Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20050055094 A1
Publication typeApplication
Application numberUS 10/702,096
Publication date10 Mar 2005
Filing date5 Nov 2003
Priority date5 Nov 2002
Also published asCA2504591A1, CA2504591C, CA2735324A1, CA2735334A1, EP1562524A2, EP1562524A4, US8012211, US20090125110, US20120116514, WO2004041075A2, WO2004041075A3
Publication number10702096, 702096, US 2005/0055094 A1, US 2005/055094 A1, US 20050055094 A1, US 20050055094A1, US 2005055094 A1, US 2005055094A1, US-A1-20050055094, US-A1-2005055094, US2005/0055094A1, US2005/055094A1, US20050055094 A1, US20050055094A1, US2005055094 A1, US2005055094A1
InventorsStephen Kuslich
Original AssigneeKuslich Stephen D.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Semi-biological intervertebral disc replacement system
US 20050055094 A1
Abstract
The present invention is a system for a partially biological disc replacement that stimulates natural fibrous, cartilaginous or other tissue growth in the DDD cavity, resulting in a partial biological disc replacement. Multiplicities of fibronous pieces of fibro-cartilaginous tissue promoting material are inserted into the DDD cavity inducing tissue growth. The fibro-cartilaginous tissue
Images(11)
Previous page
Next page
Claims(52)
1. A system for semi-biologic nuclear replacement for a degenerated disc of a spine of a mammalian body comprising:
an injection tube having a small diameter corresponding to a small entrance hole defined in the degenerated disc that is at least partially excavated to create a cavity;
a volume of tissue promoting material sufficient to fill at least a portion of the cavity; and
an insertion device operably coupled to the injection tube that dispenses the volume of tissue promoting material into the cavity in a piecemeal manner as a plurality of aliquots of the tissue promoting material.
2. The nuclear replacement of claim 1 wherein the tissue promoting material is selected from a group consisting of fibrous tissue promoting material, cartilaginous promoting material and any combination thereof.
3. The nuclear replacement of claim 1 wherein the tissue promoting material is a preparation of multilayered bands piled in a circular configuration.
4. The nuclear replacement of claim 1 wherein the tissue promoting material is a preparation of tangled knots.
5. The nuclear replacement of claim 1 wherein the tissue promoting material is a preparation of multiple fabric bands.
6. The nuclear replacement of claim 1 wherein the tissue promoting material is combined with hydrogel.
7. The nuclear replacement of claim 1 wherein the tissue promoting material is surrounded by a porous container.
8. The nuclear replacement of claim 1 wherein the tissue promoting material is selected from a group consisting of: autograft, allograft, or xenograft of fascia, manmade polymeric fiber, talc, tissue promoting pharmaceuticals, tissue promoting minerals, tissue morphogenic protein, notochord cells and any combination thereof.
9. A system for semi-biologic nuclear replacement for a degenerated disc of a spine of a mammalian body comprising:
an injection tube having a small diameter corresponding to a small entrance hole defined in the degenerated disc that is at least partially excavated to create a cavity;
a volume of strands of tissue promoting material combined with hydrogel strands sufficient to fill at least a portion of the cavity; and
an insertion device operably coupled to the injection tube that dispenses the volume of strands of tissue promoting material combined with strands of hydrogel into the cavity in a piecemeal manner as a plurality of aliquots of the tissue promoting material and hydrogel strands.
10. The nuclear replacement of claim 9 wherein the tissue promoting material is selected from a group consisting of fibrous tissue promoting material, cartilaginous promoting material and any combination thereof.
11. The nuclear replacement of claim 9 wherein the tissue promoting material is a preparation of multilayered bands piled in a circular configuration.
12. The nuclear replacement of claim 9 wherein the tissue promoting material is a preparation of tangled knots.
13. The nuclear replacement of claim 9 wherein the tissue promoting material is a preparation of multiple fabric bands.
14. The nuclear replacement of claim 9 wherein the tissue promoting material is surrounded by a porous container.
15. The nuclear replacement of claim 9 wherein the tissue promoting material is selected from a group comprising: autograft, allograft, or xenograft of fascia, autograft, manmade polymeric fiber, talc, tissue promoting pharmaceuticals, tissue promoting minerals, tissue morphogenic protein, notochord cells and any combination thereof.
16. A system for semi-biologic nuclear replacement for a degenerated disc of a spine of a mammalian body comprising:
an injection tube having a small diameter corresponding to a small entrance hole defined in the degenerated disc that is at least partially excavated to create a cavity;
at least one strand of pliable tissue promoting material having an effective cross-sectional diameter less than the small diameter of the injection tube;
the at least one strand of pliable tissue promoting material having a volume sufficient to fill at least a portion of the cavity; and
an insertion device operably coupled to the injection tube that dispenses a length of the pliable tissue promoting material into the cavity such that the at least one strand is folded so as to fill at least a portion of the cavity.
17. The nuclear replacement of claim 1 wherein the tissue promoting material is selected from a group consisting of fibrous tissue promoting material, cartilaginous promoting material and any combination thereof.
18. The nuclear replacement of claim 16 wherein the tissue promoting material is a preparation of multilayered bands piled in a circular configuration.
19. The nuclear replacement of claim 16 wherein the tissue promoting material is a preparation of tangled knots.
20. The nuclear replacement of claim 16 wherein the tissue promoting material is a preparation of multiple fabric bands.
21. The nuclear replacement of claim 16 wherein the tissue promoting material is combined with hydrogel.
22. The nuclear replacement of claim 16 wherein the tissue promoting material is surrounded by a porous container.
23. The nuclear replacement of claim 16 wherein the tissue promoting material is selected from a group comprising: autograft, allograft, or xenograft of fascia, autograft, manmade polymeric fiber, talc, tissue promoting pharmaceuticals, tissue promoting minerals, tissue morphogenic protein, notochord cells and any combination thereof.
24. A method of constructing a semi-biologic nuclear replacement for a degenerated disc of a spine of a mammalian body comprising:
boring a small entrance hole into the degenerated disc;
creating a cavity by reaming the degenerated disc and at least partially removing a degenerated disc nucleus via the small entrance hole; and
inserting a plurality of pieces of tissue promoting material into the cavity to create the semi-biologic nuclear replacement for the degenerated disc by stimulating the tissue forming response in the mammalian body to the tissue promoting material.
25. The method of claim 24 wherein the tissue promoting material is selected from a group consisting of fibrous tissue promoting material, cartilaginous promoting material and any combination thereof.
26. The method of claim 24 wherein endplate cartilage is partially removed.
27. The method of claim 24 wherein endplate cartilage is retained.
28. The method of claim 24 wherein portions of an outer annulus are removed.
29. The method of claim 24 wherein portions of an outer annulus are retained.
30. The method of claim 24 wherein the tissue promoting material is selected from a group comprising: autograft, allograft, or xenograft of fascia, manmade polymeric fiber, talc, tissue promoting pharmaceuticals, tissue promoting minerals, tissue morphogenic protein, notochord cells and any combination thereof.
31. The method of claim 24 wherein the disc cavity surface is coated with a tissue promoting material.
32. The method of claim 24 wherein the tissue promoting material is combined with hydrogel.
33. The method of claim 24 further comprising:
inserting a porous container into the disc cavity;
said porous container adapted for tissue promoting material insertion therein.
34. A method of constructing a semi-biologic nuclear replacement for a degenerated disc of a spine of a mammalian body comprising:
boring a small entrance hole into the degenerated disc;
creating a cavity by reaming the degenerated disc and at least partially removing a degenerated disc nucleus via the small entrance hole; and
inserting at least one strand of pliable tissue promoting material into the cavity such that a length of the at least one strand is folded within the cavity to create the semi-biologic nuclear replacement for the degenerated disc by stimulating the tissue forming response in the mammalian body to the tissue promoting material.
35. The method of claim 34 wherein the tissue promoting material is selected from a group consisting of fibrous tissue promoting material, cartilaginous promoting material and any combination thereof.
36. The method of claim 34 wherein endplate cartilage is partially removed.
37. The method of claim 34 wherein the endplate cartilage is retained.
38. The method of claim 34 wherein portions of an outer annulus are removed.
39. The method of claim 34 wherein an outer annulus is retained.
40. The method of claim 34 wherein the tissue promoting material is selected from a group consisting of: autograft, allograft, or xenograft of fascia lata, autograft, manmade polymeric fiber, talc, tissue promoting pharmaceuticals, tissue promoting minerals, tissue morphogenic protein, notochord cells, and any combination thereof.
41. The method of claim 34 wherein the disc cavity surface is coated with a tissue promoting material.
42. The method of claim 34 wherein the tissue promoting material is combined with hydrogel.
43. The method of claim 34 further comprising:
inserting a porous container into the disc cavity;
said porous container adpapted for tissue promoting material insertion therein.
44. A method of constructing a semi-biologic nuclear replacement for a degenerated disc of a spine of a mammalian body comprising:
boring a small entrance hole into the degenerated disc;
creating a cavity by reaming the degenerated disc and at least partially removing a degenerated disc nucleus via the small entrance hole; and
inserting a plurality of pieces of tissue promoting material combined with a plurality of pieces of hydrogel into the cavity to create the semi-biologic nuclear replacement for the degenerated disc by stimulating the tissue forming response in the mammalian body to the tissue promoting material and hydrogel.
45. The nuclear replacement of claim 44 wherein the tissue promoting material is selected from a group consisting of fibrous tissue promoting material, cartilaginous promoting material and any combination thereof.
46. The method of claim 44 wherein endplate cartilage is partially removed.
47. The method of claim 44 wherein the endplate cartilage is retained.
48. The method of claim 44 wherein portions of an outer annulus are removed.
49. The method of claim 44 wherein an outer annulus is retained.
50. The method of claim 44 wherein the tissue promoting material is selected from a group consisting of: autograft, allograft, or xenograft of fascia lata, autograft, manmade polymeric fiber, talc, tissue promoting pharmaceuticals, tissue promoting minerals, tissue morphogenic protein, notochord cells, and any combination thereof.
51. The method of claim 44 wherein the disc cavity surface is coated with a tissue promoting material.
52. The method of claim 44 further comprising:
inserting a porous container into the disc cavity;
said porous container adapted for tissue promoting material insertion therein.
Description
    FIELD OF THE INVENTION
  • [0001]
    The present invention relates generally to the field of systems adapted to replacing or assisting bone of a natural vertebral column of a living body. More specifically, the present invention relates to a system that surgeons can use to construct a semi-biological nuclear replacement that will replace the diseased nucleus and ultimately function in a manner similar to a natural disc nucleus.
  • BACKGROUND OF THE INVENTION
  • [0002]
    Low back pain is a condition affecting millions of humans. This syndrome causes great personal, economic and social hardship. Resultant consequences to family members, co-workers and the community are significant.
  • [0003]
    Scientific evidence indicates that the symptoms of low back pain are most commonly caused by degenerative pathology in the spinal motion segment. The spinal motion segment consists of a unit of spinal anatomy bounded by two vertebral bodies that includes the two vertebral bodies and the interposed intervertebral disc, as well as the attached ligaments, muscles and the facet joints. Degenerative pathology in the spinal motion segment is primarily related to intervertebral disc degeneration.
  • [0004]
    The fundamental causes of intervertebral disc degeneration are incompletely understood. However, scientific studies substantiate the following general conclusions about the sequential development of degenerative spinal pathology: The nucleus (the central cushion of the disc) loses nutritional support, dehydrates, and fragments. The loss in nutritional support causes nuclear tissue necrosis, the cells die. As the nuclear tissue dies, the pH in the nuclear region decreases and highly irritative chemicals form in the disc. Consequently, as the nucleus can no longer support compression loads, the annulus (the fibrous rim of the disc, surrounding the nucleus) is subjected to loading forces, in the form of compression and shear, that the annulus is poorly designed to handle.
  • [0005]
    Nociceptive nerve elements, i.e., pain generating, nerve ending afferents in the outer annulus, are stimulated by a combination of chemical and mechanical forces (leakage of irritative chemicals and compression and shear force on the annulus and spinal motion segment). These pain-detecting nerve elements propagate signals in the central and autonomic nervous system pathways, leading to the activation of central pain-modulating and pain-appreciating centers in the spinal cord and brain. The conscious portions of the brain interpret the resultant excitement of certain nerve centers in the spinal cord and brain as somatic and visceral pain.
  • [0006]
    The inventor and his team performed experimental studies directed to the tissue origin of spinal pain. The results of the inventor's observations, recorded during operations on humans undergoing spinal surgery under local anesthesia, conclusively demonstrated that the symptoms of mechanical low back pain originate when the outer portion of the degenerative intervertebral disc (and to a lesser extent, the capsule of the facet joint) is/are stimulated by mechanical forces. Kuslich, Stephen D., Ulstrom, Cynthia L.; “The Origin of Low Back Pain and Sciatica: A Microsurgical Investigation”; Orthop Clin North Am 1991 Apr; 22(2): 181-7.
  • [0007]
    For reasons that are not perfectly clear many, if not most, humans develop the aforementioned pathologic changes in the disc nucleus as they approach middle age. Breakdown products of the disc and facet joints stimulate sensitive nerve endings in and around the disc and facet capsule, producing low back pain, and sometimes, sciatica. This pathologic phenomenon is commonly referred to as Degenerative Disc Disease (“DDD”). Degenerative Disc Disease is the primary cause of low back pain. The DDD tissue consists of the dead and/or dying fibrocartilogenous remains of the disc nucleus and inner portions of the annulus. Various toxic chemicals—such as Substance P—have been detected in DDD discs. Other investigators have described low pH (acidity) of fluids in DDD tissue. These chemicals and fluids leak out through fissures and tears in the annulus and irritate and stimulate the nociceptive nerve endings causing back pain.
  • [0008]
    Although, effective means to prevent DDD do not exist, some relatively effective treatments for DDD do exist. A number of medical and surgical strategies are known to ameliorate symptoms. These include: pain medications that block or modulate pain afferents, or suppress central pain-recognition centers, exercises that promote tissue nutrition, flexibility and muscle strength (exercises also stimulate the release of endorphin, an endogenous morphine-like chemical), braces that restrict motion and reduce forces on tender spinal tissues, anti-inflammatory oral and injectable medications, and surgical procedures designed to remove tissues pressing on nerves, stabilize spinal motion segments and/or replace pathological tissues.
  • [0009]
    Most surgical procedures designed to relieve low back pain and sciatica involves removal of a portion of the intervertebral disc. Unfortunately, removing disc tissue leaves a void in the intervertebral space. The patient's pain following partial or complete disc removal may be more severe than the pain preceding the operation. Therefore, surgeons often perform additional operations that are intended to restabilize the spinal motion segment.
  • [0010]
    Strategies for restabilization are many and include: heating the annular region in an effort to destroy nerve endings and “strengthen” or “heal” the annulus, “fusing” the motion segment by applying bone graft on the sides of the motion segment, or within the disc space, applying rigid or semi-rigid support members on the sides of the motion segment or within the disc space, removing and replacing the entire disc with a non-flexible, articulating artificial device and removing and replacing the nucleus.
  • [0011]
    A number of artificial disc replacements have been developed. The currently available devices fall into two general categories: total disc replacements and nuclear replacements. The first category consists of total disc replacements that are made of rigid, inert substances such as metal and plastic. Examples of such devices are the Fernstrom “ball-bearing” and the LINKŪ and PRODISCŪ devices.
  • [0012]
    These types of artificial discs have five main disadvantages. First, is that the devices are relatively large and non-compressible, so they require relatively large surgical exposures, thereby increasing the chance of morbidity, including infection and hemorrhage. Second, because the devices are constructed from rigid inert metal and plastic materials, they can cause serious damage if they were to displace into positions normally occupied by local nervous or vascular tissues. Third, the device implantation requires the removal of a large portion of the annulus. Such removal greatly reduces the inherent stability of the motion segment, at least early on, before healing occurs around the implant. Fourth, these inert, rigid-component disc replacements do not reproduce natural disc mechanics. Finally, unless these devices become and remain firmly attached to the vertebral endplates, relative motion between the implant and the vertebral bone will cause erosion of the vertebral endplates, possibly leading to subsidence, instability and/or neurological or vascular damage.
  • [0013]
    A second class of disc replacement is the nuclear replacement, a form of partial disc replacement. Examples include: the Ray implant (U.S. Pat. No. 4,772,287), the Bao implant (U.S. Pat. No. 5,192,326), and the Sulzer spiral implant (U.S. Pat. No. 5,919,235).
  • [0014]
    These devices are also inert, somewhat flexible, non-biological disc replacements. They involve removal of the nucleus and replacement of the nucleus with a non-biological plastic material that may be flexible and malleable. When these devices are placed in the excavated DDD cavity, they rub against living end-plate cartilage and bone. This rubbing may cause healthy living tissue to erode. This erosion may weaken the living cartilage and bone, resulting in subsidence of the device, fragmentation of the device and perhaps, further vertebral instability. Complete displacement and dislocation of the Ray implant has been reported.
  • [0015]
    This second category of disc replacements is intended to more closely mimic natural disc mechanics. To accomplish this, some nuclear replacements utilize the water-containing properties of hydrogel. One embodiment of the Ray implant as described in U.S. Pat. Nos. 4,772,287 and 4,904,260 consists of a block of hydrogel in combination with inert jacket such as a plastic fabric casing. The Bao implant as described in U.S. Pat. No. 5,192,326 consists of hydrogel beads enclosed by a fabric shell.
  • [0016]
    Devices using large blocks of hydrogel and other inert substances have three main problems. First, there is a 10 to 50 percent extrusion rate of the prosthetic disc beyond the DDD cavity during the post-operative period. Second, because physiologic loads and movements continue after operation, this prosthetic device can erode into the intervertebral bone, increasing instability. Third, inserting the device requires a moderate sized surgical exposure.
  • [0017]
    Kotani, et al. at Hokkaido University in Japan are developing an artificial disc made of a preformed fabric matrix (Spine 2001; 26:1562-1569). The fabric matrix is intended to mimic the mechanics of a natural disc. However, this technology also has shortcomings. First, the device's insertion requires a large exposure with a loss of vertebral stabilizers, i.e., the relatively large area of annulus removed during implantation. Second, the device requires that a complex weaving procedure be undertaken during manufacture. Third, many different sizes will be required for different patients and procedures. Fourth, the device must be pre-sized to fit the cavity in the disc. Fifth, since its components contain no water-imbibing component, it cannot re-hydrate itself when local ambient pressures decrease. Thus, it cannot remain hydrated in response to diurnal rhythms and function as a natural disc would function.
  • [0018]
    Devices attempting to mimic the mechanics of a natural disc also include such devices as taught in U.S. Pat. No. 6,240,926 to Chin Gan et al. This patent uses a hybrid of cultured intervertebral disc cells and a biodegradable substrate as a nuclear replacement. The device attempts to induce intervertebral disc reformation by regenerating natural disc tissue via the introduction of cultured intervertebral disc cells. Technology such as this is in an early stage of development. Compared to the wide experience with biocompatible materials such as plastics and metals, purely biological replacements may or may not prove to be practical.
  • [0019]
    While numerous techniques and devices have been developed to stabilize a spinal motion segment in an effort to ameliorate the consequences of DDD, there is a continuing need for improvements in this field.
  • SUMMARY OF THE INVENTION
  • [0020]
    The present invention is a system for a partially biological disc replacement that stimulates natural fibrous, cartilaginous or other tissue growth in the DDD cavity, resulting in a partial biological disc replacement. Multiplicities of fibronous pieces of fibro-cartilaginous tissue promoting material are inserted into the DDD cavity inducing tissue growth. The fibro-cartilaginous tissue promoting material may be combined with hydrogel or other suitable water-imbibing material.
  • [0021]
    The present invention improves upon current techniques by creating a biological disc replacement that induces living, natural fibrous tissue growth into the DDD cavity. It is believed that living, natural fibrous tissue is preferable to dead and/or dying DDD tissue. First, living natural fibrous tissue does not exhibit acidic properties nor leak chemicals that may cause nerve inflammation and back pain. Second, living natural fibrous tissue offers more support and stability than decaying tissue.
  • [0022]
    Living natural fibrous tissue is also preferable to inert disc replacements. Living natural fibrous tissue will not erode adjacent cartilage or bone. Furthermore, there is less danger to surrounding tissues or nerves should the replaced material extrude from its intended position. Finally, living natural fibrous or fibro-cartilaginous tissue is more likely to mimic the biomechanical and morphologic characteristics of a natural disc.
  • [0023]
    The present invention replaces the dead and/or dying fibro-cartilage of a DDD disc by stimulating living natural fibrous tissue growth with a multiplicity of fibronous pieces, this living natural fibrous tissue fuses with the living tissue of the DDD cavity, forming a partial biological disc replacing the removed DDD tissue.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0024]
    FIG. 1 is a perspective view of bands of fibro-cartilaginous tissue promoting material placed in a disc cavity.
  • [0025]
    FIG. 2 is a perspective view of fibro-cartilaginous tissue promoting material placed in a disc cavity.
  • [0026]
    FIG. 3 is a perspective view of an OPTIMESH™ filled with fibro-cartilaginous tissue promoting material in a disc cavity.
  • [0027]
    FIG. 4 is a cross-sectional view of an OPTIMESH™ filled with fibro-cartilaginous tissue promoting material in a disc cavity.
  • [0028]
    FIG. 5 is a perspective view of a mixture of cotton and hydrogel fibers.
  • [0029]
    FIG. 6 is a cross-sectional depiction of the expansion of the hydrogel as the hydrogel absorbs fluid.
  • [0030]
    FIG. 7 is a perspective of the expansion of the mixture of fibro-cartilaginous tissue promoting material and hydrogel as the hydrogel absorbs fluid.
  • [0031]
    FIG. 8 depicts aliquots of the fibro-cartilaginous tissue promoting material and hydrogel being inserted by a piston through a small diameter tube into the disc cavity.
  • [0032]
    FIG. 9 is a cross-sectional view of the fibro-cartilaginous tissue promoting material and hydrogel being inserted by a piston through a small diameter tube into the disc cavity.
  • [0033]
    FIG. 10 is a cross-sectional view of the bundles of fibro-cartilaginous tissue promoting material and hydrogel expanding as the hydrogel absorbs water.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • [0034]
    The present invention mimics the biomechanics of a natural disc nucleus by inducing natural fibrous tissue growth. FIG. 1 depicts the device 10 of the present invention embodied in a preparation of multilayered bands of suitable fibrous tissue promoting material piled in a circular configuration 12 formed to fit securely in the DDD cavity 14. The suitable fibrous tissue promoting material may include, but is not limited to, autograft, allograft or xenograft of fascia lata and/or throraco-lumbar fascia; natural and/or manmade polymeric fiber; fibrous tissue inducers such as: talc, pharmaceuticals and/or minerals; fibrous tissue morphogenic protein produced by recombinant DNA technology and/or notochord cells from stem cell technology and/or any combination thereof.
  • [0035]
    FIG. 2 depicts another embodiment of the device 10 as a tangled knot of suitable fibrous tissue promoting fibers 16. In yet another embodiment, the device is multiple fabric bands made of suitable fibrous tissue promoting material. In another embodiment, the device is any combination of fibers, string, multilayered bands and/or fabric bands made of suitable fibrous tissue promoting material.
  • [0036]
    Finally, as depicted in FIGS. 4 and 5, another embodiment of the device is a preparation of suitable fibrous tissue promoting material in combination with hydrogel chunks and/or fibers 20. This embodiment has many advantages. The hydrogel provides water-imbibing qualities similar to a natural disc. The hydrogel thus provides a source of hydration for the device. As the hydrogel absorbs water, the hydrogel and thus the device expands. FIGS. 6 and 7 show the fluid expansion as arrows 22 a and 22 b. The suitable fibrous tissue promoting material induces living, natural fibrous tissue growth. The living, natural fibrous tissue gives stability and cushion to the DDD cavity. The combination of stability, cushioning and hydration allows the device of the present invention to closely mimic the characteristics of a natural disc.
  • [0037]
    FIG. 8 depicts an important feature differentiating the present invention from all of its predecessors; the device is preferably constructed within the nuclear space 24, in a piecemeal fashion, by pushing small aliquots 26 of the filaments that make up the ultimate device, through a small diameter hollow injection tube 28. This feature allows the nuclear replacement device 10 to be introduced through a very small portal, with very little damage or removal of the stabilizing annulus.
  • [0038]
    FIG. 9 depicts an embodiment of the invention where the tissue promoting material 32 is at least one strand with a cross-sectional diameter smaller than the diameter of the injection tube 28. The invention is really a system, therefore, that allows the surgeon to construct a nuclear replacement using minimally invasive techniques. The system consists of a hollow injection tube 28, a piston 30, the filaments 26 (cotton or other fibrous tissue stimulating agents with or without hydrogel) and, in at least one embodiment, a fabric or other porous shell 18 that surrounds and contains the filamentous elements.
  • [0039]
    The method of the present invention involves boring a small entrance hole into the DDD cavity 14. This step can be accomplished using any of several approaches: posterior laminotomy, transforaminal, or any of the anterior or anterior-lateral approaches, including endoscopic approaches. The surgeon then reams the cavity 14 to remove the DDD nucleus and perhaps some of the endplate cartilage and portions of the inner annulus. The cavity 14 is thereby prepared for the optiplasty device insertion.
  • [0040]
    The cavity 14 may be prepared by coating its surface with talc, a pharmaceutical or other suitable fibrous tissue promoting material. The multiplicity of fibronous pieces of fibro-cartilaginous tissue promoting material are then inserted using a piston 30 through a small diameter tube 28 and may or may not be secured within an Optimesh™, of U.S. Pat. No. 5,571,189 to the applicant, or any other suitable porous bag.
Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US4772287 *20 Aug 198720 Sep 1988Cedar Surgical, Inc.Prosthetic disc and method of implanting
US4904260 *25 Jul 198827 Feb 1990Cedar Surgical, Inc.Prosthetic disc containing therapeutic material
US5192326 *9 Sep 19919 Mar 1993Pfizer Hospital Products Group, Inc.Hydrogel bead intervertebral disc nucleus
US5549679 *1 Mar 199527 Aug 1996Kuslich; Stephen D.Expandable fabric implant for stabilizing the spinal motion segment
US5919235 *30 Sep 19966 Jul 1999Sulzer Orthopaedie AgIntervertebral prosthesis
US6183518 *23 Mar 19996 Feb 2001Anthony C. RossMethod of replacing nucleus pulposus and repairing the intervertebral disk
US6240926 *19 May 19995 Jun 2001The Trustees Of The University Of PennsylvaniaCompositions and methods for intervertebral disc reformation
US6395034 *24 Nov 199928 May 2002Loubert SuddabyIntervertebral disc prosthesis
US6437018 *29 Feb 200020 Aug 2002Musculoskeletal Transplant FoundationMalleable paste with high molecular weight buffered carrier for filling bone defects
US6443988 *18 Nov 19983 Sep 2002Disc Dynamics, Inc.Mold apparatus and kit for in situ tissue repair
US20020026195 *6 Apr 200128 Feb 2002Kyphon Inc.Insertion devices and method of use
US20020045942 *18 Jul 200118 Apr 2002Ham Michael J.Procedure for repairing damaged discs
US20020068974 *20 Jul 20016 Jun 2002Kuslich Stephen D.Expandable porous mesh bag device and methods of use for reduction, filling, fixation and supporting of bone
US20020077701 *17 Dec 200120 Jun 2002Kuslich Stephen D.Annulus-reinforcing band
US20020147496 *6 Apr 200110 Oct 2002Integrated Vascular Systems, Inc.Apparatus for treating spinal discs
US20040215343 *19 Mar 200428 Oct 2004Stephen HochschulerMethod and apparatus for treating a vertebral body
US20050065609 *19 Nov 200224 Mar 2005Douglas WardlawIntervertebral disc prosthesis
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US7485145 *22 Feb 20053 Feb 2009Alphatec Spine, IncorporatedArtificial intervertebral disc assembly
US76825408 May 200823 Mar 2010Georgia Tech Research CorporationMethod of making hydrogel implants
US771330328 Apr 200511 May 2010Warsaw Orthopedic, Inc.Collagen-based materials and methods for augmenting intervertebral discs
US773198123 Jan 20078 Jun 2010Warsaw Orthopedic, Inc.Collagen-based materials and methods for treating synovial joints
US7744651 *6 Jan 200529 Jun 2010Warsaw Orthopedic, IncCompositions and methods for treating intervertebral discs with collagen-based materials
US787910317 Apr 20061 Feb 2011Musculoskeletal Transplant FoundationVertebral disc repair
US790987314 Dec 200722 Mar 2011Soteira, Inc.Delivery apparatus and methods for vertebrostenting
US79101247 Feb 200522 Mar 2011Georgia Tech Research CorporationLoad bearing biocompatible device
US795968323 Jul 200714 Jun 2011Musculoskeletal Transplant FoundationPacked demineralized cancellous tissue forms for disc nucleus augmentation, restoration, or replacement and methods of implantation
US80028307 Feb 200523 Aug 2011Georgia Tech Research CorporationSurface directed cellular attachment
US80122118 Oct 20086 Sep 2011Spineology, Inc.Semi-biological intervertebral disc replacement system
US811877930 Jun 200621 Feb 2012Warsaw Orthopedic, Inc.Collagen delivery device
US81332799 Jan 200713 Mar 2012Warsaw Orthopedic, Inc.Methods for treating an annulus defect of an intervertebral disc
US81428088 May 200827 Mar 2012Georgia Tech Research CorporationMethod of treating joints with hydrogel implants
US815786316 Jul 200917 Apr 2012Warsaw Orthopedic, Inc.Devices, apparatus, and methods for bilateral approach to disc augmentation
US8163018 *14 Feb 200624 Apr 2012Warsaw Orthopedic, Inc.Treatment of the vertebral column
US8226722 *8 Jun 200624 Jul 2012Francis PflumSac for use in spinal surgery
US828268113 Aug 20089 Oct 2012Nuvasive, Inc.Bioresorbable spinal implant and related methods
US831819218 Nov 200827 Nov 2012Georgia Tech Research CorporationMethod of making load bearing hydrogel implants
US837713531 Mar 200919 Feb 2013Nuvasive, Inc.Textile-based surgical implant and related methods
US839961930 Jun 200619 Mar 2013Warsaw Orthopedic, Inc.Injectable collagen material
US848643622 Mar 201216 Jul 2013Georgia Tech Research CorporationArticular joint implant
US854075227 Jun 200824 Sep 2013Spine Tek, Inc.Interspinous mesh
US862302515 Jan 20107 Jan 2014Gmedelaware 2 LlcDelivery apparatus and methods for vertebrostenting
US889507321 Mar 201125 Nov 2014Georgia Tech Research CorporationHydrogel implant with superficial pores
US915554324 May 201213 Oct 2015Cartiva, Inc.Tapered joint implant and related tools
US919239717 Jun 200924 Nov 2015Gmedelaware 2 LlcDevices and methods for fracture reduction
US923791614 Dec 200719 Jan 2016Gmedeleware 2 LlcDevices and methods for vertebrostenting
US948048523 Mar 20101 Nov 2016Globus Medical, Inc.Devices and methods for vertebrostenting
US952663214 Aug 201527 Dec 2016Cartiva, Inc.Methods of repairing a joint using a wedge-shaped implant
US966887530 Oct 20076 Jun 2017Nuvasive, Inc.Method and apparatus for computerized surgery
US968725513 Oct 201527 Jun 2017Globus Medical, Inc.Device and methods for fracture reduction
US20040186471 *7 Dec 200223 Sep 2004Sdgi Holdings, Inc.Method and apparatus for intervertebral disc expansion
US20050071003 *14 Oct 200431 Mar 2005Ku David N.Poly(vinyl alcohol) hydrogel
US20050106255 *14 Oct 200419 May 2005Ku David N.Poly(vinyl alcohol) hydrogel
US20050119754 *6 Jan 20052 Jun 2005Trieu Hai H.Compositions and methods for treating intervertebral discs with collagen-based materials
US20050196452 *7 Feb 20058 Sep 2005Boyan Barbara D.Surface directed cellular attachment
US20050273169 *22 Feb 20058 Dec 2005Thomas PurcellArtificial intervertebral disc assembly
US20050278025 *10 Jun 200415 Dec 2005Salumedica LlcMeniscus prosthesis
US20070001981 *27 Jun 20064 Jan 2007Nec Electronics CorporationDriver unit including common level shifter circuit for display panel and nonvolatile memory
US20070213717 *14 Feb 200613 Sep 2007Sdgi Holdings, Inc.Biological fusion in the vertebral column
US20070213718 *14 Feb 200613 Sep 2007Sdgi Holdings, Inc.Treatment of the vertebral column
US20070213823 *14 Feb 200613 Sep 2007Sdgi Holdings, Inc.Treatment of the vertebral column
US20070213824 *14 Feb 200613 Sep 2007Sdgi Holdings, Inc.Treatment of the vertebral column
US20070227547 *14 Feb 20064 Oct 2007Sdgi Holdings, Inc.Treatment of the vertebral column
US20070255286 *27 Apr 20061 Nov 2007Sdgi Holdings, Inc.Devices, apparatus, and methods for improved disc augmentation
US20070255406 *27 Apr 20061 Nov 2007Sdgi Holdings, Inc.Devices, apparatus, and methods for bilateral approach to disc augmentation
US20070276496 *23 May 200629 Nov 2007Sdgi Holdings, Inc.Surgical spacer with shape control
US20070299523 *8 Jun 200627 Dec 2007Francis PflumSac for use in spinal surgery
US20080004214 *30 Jun 20063 Jan 2008Warsaw Orthopedic, IncInjectable collagen material
US20080004570 *30 Jun 20063 Jan 2008Warsaw Orthopedic, Inc.Collagen delivery device
US20080027546 *23 Jul 200731 Jan 2008Semler Eric JPacked demineralized cancellous tissue forms for disc nucleus augmentation, restoration, or replacement and methods of implantation
US20080228273 *20 Jul 200618 Sep 2008Mcleod Alan Rory MorImplants
US20080279943 *8 May 200813 Nov 2008Georgia Tech Research CorporationMethod of making hydrogel implants
US20080306593 *24 Mar 200511 Dec 2008Mcleod Alan Rory MorProsthetic Spinal Disc
US20080306595 *24 Mar 200511 Dec 2008Pearsalls LimitedPorous Implant For Spinal Disc Nucleus Replacement
US20090048677 *13 Aug 200819 Feb 2009Nuvasive, Inc.Bioresorbable Spinal Implant and Related Methods
US20090125110 *8 Oct 200814 May 2009Kuslich Stephen DSemi-biological intervertebral disc replacement system
US20090222096 *28 Feb 20083 Sep 2009Warsaw Orthopedic, Inc.Multi-compartment expandable devices and methods for intervertebral disc expansion and augmentation
US20090263446 *18 Nov 200822 Oct 2009Georgia Tech Research CorporationMethod of making load bearing hydrogel implants
US20090275913 *16 Jul 20095 Nov 2009Warsaw Orthopedic, Inc.Devices, apparatus, and methods for bilateral approach to disc augmentation
US20100076503 *7 Feb 200825 Mar 2010N.M.B. Medical Applications LtdBone implant
US20110054532 *27 Jun 20083 Mar 2011Alexandre De MouraInterspinous mesh
US20120116514 *6 Sep 201110 May 2012Kuslich Stephen DSemi-biological intervertebral disc replacement system
US20130282121 *22 Mar 201324 Oct 2013Ann PrewettSpinal facet augmentation implant and method
EP2063808A2 *14 Sep 20073 Jun 2009Spineology, Inc.Absorbent fabric implant
EP2063808A4 *14 Sep 200713 Jun 2012Spineology IncAbsorbent fabric implant
WO2014061005A221 Oct 201324 Apr 2014Tsunami S.R.L.Vertebral fusion device and system
Classifications
U.S. Classification623/17.11, 623/23.63, 623/902
International ClassificationA61B, A61F2/44, A61F2/46, A61F2/28, A61F2/00
Cooperative ClassificationA61F2002/4495, A61F2210/0061, A61F2002/2835, A61F2002/2817, A61F2002/4627, A61F2002/444, A61F2/4611, A61F2002/30075, A61F2/442
European ClassificationA61F2/44D, A61F2/46B7
Legal Events
DateCodeEventDescription
19 Mar 2004ASAssignment
Owner name: SPINEOLOGY, INC., MINNESOTA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KUSLICH, STEPHEN D.;REEL/FRAME:015112/0916
Effective date: 20040204
30 Nov 2006ASAssignment
Owner name: MUSCULOSKELETAL TRANSPLANT FOUNDATION, INC., NEW J
Free format text: SECURITY AGREEMENT;ASSIGNOR:SPINEOLOGY, INC.;REEL/FRAME:018563/0350
Effective date: 20061130
5 Mar 2012ASAssignment
Owner name: SPINEOLOGY, INC., MINNESOTA
Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:MUSCULOSKELETAL TRANSPLANT FOUNDATION, INC.;REEL/FRAME:027805/0445
Effective date: 20120131