238 adapted to threadably engage threads about the peg holes 230 , 232 , 234 , 236 , and have a relatively smooth non-threaded cylindrical shaft 240 .
  • the heads 238 preferably include a no. 5 thread 280 at a count of 44 per inch.
  • the heads 238 are rounded and include a hex socket 282 to facilitate stabilized threading into the peg holes. This design accommodates the reduced thickness of the volar plate at the head portion 216 .
  • the shafts 240 are preferably approximately 0.0792 inch (2 mm) in diameter and 0.765 inch in length.
  • the pegs 208 are also preferably made from titanium alloy, and may be ‘tiodized’ to provide a strong finish which does not adversely affect bone healing.
  • volar fixation system and a method of aligning and stabilizing a Colles' fracture. While particular embodiments of the invention have been described, it is not intended that the invention be limited thereto, as it is intended that the invention be as broad in scope as the art will allow and that the specification be read likewise. Thus, while particular materials for the elements of the system have been disclosed, it will be appreciated that other materials may be used as well. In addition, while a particular numbers of screw holes in the volar plates and bone screws have been described, it will be understood another number of screw holes and screws may be provided. Further, fewer screws than the number of screw holes may be used to secure to the volar plate to the radius.
  • peg holes and bone pegs may be used, preferably such that at least two pegs angled in two dimensions relative to each other are provided.
  • the peg holes lie along a parabolic curve, it will be appreciated that they can lie along another curve.
  • other angles can also be used.
  • the peg holes may be provided at other distances relative thereto.
  • medial/lateral and proximal/distal angles for the peg hole axes has been disclosed, it will be appreciated that yet other angles may be used in accord with the invention.
  • each embodiment may be formed in either a right- or left-handed model, with such alternate models being mirror images of the models described.
  • aspects from each of the embodiments may be combined. It will therefore be appreciated by those skilled in the art that yet other modifications could be made to the provided invention without deviating from its spirit and scope as claimed.

Abstract

A volar fixation system includes a plate intended to be positioned against the volar side of the radial bone. The plate includes threaded holes for receiving pegs which lock relative to the plate. The system also includes a guide which is provided on top of the volar plate and includes holes oriented according to the axes of the threaded holes for guiding a drill into the bone fragments at the required orientation.

Description

  • This application is a continuation of U.S. Ser. No. 10/762,695, filed Jan. 22, 2004, which is a continuation-in-part of U.S. Ser. No. 10/315,787, filed Dec. 10, 2002, which is a continuation-in-part of U.S. Ser. No. 10/159,611, filed May 30, 2002, which is a continuation-in-part of U.S. Ser. No. 09/735,228, filed Dec. 12, 2000 and now issued as U.S. Pat. No. 6,440,135, which is a continuation-in-part of U.S. Ser. No. 09/524,058, filed Mar. 13, 2000 and now issued as U.S. Pat. No. 6,364,882, and U.S. Ser. No. 09/495,854, filed Feb. 1, 2000 and now issued as U.S. Pat. No. 6,358,250, the complete disclosure of which are hereby incorporated by reference herein.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • This invention relates broadly to surgical devices. More particularly, this invention relates to a bone fixation system, and particularly to a fixation system adapted to fixate a distal radial fracture.
  • 2. State of the Art
  • Referring to FIG. 1, a Colles' fracture is a fracture resulting from compressive forces being placed on the distal radius 10, and which causes backward displacement of the distal fragment 12 and radial deviation of the hand at the wrist 14. Often, a Colles' fracture will result in multiple bone fragments 16, 18, 20 which are movable and out of alignment relative to each other. If not properly treated, such fractures result in permanent wrist deformity. It is therefore important to align the fracture and fixate the bones relative to each other so that proper healing may occur.
  • Alignment and fixation are typically performed by one of several methods: casting, external fixation, interosseous wiring, and plating. Casting is non-invasive, but may not be able to maintain alignment of the fracture where many bone fragments exist. Therefore, as an alternative, external fixators may be used. External fixators utilize a method known as ligamentotaxis, which provides distraction forces across the joint and permits the fracture to be aligned based upon the tension placed on the surrounding ligaments. However, while external fixators can maintain the position of the wrist bones, it may nevertheless be difficult in certain fractures to first provide the bones in proper alignment. In addition, external fixators are often not suitable for fractures resulting in multiple bone fragments. Interosseous wiring is an invasive procedure whereby screws are positioned into the various fragments and the screws are then wired together as bracing. This is a difficult and time consuming procedure. Moreover, unless the bracing is quite complex, the fracture may not be properly stabilized. Plating utilizes a stabilizing metal plate typically against the dorsal side of the bones, and a set of parallel pins extending from the plate into the holes drilled in the bone fragments to provide stabilized fixation of the fragments. However, the currently available plate systems fail to provide desirable alignment and stabilization.
  • SUMMARY OF THE INVENTION
  • It is therefore an object of the invention to provide an improved fixation and alignment system for a Colles' fracture.
  • It is another object of the invention to provide a volar fixation system which desirably aligns and stabilizes multiple bone fragments in a distal radial fracture to permit proper healing.
  • In accord with these objects, which will be discussed in detail below, a volar fixation system is provided which generally includes a T-shaped plate intended to be positioned against the volar side of the radial bone, a plurality of bone screws for securing the plate along a non-fractured portion of the radial bone, and a plurality of bone pegs which extend from the plate and into bone fragments of a Colles' fracture.
  • The plate is generally a T-shaped plate defining an elongate body, a head portion angled relative to the body, a first side which is intended to contact the bone, and a second side opposite the first side. The body portion includes a plurality of countersunk screw holes for the extension of the bone screws therethrough. The head portion includes a plurality of threaded peg holes for receiving the pegs therethrough. According to a first embodiment, the peg holes are preferably non-linearly arranged. According to a second embodiment, the peg holes are preferably linearly arranged. In either embodiment, the peg holes are positioned increasingly distal in a medial to lateral direction along the second side. According to a preferred aspect of the invention, axes through the holes are oblique relative to each other, and are preferably angled relative to each other in two dimensions. The pegs having a threaded head and a relatively smooth cylindrical shaft.
  • The system preferably also includes a guide plate which temporarily sits on top of the volar plate and includes holes oriented according to the axes of the peg holes for guiding a drill into the bone fragments at the required orientation. The volar plate and guide plate are also preferably provided with mating elements to temporarily stabilize the guide plate on the volar plate during the hole drilling process.
  • In use, the volar plate is positioned with its first side against the volar side of the radius and bone screws are inserted through the bone screw holes into the radius to secure the volar plate to the radius. The bone fragments are then aligned and the guide plate is positioned on the second side of the volar plate. A drill, guided by guide holes in the guide plate, drills holes into the bone fragments, and the guide plate is then removed.
  • The pegs are then inserted through the peg holes and into the holes in the bone, and the heads of the pegs are threadably engaged in the volar plate. The volar fixation system thereby secures the bone fragments in their proper orientation.
  • Additional objects and advantages of the invention will become apparent to those skilled in the art upon reference to the detailed description taken in conjunction with the provided figures.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is an illustration of an extremity subject to a Colles' fracture;
  • FIG. 2 is a top volar view of a right hand volar fixation system according to a first embodiment of the invention;
  • FIG. 3 is a side view of a bone peg according to the first embodiment of the volar fixation system of the invention;
  • FIG. 4 is a side view of a bone screw of the volar fixation system of the invention;
  • FIG. 5 is a side view of the right hand volar plate of the volar fixation system according to the first embodiment of the invention;
  • FIG. 6 is a front end view of the right hand volar plate of the volar fixation system according to the first embodiment of the invention;
  • FIG. 7 is an exploded side view of the right hand volar plate and guide plate according to the first embodiment of the fixation system of the invention;
  • FIG. 8 is a side view of the guide plate positioned on the right hand volar plate to provide drill guide paths in accord with the invention;
  • FIG. 9 is an illustration of the first embodiment of the volar fixation system provided in situ aligning and stabilizing a Colles' fracture;
  • FIG. 10 is a top volar view of a left hand volar fixation system according to the second embodiment of the invention;
  • FIG. 11 is a lateral side view of the left hand volar fixation system according to the second embodiment of the invention;
  • FIG. 12 is a bottom view of the left hand volar fixation system according to the second embodiment of the invention;
  • FIG. 13 is an enlarged side elevation of a bone peg according to the second embodiment of the volar fixation system of the invention;
  • FIG. 14 is a proximal end view of the bone peg of FIG. 13;
  • FIG. 15 is first partial top view of the head portion of the left hand volar plate according to the second embodiment of the volar fixation system of the invention;
  • FIGS. 16-19 are section views across line 16-16, 17-17, 18-18, and 19-19, respectively in FIG. 15;
  • FIG. 20 is second partial top view of the head portion of the left hand volar plate according to the second embodiment of the volar fixation system of the invention; and
  • FIGS. 21-24 are section views across line 21-21, 22-22, 23-23, and 24-24, respectively in FIG. 20.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Turning now to FIGS. 2 through 4, a first embodiment of a volar fixation system 100 for aligning and stabilizing multiple bone fragments in a Colles' fracture generally includes a substantially rigid T-shaped plate 102 intended to be positioned against the volar side of the radial bone, a plurality of preferably self-tapping bone screws 104 for securing the plate 102 along a non-fractured portion of the radial bone, and a plurality of bone pegs 108 which extend from the plate 102 and into bone fragments of a Colles' fracture.
  • Referring to FIGS. 2, 5 and 6, more particularly, the T-shaped plate 102 defines a head portion 116, an elongate body portion 118 angled relative to the head portion, a first side 120 which is intended to contact the bone, and a second side 122 opposite the first side. The first side 120 at the head portion is preferably planar, as is the first side at the body portion. As the head portion and body portion are angled relative to each other, the first side preferably defines two planar portions. The angle Ø between the head portion 116 and the body portion 118 is preferably approximately 18° and bent at a radius of approximately 1.00 inch (FIG. 5). The distal edge 121 of the head portion 116 is preferably angled proximally toward the medial side at an angle a, e.g., 5°, relative to a line P, which is perpendicular to the body portion. The head portion 116 preferably has a width of 0.913 inch and a greatest proximal-distal dimension (i.e., from the corner of angle a to the body portion) of approximately 0.69 inch, and the body portion preferably has a width of 0.375 inch and a length of 1.40 inches. The plate 102 preferably has a thickness of approximately 0.098 inch. The plate 102 is preferably made from a titanium alloy, such as Ti-6A-4V.
  • The body portion 118 includes three preferably countersunk screw holes 124, 126, 128 for the extension of the bone screws 104 therethrough. The first screw hole 124 has a center preferably 0.235 inch from the end of the body portion, the second screw hole 126 has a center preferably 0.630 inch from the end of the body portion, and the third screw hole 128 is preferably generally elliptical (or oval) and defines foci-like locations at 1.020 inches and 1.050 inches from the end of the body portion. The head portion 116 includes four threaded peg holes 130, 132, 134, 136 for individually receiving the pegs 108 therethrough. According to a first preferred aspect of the first embodiment of the invention, the peg holes 130, 132, 134, 136, preferably 0.100 inch in diameter, are preferably non-linearly arranged along the head portion 116, and are provided such that the adjacent peg holes are provided further distally in a medial to lateral direction along the second side. More particularly, according to a preferred aspect of the first embodiment of the invention, the peg holes are preferably arranged along a parabolic curve, with the center of peg hole 130 located approximately 0.321 inch proximal line P and approximately 0.719 inch medial of the lateral edge 137 of the head portion, the center of peg hole 132 located approximately 0.296 inch proximal line P and approximately 0.544 inch medial of the lateral edge 137, the center of peg hole 134 located approximately 0.250 inch proximal line P and approximately 0.369 inch medial of the lateral edge 137, and the center of peg hole 136 located approximately 0.191 inch proximal line P and approximately 0.194 inch medial of the lateral edge 137.
  • In addition, according to a second preferred aspect of the first embodiment of the invention, the peg holes define axes A1, A2, A3, A4 which are oblique (not parallel) relative to each other, and more preferably are angled in two dimensions (medial/lateral and proximal/distal) relative to each other; i.e., the pegs once inserted into the peg holes are also angled in two dimensions relative to each other. More particularly, the first axis A1 of the first peg hole 130 (that is, the most proximal and medial peg hole) is preferably directed normal to the first side 120 of the head portion 116. The axis A2 of the adjacent peg hole 132, i.e., the second axis, is preferably angled approximately 1-7° distal and lateral relative to the first axis A1, and more preferably approximately 2.5° distal and lateral relative to the first axis A1. The axis A3 of the peg hole 134 laterally adjacent the second peg hole 132, i.e., the third axis, is preferably angled approximately 7-13° distal and lateral relative to the first axis A1, and more preferably approximately 10° distal and lateral relative to the first axis A1. The axis A4 of the peg hole 134 laterally adjacent the third peg hole 132, i.e., the fourth axis, is preferably angled approximately 10-30° distal and lateral relative to the first axis A1, and more preferably approximately 20° distal and lateral relative to the first axis A1. The second side of the head portion 116, distal of the peg holes 130, 132, 134, 136 is preferably beveled.
  • Referring back to FIG. 3, the pegs 108, preferably approximately 0.872 inch in length, each have a threaded head 138 adapted to threadably engage the threads about the peg holes 130, 132, 134, 136, and have a relatively smooth non-threaded cylindrical shaft 140. The shafts 140 are preferably approximately 0.0675 inch in diameter and 0.765 inch in length. Such dimensions permit the pegs to adequately support the bone fragments such that the bone is able to heal correctly. The pegs 108 are also preferably made from titanium alloy, and may be coated in a ceramic, e.g., titanium nitride, to provide a bone interface which will not adversely affect bone healing.
  • Turning now to FIGS. 7 and 8, the system 100 preferably also includes a guide plate 146 which temporarily sits on the second side 122 of the volar plate 102 and includes guide holes 148, 150, 152, 154 (illustrated in overlapping section in FIG. 8) oriented according to the axes A1, A2, A3, A4 of the peg holes for guiding a drill into the bone fragments at the required orientation. That is, the guide holes together with the peg holes define a drill guide path along the axes with sufficient depth to accurately guide a drill (not shown) to drill holes at the desired pin orientations. The volar plate 102 and guide plate 146 are also preferably provided with mating elements, such as a plurality of holes 156, 158 on the second side of the volar plate (FIG. 2), and a plurality of protuberances 160 on the mating side of the guide plate (FIG. 7), to temporarily stabilize the guide plate on the volar plate during the hole drilling process.
  • Referring to FIGS. 2 through 9, in use, the volar plate 102 is positioned with its first side 120 against the volar side of the radius. Bone screws 104 (either self-tapping or inserted with the aid of pre-drilled pilot holes) are inserted through the bone screw holes 124, 126, 128 into the radius bone 10 to secure the volar plate 102 to the radius. The bone fragments 16, 18, 20 are then aligned with the radius 10. Next, the guide plate 146 is positioned on the second side of the volar plate. A drill, guided by a guide path formed by the peg holes and the guide holes, drills holes into and between the bone fragments 16, 18, 20 (and possibly also a portion of the integral radius, depending upon the particular location and extent of the fracture), and the guide plate is then removed. The pegs 108 are then inserted through the peg holes 130, 132, 134, 136 and into the holes drilled into the fragments, and the heads of the pegs are threadably engaged in the volar plate. The pegs 108, extending through the oblique-axis peg holes 130, 132, 134, 136, are positioned immediately below the subchondral bone of the radius and support the bone fragments for proper healing. The volar fixation system thereby secures the bone fragments in their proper orientation.
  • Referring to FIGS. 10-12, a second embodiment of a volar plate 210, substantially similar to the first embodiment (with like parts having numbers incremented by 100) and used in substantially the same manner as the first embodiment is shown. The plate 210 preferably has a length of approximately 2.35 inches, which is approximately 0.35 inch greater than in the first embodiment. This additional length accommodates an extra bone screw hole 229 in the body of the volar plate such that the volar plate preferably includes four bone screw holes 224, 226, 228, 229. The additional bone screw in screw hole 229 increases plate stability over the three holes of the first embodiment. The plate 210 preferably tapers in thickness from the body portion 218 to the head portion 216. A preferred taper provides a proximal body portion 218 thickness of approximately 0.098 inch and head portion 216 thickness of approximately 0.078 inch. The taper decreases the thickness of the head portion 216 relative to the body such that the weight of the volar plate is reduced and an improved tendon clearance is provided. The distal edge of the head portion 216 has an increased taper (preferably approximately 60° relative to a line normal to the head) to a distal edge 221. The edge 221 is broken (i.e., made blunt) to prevent irritation or disturbance to the surrounding anatomy.
  • The head portion 216 includes four threaded peg holes 230, 232, 234, 236 for individually receiving pegs 208 therethrough (FIGS. 13 and 14), and a guide hole 256 for alignment of a guide plate. According to a preferred aspect of the second embodiment of the invention, the peg holes 230, 232, 234, 236, preferably 0.100 inch in diameter, are preferably linearly arranged along the head portion 216, and are provided such that the adjacent peg holes are provided further distally in a medial to lateral direction along the first and second sides. Referring to FIG. 15, more particularly, according to a preferred dimensions of the second embodiment of the invention, the center of peg hole 230 is located approximately 0.321 inch proximal line P and approximately 0.750 inch medial of the lateral edge 237 of the head portion, the center of peg hole 232 is located approximately 0.306 inch proximal line P and 0.557 inch medial of the lateral edge 237, the center of peg hole 234 is located approximately 0.289 inch proximal line P and approximately 0.364 inch medial of the lateral edge 237, and the center of peg hole 236 is located approximately 0.272 inch proximal line P and approximately 0.171 inch medial of the lateral edge 237. As such, the distance from each of the peg holes to the distal edge 221 of the volar plate is relatively greater than in the first embodiment, and provides a preferred alignment with respect to the tapered distal edge 221.
  • Referring to FIGS. 15-24, in addition, as in the first embodiment, the peg holes define axes A1, A2, A3, A4 which are oblique relative to each other, and more preferably are angled in two dimensions (medial/lateral and proximal/distal) relative to each other; i.e., the pegs 208 once inserted into the peg holes are also angled in two dimensions relative to each other. More particularly, as in the first embodiment, the first axis A1 of the first peg hole 230 is preferably directed normal (FIGS. 16 and 21) to the first side 220 of the head portion 216. The axis A2 of peg hole 232 is preferably angled approximately 1-7° distal (FIG. 17) and approximately 1-7° lateral (FIG. 22) relative to the axis A1, and more preferably approximately 2.5° both distal and lateral relative to axis A1. The axis A3 of peg hole 234 is preferably angled approximately 7-13° distal (FIG. 18) and approximately 7-13° lateral (FIG. 23) relative to axis A1, and more preferably approximately 10° both distal and lateral relative to axis A1. Axis A4 of the peg hole 234 is preferably angled approximately 10-30° distal (FIG. 19) and approximately 10-30° lateral (FIG. 24) relative to axis A1, and more preferably approximately 20° both distal and lateral relative to axis A1.
  • Referring to FIGS. 13 and 16-19, each of the peg holes has a countersunk portion 270, 272, 274, 276, respectively, for receiving the head 238 of peg 208. Countersunk portions 270, 272 are each preferably approximately 0.030 inch deep and threaded according to the head of the pegs, as described below. Countersunk portion 274 is preferably approximately 0.042 inch deep and likewise threaded. Countersunk portion 276 is preferably approximately 0.056 inch deep and also threaded. The respective depths of the countersunk portions are adapted to better accommodate the heads 238 of the pegs 208 relative to the respective axes of the peg holes.
  • Referring to FIGS. 13 and 14, the pegs 208, preferably approximately 0.872 inch in length, each have a threaded head 238 adapted to threadably engage threads about the peg holes 230, 232, 234, 236, and have a relatively smooth non-threaded cylindrical shaft 240. The heads 238 preferably include a no. 5 thread 280 at a count of 44 per inch. In addition, the heads 238 are rounded and include a hex socket 282 to facilitate stabilized threading into the peg holes. This design accommodates the reduced thickness of the volar plate at the head portion 216. The shafts 240 are preferably approximately 0.0792 inch (2 mm) in diameter and 0.765 inch in length. Such dimensions permit the pegs to adequately support the bone fragments such that the bone is able to heal correctly. The pegs 208 are also preferably made from titanium alloy, and may be ‘tiodized’ to provide a strong finish which does not adversely affect bone healing.
  • There have been described and illustrated herein embodiments of a volar fixation system and a method of aligning and stabilizing a Colles' fracture. While particular embodiments of the invention have been described, it is not intended that the invention be limited thereto, as it is intended that the invention be as broad in scope as the art will allow and that the specification be read likewise. Thus, while particular materials for the elements of the system have been disclosed, it will be appreciated that other materials may be used as well. In addition, while a particular numbers of screw holes in the volar plates and bone screws have been described, it will be understood another number of screw holes and screws may be provided. Further, fewer screws than the number of screw holes may be used to secure to the volar plate to the radius. Also, fewer or more peg holes and bone pegs may be used, preferably such that at least two pegs angled in two dimensions relative to each other are provided. Moreover, while in the first embodiment it is preferred that the peg holes lie along a parabolic curve, it will be appreciated that they can lie along another curve. In addition, while a particular preferred angle between the head portion and body portion has been disclosed, other angles can also be used. Furthermore, while particular distances are disclosed between the peg holes and line P, it will be appreciated that the peg holes may be provided at other distances relative thereto. Moreover, while particular preferred medial/lateral and proximal/distal angles for the peg hole axes has been disclosed, it will be appreciated that yet other angles may be used in accord with the invention. Also, while a right-handed volar plate is described with respect to the first embodiment, and a left-handed volar plate is described with respect to the second embodiment, it will be appreciated that each embodiment may be formed in either a right- or left-handed model, with such alternate models being mirror images of the models described. In addition, aspects from each of the embodiments may be combined. It will therefore be appreciated by those skilled in the art that yet other modifications could be made to the provided invention without deviating from its spirit and scope as claimed.

Claims (11)

1. A volar fixation system, comprising:
a) a substantially rigid volar plate having a distal head portion and a proximal body portion extending from the head portion, said head portion including a plurality of threaded holes defining a plurality of axes at least two of which are oblique relative to each other, and said body portion including at least one screw hole; and
b) a guide including a plurality of guide holes, said guide adapted to be positioned over at least a portion of said head portion of said volar plate such that said guide holes define drill guides adapted to direct a drill through said plurality of threaded holes in alignment with respective axes of said plurality of threaded holes.
2. A volar fixation system according to claim 1, wherein:
said guide holes have fixed axes.
3. A volar fixation system according to claim 1, further comprising:
structure which aligns said guide over said head portion of said volar plate.
4. A volar fixation system according to claim 1, wherein:
said head portion includes a bone contacting surface, and
at least two of said plurality of axes of said threaded holes diverge from said bone contacting surface.
5. A volar fixation system according to claim 1, wherein:
said plurality of threaded holes in said head portion are linearly arranged.
6. A volar fixation system according to claim 1, wherein:
said plurality of threaded holes are arranged in a generally medial to lateral direction where successive lateral threaded holes are situated distally relative to adjacent threaded holes.
7. A volar fixation system according to claim 1, wherein:
at least two of said plurality of axes are oblique in two dimensions relative to each other.
8. A volar fixation system according to claim 1, further comprising:
at least one peg having a threaded head portion adapted to be engaged in a threaded hole of said head portion, and a shaft portion sized to be received through said threaded hole and extend along said axis of said threaded hole.
9. A volar fixation system according to claim 1, further comprising:
at least one screw adapted to be received in said at least one screw hole.
10. A volar fixation system according to claim 9, wherein:
said at least one screw is a self-tapping screw.
11. A method of drilling through holes in a volar plate for fixation of a distal radius fracture, said method comprising:
a) providing a volar plate having a bone contacting surface and an opposite surface, and a distal head portion and a proximal body portion, the head portion including a plurality of threaded holes each defining a discrete axis, at least two of said axes being oblique relative to each other such that said at least two axes diverge from said bone contacting surface;
b) providing a guide having a plurality of holes defining fixed axes;
c) positioning a guide on the volar plate such that the fixed axes are aligned coaxially with the respective axes of the threaded holes in the head portion of the volar plate; and
d) drilling through the coaxially aligned holes in the guide and volar plate and into a fragmented portion of the distal radius beneath the volar plate.
US11/077,833 2000-02-01 2005-03-11 Volar fixation system including guide Abandoned US20050159747A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/077,833 US20050159747A1 (en) 2000-02-01 2005-03-11 Volar fixation system including guide

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US09/495,854 US6358250B1 (en) 2000-02-01 2000-02-01 Volar fixation system
US09/524,058 US6364882B1 (en) 2000-02-01 2000-03-13 Volar fixation system
US09/735,228 US6440135B2 (en) 2000-02-01 2000-12-12 Volar fixation system with articulating stabilization pegs
US10/159,611 US6730090B2 (en) 2000-02-01 2002-05-30 Fixation device for metaphyseal long bone fractures
US10/315,787 US6706046B2 (en) 2000-02-01 2002-12-10 Intramedullary fixation device for metaphyseal long bone fractures and methods of using the same
US10/762,695 US20040153073A1 (en) 2000-02-01 2004-01-22 Orthopedic fixation system including plate element with threaded holes having divergent axes
US11/077,833 US20050159747A1 (en) 2000-02-01 2005-03-11 Volar fixation system including guide

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/762,695 Continuation US20040153073A1 (en) 2000-02-01 2004-01-22 Orthopedic fixation system including plate element with threaded holes having divergent axes

Publications (1)

Publication Number Publication Date
US20050159747A1 true US20050159747A1 (en) 2005-07-21

Family

ID=46300733

Family Applications (9)

Application Number Title Priority Date Filing Date
US10/762,695 Abandoned US20040153073A1 (en) 2000-02-01 2004-01-22 Orthopedic fixation system including plate element with threaded holes having divergent axes
US11/077,833 Abandoned US20050159747A1 (en) 2000-02-01 2005-03-11 Volar fixation system including guide
US11/181,354 Abandoned US20050245931A1 (en) 2000-02-01 2005-07-14 Volar fixation system
US11/210,593 Expired - Fee Related US7563263B2 (en) 2000-02-01 2005-08-24 Intramedullary fixation device for metaphyseal long bone fractures
US12/823,738 Expired - Lifetime US8403967B2 (en) 2000-02-01 2010-06-25 Volar fixation system and methods of using the same
US13/789,959 Expired - Lifetime US9492213B2 (en) 2000-02-01 2013-03-08 Volar fixation system
US14/101,837 Expired - Lifetime US9480512B2 (en) 2000-02-01 2013-12-10 Volar fixation system with fixed-angle multi-hole drill guide
US14/101,786 Expired - Fee Related US9572609B2 (en) 2000-02-01 2013-12-10 Method of using a volar bone plate on a fracture
US15/350,242 Abandoned US20170056082A1 (en) 2000-02-01 2016-11-14 Volar fixation system including guide

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/762,695 Abandoned US20040153073A1 (en) 2000-02-01 2004-01-22 Orthopedic fixation system including plate element with threaded holes having divergent axes

Family Applications After (7)

Application Number Title Priority Date Filing Date
US11/181,354 Abandoned US20050245931A1 (en) 2000-02-01 2005-07-14 Volar fixation system
US11/210,593 Expired - Fee Related US7563263B2 (en) 2000-02-01 2005-08-24 Intramedullary fixation device for metaphyseal long bone fractures
US12/823,738 Expired - Lifetime US8403967B2 (en) 2000-02-01 2010-06-25 Volar fixation system and methods of using the same
US13/789,959 Expired - Lifetime US9492213B2 (en) 2000-02-01 2013-03-08 Volar fixation system
US14/101,837 Expired - Lifetime US9480512B2 (en) 2000-02-01 2013-12-10 Volar fixation system with fixed-angle multi-hole drill guide
US14/101,786 Expired - Fee Related US9572609B2 (en) 2000-02-01 2013-12-10 Method of using a volar bone plate on a fracture
US15/350,242 Abandoned US20170056082A1 (en) 2000-02-01 2016-11-14 Volar fixation system including guide

Country Status (1)

Country Link
US (9) US20040153073A1 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040102775A1 (en) * 2002-11-19 2004-05-27 Huebner Randall J. Bone plates with slots
US20040102776A1 (en) * 2002-11-19 2004-05-27 Huebner Randall J. Bone plates with reference marks
US20040102777A1 (en) * 2002-11-19 2004-05-27 Huebner Randall J. Deformable bone plates
US20040127901A1 (en) * 2002-07-22 2004-07-01 Huebner Randall J. Bone fusion system
US20050085818A1 (en) * 2003-10-17 2005-04-21 Huebner Randall J. Systems for distal radius fixation
US20070173839A1 (en) * 2006-01-10 2007-07-26 Running Donald E Fracture fixation plate with cover sheath
US7695501B2 (en) 2003-08-28 2010-04-13 Ellis Thomas J Bone fixation system
US7717945B2 (en) 2002-07-22 2010-05-18 Acumed Llc Orthopedic systems
US8177819B2 (en) 2004-04-22 2012-05-15 Acumed Llc Expanded fixation of bones
GB2487331A (en) * 2010-09-27 2012-07-18 Acumed Llc Bone plate and interengaging guide block with radiopaque markers
US8419776B2 (en) 2010-03-08 2013-04-16 Memometal Technologies Radius-plate assembly
US8439932B2 (en) 2010-05-03 2013-05-14 Biomet Manufacturing Corp. Submuscular plating system
US20130238032A1 (en) * 2012-03-06 2013-09-12 Stryker Trauma Sa Bone plate and aiming block
US8568417B2 (en) 2009-12-18 2013-10-29 Charles River Engineering Solutions And Technologies, Llc Articulating tool and methods of using
US8579898B2 (en) 2010-03-08 2013-11-12 Memometal Technologies Adjustable-angle radius plate
US8591554B2 (en) 2010-05-07 2013-11-26 Osteomed Llc System for treating bone fractures
US9237910B2 (en) 2012-01-26 2016-01-19 Acute Innovations Llc Clip for rib stabilization
US9480512B2 (en) 2000-02-01 2016-11-01 Biomet C.V. Volar fixation system with fixed-angle multi-hole drill guide
US9775657B2 (en) 2011-09-30 2017-10-03 Acute Innovations Llc Bone fixation system with opposed mounting portions
US9833270B2 (en) 2013-09-19 2017-12-05 Mcginley Engineered Solutions, Llc Variable angle blade plate system and method
US9956015B2 (en) 2014-07-03 2018-05-01 Acumed Llc Bone plate with movable joint
US10537371B2 (en) * 2015-12-23 2020-01-21 Osteomed Llc Wrist plate and drill guide

Families Citing this family (133)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7963966B2 (en) 2000-06-06 2011-06-21 Cole J Dean Bone fixation system and method of use
AU2002220448B2 (en) * 2001-12-24 2005-06-30 Synthes Gmbh Device for performing osteosynthesis
US7951176B2 (en) 2003-05-30 2011-05-31 Synthes Usa, Llc Bone plate
US11259851B2 (en) 2003-08-26 2022-03-01 DePuy Synthes Products, Inc. Bone plate
DE20321551U1 (en) 2003-08-26 2007-12-27 Synthes Gmbh bone plate
US8105367B2 (en) 2003-09-29 2012-01-31 Smith & Nephew, Inc. Bone plate and bone plate assemblies including polyaxial fasteners
US8182485B1 (en) * 2003-11-21 2012-05-22 Toby Orthopaedics, Llc Fracture fixation system
US8574268B2 (en) 2004-01-26 2013-11-05 DePuy Synthes Product, LLC Highly-versatile variable-angle bone plate system
US11291484B2 (en) 2004-01-26 2022-04-05 DePuy Synthes Products, Inc. Highly-versatile variable-angle bone plate system
WO2006091827A2 (en) 2005-02-25 2006-08-31 Regents Of The University Of California Device and template for canine humeral slide osteotomy
EP1727484A2 (en) * 2004-03-26 2006-12-06 Smith and Nephew, Inc. Methods for treating fractures of the femur and femoral fracture devices
US7137987B2 (en) * 2004-07-02 2006-11-21 Wright Medical Technology, Inc. Distal radius bone plating system with locking and non-locking screws
DE102004048042B4 (en) * 2004-09-29 2011-12-01 Karl Storz Gmbh & Co.Kg Device for guiding a drilling tool
US8382807B2 (en) 2005-07-25 2013-02-26 Smith & Nephew, Inc. Systems and methods for using polyaxial plates
EP1919385B1 (en) * 2005-07-25 2014-08-20 Smith & Nephew, Inc. Polyaxial plates
US8177818B2 (en) * 2005-09-08 2012-05-15 Securos, Inc. Fixation plate
US20070083202A1 (en) * 2005-09-20 2007-04-12 Donald Eli Running Intramedullary bone plate with sheath
US8808334B2 (en) 2006-03-07 2014-08-19 Orthohelix Surgical Designs, Inc. Orthopedic plate
US9687282B2 (en) * 2006-03-07 2017-06-27 Orthohelix Surgical Designs, Inc. Orthopedic plate having threaded holes for locking screws or pegs and non-threaded holes for a variable axis locking mechanism
US8021402B2 (en) * 2006-03-07 2011-09-20 Orthohelix Surgical Designs, Inc. Distal radius plate
US10085780B2 (en) 2006-05-26 2018-10-02 Mark Richard Cunliffe Bone fixation device
US20120029576A1 (en) * 2006-05-26 2012-02-02 Mark Richard Cunliffe Bone Fixation Device
US9597129B2 (en) * 2007-05-25 2017-03-21 Zimmer Gmbh Reinforced intramedullary nail
ES2751997T3 (en) 2008-01-14 2020-04-02 Conventus Orthopaedics Inc Fracture repair apparatus
US20090228010A1 (en) 2008-03-10 2009-09-10 Eduardo Gonzalez-Hernandez Bone fixation system
EP2282690A4 (en) 2008-04-17 2017-06-14 Toby Orthopaedics, Llc Soft tissue attachment system and clip
US8915918B2 (en) * 2008-05-02 2014-12-23 Thomas James Graham Bone plate system for bone restoration and methods of use thereof
US8652179B2 (en) * 2008-05-02 2014-02-18 The Cleveland Clinic Foundation Bone plate extender and extension system for bone restoration and methods of use thereof
US8628533B2 (en) * 2008-05-08 2014-01-14 The Cleveland Clinic Foundation Bone plate with reduction aids and methods of use thereof
US8608783B2 (en) 2008-05-08 2013-12-17 The Cleveland Clinic Foundation Bone plate with flange member and methods of use thereof
US20130244193A1 (en) * 2008-07-10 2013-09-19 Nei-Chang Yu System and Method for Orthodontic System
US8506641B2 (en) * 2008-09-03 2013-08-13 The Cleveland Clinic Foundation Arthrodesis implant for finger joints and related methods
US8231625B2 (en) * 2008-09-03 2012-07-31 The Cleveland Clinic Foundation Modular bone fixation device for treatment of fractures and related methods
US8343228B2 (en) * 2008-09-03 2013-01-01 The Cleveland Clinic Foundation Arthroplastic implant with anchor peg for basilar joint and related methods
US8167952B2 (en) * 2008-09-03 2012-05-01 The Cleveland Clinic Foundation Arthroplastic implant with shield for basilar joint and related methods
WO2010043380A1 (en) 2008-10-15 2010-04-22 Zimmer Gmbh Intramedullary nail
DE102008064176B4 (en) * 2008-12-22 2012-06-21 Dot Gmbh Polyaxial alignable pin-shaped stabilizing element for endoprostheses
US8808333B2 (en) * 2009-07-06 2014-08-19 Zimmer Gmbh Periprosthetic bone plates
US8834532B2 (en) * 2009-07-07 2014-09-16 Zimmer Gmbh Plate for the treatment of bone fractures
US9259255B2 (en) 2009-07-15 2016-02-16 Orthohelix Surgical Designs, Inc. Variable axis locking mechanism for use in orthopedic implants
FR2948555B1 (en) * 2009-07-28 2012-05-04 D L P Sarl INTRAMEDULAR NAIL
US8926611B2 (en) * 2009-09-14 2015-01-06 Zimmer Gmbh Angular lag implant for intramedullary nails
US20110178520A1 (en) 2010-01-15 2011-07-21 Kyle Taylor Rotary-rigid orthopaedic rod
US8961518B2 (en) 2010-01-20 2015-02-24 Conventus Orthopaedics, Inc. Apparatus and methods for bone access and cavity preparation
US20110218580A1 (en) * 2010-03-08 2011-09-08 Stryker Trauma Sa Bone fixation system with curved profile threads
WO2011112615A1 (en) 2010-03-08 2011-09-15 Krinke Todd A Apparatus and methods for securing a bone implant
US8808335B2 (en) 2010-03-08 2014-08-19 Miami Device Solutions, Llc Locking element for a polyaxial bone anchor, bone plate assembly and tool
US9113970B2 (en) * 2010-03-10 2015-08-25 Orthohelix Surgical Designs, Inc. System for achieving selectable fixation in an orthopedic plate
US8961573B2 (en) 2010-10-05 2015-02-24 Toby Orthopaedics, Inc. System and method for facilitating repair and reattachment of comminuted bone portions
US8518042B2 (en) * 2010-10-19 2013-08-27 Biomet Manufacturing, Llc Orthopedic plate assembly for a distal radius having re-contouring features and method for using same
WO2012058448A2 (en) 2010-10-27 2012-05-03 Toby Orthopaedics, Llc System and method for fracture replacement of comminuted bone fractures or portions thereof adjacent bone joints
US9603640B2 (en) * 2011-01-26 2017-03-28 Nextremity Solutions, Inc. Lower extremity fusion devices and methods
WO2012103354A1 (en) * 2011-01-26 2012-08-02 Del Palma Orthopedics, LLC Upper extremity fusion devices
USRE45714E1 (en) * 2011-02-03 2015-10-06 Normed Medizin-Technik Gmbh Hand implant
USD664253S1 (en) * 2011-08-03 2012-07-24 Normed Medizin-Technik Gmbh Hand implant
EP2675378B1 (en) 2011-02-14 2017-12-20 Skeletal Dynamics, LLC Fracture fixation plate
US9254154B2 (en) 2011-03-03 2016-02-09 Toby Orthopaedic, Inc. Anterior lesser tuberosity fixed angle fixation device and method of use associated therewith
SE536732C2 (en) 2011-03-04 2014-07-01 Swemac Innovation Ab Prosthesis for joint surgery
BR112013032140A2 (en) 2011-06-15 2016-12-13 Smith & Nephew Inc variable angle locking implant
US9320553B2 (en) * 2011-10-18 2016-04-26 Biomet Manufacturing, Llc Compressive distal humerus plating system
US9271772B2 (en) 2011-10-27 2016-03-01 Toby Orthopaedics, Inc. System and method for fracture replacement of comminuted bone fractures or portions thereof adjacent bone joints
US9730797B2 (en) 2011-10-27 2017-08-15 Toby Orthopaedics, Inc. Bone joint replacement and repair assembly and method of repairing and replacing a bone joint
US9402667B2 (en) 2011-11-09 2016-08-02 Eduardo Gonzalez-Hernandez Apparatus and method for use of the apparatus for fracture fixation of the distal humerus
CA2866514C (en) * 2012-03-08 2019-03-26 Trimed, Incorporated System and method for treating bone fractures
EP2838458B1 (en) * 2012-04-18 2018-09-12 Materialise N.V. Orthopedic bone fixation systems and methods
US11051864B2 (en) * 2012-08-30 2021-07-06 DePuy Synthes Products, Inc. Intramedullary fixation assembly
US9283008B2 (en) 2012-12-17 2016-03-15 Toby Orthopaedics, Inc. Bone plate for plate osteosynthesis and method for use thereof
WO2014127354A1 (en) 2013-02-18 2014-08-21 Orthogrid Systems, Llc Alignment plate apparatus and system and method of use
US9333014B2 (en) 2013-03-15 2016-05-10 Eduardo Gonzalez-Hernandez Bone fixation and reduction apparatus and method for fixation and reduction of a distal bone fracture and malunion
US9510880B2 (en) 2013-08-13 2016-12-06 Zimmer, Inc. Polyaxial locking mechanism
US9468479B2 (en) 2013-09-06 2016-10-18 Cardinal Health 247, Inc. Bone plate
CN103417278B (en) * 2013-09-06 2015-06-03 江苏广济医疗科技有限公司 Proximal humerus T-shaped outer fixator
US10299841B2 (en) 2013-11-05 2019-05-28 Arthrex, Inc. TPLO plate with suture holes for rotational stability
JP6539652B2 (en) 2013-12-12 2019-07-03 コンベンタス オーソピディックス, インコーポレイテッド Tissue displacement tools and methods
US9814503B1 (en) * 2014-04-14 2017-11-14 Avanti Orthopaedics, LLC Load sharing bone plate
KR101740905B1 (en) * 2014-04-18 2017-05-29 백혜선 A fixation tool for opening wedge high tibial osteotomy
US10543026B2 (en) * 2014-04-21 2020-01-28 The General Hospital Corporation Fracture fixation device having clip for stabilizing intramedullary nail
FR3023469B1 (en) * 2014-07-10 2016-08-26 In2Bones IMPLANT AND SURGICAL KIT FOR MAINTAINING THE BONE BODIES OF A PATIENT IN RELATION TO OTHERS
PL231693B1 (en) 2014-09-12 2019-03-29 Chm Spolka Z Ograniczona Odpowiedzialnoscia Bone plate complex with the bone screw for stabilization of fractures
US20160278824A1 (en) * 2015-03-25 2016-09-29 Medartis Holding Ag Method for treating fractures of a bone
USD816840S1 (en) * 2015-04-22 2018-05-01 Flower Orthopedics Corporation Proximal humeral fracture plate
US10238438B2 (en) 2015-04-22 2019-03-26 Flower Orthopedics Corporation Proximal humeral fracture plate
US11076898B2 (en) 2015-08-27 2021-08-03 Globus Medical, Inc. Proximal humeral stabilization system
US10687874B2 (en) 2015-08-27 2020-06-23 Globus Medical, Inc Proximal humeral stabilization system
US11197682B2 (en) 2015-08-27 2021-12-14 Globus Medical, Inc. Proximal humeral stabilization system
GB2557840B (en) 2015-09-18 2021-07-21 Smith & Nephew Inc Bone plate
US10130402B2 (en) 2015-09-25 2018-11-20 Globus Medical, Inc. Bone fixation devices having a locking feature
US9974581B2 (en) 2015-11-20 2018-05-22 Globus Medical, Inc. Expandable intramedullary systems and methods of using the same
US9795411B2 (en) 2016-03-02 2017-10-24 Globus Medical, Inc. Fixators for bone stabilization and associated systems and methods
US10531905B2 (en) 2016-04-19 2020-01-14 Globus Medical, Inc. Implantable compression screws
US11141204B2 (en) 2016-08-17 2021-10-12 Globus Medical Inc. Wrist stabilization systems
US10751098B2 (en) 2016-08-17 2020-08-25 Globus Medical Inc. Stabilization systems
US10687873B2 (en) 2016-08-17 2020-06-23 Globus Medical Inc. Stabilization systems
US10420596B2 (en) 2016-08-17 2019-09-24 Globus Medical, Inc. Volar distal radius stabilization system
US11213327B2 (en) 2016-08-17 2022-01-04 Globus Medical, Inc. Fracture plates, systems, and methods
US10575884B2 (en) 2016-08-17 2020-03-03 Globus Medical, Inc. Fracture plates, systems, and methods
US11331128B2 (en) 2016-08-17 2022-05-17 Globus Medical Inc. Distal radius stabilization system
US11197701B2 (en) 2016-08-17 2021-12-14 Globus Medical, Inc. Stabilization systems
US11432857B2 (en) 2016-08-17 2022-09-06 Globus Medical, Inc. Stabilization systems
US10383668B2 (en) 2016-08-17 2019-08-20 Globus Medical, Inc. Volar distal radius stabilization system
US10905476B2 (en) 2016-09-08 2021-02-02 DePuy Synthes Products, Inc. Variable angle bone plate
US10820930B2 (en) 2016-09-08 2020-11-03 DePuy Synthes Products, Inc. Variable angle bone plate
US10624686B2 (en) 2016-09-08 2020-04-21 DePuy Synthes Products, Inc. Variable angel bone plate
US10682168B2 (en) 2016-09-15 2020-06-16 Wright Medical Technology, Inc. Intramedullary implant with proximal plate and method for its use
USD803402S1 (en) * 2016-10-05 2017-11-21 Osteomed Llc Harp wrist plate design
USD811594S1 (en) * 2016-10-05 2018-02-27 Osteomed Llc Harp wrist plate design
US10631881B2 (en) 2017-03-09 2020-04-28 Flower Orthopedics Corporation Plating depth gauge and countersink instrument
US10881438B2 (en) 2017-03-10 2021-01-05 Globus Medical, Inc. Clavicle fixation system
US10368928B2 (en) 2017-03-13 2019-08-06 Globus Medical, Inc. Bone stabilization systems
US10905477B2 (en) 2017-03-13 2021-02-02 Globus Medical, Inc. Bone stabilization systems
WO2019010252A2 (en) 2017-07-04 2019-01-10 Conventus Orthopaedics, Inc. Apparatus and methods for treatment of a bone
US10856920B2 (en) 2017-09-13 2020-12-08 Globus Medical Inc. Bone stabilization systems
US11096730B2 (en) 2017-09-13 2021-08-24 Globus Medical Inc. Bone stabilization systems
US10881436B2 (en) * 2017-10-27 2021-01-05 Wright Medical Technology, Inc. Implant with intramedullary portion and offset extramedullary portion
US11337739B2 (en) 2017-12-20 2022-05-24 Glabs X, Llc Multiplanar fixation plate for fracture repair
US11071570B2 (en) 2018-03-02 2021-07-27 Globus Medical, Inc. Distal tibial plating system
US11224468B2 (en) 2018-03-02 2022-01-18 Globus Medical, Inc. Distal tibial plating system
US11026727B2 (en) 2018-03-20 2021-06-08 DePuy Synthes Products, Inc. Bone plate with form-fitting variable-angle locking hole
US10772665B2 (en) 2018-03-29 2020-09-15 DePuy Synthes Products, Inc. Locking structures for affixing bone anchors to a bone plate, and related systems and methods
US11141172B2 (en) 2018-04-11 2021-10-12 Globus Medical, Inc. Method and apparatus for locking a drill guide in a polyaxial hole
US11013541B2 (en) 2018-04-30 2021-05-25 DePuy Synthes Products, Inc. Threaded locking structures for affixing bone anchors to a bone plate, and related systems and methods
RU184951U1 (en) * 2018-05-15 2018-11-15 федеральное государственное бюджетное образовательное учреждение высшего образования "Саратовский государственный медицинский университет имени В.И. Разумовского" Министерства здравоохранения Российской Федерации (ФГБОУ ВО Саратовский ГМУ им. В.И. Разумовского Минздрава России) Device for osteosynthesis of distal radial bone fractures
BR112020019260A2 (en) 2018-05-31 2021-01-12 Wright Medical Technology, Inc. BONE FIXATION IMPLANT AND IMPLEMENTATION METHOD
EP3820391A1 (en) * 2018-08-14 2021-05-19 Arthrex, Inc. Intramedullary implant systems and methods
US11660201B2 (en) 2018-10-25 2023-05-30 Wright Medical Technology, Inc. Systems, apparatuses, and methods for correcting a bone defect
US11000327B2 (en) 2018-12-14 2021-05-11 Nextremity Solutions, Inc. Bone defect repair apparatus and method
US10925651B2 (en) 2018-12-21 2021-02-23 DePuy Synthes Products, Inc. Implant having locking holes with collection cavity for shavings
US11202663B2 (en) 2019-02-13 2021-12-21 Globus Medical, Inc. Proximal humeral stabilization systems and methods thereof
US10987146B2 (en) 2019-03-05 2021-04-27 Nextremity Solutions, Inc. Bone defect repair apparatus and method
US11129627B2 (en) 2019-10-30 2021-09-28 Globus Medical, Inc. Method and apparatus for inserting a bone plate
US11723647B2 (en) 2019-12-17 2023-08-15 Globus Medical, Inc. Syndesmosis fixation assembly
US11707307B2 (en) 2020-12-04 2023-07-25 Globus Medical, Inc. Systems and methods for treating rib fractures and osteotomies using implantation
CN116650088B (en) * 2023-07-26 2024-02-27 北京纳通医学研究院有限公司 Distal radius plate and distal radius plate system

Citations (93)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US472913A (en) * 1892-04-12 Nail or spike
US2500370A (en) * 1947-06-30 1950-03-14 Mckibbin Genevieve Repair of femur fracture
US3025853A (en) * 1958-07-07 1962-03-20 Christopher A Mason Fixation device for fractured femur
US3236141A (en) * 1963-11-05 1966-02-22 Robert D Smith Screw
US3645161A (en) * 1969-11-18 1972-02-29 Pic Design Corp Solder tip setscrew
US3709218A (en) * 1970-04-24 1973-01-09 W Halloran Combination intramedullary fixation and external bone compression apparatus
US3717146A (en) * 1971-02-01 1973-02-20 W Halloran Threaded intramedullary compression and fixation device
US3741205A (en) * 1971-06-14 1973-06-26 K Markolf Bone fixation plate
US3939498A (en) * 1974-05-29 1976-02-24 National Research Development Corporation Endoprosthetic femoral head
USRE28841E (en) * 1966-06-22 1976-06-08 Synthes A.G. Osteosynthetic pressure plate construction
US4011863A (en) * 1976-07-19 1977-03-15 Zickel Robert E Supracondylar prosthetic nail
US4135507A (en) * 1977-05-20 1979-01-23 Harris Leslie J Condylocephalic nail for fixation of pertrochanteric fractures
US4153953A (en) * 1977-04-21 1979-05-15 Grobbelaar Charl J Prosthetic hip joint
US4493317A (en) * 1980-11-20 1985-01-15 Synthes Ltd. (U.S.A.) Surgical compression plate and drill guide
US4506662A (en) * 1981-06-18 1985-03-26 Mecron Medizinische Produkte Gmbh Nail for fixing a fracture of the femur
US4565193A (en) * 1982-09-13 1986-01-21 Elke Streli Pronged plate for resetting fractured bones
US4651724A (en) * 1984-05-18 1987-03-24 Technomed Gmk Bone joining plate
US4733654A (en) * 1986-05-29 1988-03-29 Marino James F Intramedullar nailing assembly
US4794919A (en) * 1986-01-31 1989-01-03 Nilsson John S Fixating device
US4800874A (en) * 1986-07-15 1989-01-31 Vereinigte Edelstahlwerke A.G. Anatomical bone plate and/or transfixion plate
US4915092A (en) * 1985-11-05 1990-04-10 Interprinderea Industria Technico-Medicala Flexible implants for stable flexible osteosynthesis of femoral tibia fractures and working instrumentation
US4923471A (en) * 1989-10-17 1990-05-08 Timesh, Inc. Bone fracture reduction and fixation devices with identity tags
US5006120A (en) * 1989-10-10 1991-04-09 Carter Peter R Distal radial fracture set and method for repairing distal radial fractures
US5015248A (en) * 1990-06-11 1991-05-14 New York Society For The Relief Of The Ruptured & Crippled, Maintaining The Hospital For Special Surgery Bone fracture fixation device
US5085660A (en) * 1990-11-19 1992-02-04 Lin Kwan C Innovative locking plate system
US5190544A (en) * 1986-06-23 1993-03-02 Pfizer Hospital Products Group, Inc. Modular femoral fixation system
US5197966A (en) * 1992-05-22 1993-03-30 Sommerkamp T Greg Radiodorsal buttress blade plate implant for repairing distal radius fractures
US5201733A (en) * 1992-01-21 1993-04-13 Etheredge Iii James L Method and apparatus for internal fixation of fractures
US5275601A (en) * 1991-09-03 1994-01-04 Synthes (U.S.A) Self-locking resorbable screws and plates for internal fixation of bone fractures and tendon-to-bone attachment
US5304180A (en) * 1992-01-17 1994-04-19 Slocum D Barclay Tibial osteotomy fixation plate
US5382248A (en) * 1992-09-10 1995-01-17 H. D. Medical, Inc. System and method for stabilizing bone segments
US5423826A (en) * 1993-02-05 1995-06-13 Danek Medical, Inc. Anterior cervical plate holder/drill guide and method of use
US5484438A (en) * 1992-02-13 1996-01-16 Pennig; Dietmar Intramedullary nail with screw-receiving solid insert
US5486178A (en) * 1994-02-16 1996-01-23 Hodge; W. Andrew Femoral preparation instrumentation system and method
US5527311A (en) * 1991-11-13 1996-06-18 Howmedica Gmbh Support for the human spine
US5591168A (en) * 1993-10-25 1997-01-07 Tornier S.A. Device for stabilizing fractures of the upper end of the femur
US5601553A (en) * 1994-10-03 1997-02-11 Synthes (U.S.A.) Locking plate and bone screw
US5603715A (en) * 1992-03-20 1997-02-18 Kessler; Sigurd Medullary pin
US5607426A (en) * 1995-04-13 1997-03-04 Fastenletix, L.L.C. Threaded polyaxial locking screw plate assembly
US5709686A (en) * 1995-03-27 1998-01-20 Synthes (U.S.A.) Bone plate
US5709682A (en) * 1994-11-30 1998-01-20 Medoff; Robert J. Surgical clamp for fixation of bone fragments
US5718705A (en) * 1996-07-16 1998-02-17 Sammarco; Giacomo J. Internal fixation plate
US5728099A (en) * 1994-02-21 1998-03-17 Collux A.B. Implant
US5733287A (en) * 1994-05-24 1998-03-31 Synthes (U.S.A.) Bone plate
US5749872A (en) * 1995-09-08 1998-05-12 Ace Medical Company Keyed/keyless barrel for bone plates
US5766174A (en) * 1995-09-26 1998-06-16 Orthologic Corporation Intramedullary bone fixation device
US5772662A (en) * 1986-06-23 1998-06-30 Howmedica Inc. Femoral fixation system
US5879350A (en) * 1996-09-24 1999-03-09 Sdgi Holdings, Inc. Multi-axial bone screw assembly
US5915967A (en) * 1994-11-14 1999-06-29 Mcgill University Implant assembly
US6010503A (en) * 1998-04-03 2000-01-04 Spinal Innovations, Llc Locking mechanism
US6010505A (en) * 1996-09-05 2000-01-04 Howmedica Gmbh Supra condylus bone nail
US6022350A (en) * 1996-05-13 2000-02-08 Stryker France S.A. Bone fixing device, in particular for fixing to the sacrum during osteosynthesis of the backbone
US6183475B1 (en) * 1998-12-18 2001-02-06 Sulzer Orthopedics Inc. Distal femoral osteotomy system and method
US6197028B1 (en) * 1990-10-05 2001-03-06 Sdgi Holdings, Inc. Sacral implant system
US6206881B1 (en) * 1995-09-06 2001-03-27 Synthes (Usa) Bone plate
US6221073B1 (en) * 1999-08-20 2001-04-24 Kinetikos Medical, Inc. Wrist fusion apparatus and method
US6228285B1 (en) * 1997-06-04 2001-05-08 The University Of Dayton Method for processing rigid-chain polymers into structural materials
US20010001119A1 (en) * 1999-09-27 2001-05-10 Alan Lombardo Surgical screw system and related methods
US6231576B1 (en) * 1996-12-02 2001-05-15 Synthes (U.S.A.) Flat intramedullary nail
US6235034B1 (en) * 1997-10-24 2001-05-22 Robert S. Bray Bone plate and bone screw guide mechanism
US6235033B1 (en) * 2000-04-19 2001-05-22 Synthes (Usa) Bone fixation assembly
USD443060S1 (en) * 2000-06-01 2001-05-29 Bristol-Myers Squibb Company Bone plate
US6238395B1 (en) * 1998-02-06 2001-05-29 Peter M. Bonutti Method of treating a fractured bone
US6241736B1 (en) * 1998-05-12 2001-06-05 Scimed Life Systems, Inc. Manual bone anchor placement devices
US6355043B1 (en) * 1999-03-01 2002-03-12 Sulzer Orthopedics Ltd. Bone screw for anchoring a marrow nail
US6355041B1 (en) * 2001-01-30 2002-03-12 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Bone pin-plate surgical device and method for promoting athrodesis of the equine fetlock joint
US6358250B1 (en) * 2000-02-01 2002-03-19 Hand Innovations, Inc. Volar fixation system
US20020049445A1 (en) * 2000-04-04 2002-04-25 Hall Harry Thomas Device for rotational stabilization of bone segments
US6379359B1 (en) * 2000-05-05 2002-04-30 University Of North Carolina At Chapel Hill Percutaneous intrafocal plate system
US6383186B1 (en) * 1997-02-11 2002-05-07 Gary K. Michelson Single-lock skeletal plating system
US20020058941A1 (en) * 1997-09-24 2002-05-16 Ron Clark ACL fixation pin
US20020058939A1 (en) * 1997-08-04 2002-05-16 Spinal Concepts, Inc. System and method for stabilizing the human spine with a bone plate
US6508819B1 (en) * 2001-08-28 2003-01-21 Hand Innovations, Inc. Method of dorsal wrist fracture fixation
US6527775B1 (en) * 2000-09-22 2003-03-04 Piper Medical, Inc. Intramedullary interlocking fixation device for the distal radius
US20030045880A1 (en) * 1997-02-11 2003-03-06 Michelson Gary K. Anterior cervical plate system
US20030078583A1 (en) * 2001-10-23 2003-04-24 Biedermann Motech Gmbh Bone fixing device
US20030083661A1 (en) * 2000-02-01 2003-05-01 Hand Innovations, Inc. Intramedullary fixation device for metaphyseal long bone fractures and methods of using the same
US6679883B2 (en) * 2001-10-31 2004-01-20 Ortho Development Corporation Cervical plate for stabilizing the human spine
US6692503B2 (en) * 1999-10-13 2004-02-17 Sdgi Holdings, Inc System and method for securing a plate to the spinal column
US20040059334A1 (en) * 1999-09-13 2004-03-25 Synthes (U.S.A.) Bone plating system
US6712820B2 (en) * 2000-02-01 2004-03-30 Hand Innovations, Inc. Fixation plate system for dorsal wrist fracture fixation
US20040068319A1 (en) * 2002-10-04 2004-04-08 Cordaro Nicholas M. Cervical plate/screw system for immobilizing vertebral bodies
US6719758B2 (en) * 2001-01-19 2004-04-13 Aesculap Ag & Co. Kg Kirschner wire with a holding device for surgical procedures
US20040073218A1 (en) * 2002-10-15 2004-04-15 The University Of North Carolina At Chapel Hill Multi-angular fastening apparatus and method for surgical bone screw/plate systems
US6730091B1 (en) * 1999-05-03 2004-05-04 Medartis Ag Blockable bone plate
US6730090B2 (en) * 2000-02-01 2004-05-04 Hand Innovations, Inc. Fixation device for metaphyseal long bone fractures
US20040097934A1 (en) * 1997-05-15 2004-05-20 Farris Robert A. Anterior cervical plating system
US20040102778A1 (en) * 2002-11-19 2004-05-27 Huebner Randall J. Adjustable bone plates
US20050004574A1 (en) * 2003-06-11 2005-01-06 Helmut Muckter Osteosynthesis plate or comparable implant plus ball socket
US6866665B2 (en) * 2003-03-27 2005-03-15 Hand Innovations, Llc Bone fracture fixation system with subchondral and articular surface support
US20050084021A1 (en) * 2002-02-04 2005-04-21 Xemi, Inc. Reduced EMI device and method thereof
US20060004462A1 (en) * 2003-07-22 2006-01-05 Amitava Gupta Prosthetic wrist implant
US20060015101A1 (en) * 2004-07-15 2006-01-19 Wright Medical Technology, Inc. Intramedullary fixation assembly and devices and methods for installing the same

Family Cites Families (154)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US115861A (en) * 1871-06-13 jaquith
US388000A (en) 1888-08-14 Half to chaeles h
US1151861A (en) 1914-05-23 1915-08-31 Ernest M Brumback Countersinking screw-head.
US2056688A (en) 1934-11-15 1936-10-06 Lamson & Sessions Co Weather-tight bolt
US2526959A (en) 1947-07-01 1950-10-24 Frank A Lorenzo Fracture reduction apparatus
US3489143A (en) * 1967-12-15 1970-01-13 William X Halloran Convertible hip pin
FR2233973A1 (en) 1973-06-25 1975-01-17 Chatin Robert Osteosynthesis plate for femoral fracture surgery - has anchoring holes in ablong flat portion and widened blade
US3842825A (en) 1973-11-12 1974-10-22 R Wagner Hip fixation device
GB1571713A (en) 1976-04-21 1980-07-16 Gil J L Apparatus for use in the treatment of bone fractures
FR2405062A1 (en) 1977-10-10 1979-05-04 Dayan Robert Surgical repair plate for lower fractures of femur - has concave cross section and enlarged end with staggered countersunk screw holes
US4169470A (en) 1977-10-19 1979-10-02 Ender Hans G Surgical nail for use in setting bone fractures, and tool for emplacing same
US4172452A (en) * 1978-05-15 1979-10-30 Howmedica, Inc. Fracture nail plate assembly
AT366254B (en) * 1979-12-14 1982-03-25 Ender Josef INSTRUMENTARIUM FOR THE REPOSITION AND FIXATION OF PER- AND SUBTROCHANTER FRACTURES, AS WELL AS A PART OF THIS INSTRUMENTARY ITEM
CH645013A5 (en) 1980-04-14 1984-09-14 Wenk Wilh Ag Osteosynthetic COMPRESSION PLATE.
CH648197A5 (en) 1980-05-28 1985-03-15 Synthes Ag IMPLANT AND SCREW FASTENING ON ITS BONE.
SE424139B (en) 1981-07-17 1982-07-05 Lars Kolmert DEVICE FOR CONNECTING SPRING NAILS AND CROSS-SCREWS IN THE FIXATION OF BONE FRACTURES
US4503847A (en) * 1982-01-15 1985-03-12 Howmedica, Inc. Prosthetic nail
FR2519857A1 (en) 1982-01-19 1983-07-22 Butel Jean DEVICE FOR OSTEOSYNTHESIS OF THE FRACTURES OF THE END OF THE FEMUR
DE8214493U1 (en) 1982-05-18 1982-09-09 Howmedica International, Inc. Zweigniederlassung Kiel, 2301 Schönkirchen Bone nail for the treatment of fractures in the proximal thigh area
FR2527921A1 (en) * 1982-06-02 1983-12-09 Tornier Sa IMPROVEMENTS IN THE NAILS FOR THE OSTEOSYNTHESIS OF THE FRACTURES OF FEMALE COLLARS
PL147580B1 (en) * 1986-04-14 1989-06-30 Plate for uniting epiphysis and diaphysis of broken bone
US5151103A (en) 1987-11-03 1992-09-29 Synthes (U.S.A.) Point contact bone compression plate
US4955886A (en) 1988-04-01 1990-09-11 The Trustees Of Columbia University In The City Of New York Dual-taper, asymmetric hole placement in reconstruction and fracture plates
CH675531A5 (en) 1988-04-29 1990-10-15 Synthes Ag Instrument for osteosynthesis with perforated plate - has convex head bone screws fitting in tapering holes in osteosynthesis plate
DE3840798A1 (en) 1988-12-01 1990-06-21 Mecron Med Prod Gmbh MARKING NAIL
IT1232572B (en) 1989-02-10 1992-02-26 Calderale Pasquale Mario MEANS OF OSTEOSYNTHESIS FOR THE CONNECTION OF BONE FRACTURE SEGMENTS
FR2642958A1 (en) 1989-02-16 1990-08-17 Louyot Comptoir Lyon Alemand SYSTEM FOR IMPLEMENTING SURGICAL INTERVENTIONS, SUCH AS THE TREATMENT OF FRACTURES OF THE VERTEBRAL COLUMN OR OF DEGENERATIVE OR TUMORAL LESIONS
DE3923995A1 (en) 1989-07-20 1991-01-31 Lutz Biedermann BONE STABILIZING ELEMENT
US4953471A (en) * 1989-08-04 1990-09-04 Amsted Industries Incorporated Friction shoe assembly for repair of worn railway truck
CA1317173C (en) * 1989-11-08 1993-05-04 Amnon Foux Plate for broken bone fixation
CH683065A5 (en) 1990-03-20 1994-01-14 Synthes Ag Tibial intramedullary nail with adapted cross-section.
CH685422A5 (en) 1990-04-10 1995-07-14 Sulzer Ag An anchoring stem for a femoral head prosthesis.
GB9016205D0 (en) 1990-07-24 1990-09-05 Chadwick Christopher J Interlocking intramedullary nails
US5127912A (en) 1990-10-05 1992-07-07 R. Charles Ray Sacral implant system
US5486176A (en) * 1991-03-27 1996-01-23 Smith & Nephew Richards, Inc. Angled bone fixation apparatus
US5356410A (en) 1991-12-13 1994-10-18 Dietmar Pennig Adjuvant for osteosynthesis in the case of pertrochanteric fracture of the neck of the femur
GB9206018D0 (en) 1992-03-19 1992-04-29 Dall Desmond Meiring Bone fixation system
US5356253A (en) 1992-04-29 1994-10-18 Whitesell Neil L Sheet metal screw
FR2693899B1 (en) * 1992-07-24 1994-09-23 Laboureau Jacques Osteosynthesis plate clip.
WO1994010947A1 (en) 1992-11-10 1994-05-26 Innovative Orthopaedics Manufacturing, Inc. Dynamic external fixator for the wrist
CA2109907C (en) 1992-11-25 2000-01-25 Ronald A. Yapp Osteosynthesis plate system
US5665087A (en) * 1996-03-26 1997-09-09 Huebner; Randall J. Method and screw for repair of olecranon fractures
US5364399A (en) * 1993-02-05 1994-11-15 Danek Medical, Inc. Anterior cervical plating system
US5531745A (en) 1993-03-11 1996-07-02 Danek Medical, Inc. System for stabilizing the spine and reducing spondylolisthesis
US5352228A (en) 1993-05-10 1994-10-04 Kummer Frederick J Apparatus and method to provide compression for a locked intramedullary nail
US5352229A (en) 1993-05-12 1994-10-04 Marlowe Goble E Arbor press staple and washer and method for its use
US5458654A (en) 1993-07-14 1995-10-17 Ao-Forschungsinstitut Davos Screw-fixed femoral component for hip joint prosthesis
DE9321544U1 (en) 1993-12-09 1999-09-23 Koenigsee Implantate & Instr Osteosynthetic plate
DE4343117C2 (en) 1993-12-17 1999-11-04 Dietmar Wolter Bone fixation system
US5558674A (en) 1993-12-17 1996-09-24 Smith & Nephew Richards, Inc. Devices and methods for posterior spinal fixation
US5628740A (en) 1993-12-23 1997-05-13 Mullane; Thomas S. Articulating toggle bolt bone screw
US5472444A (en) 1994-05-13 1995-12-05 Acumed, Inc. Humeral nail for fixation of proximal humeral fractures
JP3441513B2 (en) 1994-05-20 2003-09-02 ペンタックス株式会社 Mounting jig for intramedullary nail
DE4423210A1 (en) 1994-07-01 1996-01-04 Sigurd Dr Kesler Fixation and positioning system for intramedullary force carriers
US5536127A (en) 1994-10-13 1996-07-16 Pennig; Dietmar Headed screw construction for use in fixing the position of an intramedullary nail
US5586985A (en) * 1994-10-26 1996-12-24 Regents Of The University Of Minnesota Method and apparatus for fixation of distal radius fractures
SE508120C2 (en) * 1995-01-27 1998-08-31 Robert J Medoff Implantable device comprising a pin plate and pins
US5613969A (en) * 1995-02-07 1997-03-25 Jenkins, Jr.; Joseph R. Tibial osteotomy system
US5941878A (en) * 1995-02-14 1999-08-24 Medoff; Robert J. Implantable, surgical buttressing device
DE29504857U1 (en) 1995-03-22 1995-05-18 Aesculap Ag Drilling jig for surgical drilling tools
US6780186B2 (en) 1995-04-13 2004-08-24 Third Millennium Engineering Llc Anterior cervical plate having polyaxial locking screws and sliding coupling elements
US5578035A (en) * 1995-05-16 1996-11-26 Lin; Chih-I Expandable bone marrow cavity fixation device
US6146384A (en) * 1995-10-13 2000-11-14 Sdgi Holdings, Inc. Orthopedic fixation device and method of implantation
DE19542116A1 (en) 1995-11-11 1997-05-15 Peter Brehm Device for fixing implant to bone
US5676667A (en) * 1995-12-08 1997-10-14 Hausman; Michael Bone fixation apparatus and method
DE19548395A1 (en) 1995-12-22 1997-09-18 Leibinger Gmbh Osteosynthesis device
US6007535A (en) 1996-01-03 1999-12-28 John M. Rayhack Multi-plane bone distraction system
US5868749A (en) * 1996-04-05 1999-02-09 Reed; Thomas M. Fixation devices
CA2174293C (en) 1996-04-16 2002-05-28 Robert John Runciman Reconstruction bone plate
US5776194A (en) * 1996-04-25 1998-07-07 Nuvana Medical Innovations, Llc Intermedullary rod apparatus and methods of repairing proximal humerus fractures
DE19617745C2 (en) 1996-05-03 2002-06-13 Heidelberger Druckmasch Ag Printing machine cylinder with a corrosion protection layer, and method for producing such
US6096040A (en) * 1996-06-14 2000-08-01 Depuy Ace Medical Company Upper extremity bone plates
DE19629011C2 (en) 1996-07-18 2001-08-23 Dietmar Wolter Tools for osteosynthesis
ATE310455T1 (en) 1997-01-22 2005-12-15 Synthes Ag DEVICE FOR CONNECTING A LONG SUPPORT TO A PEDICLE SCREW
US5827286A (en) 1997-02-14 1998-10-27 Incavo; Stephen J. Incrementally adjustable tibial osteotomy fixation device and method
US5853413A (en) * 1997-04-18 1998-12-29 Bristol-Myers Squibb Company Wrist fusion plate
US5935128A (en) 1997-04-18 1999-08-10 Bristol-Myers Squibb Co. Orthopaedic template system including a joint locator
US5785711A (en) 1997-05-15 1998-07-28 Third Millennium Engineering, Llc Polyaxial pedicle screw having a through bar clamp locking mechanism
US5989254A (en) 1997-05-20 1999-11-23 Katz; Akiva Raphael Pedicle screw assembly
US20020160948A1 (en) 1998-07-21 2002-10-31 Aprile Pilon Recombinant human uteroglobin in treatment of inflammatory and fibrotic conditions
US5851207A (en) 1997-07-01 1998-12-22 Synthes (U.S.A.) Freely separable surgical drill guide and plate
JPH11337A (en) 1997-07-02 1999-01-06 Kazuyoshi Akiyama Perforated steel wire used to redress fracture
US6123709A (en) 1997-07-25 2000-09-26 Jones; Andrew R. Bone buttress plate and method of using same
US5954722A (en) * 1997-07-29 1999-09-21 Depuy Acromed, Inc. Polyaxial locking plate
JP3692216B2 (en) 1997-07-31 2005-09-07 京セラ株式会社 Bioprosthesis
DE59710145D1 (en) 1997-09-04 2003-06-26 Synthes Ag SYMMETRIC BONE PLATE
EP1024762B1 (en) * 1997-10-20 2003-07-30 SYNTHES AG Chur Bone fixation device
DE19750493A1 (en) * 1997-11-14 1999-06-02 Medos Medizintechnik Gmbh Fracture stabilization implant and screw for use in surgery
US5951557A (en) 1997-12-30 1999-09-14 Luter; Dennis W. Bone plate
US5951604A (en) * 1997-12-31 1999-09-14 Avanta Orthopedics, Inc. Distal radioulnar joint prosthesis
US5951878A (en) 1998-03-20 1999-09-14 Aqua-Aerobic Systems, Inc. Method and apparatus for cleaning filter material in a filter apparatus utilizing a suction generating nozzle
US5938664A (en) * 1998-03-31 1999-08-17 Zimmer, Inc. Orthopaedic bone plate
US6533786B1 (en) 1999-10-13 2003-03-18 Sdgi Holdings, Inc. Anterior cervical plating system
US6258089B1 (en) 1998-05-19 2001-07-10 Alphatec Manufacturing, Inc. Anterior cervical plate and fixation system
US6069040A (en) * 1998-05-26 2000-05-30 International Business Machines Corporation Fabricating a floating gate with field enhancement feature self-aligned to a groove
US5968046A (en) 1998-06-04 1999-10-19 Smith & Nephew, Inc. Provisional fixation pin
DE19832513A1 (en) * 1998-07-20 2000-02-17 Impag Gmbh Medizintechnik Fastening arrangement
AT406011B (en) * 1998-07-30 2000-01-25 Stoffella Rudolf Dr Implant for fixing two bone fragments to each other
DE19858889B4 (en) 1998-12-19 2008-08-07 Wolter, Dietmar, Prof. Dr.Med. Fixation system for bones
JP2000189436A (en) 1998-12-28 2000-07-11 Takiron Co Ltd Device for joining bone
US6129730A (en) 1999-02-10 2000-10-10 Depuy Acromed, Inc. Bi-fed offset pitch bone screw
AU4824300A (en) 1999-05-05 2000-11-17 Gary K. Michelson Screws of cortical bone and method of manufacture thereof
US7008425B2 (en) 1999-05-27 2006-03-07 Jonathan Phillips Pediatric intramedullary nail and method
DE29913994U1 (en) 1999-08-11 2000-12-21 Synthes Ag Surgical guide plate
US6974461B1 (en) 1999-09-14 2005-12-13 Dietmar Wolter Fixation system for bones
JP3692497B2 (en) 1999-09-24 2005-09-07 東レ・ファインケミカル株式会社 Method for recovering dimethyl sulfoxide
US6331179B1 (en) * 2000-01-06 2001-12-18 Spinal Concepts, Inc. System and method for stabilizing the human spine with a bone plate
US6767351B2 (en) 2000-02-01 2004-07-27 Hand Innovations, Inc. Fixation system with multidirectional stabilization pegs
US20060041260A1 (en) 2000-02-01 2006-02-23 Orbay Jorge L Fixation system with plate having holes with divergent axes and multidirectional fixators for use therethrough
US6440135B2 (en) * 2000-02-01 2002-08-27 Hand Innovations, Inc. Volar fixation system with articulating stabilization pegs
US20040153073A1 (en) 2000-02-01 2004-08-05 Hand Innovations, Inc. Orthopedic fixation system including plate element with threaded holes having divergent axes
US7695502B2 (en) * 2000-02-01 2010-04-13 Depuy Products, Inc. Bone stabilization system including plate having fixed-angle holes together with unidirectional locking screws and surgeon-directed locking screws
US6893444B2 (en) 2000-02-01 2005-05-17 Hand Innovations, Llc Bone fracture fixation systems with both multidirectional and unidirectional stabilization pegs
US7282053B2 (en) 2003-03-27 2007-10-16 Depuy Products, Inc. Method of using fracture fixation plate for performing osteotomy
US7857838B2 (en) 2003-03-27 2010-12-28 Depuy Products, Inc. Anatomical distal radius fracture fixation plate
US6293949B1 (en) 2000-03-01 2001-09-25 Sdgi Holdings, Inc. Superelastic spinal stabilization system and method
US6283969B1 (en) 2000-03-10 2001-09-04 Wright Medical Technology, Inc. Bone plating system
US6409768B1 (en) * 2000-03-16 2002-06-25 Slobodan Tepic Screw anchored joint prosthesis
CA2406670A1 (en) 2000-04-20 2001-11-01 Synthes (U.S.A.) Device for fixing implants on or in a bone
JP2002000611A (en) 2000-05-12 2002-01-08 Sulzer Orthopedics Ltd Bone screw to be joined with the bone plate
FR2810532B1 (en) 2000-06-26 2003-05-30 Stryker Spine Sa BONE IMPLANT WITH ANNULAR LOCKING MEANS
EP1174092A3 (en) 2000-07-22 2003-03-26 Corin Spinal Systems Limited A pedicle attachment assembly
TW499953U (en) 2000-12-19 2002-08-21 Jr-Yi Lin Spine fastening reposition device
US7044951B2 (en) 2001-02-12 2006-05-16 Robert J. Medoff Fracture fixation device in which a fixation pin is axially restrained
US6989032B2 (en) 2001-07-16 2006-01-24 Spinecore, Inc. Artificial intervertebral disc
US6599290B2 (en) 2001-04-17 2003-07-29 Ebi, L.P. Anterior cervical plating system and associated method
US20020156474A1 (en) * 2001-04-20 2002-10-24 Michael Wack Polyaxial locking plate
US7153309B2 (en) 2002-11-19 2006-12-26 Acumed Llc Guide system for bone-repair devices
US6755831B2 (en) * 2001-11-30 2004-06-29 Regents Of The University Of Minnesota Wrist surgery devices and techniques
US20030135212A1 (en) 2002-01-11 2003-07-17 Y. Chow James C. Rod and plate bone fixation device for persons with osteophorosis
KR100485896B1 (en) 2002-01-17 2005-04-29 조우신 Device for inserting screws into an intramedullary nail and method thereof
DE20200705U1 (en) 2002-01-18 2002-03-28 Aesculap Ag & Co Kg Intramedullary osteosynthesis implant
US7322983B2 (en) 2002-02-12 2008-01-29 Ebi, L.P. Self-locking bone screw and implant
JP3940002B2 (en) 2002-02-22 2007-07-04 久弥 岡崎 Drilling direction variable drill blade
US6733502B2 (en) 2002-05-15 2004-05-11 Cross Medical Products, Inc. Variable locking spinal screw having a knurled collar
US20060149257A1 (en) 2002-05-30 2006-07-06 Orbay Jorge L Fracture fixation device
JP2004049633A (en) 2002-07-22 2004-02-19 Hang Georg Ender Bone nail and device for fixing and guiding the same
US20040111090A1 (en) 2002-10-03 2004-06-10 The University Of North Carolina At Chapel Hill Modification of percutaneous intrafocal plate system
FR2845588B1 (en) 2002-10-09 2006-12-15 Biotech Internat SELF-LOCKING OSTEOSYNTHESIS DEVICE
US20050187551A1 (en) 2002-12-02 2005-08-25 Orbay Jorge L. Bone plate system with bone screws fixed by secondary compression
WO2004096067A2 (en) 2003-04-29 2004-11-11 Grampian University Hospitals Nhs Trust Bone fixture apparatus
FR2855391B1 (en) 2003-05-30 2005-12-09 Xavier Renard COMPRESSIVE AUTO SCREW FOR JOINING TWO BONE PORTIONS
US7951176B2 (en) 2003-05-30 2011-05-31 Synthes Usa, Llc Bone plate
US20050131413A1 (en) 2003-06-20 2005-06-16 O'driscoll Shawn W. Bone plate with interference fit screw
CN100553577C (en) 2003-06-20 2009-10-28 精密医疗责任有限公司 Be used in the system of operation the blade plate tapping
US6926720B2 (en) 2003-10-15 2005-08-09 Hand Innovations, Llc Jig assembly for implantation of a fracture fixation device
WO2005037114A1 (en) 2003-10-17 2005-04-28 Acumed Llc Systems for distal radius fixation
US7195633B2 (en) 2004-01-08 2007-03-27 Robert J. Medoff Fracture fixation system
US7637928B2 (en) 2004-01-26 2009-12-29 Synthes Usa, Llc Variable angle locked bone fixation system
US7326014B2 (en) 2004-04-21 2008-02-05 Illinois Tool Works, Inc Interactive fit screw thread
US7137987B2 (en) 2004-07-02 2006-11-21 Wright Medical Technology, Inc. Distal radius bone plating system with locking and non-locking screws
US7151361B2 (en) * 2004-11-09 2006-12-19 Texas Instruments Incorporated Current sensing circuitry for DC-DC converters
US7905909B2 (en) 2005-09-19 2011-03-15 Depuy Products, Inc. Bone stabilization system including multi-directional threaded fixation element
JP2011089438A (en) 2009-10-21 2011-05-06 Toshiba Corp Steam turbine, steam turbine rotor and moving blade for steam turbine

Patent Citations (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US472913A (en) * 1892-04-12 Nail or spike
US2500370A (en) * 1947-06-30 1950-03-14 Mckibbin Genevieve Repair of femur fracture
US3025853A (en) * 1958-07-07 1962-03-20 Christopher A Mason Fixation device for fractured femur
US3236141A (en) * 1963-11-05 1966-02-22 Robert D Smith Screw
USRE28841E (en) * 1966-06-22 1976-06-08 Synthes A.G. Osteosynthetic pressure plate construction
US3645161A (en) * 1969-11-18 1972-02-29 Pic Design Corp Solder tip setscrew
US3709218A (en) * 1970-04-24 1973-01-09 W Halloran Combination intramedullary fixation and external bone compression apparatus
US3717146A (en) * 1971-02-01 1973-02-20 W Halloran Threaded intramedullary compression and fixation device
US3741205A (en) * 1971-06-14 1973-06-26 K Markolf Bone fixation plate
US3939498A (en) * 1974-05-29 1976-02-24 National Research Development Corporation Endoprosthetic femoral head
US4011863A (en) * 1976-07-19 1977-03-15 Zickel Robert E Supracondylar prosthetic nail
US4153953A (en) * 1977-04-21 1979-05-15 Grobbelaar Charl J Prosthetic hip joint
US4135507A (en) * 1977-05-20 1979-01-23 Harris Leslie J Condylocephalic nail for fixation of pertrochanteric fractures
US4493317A (en) * 1980-11-20 1985-01-15 Synthes Ltd. (U.S.A.) Surgical compression plate and drill guide
US4506662A (en) * 1981-06-18 1985-03-26 Mecron Medizinische Produkte Gmbh Nail for fixing a fracture of the femur
US4565193A (en) * 1982-09-13 1986-01-21 Elke Streli Pronged plate for resetting fractured bones
US4651724A (en) * 1984-05-18 1987-03-24 Technomed Gmk Bone joining plate
US4915092A (en) * 1985-11-05 1990-04-10 Interprinderea Industria Technico-Medicala Flexible implants for stable flexible osteosynthesis of femoral tibia fractures and working instrumentation
US5013314A (en) * 1985-11-05 1991-05-07 Intreprinderea Industria Tehnico-Medicala Instrumentation and method for inserting flexible implants into fractured bones
US4794919A (en) * 1986-01-31 1989-01-03 Nilsson John S Fixating device
US4733654A (en) * 1986-05-29 1988-03-29 Marino James F Intramedullar nailing assembly
US5190544A (en) * 1986-06-23 1993-03-02 Pfizer Hospital Products Group, Inc. Modular femoral fixation system
US5772662A (en) * 1986-06-23 1998-06-30 Howmedica Inc. Femoral fixation system
US4800874A (en) * 1986-07-15 1989-01-31 Vereinigte Edelstahlwerke A.G. Anatomical bone plate and/or transfixion plate
US5006120A (en) * 1989-10-10 1991-04-09 Carter Peter R Distal radial fracture set and method for repairing distal radial fractures
US4923471A (en) * 1989-10-17 1990-05-08 Timesh, Inc. Bone fracture reduction and fixation devices with identity tags
US5015248A (en) * 1990-06-11 1991-05-14 New York Society For The Relief Of The Ruptured & Crippled, Maintaining The Hospital For Special Surgery Bone fracture fixation device
US6197028B1 (en) * 1990-10-05 2001-03-06 Sdgi Holdings, Inc. Sacral implant system
US5085660A (en) * 1990-11-19 1992-02-04 Lin Kwan C Innovative locking plate system
US5275601A (en) * 1991-09-03 1994-01-04 Synthes (U.S.A) Self-locking resorbable screws and plates for internal fixation of bone fractures and tendon-to-bone attachment
US5527311A (en) * 1991-11-13 1996-06-18 Howmedica Gmbh Support for the human spine
US5304180A (en) * 1992-01-17 1994-04-19 Slocum D Barclay Tibial osteotomy fixation plate
US5201733A (en) * 1992-01-21 1993-04-13 Etheredge Iii James L Method and apparatus for internal fixation of fractures
US5484438A (en) * 1992-02-13 1996-01-16 Pennig; Dietmar Intramedullary nail with screw-receiving solid insert
US5603715A (en) * 1992-03-20 1997-02-18 Kessler; Sigurd Medullary pin
US5197966A (en) * 1992-05-22 1993-03-30 Sommerkamp T Greg Radiodorsal buttress blade plate implant for repairing distal radius fractures
US5382248A (en) * 1992-09-10 1995-01-17 H. D. Medical, Inc. System and method for stabilizing bone segments
US5423826A (en) * 1993-02-05 1995-06-13 Danek Medical, Inc. Anterior cervical plate holder/drill guide and method of use
US5591168A (en) * 1993-10-25 1997-01-07 Tornier S.A. Device for stabilizing fractures of the upper end of the femur
US5486178A (en) * 1994-02-16 1996-01-23 Hodge; W. Andrew Femoral preparation instrumentation system and method
US5728099A (en) * 1994-02-21 1998-03-17 Collux A.B. Implant
US5733287A (en) * 1994-05-24 1998-03-31 Synthes (U.S.A.) Bone plate
US5601553A (en) * 1994-10-03 1997-02-11 Synthes (U.S.A.) Locking plate and bone screw
US5915967A (en) * 1994-11-14 1999-06-29 Mcgill University Implant assembly
US5709682A (en) * 1994-11-30 1998-01-20 Medoff; Robert J. Surgical clamp for fixation of bone fragments
US5709686A (en) * 1995-03-27 1998-01-20 Synthes (U.S.A.) Bone plate
US5607426A (en) * 1995-04-13 1997-03-04 Fastenletix, L.L.C. Threaded polyaxial locking screw plate assembly
US6206881B1 (en) * 1995-09-06 2001-03-27 Synthes (Usa) Bone plate
US5749872A (en) * 1995-09-08 1998-05-12 Ace Medical Company Keyed/keyless barrel for bone plates
US5766174A (en) * 1995-09-26 1998-06-16 Orthologic Corporation Intramedullary bone fixation device
US6022350A (en) * 1996-05-13 2000-02-08 Stryker France S.A. Bone fixing device, in particular for fixing to the sacrum during osteosynthesis of the backbone
US5718705A (en) * 1996-07-16 1998-02-17 Sammarco; Giacomo J. Internal fixation plate
US6010505A (en) * 1996-09-05 2000-01-04 Howmedica Gmbh Supra condylus bone nail
US6053917A (en) * 1996-09-24 2000-04-25 Sdgi Holdings, Inc. Multi-axial bone screw assembly
US5879350A (en) * 1996-09-24 1999-03-09 Sdgi Holdings, Inc. Multi-axial bone screw assembly
US6231576B1 (en) * 1996-12-02 2001-05-15 Synthes (U.S.A.) Flat intramedullary nail
US20030045880A1 (en) * 1997-02-11 2003-03-06 Michelson Gary K. Anterior cervical plate system
US6383186B1 (en) * 1997-02-11 2002-05-07 Gary K. Michelson Single-lock skeletal plating system
US20040097934A1 (en) * 1997-05-15 2004-05-20 Farris Robert A. Anterior cervical plating system
US6228285B1 (en) * 1997-06-04 2001-05-08 The University Of Dayton Method for processing rigid-chain polymers into structural materials
US20020058939A1 (en) * 1997-08-04 2002-05-16 Spinal Concepts, Inc. System and method for stabilizing the human spine with a bone plate
US20020058941A1 (en) * 1997-09-24 2002-05-16 Ron Clark ACL fixation pin
US6235034B1 (en) * 1997-10-24 2001-05-22 Robert S. Bray Bone plate and bone screw guide mechanism
US6238395B1 (en) * 1998-02-06 2001-05-29 Peter M. Bonutti Method of treating a fractured bone
US6010503A (en) * 1998-04-03 2000-01-04 Spinal Innovations, Llc Locking mechanism
US6241736B1 (en) * 1998-05-12 2001-06-05 Scimed Life Systems, Inc. Manual bone anchor placement devices
US6183475B1 (en) * 1998-12-18 2001-02-06 Sulzer Orthopedics Inc. Distal femoral osteotomy system and method
US6355043B1 (en) * 1999-03-01 2002-03-12 Sulzer Orthopedics Ltd. Bone screw for anchoring a marrow nail
US6730091B1 (en) * 1999-05-03 2004-05-04 Medartis Ag Blockable bone plate
US6221073B1 (en) * 1999-08-20 2001-04-24 Kinetikos Medical, Inc. Wrist fusion apparatus and method
US20040059334A1 (en) * 1999-09-13 2004-03-25 Synthes (U.S.A.) Bone plating system
US20040059335A1 (en) * 1999-09-13 2004-03-25 Synthes (U.S.A.) Bone plating system
US6540748B2 (en) * 1999-09-27 2003-04-01 Blackstone Medical, Inc. Surgical screw system and method of use
US20010001119A1 (en) * 1999-09-27 2001-05-10 Alan Lombardo Surgical screw system and related methods
US6692503B2 (en) * 1999-10-13 2004-02-17 Sdgi Holdings, Inc System and method for securing a plate to the spinal column
US6364882B1 (en) * 2000-02-01 2002-04-02 Hand Innovations, Inc. Volar fixation system
US6712820B2 (en) * 2000-02-01 2004-03-30 Hand Innovations, Inc. Fixation plate system for dorsal wrist fracture fixation
US6358250B1 (en) * 2000-02-01 2002-03-19 Hand Innovations, Inc. Volar fixation system
US6706046B2 (en) * 2000-02-01 2004-03-16 Hand Innovations, Inc. Intramedullary fixation device for metaphyseal long bone fractures and methods of using the same
US6730090B2 (en) * 2000-02-01 2004-05-04 Hand Innovations, Inc. Fixation device for metaphyseal long bone fractures
US20030083661A1 (en) * 2000-02-01 2003-05-01 Hand Innovations, Inc. Intramedullary fixation device for metaphyseal long bone fractures and methods of using the same
US20020049445A1 (en) * 2000-04-04 2002-04-25 Hall Harry Thomas Device for rotational stabilization of bone segments
US6235033B1 (en) * 2000-04-19 2001-05-22 Synthes (Usa) Bone fixation assembly
US6379359B1 (en) * 2000-05-05 2002-04-30 University Of North Carolina At Chapel Hill Percutaneous intrafocal plate system
USD443060S1 (en) * 2000-06-01 2001-05-29 Bristol-Myers Squibb Company Bone plate
US6527775B1 (en) * 2000-09-22 2003-03-04 Piper Medical, Inc. Intramedullary interlocking fixation device for the distal radius
US6719758B2 (en) * 2001-01-19 2004-04-13 Aesculap Ag & Co. Kg Kirschner wire with a holding device for surgical procedures
US6355041B1 (en) * 2001-01-30 2002-03-12 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Bone pin-plate surgical device and method for promoting athrodesis of the equine fetlock joint
US6508819B1 (en) * 2001-08-28 2003-01-21 Hand Innovations, Inc. Method of dorsal wrist fracture fixation
US20030078583A1 (en) * 2001-10-23 2003-04-24 Biedermann Motech Gmbh Bone fixing device
US6679883B2 (en) * 2001-10-31 2004-01-20 Ortho Development Corporation Cervical plate for stabilizing the human spine
US20050084021A1 (en) * 2002-02-04 2005-04-21 Xemi, Inc. Reduced EMI device and method thereof
US20040068319A1 (en) * 2002-10-04 2004-04-08 Cordaro Nicholas M. Cervical plate/screw system for immobilizing vertebral bodies
US20040073218A1 (en) * 2002-10-15 2004-04-15 The University Of North Carolina At Chapel Hill Multi-angular fastening apparatus and method for surgical bone screw/plate systems
US20040102778A1 (en) * 2002-11-19 2004-05-27 Huebner Randall J. Adjustable bone plates
US6866665B2 (en) * 2003-03-27 2005-03-15 Hand Innovations, Llc Bone fracture fixation system with subchondral and articular surface support
US20050004574A1 (en) * 2003-06-11 2005-01-06 Helmut Muckter Osteosynthesis plate or comparable implant plus ball socket
US20060004462A1 (en) * 2003-07-22 2006-01-05 Amitava Gupta Prosthetic wrist implant
US20060015101A1 (en) * 2004-07-15 2006-01-19 Wright Medical Technology, Inc. Intramedullary fixation assembly and devices and methods for installing the same

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9492213B2 (en) 2000-02-01 2016-11-15 Biomet C.V. Volar fixation system
US9480512B2 (en) 2000-02-01 2016-11-01 Biomet C.V. Volar fixation system with fixed-angle multi-hole drill guide
US7717945B2 (en) 2002-07-22 2010-05-18 Acumed Llc Orthopedic systems
US20040127901A1 (en) * 2002-07-22 2004-07-01 Huebner Randall J. Bone fusion system
US9308033B2 (en) 2002-07-22 2016-04-12 Acumed Llc Adjustable bone plates
US10456180B2 (en) 2002-07-22 2019-10-29 Acumed Llc Adjustable bone plates
US8425574B2 (en) 2002-07-22 2013-04-23 Acumed, Llc Bone fixation with a bone plate attached to a fastener assembly
US20110022049A1 (en) * 2002-07-22 2011-01-27 Acumed Llc Adjustable bone plates
US20040102775A1 (en) * 2002-11-19 2004-05-27 Huebner Randall J. Bone plates with slots
US20040102777A1 (en) * 2002-11-19 2004-05-27 Huebner Randall J. Deformable bone plates
US20040102776A1 (en) * 2002-11-19 2004-05-27 Huebner Randall J. Bone plates with reference marks
US7704251B2 (en) 2002-11-19 2010-04-27 Acumed Llc Adjustable bone plates
US8632573B2 (en) 2003-08-28 2014-01-21 Thomas J. Ellis Bone fixation system
US7695501B2 (en) 2003-08-28 2010-04-13 Ellis Thomas J Bone fixation system
US20050085818A1 (en) * 2003-10-17 2005-04-21 Huebner Randall J. Systems for distal radius fixation
US8177819B2 (en) 2004-04-22 2012-05-15 Acumed Llc Expanded fixation of bones
US20070173839A1 (en) * 2006-01-10 2007-07-26 Running Donald E Fracture fixation plate with cover sheath
US8029551B2 (en) 2006-01-10 2011-10-04 Running Donald E Fracture fixation plate with cover sheath
US11083504B2 (en) 2008-10-10 2021-08-10 Acumed Llc Bone fixation system with opposed mounting portions
US9808297B2 (en) 2008-10-10 2017-11-07 Acute Innovations Llc Bone fixation system with opposed mounting portions
US11911083B2 (en) 2008-10-10 2024-02-27 Acumed Llc Bone fixation system with opposed mounting portions
US8568417B2 (en) 2009-12-18 2013-10-29 Charles River Engineering Solutions And Technologies, Llc Articulating tool and methods of using
US11033306B2 (en) 2009-12-18 2021-06-15 Charles River Engineering Solutions And Technologies, Llc Articulating tool and methods of using
US9924986B2 (en) 2009-12-18 2018-03-27 Charles River Engineering Solutions And Technologies, Llc Articulating tool and methods of using
US8579898B2 (en) 2010-03-08 2013-11-12 Memometal Technologies Adjustable-angle radius plate
US8419776B2 (en) 2010-03-08 2013-04-16 Memometal Technologies Radius-plate assembly
US8894650B2 (en) 2010-03-08 2014-11-25 Memometal Technologies Radius plate assembly
US8439932B2 (en) 2010-05-03 2013-05-14 Biomet Manufacturing Corp. Submuscular plating system
US8591554B2 (en) 2010-05-07 2013-11-26 Osteomed Llc System for treating bone fractures
US9295506B2 (en) 2010-05-07 2016-03-29 Osteomed Llc System for treating bone fractures
US9066766B2 (en) 2010-05-07 2015-06-30 Osteomed Llc System for treating bone fractures
US10111688B2 (en) 2010-05-07 2018-10-30 Mcginley Engineered Solutions, Llc System for treating bone fractures
US8603148B2 (en) 2010-05-07 2013-12-10 Raymond B. Raven, III System for treating bone fractures
US9649141B2 (en) 2010-05-07 2017-05-16 Mcginley Engineered Solutions, Llc System for treating bone fractures
US8652180B2 (en) 2010-09-27 2014-02-18 Acumed Llc Handle assembly having a radiopaque region to facilitate positioning a bone plate on bone
US8523919B2 (en) 2010-09-27 2013-09-03 Acumed Llc Targeting guide with a radiopaque marker to facilitate positioning a bone plate on bone
US9962205B2 (en) 2010-09-27 2018-05-08 Acumed Llc Targeting guide with a radiopaque marker to facilitate positioning a bone plate on bone
GB2487331A (en) * 2010-09-27 2012-07-18 Acumed Llc Bone plate and interengaging guide block with radiopaque markers
GB2487331B (en) * 2010-09-27 2012-10-24 Acumed Llc Instruments having a radiopaque region to facilitate positioning a bone plate on bone
US9775657B2 (en) 2011-09-30 2017-10-03 Acute Innovations Llc Bone fixation system with opposed mounting portions
US9237910B2 (en) 2012-01-26 2016-01-19 Acute Innovations Llc Clip for rib stabilization
US9050151B2 (en) * 2012-03-06 2015-06-09 Stryker Trauma Sa Bone plate and aiming block
US20130238032A1 (en) * 2012-03-06 2013-09-12 Stryker Trauma Sa Bone plate and aiming block
US9833270B2 (en) 2013-09-19 2017-12-05 Mcginley Engineered Solutions, Llc Variable angle blade plate system and method
US10117689B2 (en) 2013-09-19 2018-11-06 Mcginley Engineered Solutions, Llc Variable angle blade plate system and method
US9956015B2 (en) 2014-07-03 2018-05-01 Acumed Llc Bone plate with movable joint
US10159515B2 (en) 2014-07-03 2018-12-25 Acumed Llc Bone plate with movable joint
US10537371B2 (en) * 2015-12-23 2020-01-21 Osteomed Llc Wrist plate and drill guide

Also Published As

Publication number Publication date
US20050283154A1 (en) 2005-12-22
US8403967B2 (en) 2013-03-26
US20140100615A1 (en) 2014-04-10
US9480512B2 (en) 2016-11-01
US7563263B2 (en) 2009-07-21
US9492213B2 (en) 2016-11-15
US20100268283A1 (en) 2010-10-21
US20140128871A1 (en) 2014-05-08
US20050245931A1 (en) 2005-11-03
US9572609B2 (en) 2017-02-21
US20170056082A1 (en) 2017-03-02
US20040153073A1 (en) 2004-08-05
US20130204305A1 (en) 2013-08-08

Similar Documents

Publication Publication Date Title
US9572609B2 (en) Method of using a volar bone plate on a fracture
US6364882B1 (en) Volar fixation system
US6440135B2 (en) Volar fixation system with articulating stabilization pegs
US6866665B2 (en) Bone fracture fixation system with subchondral and articular surface support
AU2001233015A1 (en) Volar fixation system
US6706046B2 (en) Intramedullary fixation device for metaphyseal long bone fractures and methods of using the same
US7282053B2 (en) Method of using fracture fixation plate for performing osteotomy
US20110218576A1 (en) Plating Concept for Distal Radial Fractures
US8668693B2 (en) Fixation device for proximal elbow fractures and method of using same

Legal Events

Date Code Title Description
AS Assignment

Owner name: HAND INNOVATIONS, LLC, FLORIDA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ORBAY, JORGE L.;REEL/FRAME:016663/0325

Effective date: 20050311

AS Assignment

Owner name: DEPUY PRODUCTS, INC., INDIANA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HAND INNOVATIONS, LLC;REEL/FRAME:019077/0775

Effective date: 20070323

Owner name: DEPUY PRODUCTS, INC.,INDIANA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HAND INNOVATIONS, LLC;REEL/FRAME:019077/0775

Effective date: 20070323

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION