US20050060024A1 - Expandible stent - Google Patents

Expandible stent Download PDF

Info

Publication number
US20050060024A1
US20050060024A1 US10/759,527 US75952704A US2005060024A1 US 20050060024 A1 US20050060024 A1 US 20050060024A1 US 75952704 A US75952704 A US 75952704A US 2005060024 A1 US2005060024 A1 US 2005060024A1
Authority
US
United States
Prior art keywords
stent
links
struts
linkages
relative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/759,527
Inventor
J. Lee
Katherine Crewe
Christine Mastrangelo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GBGB9515282.3A external-priority patent/GB9515282D0/en
Priority claimed from GBGB9605486.1A external-priority patent/GB9605486D0/en
Priority claimed from US08/687,223 external-priority patent/US5776181A/en
Application filed by Individual filed Critical Individual
Priority to US10/759,527 priority Critical patent/US20050060024A1/en
Publication of US20050060024A1 publication Critical patent/US20050060024A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/91533Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other characterised by the phase between adjacent bands
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/9155Adjacent bands being connected to each other
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/9155Adjacent bands being connected to each other
    • A61F2002/91575Adjacent bands being connected to each other connected peak to trough
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0004Rounded shapes, e.g. with rounded corners
    • A61F2230/0013Horseshoe-shaped, e.g. crescent-shaped, C-shaped, U-shaped

Definitions

  • Expandable stents are widely used to provide local reinforcement in fluid-carrying vessels within the human body.
  • the stent is essentially a cylindrical member which may be expanded radially to dilate the vessel and to provide support for the wall of the vessel to maintain it in the dilated condition.
  • the catheter In order to insert the stent, it has previously been proposed to place the stent into the vessel on an expandable or balloon catheter. With the stent positioned at the appropriate location, the catheter is inflated and the stent is caused to expand radially against the wall of the vessel. Once the stent is expanded to the required diameter, the catheter is deflated and may be removed, leaving the stent in position.
  • the stent must of course remain expanded against the wall or the vessel and should be capable of withstanding the forces imposed by the wall of the vessel. Moreover, the stent should be able to negotiate tight turns in the arterial system during placement while minimizing damnage to the arterial wall.
  • the stent is configured to be plastically deformable so that after expansion it retains the increased diameter.
  • the plastic deformation is provided by means of an open-mesh diamond structure. As the catheter is expanded, the intersecting members of the mesh deform so that the stent adopts an increased diameter.
  • a radial expansion of the stent is accompanied by an axial foreshortening of the stent.
  • the degree of foreshortening is predictable but the ultimate location of the stent along the vessel is not predictable.
  • one end of the stent may remain stationary relative to the blood vessel so that the opposite end is subjected to the maximum axial displacement or there may be progressive foreshortening from both ends with an intermediate location remaining stationary.
  • the foreshortening of the stent leads to an unpredictable location for the stent in its expanded condition and induces relative movement in an axial direction between the vessel wall and the stent which is generally undesirable.
  • the present invention provides a stent in which a plurality of circumferentially-spaced longitudinal struts are interconnected by multibar linkages. Adjacent links of the linkages are angularly disposed to one another such that a radial force causes relative rotation between adjacent links to permit radial enlargement of the stent.
  • the longitudinal struts inhibit foreshortening of the stent so that the final location of the stent can be predicted.
  • FIG. 1 is a side elevation of an assembled stent
  • FIG. 2 is a view on the line 2 - 2 of FIG. 1 ;
  • FIG. 3 is a developed view of the stunt shown in FIG. 1 ;
  • FIG. 4 is a view on an enlarged scale of a portion of the stent shown in FIGS. 1-3 ;
  • FIG. 5 is a view of the portion of the stent shown in FIG. 4 after radial expansion
  • FIG. 6 is a view similar to FIG. 4 of an alternative embodiment of stent
  • FIG. 7 is a view of the embodiment of FIG. 6 after radial expansion
  • FIG. 8 is a further alternative of stent shown in FIG. 4 ;
  • FIG. 9 is a view of the embodiment of FIG. 8 after radial expansion
  • FIG. 10 is a comparative curve between the embodiments of stent shown in FIGS. 4, 6 and 8 ;
  • FIG. 11 is a perspective view of a further embodiment of stent.
  • FIG. 12 is a developed view of the embodiment of stent shown in FIG. 11 ;
  • FIG. 13 is an enlarged view of a portion of the stent shown in Figure •;
  • FIG. 14 is a view similar to FIG. 9 showing the stent after radial expansion
  • FIG. 15 is a sectional view of a stent support and catheter
  • FIG. 16 is a developed view, similar to FIG. 12 , of a further embodiment
  • FIG. 17 is a developed view similar to FIG. 16 of a still further embodiment
  • FIG. 18 is an enlarged view of a portion of the embodiment of FIG. 17 ;
  • FIG. 19 is a developed view similar to FIG. 17 of a yet further embodiment.
  • a stent 10 has a generally tubular body 12 which is initially dimensioned to permit insertion into a vessel such as an artery.
  • the body 12 includes a plurality of longitudinal struts 14 which are interconnected by multi-bar linkages 16 .
  • the linkages 16 are regularly spaced along the axial extent of the struts 14 and maintain struts 14 in circumferentially spaced relationship.
  • each of the linkages 16 includes a pair of oppositely directed circumferential links 18 with axial links 20 connected to the circumferential links 18 and extending parallel to the struts 14 but spaced therefrom.
  • the axial links 20 are connected to an L-shaped corner link 22 which has an axial leg 24 and circumferential leg 26 .
  • the legs 26 of opposed corner links 22 are interconnected by a circumferential connecting link 28 to interconnect the adjacent struts 14 .
  • the links 18 , 20 , 22 and 28 of the linkage 16 are formed by removal of material from a seamless tube of bio-compatible material so that the links are integrally connected to one another.
  • Such material would be a metal such as both pure and alloyed titanium, platinum, nitinol memory metals, gold or stainless steel, and the linkage may suitably be machined through micro machining techniques.
  • Other materials could be used that are considered suitable for implantation including plastics materials having the requisite properties.
  • Each of the linkages 16 is similar and the relative dimensions between the links in each linkage determine the change in diameter for a given load.
  • the relative dimensions of the other links as indicated by the letters on FIG. 4 are as follows: a b c d e f g h i J k 1 2 I 0.625 1.125 0.125 2.125 2.0 1.375 1.125 0.125
  • the stent 10 is typically inserted into the vessel by using a balloon catheter 60 .
  • the stent 10 is mounted on the catheter 60 shown in FIG. 15 .
  • the stent is initially located on a support 62 that has a bar-like head 64 and a tapered body 66 .
  • the stent 10 is snugly received on the body 66 which has a concave recess 68 at one end to locate the tip of catheter 60 .
  • a bore 70 extends through the body 66 to accommodate a wire if the catheter is of the type that employs such.
  • a protective sleeve 72 is located over the body 66 and is retained on a boss 74 on the head 64 .
  • the sleeve 72 thus protects the stent 10 from extraneous external forces with the body 66 providing support for the stent 10 in transit.
  • the sleeve 72 is removed and the body 66 is aligned with the catheter 60 .
  • the stent may then be slid axially from the body 66 over the catheter 60 and the support and sleeve discarded. In this way, the stent is guided during transfer and the placement of the stent on the catheter facilitated.
  • the recess 68 assists in locating and aligning the catheter 60 during transfer and of course the wire, if present, may be fed through the bore 70 .
  • the stent 10 is located on the body 66 such that the links 28 are closer to the boss 74 than the associated links 18 . Transfer of the stent 10 to the catheter thus ensures that the stent 10 is oriented on the catheter 60 such that the connecting link 28 of the linkage 16 is in advance of the circumferential links 18 during insertion of the stent 10 into the vessel.
  • the catheter is inserted into the vessel in a conventional manner until it is located at the stenosis.
  • the catheter After placement within the vessel, the catheter is then inflated to apply a radially expanding force to the stent.
  • the application of the radial force causes the circumferential spacing of struts 14 to increase.
  • the circumferential links 18 are carried with the struts 14 and a hinging action occurs at the connection of the axial link 20 to both the circumferential link 18 and the corner link 22 by plastic deformation of the links.
  • the connecting link 28 hinges at its connection to the corner link 22 to provide a hinging action between the links.
  • the links 22 is thus bodily rotated as the struts 14 are spread.
  • the catheter is then deflated and removed, leaving the stent 10 in situ. It will be noted, however, that during inflation the struts 14 maintain the axial spacing between the circumferential links 18 so that the overall length of the stent remains the same with no relative axial movement between the vessel and the stent.
  • linkage 16 is shown in FIGS. 6 and 7 , in which like components will be denoted with like reference numerals with a suffix ‘a’ added for clarity.
  • the circumferential link 18 a is formed as a pair of rectangular nodes 30 , 32 interconnected by a narrow bar 34 .
  • the length of the axial link 20 a is reduced to 0.5 of a unit value and a corresponding reduction in the length of the connecting link 28 to 0.5 is made.
  • the application of the radial load causes the connection at the bar 34 to plastically deform, allowing rotation of the rectangular bar 32 .
  • the connecting link 28 a is also subjected to bending load as well as plastic deformation at the connection to the links 22 a.
  • FIG. 8 A further embodiment is seen in FIG. 8 where again like reference numerals will be used to denote like components with a suffix ‘b’ added for clarity.
  • the connection between the connecting links 20 b and the circumferential links 18 b progressively tapers to the dimension F.
  • the junction between the connecting link 28 b and the link 22 b progressively tapers and in each case the overall length of the links 20 b , 28 b is reduced from 1 unit value to 0.5 unit value.
  • a tapering in the order of 45 is found to be appropriate.
  • FIGS. 11-14 offer enhanced flexibility for the stent during insertion, as may be needed to negotiate tight turns in the arterial system during placement, thereby minimizing damage to the arterial wall.
  • each of the struts 14 c is segmented so as to be comprised of either a series of unitary struts 40 or a series of linking struts 42 .
  • the unitary struts 40 alternate with linking struts 42 about the circumference of stent 10 c and in the preferred embodiment an even number of each is provided so that the linking struts 42 are diametrically opposed. It is preferred that four linking struts 42 are provided and are circumferentially spaced at 90° intervals.
  • Each of the unitary struts 40 extend between two of the linkages 16 c so as to interconnect them.
  • the unitary struts are spaced apart from one another by a gap indicated at 44 so that each linkage 16 c is connected to only one of the adjacent linkages 16 c .
  • the linking struts 42 extend between four of the linkages 16 c and are then spaced from the next of the linking struts 42 by a space indicated at 46 .
  • the gaps 44 between the unitary struts are circumferentially aligned to provide annular bands 48 whereas spaces 46 are staggered between alternate linking struts 42 .
  • Each of the linking struts 42 has a waist 50 to provide a region of enhanced flexibility in a plane tangential to the surface of the stent 10 c The waist 50 is aligned with one of the bands 48 and so provides the connection across the band 48 between the linkages 16 c.
  • the waists 50 are located at diametrically opposed locations in the respective bank 48 to define a pair of pivot axes X-X.
  • the waists 50 are displaced by 90° in adjacent bands 48 so that the pivot axes X-X are disposed at 90°.
  • This arrangement provides flexibility about mutually perpendicular axially spaced axes allowing relative pivotal movement between sections of the stent to conform to the vessel into which it is inserted.
  • the linkage 16 c is shown in detail in FIG. 13 and includes circumferential links 18 c and axial links 20 c connected by a node 32 c.
  • the circumferential link 28 c is connected to axial link 20 c by corner link 22 c which is formed as a rectangular leg 24 c.
  • the relative dimensions are as follows: a c e g i 1.20 0.75 1.40 1.40 2.00 0.90 0.25 6.9 5.30
  • the fillets 52 are each 0.125 and the thickness of the material between 0.0625 and 0.125.
  • each band 48 has two axial struts that inhibit relative axial movement between adjacent linkages 16 c .
  • the relatively flexible waists 50 disposed at 90° to one another provides the requisite flexibility for insertion of the stent 10 c.
  • FIG. 11 shows axes of rotation at 90° to one another
  • alternative arrangements may be used by varying the relative orientation of the waisted links. For example, by spacing the links at 60° angles, three axes of rotation are obtained at axially spaced locations.
  • linkage 16 The following relative dimensions of linkage 16 have also been found to provide satisfactory performance:
  • the units are 0.001 inches and the thickness of the material used was 0.003 inches.
  • the width, ie. circumferential dimension, of the struts 14 was 5 units and the axial spacing between adjacent linkages 16 was 12 units.
  • Example II the width of the struts 14 was 2.85 units and the axial spacing between adjacent linkages was 3 units.
  • the linkages repeated 4 times about the circumference.
  • the diameter of the stent prior to expansion was 65 units and after expansion with a 45° rotation of the links 20 c an outside diameter of 197 units was obtained with Example II and 152.3 units with Example III.
  • the axial spacing between linkages 16 was sufficient to permit the bodily rotation of the corner links as the stent expands radially.
  • the provision of the strut 14 inhibits foreshortening and therefore ensures that the linkages can rotate as required.
  • FIG. 16 A further embodiment is shown in FIG. 16 in which like components will be identified with like reference numerals with a suffix ‘d’ added for clarity,
  • the embodiment of FIG. 16 is similar to that shown in FIGS. 12 and 13 .
  • each of the struts 14 d is segmented into a series of unitary struts 40 d that extend between two adjacent linkages 16 d .
  • the struts 40 d are staggered circumferentially to alternate the direction of connection between adjacent linkages.
  • the unitary linkages 40 d are thus aligned at diametrically opposed locations and thus define a pair of orthogonal axes at axially spaced locations to provide flexibility during insertion.
  • the stent will of course be dimensioned to fit within the intended vessel and engage the wall when extended.
  • a typical stent for insertion in an artery will have a diameter of between 1.5 mm and 3.5 mm when inserted and may have a diameter of between 2 mm and 12 mm when expanded.
  • FIGS. 17 and 18 A further embodiment is shown in FIGS. 17 and 18 in which like reference numerals identify like components with a suffix “e” added for clarity.
  • the embodiment of FIGS. 17 and 18 has unitary struts 40 e distributed at diametrically opposed locations as shown in FIG. 16 .
  • the struts 40 e are increased in width to approximate the width of the nodes.
  • the nodes 32 e are provided with radiused external corners 84 and radiused fillets 86 at the connection to the links 34 e and 20 e.
  • the radiused external corners inhibit interference between adjacent pairs of links 22 e and nodes 3 e as the stent 10 c is expanded to ensure a uniform expansion of the inflating balloon.
  • the fillets 82 , 86 assist in stress distribution to effect the proper hinging action of the links.
  • the relative dimensions of the links may be adjusted to suit the requirements and in particular to suit the outside diameter of the balloon.
  • suitable dimensions, in inches, for three stents with different internal diameters is as follows. i.d. a b c d e F g h 1 0.0100 0.0060 0.0135 0.0180 0.0190 0.0110 0.0030 0.0515 2 0.0100 0.0060 0.0125 0.0180 0.0195 0.0110 0.0030 0.0505 3 0.0095 0.0060 0.0115 0.0180 0.0195 0.0110 0.0030 10.0485
  • FIG. 19 A further embodiment is shown in FIG. 19 in which like reference numerals will be used with like components with a suffix “f” added for clarity.
  • each of the linkages 16 f is similar To that shown in FIG. 18 .
  • the unitary struts 40 f interconnect three linkages 18 f except for the initial strut 40 f adjacent one end that interconnects two linkages 18 f.
  • Circumferentially adjacent struts 40 f are staggered relative to one another so as to provide an axial overlap and a gap 46 f . Accordingly, diametrically opposed connections are established at spaced axial locations to facilitate flexure of the stent 10 f .

Abstract

A stent has a tubular body with longitudinal struts interconnected by multi-bar linkages. The struts inhibit foreshortening of the body and relative rotation between the links in the linkages permits radial expansion. The links are plastically deformed as they are expanded to maintain the expanded diameter.

Description

  • This application is a continuation of U.S. application Ser. No. 09/893,253 filed on Jun. 27, 2001 which is a continuation of U.S. application Ser. No. 09/063,496 filed on Apr. 20, 1998 which is a continuation-in-part of U.S. Ser. No. 08/687,223 filed on Jul. 25, 1996, which claims priority from U.K. application no. 9605486.1 filed on Mar. 15, 1996 and U.K. application no. 9515282.3 filed on Jul. 25, 1995 the contents of which are incorporated herein by reference.
  • BACKGROUND OF THE INVENTION
  • Expandable stents are widely used to provide local reinforcement in fluid-carrying vessels within the human body. The stent is essentially a cylindrical member which may be expanded radially to dilate the vessel and to provide support for the wall of the vessel to maintain it in the dilated condition.
  • SUMMARY OF THE INVENTION
  • In order to insert the stent, it has previously been proposed to place the stent into the vessel on an expandable or balloon catheter. With the stent positioned at the appropriate location, the catheter is inflated and the stent is caused to expand radially against the wall of the vessel. Once the stent is expanded to the required diameter, the catheter is deflated and may be removed, leaving the stent in position.
  • The stent must of course remain expanded against the wall or the vessel and should be capable of withstanding the forces imposed by the wall of the vessel. Moreover, the stent should be able to negotiate tight turns in the arterial system during placement while minimizing damnage to the arterial wall.
  • A number of different mechanisms have been proposed to permit the expansion of the stent, including devices which reorient the components forming the stent so that they may adopt a greater overall diameter.
  • In another class of stents, as typified by the stent shown in U.S. Pat. No. 4,733,665 to Palmaz, the stent is configured to be plastically deformable so that after expansion it retains the increased diameter. In the Palmaz stent, the plastic deformation is provided by means of an open-mesh diamond structure. As the catheter is expanded, the intersecting members of the mesh deform so that the stent adopts an increased diameter.
  • With the arrangements shown in the Palmaz stent and similar configurations, a radial expansion of the stent is accompanied by an axial foreshortening of the stent. The degree of foreshortening is predictable but the ultimate location of the stent along the vessel is not predictable. Thus, one end of the stent may remain stationary relative to the blood vessel so that the opposite end is subjected to the maximum axial displacement or there may be progressive foreshortening from both ends with an intermediate location remaining stationary. The foreshortening of the stent leads to an unpredictable location for the stent in its expanded condition and induces relative movement in an axial direction between the vessel wall and the stent which is generally undesirable.
  • It is therefore an object of the present invention to provide a stent in which the above disadvantages are obviated or mitigated.
  • In general terms, the present invention provides a stent in which a plurality of circumferentially-spaced longitudinal struts are interconnected by multibar linkages. Adjacent links of the linkages are angularly disposed to one another such that a radial force causes relative rotation between adjacent links to permit radial enlargement of the stent. The longitudinal struts inhibit foreshortening of the stent so that the final location of the stent can be predicted.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Embodiments of the invention will now be described by way of example only with reference to the accompanying drawings, in which
  • FIG. 1 is a side elevation of an assembled stent;
  • FIG. 2 is a view on the line 2-2 of FIG. 1;
  • FIG. 3 is a developed view of the stunt shown in FIG. 1;
  • FIG. 4 is a view on an enlarged scale of a portion of the stent shown in FIGS. 1-3;
  • FIG. 5 is a view of the portion of the stent shown in FIG. 4 after radial expansion;
  • FIG. 6 is a view similar to FIG. 4 of an alternative embodiment of stent;
  • FIG. 7 is a view of the embodiment of FIG. 6 after radial expansion;
  • FIG. 8 is a further alternative of stent shown in FIG. 4;
  • FIG. 9 is a view of the embodiment of FIG. 8 after radial expansion;
  • FIG. 10 is a comparative curve between the embodiments of stent shown in FIGS. 4, 6 and 8;
  • FIG. 11 is a perspective view of a further embodiment of stent;
  • FIG. 12 is a developed view of the embodiment of stent shown in FIG. 11;
  • FIG. 13 is an enlarged view of a portion of the stent shown in Figure •;
  • FIG. 14 is a view similar to FIG. 9 showing the stent after radial expansion;
  • FIG. 15 is a sectional view of a stent support and catheter;
  • FIG. 16 is a developed view, similar to FIG. 12, of a further embodiment;
  • FIG. 17 is a developed view similar to FIG. 16 of a still further embodiment;
  • FIG. 18 is an enlarged view of a portion of the embodiment of FIG. 17; and
  • FIG. 19 is a developed view similar to FIG. 17 of a yet further embodiment.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Referring therefore to FIG. 1, a stent 10 has a generally tubular body 12 which is initially dimensioned to permit insertion into a vessel such as an artery. The body 12 includes a plurality of longitudinal struts 14 which are interconnected by multi-bar linkages 16. The linkages 16 are regularly spaced along the axial extent of the struts 14 and maintain struts 14 in circumferentially spaced relationship.
  • As can best be seen in FIG. 4, each of the linkages 16 includes a pair of oppositely directed circumferential links 18 with axial links 20 connected to the circumferential links 18 and extending parallel to the struts 14 but spaced therefrom. The axial links 20 are connected to an L-shaped corner link 22 which has an axial leg 24 and circumferential leg 26. The legs 26 of opposed corner links 22 are interconnected by a circumferential connecting link 28 to interconnect the adjacent struts 14. The links 18,20,22 and 28 of the linkage 16 are formed by removal of material from a seamless tube of bio-compatible material so that the links are integrally connected to one another. Typically such material would be a metal such as both pure and alloyed titanium, platinum, nitinol memory metals, gold or stainless steel, and the linkage may suitably be machined through micro machining techniques. Other materials could be used that are considered suitable for implantation including plastics materials having the requisite properties.
  • Each of the linkages 16 is similar and the relative dimensions between the links in each linkage determine the change in diameter for a given load. In a typical example, as shown in FIG. 4, taking the length of the connecting link 28 to be of unit length, then the relative dimensions of the other links as indicated by the letters on FIG. 4 are as follows:
    a b c d e f g h i J k
    1 2 I 0.625 1.125 0.125 2.125 2.0 1.375 1.125 0.125
  • The stent 10 is typically inserted into the vessel by using a balloon catheter 60. The stent 10 is mounted on the catheter 60 shown in FIG. 15. To assist in placement of the stent 10 on the catheter 60, the stent is initially located on a support 62 that has a bar-like head 64 and a tapered body 66. The stent 10 is snugly received on the body 66 which has a concave recess 68 at one end to locate the tip of catheter 60. A bore 70 extends through the body 66 to accommodate a wire if the catheter is of the type that employs such.
  • A protective sleeve 72 is located over the body 66 and is retained on a boss 74 on the head 64. The sleeve 72 thus protects the stent 10 from extraneous external forces with the body 66 providing support for the stent 10 in transit.
  • To transfer the stent to the catheter 60, the sleeve 72 is removed and the body 66 is aligned with the catheter 60. The stent may then be slid axially from the body 66 over the catheter 60 and the support and sleeve discarded. In this way, the stent is guided during transfer and the placement of the stent on the catheter facilitated.
  • The recess 68 assists in locating and aligning the catheter 60 during transfer and of course the wire, if present, may be fed through the bore 70.
  • The stent 10 is located on the body 66 such that the links 28 are closer to the boss 74 than the associated links 18. Transfer of the stent 10 to the catheter thus ensures that the stent 10 is oriented on the catheter 60 such that the connecting link 28 of the linkage 16 is in advance of the circumferential links 18 during insertion of the stent 10 into the vessel.
  • The catheter is inserted into the vessel in a conventional manner until it is located at the stenosis.
  • After placement within the vessel, the catheter is then inflated to apply a radially expanding force to the stent.
  • As shown in FIG. 5, the application of the radial force causes the circumferential spacing of struts 14 to increase. The circumferential links 18 are carried with the struts 14 and a hinging action occurs at the connection of the axial link 20 to both the circumferential link 18 and the corner link 22 by plastic deformation of the links. Similarly, the connecting link 28 hinges at its connection to the corner link 22 to provide a hinging action between the links. The links 22 is thus bodily rotated as the struts 14 are spread.
  • By virtue of the relatively narrow links 20,22, the hinging at their junction to the larger links 18,22 exceeds the yield point of the material and causes a permanent deformation and increase in diameter. A pair of spaced hinge points is thus established and thus the total rotation required between the axial links 20 and circumferential link 28 is distributed between two locations.
  • The catheter is then deflated and removed, leaving the stent 10 in situ. It will be noted, however, that during inflation the struts 14 maintain the axial spacing between the circumferential links 18 so that the overall length of the stent remains the same with no relative axial movement between the vessel and the stent.
  • In tests with samples of the configuration of FIGS. 4 and 5, an extension from the spacing of the struts 14 was increased from an initial value of 6 units to 8.48 units upon application of loads consistent with those used in the expansion of such stents.
  • An alternative embodiment of linkage 16 is shown in FIGS. 6 and 7, in which like components will be denoted with like reference numerals with a suffix ‘a’ added for clarity.
  • In the embodiment of FIG. 6, the circumferential link 18 a is formed as a pair of rectangular nodes 30,32 interconnected by a narrow bar 34. The length of the axial link 20 a is reduced to 0.5 of a unit value and a corresponding reduction in the length of the connecting link 28 to 0.5 is made. As may be seen in FIG. 7, the application of the radial load causes the connection at the bar 34 to plastically deform, allowing rotation of the rectangular bar 32. The connecting link 28 a is also subjected to bending load as well as plastic deformation at the connection to the links 22 a.
  • In tests conducted with samples of the arrangements shown in FIGS. 6 and 7, the initial spacing of the struts 14 was increased to 8.5 units after application of a radial force consistent with that found in balloon catheters.
  • A further embodiment is seen in FIG. 8 where again like reference numerals will be used to denote like components with a suffix ‘b’ added for clarity. In the embodiment of FIG. 8, the connection between the connecting links 20 b and the circumferential links 18 b progressively tapers to the dimension F. In a similar manner, the junction between the connecting link 28 b and the link 22 b progressively tapers and in each case the overall length of the links 20 b,28 b is reduced from 1 unit value to 0.5 unit value. A tapering in the order of 45 is found to be appropriate.
  • The results of tests conducted on the embodiment shown in FIGS. 4, 6 and 8 are represented on the curve of FIG. 9. This curve represents the applied radial load and the deflection obtained and it will be seen that in each embodiment there is an initial proportional increase of load and deflection followed by a much flatter curve indicating a plastic deformation. Thereafter, the load progressively increases, indicating that the orientation of the links is approaching a linear orientation. It will be seen that the embodiment of FIG. 8 provides a lower load to achieve the requisite deflections. With the provision of the relatively narrow links, it is possible to control the radial force necessary to expand the stent and the location at which the bending will occur. The force necessary to achieve radial expansion must be compatible with the forces available from a balloon catheter and the reduced width of the links permits this. Moreover, the plastic deformation of the narrow links maintains control of the orientation of the wider links during expansion.
  • A further embodiment is shown in FIGS. 11-14 offering enhanced flexibility for the stent during insertion, as may be needed to negotiate tight turns in the arterial system during placement, thereby minimizing damage to the arterial wall.
  • In the embodiment of FIGS. 11-14, each of the struts 14 c is segmented so as to be comprised of either a series of unitary struts 40 or a series of linking struts 42.
  • The unitary struts 40 alternate with linking struts 42 about the circumference of stent 10 c and in the preferred embodiment an even number of each is provided so that the linking struts 42 are diametrically opposed. It is preferred that four linking struts 42 are provided and are circumferentially spaced at 90° intervals.
  • Each of the unitary struts 40 extend between two of the linkages 16 c so as to interconnect them. The unitary struts are spaced apart from one another by a gap indicated at 44 so that each linkage 16 c is connected to only one of the adjacent linkages 16 c. By contrast, the linking struts 42 extend between four of the linkages 16 c and are then spaced from the next of the linking struts 42 by a space indicated at 46.
  • The gaps 44 between the unitary struts are circumferentially aligned to provide annular bands 48 whereas spaces 46 are staggered between alternate linking struts 42. Each of the linking struts 42 has a waist 50 to provide a region of enhanced flexibility in a plane tangential to the surface of the stent 10 c The waist 50 is aligned with one of the bands 48 and so provides the connection across the band 48 between the linkages 16 c.
  • As can be seen in FIG. 11, the waists 50 are located at diametrically opposed locations in the respective bank 48 to define a pair of pivot axes X-X. By virtue of the staggered relationship between adjacent linking struts 42, the waists 50 are displaced by 90° in adjacent bands 48 so that the pivot axes X-X are disposed at 90°.
  • This arrangement provides flexibility about mutually perpendicular axially spaced axes allowing relative pivotal movement between sections of the stent to conform to the vessel into which it is inserted.
  • The linkage 16 c is shown in detail in FIG. 13 and includes circumferential links 18 c and axial links 20 c connected by a node 32 c.
  • The circumferential link 28 c is connected to axial link 20 c by corner link 22 c which is formed as a rectangular leg 24 c.
  • It will be noted that the connection of each of the links 18 c,20 c,28 c to the struts 134, nodes 32 c and corner link 22 c by radiused fillets 52 that reduce local stress concentrations.
  • In one preferred example, the relative dimensions are as follows:
    a c e g i
    1.20 0.75 1.40 1.40 2.00 0.90 0.25 6.9 5.30
  • The fillets 52 are each 0.125 and the thickness of the material between 0.0625 and 0.125. With this configuration, the application of a radial load results in the circumferential expansion shown in FIG. 14 from which it can be seen that a uniform bending of the links 18 c is obtained and that the axial links 20 have assumed a circumferential orientation.
  • Upon circumferential expansion, the linking struts 42 inhibit foreshortening as each band 48 has two axial struts that inhibit relative axial movement between adjacent linkages 16 c. At the same time the relatively flexible waists 50 disposed at 90° to one another provides the requisite flexibility for insertion of the stent 10 c.
  • Although the embodiment of FIG. 11 shows axes of rotation at 90° to one another, alternative arrangements may be used by varying the relative orientation of the waisted links. For example, by spacing the links at 60° angles, three axes of rotation are obtained at axially spaced locations.
  • The following relative dimensions of linkage 16 have also been found to provide satisfactory performance:
  • EXAMPLE I
  • a b c d e f g h i
    10 7.5 11 17.8 38.6 12.3 3 46 74.2
  • EXAMPLE II
  • a B c d e f g h i
    10.3 7.7 12.2 17.8 38.6 12.3 3 48.2 74.2
  • EXAMPLE III
  • a b c d e f g h i
    10.0 7.5 11 14.3 20.4 9.2 3 46 49
  • In each of these examples, the units are 0.001 inches and the thickness of the material used was 0.003 inches.
  • In Examples I and III, the width, ie. circumferential dimension, of the struts 14 was 5 units and the axial spacing between adjacent linkages 16 was 12 units.
  • In Example II the width of the struts 14 was 2.85 units and the axial spacing between adjacent linkages was 3 units.
  • In each case, the linkages repeated 4 times about the circumference. The diameter of the stent prior to expansion was 65 units and after expansion with a 45° rotation of the links 20 c an outside diameter of 197 units was obtained with Example II and 152.3 units with Example III. The axial spacing between linkages 16 was sufficient to permit the bodily rotation of the corner links as the stent expands radially. The provision of the strut 14 inhibits foreshortening and therefore ensures that the linkages can rotate as required.
  • A further embodiment is shown in FIG. 16 in which like components will be identified with like reference numerals with a suffix ‘d’ added for clarity, The embodiment of FIG. 16 is similar to that shown in FIGS. 12 and 13. However, each of the struts 14 d is segmented into a series of unitary struts 40 d that extend between two adjacent linkages 16 d. The struts 40 d are staggered circumferentially to alternate the direction of connection between adjacent linkages. The unitary linkages 40 d are thus aligned at diametrically opposed locations and thus define a pair of orthogonal axes at axially spaced locations to provide flexibility during insertion. The stent will of course be dimensioned to fit within the intended vessel and engage the wall when extended. A typical stent for insertion in an artery will have a diameter of between 1.5 mm and 3.5 mm when inserted and may have a diameter of between 2 mm and 12 mm when expanded.
  • A further embodiment is shown in FIGS. 17 and 18 in which like reference numerals identify like components with a suffix “e” added for clarity. The embodiment of FIGS. 17 and 18 has unitary struts 40 e distributed at diametrically opposed locations as shown in FIG. 16.
  • In the embodiment of FIG. 17 however the struts 40 e are increased in width to approximate the width of the nodes. And, as can be seen in FIG. 18, the provided with radiused external corners 80 and radiused fillets 82 at the intersection with links 20 e and 28 e. Similarly, the nodes 32 e are provided with radiused external corners 84 and radiused fillets 86 at the connection to the links 34 e and 20 e.
  • The radiused external corners inhibit interference between adjacent pairs of links 22 e and nodes 3 e as the stent 10 c is expanded to ensure a uniform expansion of the inflating balloon. The fillets 82, 86 assist in stress distribution to effect the proper hinging action of the links.
  • The relative dimensions of the links may be adjusted to suit the requirements and in particular to suit the outside diameter of the balloon. Using the same nomenclature as used in FIG. 13 suitable dimensions, in inches, for three stents with different internal diameters, is as follows.
    i.d. a b c d e F g h
    1 0.0100 0.0060 0.0135 0.0180 0.0190 0.0110 0.0030 0.0515
    2 0.0100 0.0060 0.0125 0.0180 0.0195 0.0110 0.0030 0.0505
    3 0.0095 0.0060 0.0115 0.0180 0.0195 0.0110 0.0030 10.0485
  • It will be seen that by varying the spacing between links 20 e (dimension ‘c’) or the length of link 34 (dimension ‘a’) the spacing of the struts 40 e and hence the circumference may be varied. Appropriate adjustment can be made to the length of link 20 e (dimension ‘e’) to maintain an expanded diameter of 4 mm. In each of the above examples, the external corners and all fillets except those at opposite ends of the links 20 have a radius of 0.002 inches. The fillets at opposite ends of links 20 e have a radius of 0.0015 inches.
  • A further embodiment is shown in FIG. 19 in which like reference numerals will be used with like components with a suffix “f” added for clarity.
  • In the embodiment of FIG. 19 each of the linkages 16 f is similar To that shown in FIG. 18. The unitary struts 40 f interconnect three linkages 18 f except for the initial strut 40 f adjacent one end that interconnects two linkages 18 f.
  • Circumferentially adjacent struts 40 f are staggered relative to one another so as to provide an axial overlap and a gap 46 f. Accordingly, diametrically opposed connections are established at spaced axial locations to facilitate flexure of the stent 10 f.

Claims (2)

1. A stent having a generally tubular body with a plurality of circumferentially spaced longitudinal struts extending parallel to a longitudinal axis of said body, circumferentially adjacent pairs of said struts being interconnected solely b)(a set) of linkages axially spaced from one another and defining a predetermined space between adjacent pairs of said struts, each of said linkages having a plurality of links angularly disposed relative to one another in an unexpanded condition such that when a radial force is exerted-on-said tubular body, relative rotation between adjacent links and plastic deformation occurs, thereby increasing said space between said adjacent pairs of said struts and permitting radial expansion of said stent, said struts inhibiting relative axial movement between said linkages and foreshortening of said body, each of said linkages having hinge points spaced apart along said linkage, said hinge points deforming upon radial expansion of said stent to facilitate relative rotation of said links, wherein said hinge points are provided by zones of relative weakness along said links.
2. A stent according to claim 1 wherein said zones of relative weakness are provided by a reduced cross-sectional area.
US10/759,527 1995-07-25 2004-01-20 Expandible stent Abandoned US20050060024A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/759,527 US20050060024A1 (en) 1995-07-25 2004-01-20 Expandible stent

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
GBGB9515282.3A GB9515282D0 (en) 1995-07-25 1995-07-25 Expandable stent
GB9515282.3 1995-07-25
GBGB9605486.1A GB9605486D0 (en) 1996-03-15 1996-03-15 Flexible expandable stent
GB9605486.1 1996-03-15
US08/687,223 US5776181A (en) 1995-07-25 1996-07-25 Expandable stent
US09/063,496 US6261318B1 (en) 1995-07-25 1998-04-20 Expandable stent
US09/893,253 US20030078648A1 (en) 1995-07-25 2001-06-27 Expandible stent
US10/759,527 US20050060024A1 (en) 1995-07-25 2004-01-20 Expandible stent

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/893,253 Continuation US20030078648A1 (en) 1995-07-25 2001-06-27 Expandible stent

Publications (1)

Publication Number Publication Date
US20050060024A1 true US20050060024A1 (en) 2005-03-17

Family

ID=27267828

Family Applications (3)

Application Number Title Priority Date Filing Date
US09/063,496 Expired - Fee Related US6261318B1 (en) 1995-07-25 1998-04-20 Expandable stent
US09/893,253 Abandoned US20030078648A1 (en) 1995-07-25 2001-06-27 Expandible stent
US10/759,527 Abandoned US20050060024A1 (en) 1995-07-25 2004-01-20 Expandible stent

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US09/063,496 Expired - Fee Related US6261318B1 (en) 1995-07-25 1998-04-20 Expandable stent
US09/893,253 Abandoned US20030078648A1 (en) 1995-07-25 2001-06-27 Expandible stent

Country Status (1)

Country Link
US (3) US6261318B1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060173532A1 (en) * 2004-12-20 2006-08-03 Jacob Flagle Intraluminal support frame and medical devices including the support frame
CN105769398A (en) * 2016-03-18 2016-07-20 上海工程技术大学 Biodegradable vascular stent based on polyhedron deformation mechanism
US10271977B2 (en) 2017-09-08 2019-04-30 Vesper Medical, Inc. Hybrid stent
US10500078B2 (en) 2018-03-09 2019-12-10 Vesper Medical, Inc. Implantable stent
US10702405B2 (en) 2016-03-31 2020-07-07 Vesper Medical, Inc. Intravascular implants
US10849769B2 (en) 2017-08-23 2020-12-01 Vesper Medical, Inc. Non-foreshortening stent
US10940167B2 (en) 2012-02-10 2021-03-09 Cvdevices, Llc Methods and uses of biological tissues for various stent and other medical applications
US11357650B2 (en) 2019-02-28 2022-06-14 Vesper Medical, Inc. Hybrid stent
US11364134B2 (en) 2018-02-15 2022-06-21 Vesper Medical, Inc. Tapering stent
US11406495B2 (en) 2013-02-11 2022-08-09 Cook Medical Technologies Llc Expandable support frame and medical device
US11628076B2 (en) 2017-09-08 2023-04-18 Vesper Medical, Inc. Hybrid stent

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6261318B1 (en) * 1995-07-25 2001-07-17 Medstent Inc. Expandable stent
US7208010B2 (en) 2000-10-16 2007-04-24 Conor Medsystems, Inc. Expandable medical device for delivery of beneficial agent
US6241762B1 (en) 1998-03-30 2001-06-05 Conor Medsystems, Inc. Expandable medical device with ductile hinges
US6682554B2 (en) 1998-09-05 2004-01-27 Jomed Gmbh Methods and apparatus for a stent having an expandable web structure
US6755856B2 (en) 1998-09-05 2004-06-29 Abbott Laboratories Vascular Enterprises Limited Methods and apparatus for stenting comprising enhanced embolic protection, coupled with improved protection against restenosis and thrombus formation
US7887578B2 (en) 1998-09-05 2011-02-15 Abbott Laboratories Vascular Enterprises Limited Stent having an expandable web structure
US7815763B2 (en) * 2001-09-28 2010-10-19 Abbott Laboratories Vascular Enterprises Limited Porous membranes for medical implants and methods of manufacture
US20060216313A1 (en) * 1999-08-10 2006-09-28 Allergan, Inc. Methods for treating a stricture with a botulinum toxin
US6767544B2 (en) 2002-04-01 2004-07-27 Allergan, Inc. Methods for treating cardiovascular diseases with botulinum toxin
DE20122506U1 (en) * 2000-10-16 2005-12-08 Conor Medsystems, Inc., Menlo Park Expandable medical device for delivering a beneficial agent
US7842083B2 (en) 2001-08-20 2010-11-30 Innovational Holdings, Llc. Expandable medical device with improved spatial distribution
EP1516600B1 (en) * 2001-09-18 2007-03-14 Abbott Laboratories Vascular Enterprises Limited Stent
US20040054398A1 (en) * 2002-09-13 2004-03-18 Cully Edward H. Stent device with multiple helix construction
US7191842B2 (en) * 2003-03-12 2007-03-20 Schlumberger Technology Corporation Collapse resistant expandables for use in wellbore environments
US20060271158A1 (en) * 2005-05-26 2006-11-30 Boston Scientific Scimed, Inc. Positional locking endoluminal device system
US8128679B2 (en) 2007-05-23 2012-03-06 Abbott Laboratories Vascular Enterprises Limited Flexible stent with torque-absorbing connectors
US8016874B2 (en) 2007-05-23 2011-09-13 Abbott Laboratories Vascular Enterprises Limited Flexible stent with elevated scaffolding properties
US8337544B2 (en) 2007-12-20 2012-12-25 Abbott Laboratories Vascular Enterprises Limited Endoprosthesis having flexible connectors
US7850726B2 (en) 2007-12-20 2010-12-14 Abbott Laboratories Vascular Enterprises Limited Endoprosthesis having struts linked by foot extensions
US8920488B2 (en) 2007-12-20 2014-12-30 Abbott Laboratories Vascular Enterprises Limited Endoprosthesis having a stable architecture
EP3878408A1 (en) 2008-07-21 2021-09-15 Jenesis Surgical, LLC Endoluminal support apparatus
US9039756B2 (en) 2008-07-21 2015-05-26 Jenesis Surgical, Llc Repositionable endoluminal support structure and its applications
EP2477583B1 (en) * 2009-09-16 2015-04-08 Bentley InnoMed GmbH Stent having expandable elements
US9649211B2 (en) 2009-11-04 2017-05-16 Confluent Medical Technologies, Inc. Alternating circumferential bridge stent design and methods for use thereof
US10092427B2 (en) 2009-11-04 2018-10-09 Confluent Medical Technologies, Inc. Alternating circumferential bridge stent design and methods for use thereof
US9301864B2 (en) 2010-06-08 2016-04-05 Veniti, Inc. Bi-directional stent delivery system
US8864811B2 (en) 2010-06-08 2014-10-21 Veniti, Inc. Bi-directional stent delivery system
US9233014B2 (en) 2010-09-24 2016-01-12 Veniti, Inc. Stent with support braces
US9301860B2 (en) 2013-03-13 2016-04-05 Jenesis Surgical, Llc Articulated commissure valve stents and methods
EP3848004A1 (en) 2013-11-11 2021-07-14 Edwards Lifesciences CardiAQ LLC Valve stent frame
US20210259831A1 (en) * 2018-06-20 2021-08-26 W. L. Gore & Associates, Inc. Support structure for an implantable device with enhanced compressive stiffness region(s)

Citations (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3657744A (en) * 1970-05-08 1972-04-25 Univ Minnesota Method for fixing prosthetic implants in a living body
US4503569A (en) * 1983-03-03 1985-03-12 Dotter Charles T Transluminally placed expandable graft prosthesis
US4553545A (en) * 1981-09-16 1985-11-19 Medinvent S.A. Device for application in blood vessels or other difficultly accessible locations and its use
US4580568A (en) * 1984-10-01 1986-04-08 Cook, Incorporated Percutaneous endovascular stent and method for insertion thereof
US4655771A (en) * 1982-04-30 1987-04-07 Shepherd Patents S.A. Prosthesis comprising an expansible or contractile tubular body
US4665918A (en) * 1986-01-06 1987-05-19 Garza Gilbert A Prosthesis system and method
US4733665A (en) * 1985-11-07 1988-03-29 Expandable Grafts Partnership Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
US4856516A (en) * 1989-01-09 1989-08-15 Cordis Corporation Endovascular stent apparatus and method
US4994071A (en) * 1989-05-22 1991-02-19 Cordis Corporation Bifurcating stent apparatus and method
US5104404A (en) * 1989-10-02 1992-04-14 Medtronic, Inc. Articulated stent
US5139480A (en) * 1990-08-22 1992-08-18 Biotech Laboratories, Inc. Necking stents
US5197978A (en) * 1991-04-26 1993-03-30 Advanced Coronary Technology, Inc. Removable heat-recoverable tissue supporting device
US5201757A (en) * 1992-04-03 1993-04-13 Schneider (Usa) Inc. Medial region deployment of radially self-expanding stents
US5217483A (en) * 1990-11-28 1993-06-08 Numed, Inc. Intravascular radially expandable stent
US5226913A (en) * 1988-09-01 1993-07-13 Corvita Corporation Method of making a radially expandable prosthesis
US5344426A (en) * 1990-04-25 1994-09-06 Advanced Cardiovascular Systems, Inc. Method and system for stent delivery
US5354308A (en) * 1992-05-01 1994-10-11 Beth Israel Hospital Association Metal wire stent
US5356423A (en) * 1991-01-04 1994-10-18 American Medical Systems, Inc. Resectable self-expanding stent
US5389106A (en) * 1993-10-29 1995-02-14 Numed, Inc. Impermeable expandable intravascular stent
US5395390A (en) * 1992-05-01 1995-03-07 The Beth Israel Hospital Association Metal wire stent
US5397355A (en) * 1994-07-19 1995-03-14 Stentco, Inc. Intraluminal stent
US5405380A (en) * 1992-10-12 1995-04-11 Schneider (Europe) A.G. Catheter with a vascular support
US5405377A (en) * 1992-02-21 1995-04-11 Endotech Ltd. Intraluminal stent
US5433723A (en) * 1991-10-11 1995-07-18 Angiomed Ag Apparatus for widening a stenosis
US5443499A (en) * 1993-01-14 1995-08-22 Meadox Medicals, Inc. Radially expandable tubular prosthesis
US5443500A (en) * 1989-01-26 1995-08-22 Advanced Cardiovascular Systems, Inc. Intravascular stent
US5449373A (en) * 1994-03-17 1995-09-12 Medinol Ltd. Articulated stent
US5476508A (en) * 1994-05-26 1995-12-19 Tfx Medical Stent with mutually interlocking filaments
US5476505A (en) * 1993-11-18 1995-12-19 Advanced Cardiovascular Systems, Inc. Coiled stent and delivery system
US5478349A (en) * 1994-04-28 1995-12-26 Boston Scientific Corporation Placement of endoprostheses and stents
US5507767A (en) * 1992-01-15 1996-04-16 Cook Incorporated Spiral stent
US5507768A (en) * 1991-01-28 1996-04-16 Advanced Cardiovascular Systems, Inc. Stent delivery system
US5507771A (en) * 1992-06-15 1996-04-16 Cook Incorporated Stent assembly
US5514176A (en) * 1995-01-20 1996-05-07 Vance Products Inc. Pull apart coil stent
US5534007A (en) * 1995-05-18 1996-07-09 Scimed Life Systems, Inc. Stent deployment catheter with collapsible sheath
US5540712A (en) * 1992-05-01 1996-07-30 Nitinol Medical Technologies, Inc. Stent and method and apparatus for forming and delivering the same
US5549635A (en) * 1994-01-24 1996-08-27 Solar, Rita & Gaterud, Ltd. Non-deformable self-expanding parallel flow endovascular stent and deployment apparatus therefore
US5549662A (en) * 1994-11-07 1996-08-27 Scimed Life Systems, Inc. Expandable stent using sliding members
US5556414A (en) * 1995-03-08 1996-09-17 Wayne State University Composite intraluminal graft
US5562725A (en) * 1992-09-14 1996-10-08 Meadox Medicals Inc. Radially self-expanding implantable intraluminal device
US5562697A (en) * 1995-09-18 1996-10-08 William Cook, Europe A/S Self-expanding stent assembly and methods for the manufacture thereof
US5571135A (en) * 1993-10-22 1996-11-05 Scimed Life Systems Inc. Stent delivery apparatus and method
US5575816A (en) * 1994-08-12 1996-11-19 Meadox Medicals, Inc. High strength and high density intraluminal wire stent
US5591197A (en) * 1995-03-14 1997-01-07 Advanced Cardiovascular Systems, Inc. Expandable stent forming projecting barbs and method for deploying
US5591198A (en) * 1995-04-27 1997-01-07 Medtronic, Inc. Multiple sinusoidal wave configuration stent
US5591196A (en) * 1994-02-10 1997-01-07 Endovascular Systems, Inc. Method for deployment of radially expandable stents
US5591229A (en) * 1990-06-11 1997-01-07 Parodi; Juan C. Aortic graft for repairing an abdominal aortic aneurysm
US5593442A (en) * 1995-06-05 1997-01-14 Localmed, Inc. Radially expansible and articulated vessel scaffold
US5593434A (en) * 1992-01-31 1997-01-14 Advanced Cardiovascular Systems, Inc. Stent capable of attachment within a body lumen
US5601593A (en) * 1995-03-06 1997-02-11 Willy Rusch Ag Stent for placement in a body tube
US5603722A (en) * 1995-06-06 1997-02-18 Quanam Medical Corporation Intravascular stent
US5607467A (en) * 1990-09-14 1997-03-04 Froix; Michael Expandable polymeric stent with memory and delivery apparatus and method
US5618300A (en) * 1994-02-10 1997-04-08 Endovascular Systems, Inc. Apparatus and method for deployment of radially expandable stents by a mechanical linkage
US5626603A (en) * 1994-10-05 1997-05-06 Fogazzi Di Ventureli Andrea & C. S.N.C. Hydraulic stent inserter
US5733303A (en) * 1994-03-17 1998-03-31 Medinol Ltd. Flexible expandable stent
US5776181A (en) * 1995-07-25 1998-07-07 Medstent Inc. Expandable stent
US5817152A (en) * 1994-10-19 1998-10-06 Birdsall; Matthew Connected stent apparatus
US6261318B1 (en) * 1995-07-25 2001-07-17 Medstent Inc. Expandable stent

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5102417A (en) 1985-11-07 1992-04-07 Expandable Grafts Partnership Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
US4893623A (en) 1986-12-09 1990-01-16 Advanced Surgical Intervention, Inc. Method and apparatus for treating hypertrophy of the prostate gland
CA2380683C (en) 1991-10-28 2006-08-08 Advanced Cardiovascular Systems, Inc. Expandable stents and method for making same
EP0662806B1 (en) 1993-07-23 2001-04-11 Cook Incorporated A flexible stent having a pattern formed from a sheet of material
FR2710834B1 (en) 1993-10-05 1995-12-22 Guerbet Sa Expandable tubular organ for intraluminal endoprosthesis, intraluminal endoprosthesis, manufacturing process.
US5702419A (en) 1994-09-21 1997-12-30 Wake Forest University Expandable, intraluminal stents

Patent Citations (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3657744A (en) * 1970-05-08 1972-04-25 Univ Minnesota Method for fixing prosthetic implants in a living body
US4553545A (en) * 1981-09-16 1985-11-19 Medinvent S.A. Device for application in blood vessels or other difficultly accessible locations and its use
US4655771A (en) * 1982-04-30 1987-04-07 Shepherd Patents S.A. Prosthesis comprising an expansible or contractile tubular body
US4655771B1 (en) * 1982-04-30 1996-09-10 Medinvent Ams Sa Prosthesis comprising an expansible or contractile tubular body
US4503569A (en) * 1983-03-03 1985-03-12 Dotter Charles T Transluminally placed expandable graft prosthesis
US4580568A (en) * 1984-10-01 1986-04-08 Cook, Incorporated Percutaneous endovascular stent and method for insertion thereof
US4733665C2 (en) * 1985-11-07 2002-01-29 Expandable Grafts Partnership Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft
US4733665A (en) * 1985-11-07 1988-03-29 Expandable Grafts Partnership Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
US4733665B1 (en) * 1985-11-07 1994-01-11 Expandable Grafts Partnership Expandable intraluminal graft,and method and apparatus for implanting an expandable intraluminal graft
US4665918A (en) * 1986-01-06 1987-05-19 Garza Gilbert A Prosthesis system and method
US5226913A (en) * 1988-09-01 1993-07-13 Corvita Corporation Method of making a radially expandable prosthesis
US4856516A (en) * 1989-01-09 1989-08-15 Cordis Corporation Endovascular stent apparatus and method
US5443500A (en) * 1989-01-26 1995-08-22 Advanced Cardiovascular Systems, Inc. Intravascular stent
US4994071A (en) * 1989-05-22 1991-02-19 Cordis Corporation Bifurcating stent apparatus and method
US5104404A (en) * 1989-10-02 1992-04-14 Medtronic, Inc. Articulated stent
US5344426A (en) * 1990-04-25 1994-09-06 Advanced Cardiovascular Systems, Inc. Method and system for stent delivery
US5591229A (en) * 1990-06-11 1997-01-07 Parodi; Juan C. Aortic graft for repairing an abdominal aortic aneurysm
US5139480A (en) * 1990-08-22 1992-08-18 Biotech Laboratories, Inc. Necking stents
US5607467A (en) * 1990-09-14 1997-03-04 Froix; Michael Expandable polymeric stent with memory and delivery apparatus and method
US5217483A (en) * 1990-11-28 1993-06-08 Numed, Inc. Intravascular radially expandable stent
US5356423A (en) * 1991-01-04 1994-10-18 American Medical Systems, Inc. Resectable self-expanding stent
US5507768A (en) * 1991-01-28 1996-04-16 Advanced Cardiovascular Systems, Inc. Stent delivery system
US5197978B1 (en) * 1991-04-26 1996-05-28 Advanced Coronary Tech Removable heat-recoverable tissue supporting device
US5197978A (en) * 1991-04-26 1993-03-30 Advanced Coronary Technology, Inc. Removable heat-recoverable tissue supporting device
US5433723A (en) * 1991-10-11 1995-07-18 Angiomed Ag Apparatus for widening a stenosis
US5507767A (en) * 1992-01-15 1996-04-16 Cook Incorporated Spiral stent
US5593434A (en) * 1992-01-31 1997-01-14 Advanced Cardiovascular Systems, Inc. Stent capable of attachment within a body lumen
US5405377A (en) * 1992-02-21 1995-04-11 Endotech Ltd. Intraluminal stent
US5201757A (en) * 1992-04-03 1993-04-13 Schneider (Usa) Inc. Medial region deployment of radially self-expanding stents
US5540712A (en) * 1992-05-01 1996-07-30 Nitinol Medical Technologies, Inc. Stent and method and apparatus for forming and delivering the same
US5395390A (en) * 1992-05-01 1995-03-07 The Beth Israel Hospital Association Metal wire stent
US5354308A (en) * 1992-05-01 1994-10-11 Beth Israel Hospital Association Metal wire stent
US5507771A (en) * 1992-06-15 1996-04-16 Cook Incorporated Stent assembly
US5562725A (en) * 1992-09-14 1996-10-08 Meadox Medicals Inc. Radially self-expanding implantable intraluminal device
US5626602A (en) * 1992-10-12 1997-05-06 Schneider (Europe) A.G. Catheter with a vascular support
US5405380A (en) * 1992-10-12 1995-04-11 Schneider (Europe) A.G. Catheter with a vascular support
US5443499A (en) * 1993-01-14 1995-08-22 Meadox Medicals, Inc. Radially expandable tubular prosthesis
US5571135A (en) * 1993-10-22 1996-11-05 Scimed Life Systems Inc. Stent delivery apparatus and method
US5389106A (en) * 1993-10-29 1995-02-14 Numed, Inc. Impermeable expandable intravascular stent
US5476505A (en) * 1993-11-18 1995-12-19 Advanced Cardiovascular Systems, Inc. Coiled stent and delivery system
US5549635A (en) * 1994-01-24 1996-08-27 Solar, Rita & Gaterud, Ltd. Non-deformable self-expanding parallel flow endovascular stent and deployment apparatus therefore
US5591196A (en) * 1994-02-10 1997-01-07 Endovascular Systems, Inc. Method for deployment of radially expandable stents
US5618300A (en) * 1994-02-10 1997-04-08 Endovascular Systems, Inc. Apparatus and method for deployment of radially expandable stents by a mechanical linkage
US5733303A (en) * 1994-03-17 1998-03-31 Medinol Ltd. Flexible expandable stent
US5449373A (en) * 1994-03-17 1995-09-12 Medinol Ltd. Articulated stent
US5478349A (en) * 1994-04-28 1995-12-26 Boston Scientific Corporation Placement of endoprostheses and stents
US5476508A (en) * 1994-05-26 1995-12-19 Tfx Medical Stent with mutually interlocking filaments
US5397355A (en) * 1994-07-19 1995-03-14 Stentco, Inc. Intraluminal stent
US5575816A (en) * 1994-08-12 1996-11-19 Meadox Medicals, Inc. High strength and high density intraluminal wire stent
US5626603A (en) * 1994-10-05 1997-05-06 Fogazzi Di Ventureli Andrea & C. S.N.C. Hydraulic stent inserter
US5817152A (en) * 1994-10-19 1998-10-06 Birdsall; Matthew Connected stent apparatus
US5549662A (en) * 1994-11-07 1996-08-27 Scimed Life Systems, Inc. Expandable stent using sliding members
US5514176A (en) * 1995-01-20 1996-05-07 Vance Products Inc. Pull apart coil stent
US5601593A (en) * 1995-03-06 1997-02-11 Willy Rusch Ag Stent for placement in a body tube
US5556414A (en) * 1995-03-08 1996-09-17 Wayne State University Composite intraluminal graft
US5591197A (en) * 1995-03-14 1997-01-07 Advanced Cardiovascular Systems, Inc. Expandable stent forming projecting barbs and method for deploying
US5591198A (en) * 1995-04-27 1997-01-07 Medtronic, Inc. Multiple sinusoidal wave configuration stent
US5534007A (en) * 1995-05-18 1996-07-09 Scimed Life Systems, Inc. Stent deployment catheter with collapsible sheath
US5593442A (en) * 1995-06-05 1997-01-14 Localmed, Inc. Radially expansible and articulated vessel scaffold
US5603722A (en) * 1995-06-06 1997-02-18 Quanam Medical Corporation Intravascular stent
US5776181A (en) * 1995-07-25 1998-07-07 Medstent Inc. Expandable stent
US6261318B1 (en) * 1995-07-25 2001-07-17 Medstent Inc. Expandable stent
US5562697A (en) * 1995-09-18 1996-10-08 William Cook, Europe A/S Self-expanding stent assembly and methods for the manufacture thereof

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7544205B2 (en) * 2004-12-20 2009-06-09 Cook Incorporated Intraluminal support frame and medical devices including the support frame
US20090216311A1 (en) * 2004-12-20 2009-08-27 Jacob Flagle Intraluminal support frame
US8123794B2 (en) 2004-12-20 2012-02-28 Cook Medical Technologies Llc Intraluminal support frame
US20060173532A1 (en) * 2004-12-20 2006-08-03 Jacob Flagle Intraluminal support frame and medical devices including the support frame
US10940167B2 (en) 2012-02-10 2021-03-09 Cvdevices, Llc Methods and uses of biological tissues for various stent and other medical applications
US11406495B2 (en) 2013-02-11 2022-08-09 Cook Medical Technologies Llc Expandable support frame and medical device
CN105769398A (en) * 2016-03-18 2016-07-20 上海工程技术大学 Biodegradable vascular stent based on polyhedron deformation mechanism
US11628075B2 (en) 2016-03-31 2023-04-18 Vesper Medical, Inc. Intravascular implants
US11484422B2 (en) 2016-03-31 2022-11-01 Vesper Medical, Inc. Intravascular implants
US10702405B2 (en) 2016-03-31 2020-07-07 Vesper Medical, Inc. Intravascular implants
US10758381B2 (en) 2016-03-31 2020-09-01 Vesper Medical, Inc. Intravascular implants
US10849769B2 (en) 2017-08-23 2020-12-01 Vesper Medical, Inc. Non-foreshortening stent
US10271977B2 (en) 2017-09-08 2019-04-30 Vesper Medical, Inc. Hybrid stent
US11376142B2 (en) 2017-09-08 2022-07-05 Vesper Medical, Inc. Hybrid stent
US10588764B2 (en) 2017-09-08 2020-03-17 Vesper Medical, Inc. Hybrid stent
US10512556B2 (en) 2017-09-08 2019-12-24 Vesper Medical, Inc. Hybrid stent
US11628076B2 (en) 2017-09-08 2023-04-18 Vesper Medical, Inc. Hybrid stent
US11364134B2 (en) 2018-02-15 2022-06-21 Vesper Medical, Inc. Tapering stent
US11344439B2 (en) 2018-03-09 2022-05-31 Vesper Medical, Inc. Implantable stent
US10500078B2 (en) 2018-03-09 2019-12-10 Vesper Medical, Inc. Implantable stent
US11357650B2 (en) 2019-02-28 2022-06-14 Vesper Medical, Inc. Hybrid stent

Also Published As

Publication number Publication date
US20030078648A1 (en) 2003-04-24
US6261318B1 (en) 2001-07-17

Similar Documents

Publication Publication Date Title
US6261318B1 (en) Expandable stent
US5776181A (en) Expandable stent
US8900289B2 (en) Stent with dual support structure
US9034029B2 (en) Stents with tapered struts
US6638300B1 (en) Radially expandable non-contracting surgical stent
EP1021140B1 (en) Compliant intraluminal stents
US6962603B1 (en) Longitudinally flexible expandable stent
EP1970033B1 (en) Improved longitudinally flexible expandable stent
US6132460A (en) Stent
US6981986B1 (en) Longitudinally flexible expandable stent
US20110125243A1 (en) Stent having an expandable web structure
KR19990008097A (en) Articulating stent
JP2003500101A (en) Expandable medical device with ductile hinge
AU754584B2 (en) Articulated stent
GB2369062A (en) Extendable stent

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION