US20040133709A1 - Method and system for personalized I/O device initialization - Google Patents

Method and system for personalized I/O device initialization Download PDF

Info

Publication number
US20040133709A1
US20040133709A1 US10/614,965 US61496503A US2004133709A1 US 20040133709 A1 US20040133709 A1 US 20040133709A1 US 61496503 A US61496503 A US 61496503A US 2004133709 A1 US2004133709 A1 US 2004133709A1
Authority
US
United States
Prior art keywords
chip
program product
initialization
devices
microprocessor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/614,965
Inventor
Janko Boehm
Herwig Elfering
Thomas Hess
Daniel Metz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Business Machines Corp
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Publication of US20040133709A1 publication Critical patent/US20040133709A1/en
Priority to US11/232,809 priority Critical patent/US7725612B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/22Means for limiting or controlling the pin/gate ratio

Definitions

  • the present invention relates, in general, to accessing I/O functions. More specifically, the invention relates to accessing a great variance of I/O devices in a control system. Still more specifically, the present invention deals with accessing such I/O functions in embedded control environments.
  • I/O devices may have a high similarity according to their requirements with regard to the I/O protocols supported (e.g., IC bus (I 2 C), Universal Asynchronous Receiver/Transmitter (UART), General Purpose I/O (GPI/O) and the like), the number of I/O ports is different on each specific device.
  • I/O protocols e.g., IC bus (I 2 C), Universal Asynchronous Receiver/Transmitter (UART), General Purpose I/O (GPI/O) and the like
  • the number of I/O ports is different on each specific device.
  • I/O devices In many applications, a certain number and type of I/O devices must be controlled (it is of no importance whether these devices are cards in a computer system, switches or hub-devices in a network or switching units in a luggage or parcel sorting system or similar systems). Typically, this controlling task is done by means of a microcontroller. However, in most cases, the industry does not offer out of the shelf a respective controller with enough or exactly the right I/O interfaces on the core chip. Accordingly, a chip (most probably an ASIC) will have to be developed that can be connected to the I/O space (memory mapped I/O, PCI, CAN-bus, Ethernet, etc.) of the controller as an extender chip.
  • I/O space memory mapped I/O, PCI, CAN-bus, Ethernet, etc.
  • this chip would most probably be a custom design and is expanding the number and the type of the controller interfaces in order to exactly offer the right number and type of interfaces as required by the devices to perform their specific tasks.
  • I/O interfaces such as GPI/O, UART, IIC, and the like
  • the quantity of the interfaces may be different for each of the different device types to be controlled.
  • the traditional methods to solve this problem would be to a) develop one individual chip (ASIC) for each device type or, b) develop one single chip (ASIC) providing a superset (in number and type) of all the interfaces needed for all the different device types.
  • FIG. 1 is a flow-chart indicating the initialization sequence according to the invention
  • FIG. 2 schematically shows a first embodiment of a control network according to the invention
  • FIG. 3 schematically shows a second embodiment of a control network according to the invention.
  • FIG. 4 schematically shows how the invention is employed on a chip.
  • the present invention solves this problem by providing a universal, generic chip which reduces the number of pins to the highest number of pins of the biggest individual chip, i.e., 128 in the above example. These 128 pins are the maximum of the three individual chips mentioned above.
  • the reduction is achieved by a switch matrix that is assigning the pins according to the needs of the specific device. The assignment of this switch matrix can be done either
  • ID-bits in hardware by the use of ID-bits on the card. These ID-bits would be implemented a select lines preselecting the functions of the chip required in the specific field of operation; or
  • Method a) is inflexible. Depending on the source of identification, e.g., ID-bits which are defined due to specific patterns on default GP-I/O lines, the pins are assigned by the switch matrix to the pin-out appropriate for the device according to the ID. The disadvantage is that, at the point in time when the chip is designed, all IDs and their exact pin assignments will have to be known.
  • the software method b) is more flexible and will therefore be described in the following in more detail.
  • the controller prior to any control task is setting up the chip (ASIC), according to the device that has to be controlled.
  • the chip may consist either of an active (e.g., a microprocessor design MACROS together with the custom design MACRO on one chip) or an inactive (ASIC, just the custom design on the chip) element.
  • the controller software After this set up the chip can be used by the controller software for the intrinsic controlling task in the same way as any traditional device.
  • the software has to identify the chip or the device before the switch matrix can be initialized accordingly. It is proposed that the identification can be done, e.g., by reading the ID-bits, using the default settings of the switch matrix (cf. FIG. 4).
  • the switch matrix control unit will always force the switch matrix in this state after initial power-on of the chip.
  • the requirement for an identification is not a special additional requirement of the present invention. Whenever the controller controls a number of different devices, a device identification is needed. This is independent for the proposed solution. Therefore, the requirement is not evoked from the present invention.
  • the identification would be done by data stored in an SEEPROM.
  • the SEEPROM would be connected to the chip by an IIC bus or in any other possible way, e.g., via UART, GPI/O, etc.
  • the default connection of the matrix would always—this especially also means before any initialization—support this default connection to the IIC engine in the chip.
  • the identification could of course also be done in other ways, for example by reading some ID-bits via the GPI/O engine, or by using the UART engine for communication to another chip on the card to get the unambiguous identifier of the device. In both latter cases, of course, the GPI/O respectively the UART engine must be connected to fixed output pins by the default matrix.
  • the initialization sequence would look like in FIG. 1.
  • the device driver would be initialized so that the device can be accessed at all.
  • the default connection on the device would be initialized ( 2 ). In the above example this would be the IIC device to access the identification information.
  • this information In the next step ( 3 ) this information would be read.
  • the code would use this information to set the matrix according to requirements of the identified device. This would be done before in the next step ( 4 ) the code would initialize the now known hardware of the entire device and the device driver. If all steps were completed successfully the code now can start using the full functionality of this device ( 5 ). If any of the steps 1 to 5 fail, the code would execute ( 7 ), report the error and the device would stay uninitialized and can not be used for further work.
  • the purpose of the invention is the requirement to control a higher number of different card types or the like. These cards may be installed in a computer frame and, according to their type, have different requirements regarding their I/O connectivity, depending on the task that has to be served on the specific card. For all these cards the generic chip is more or less the entrance of control for the embedded controller. For this purpose all these chips are connected with the controller by a proprietary serial interface.
  • This type of interface and protocol could be replaced by any communication infrastructure (like IIC, UART, Ethernet, USB, PCI-Bus, Firewire, or others), and protocol (like TCP/IP, PPP, etc.), or it could be even attached directly to the memory bus of the controller.
  • any communication infrastructure like IIC, UART, Ethernet, USB, PCI-Bus, Firewire, or others
  • protocol like TCP/IP, PPP, etc.
  • the present invention is applicable for the control task.
  • FIG. 2 A first way to build such a control network is shown in FIG. 2.
  • a centralized microprocessor 2 is talking to the distributed devices (not shown) each having the generic chip 6 according to the invention via a chip protocol 4 like IIC.
  • FIG. 3 The other way would be an arrangement as depicted in FIG. 3, where a main controller 8 is used.
  • This controller 8 is connected to smaller autarchic distributed controllers 10 (auxiliary controller) which talk to each others via Ethernet 12 or any other Network interface.
  • auxiliary controller distributed controllers 10
  • the generic chip according to the invention would be something like an extender chip to the auxiliary controllers to generate the required I/O fan out.
  • FIG. 4 schematically depicts how the switch matrix is employed on the chip.
  • the matrix itself could be implemented in any state of the art implementation as, e.g., known from crossbar switches used in telecommunication hardware.
  • a unit 14 of the chip 6 is depicted, which is building the interface, that is connecting the chip and the controller.
  • This interface can be any type of interface applicable for inter chip connection.
  • no processing unit is part of interface unit.
  • the protocol connecting the chip with an outer controller needs to be applicable for passive chips (protocols like: IIC and the like.
  • the interface unit would comprise a processing unit.
  • communication protocol applicable for the communication between processors e.g. UART, ethernet, and the like
  • An on-chip bus 16 is used to connect the interface unit 14 with a control unit 18 of the switch matrix and a certain number of working units 20 .
  • This working units 20 are used to serve all the different types of interfaces needed of the controlled card (e.g. IIC, UART, GPI/O, JTAG, and the like).
  • the output lines of these working units are connected to the switch matrix 22 .
  • This switch matrix is the main hardware requirement for the present invention. It allows to connect the n output lines of the working units 20 to the m pins of the chip via I/O connections 24 , where n is (much) bigger than m.
  • the switch matrix control unit allows to assign up to m of the n lines to the m pins. This assignment has to be done in the initialization step.
  • the device driver is initialized by the software. This is the start point of the following initialization process.
  • the software needs a default access path to get the information to identify the device. In the special case this default path is the path to the IIC unit.
  • the software resets and initializes this default path.
  • the software reads the identification information. In the present case this information will be read via IIC from the SEEPROM.
  • the software keeps a list of known and supported chips according to the read ID. Depending on the ID, the software then sets the switch matrix. After initialization and configuration of the switch matrix the universal chip works according to the ID found in the SEEPROM content. This means the pins are set up and from now on the software can work on the universal chip like it would do with a specific type of chip.
  • the units of the chip have to be initialized in a specific way.
  • the controller can execute the appropriate initialization procedures of the chip units to be able to handle the specific device. In case of success of all earlier steps the chip can now be used by higher software layers.

Abstract

A method for controlling a plurality of I/O devices being attached to a microprocessor by a special number and type of interfaces is provided. A generic configurable chip is connected to the I/O space of said microprocessor, said generic chip comprising a switch matrix being adapted to assign said special number and type of interfaces to each specific device when initializing said device.

Description

    BACKGROUND OF THE INVENTION
  • The present invention relates, in general, to accessing I/O functions. More specifically, the invention relates to accessing a great variance of I/O devices in a control system. Still more specifically, the present invention deals with accessing such I/O functions in embedded control environments. [0001]
  • In embedded control applications it is not always possible to meet all wanted requirements with standard I/O chips. Very often, it is tried to fulfill these requirements with a custom design. This design then will end in realization of a special designed chip, based, e.g., on ASICs. However, typically the I/O connectivity of these chips and not the available space is limiting the integration of more functionality on the same chip. [0002]
  • Though I/O devices may have a high similarity according to their requirements with regard to the I/O protocols supported (e.g., IC bus (I[0003] 2C), Universal Asynchronous Receiver/Transmitter (UART), General Purpose I/O (GPI/O) and the like), the number of I/O ports is different on each specific device.
  • In many applications, a certain number and type of I/O devices must be controlled (it is of no importance whether these devices are cards in a computer system, switches or hub-devices in a network or switching units in a luggage or parcel sorting system or similar systems). Typically, this controlling task is done by means of a microcontroller. However, in most cases, the industry does not offer out of the shelf a respective controller with enough or exactly the right I/O interfaces on the core chip. Accordingly, a chip (most probably an ASIC) will have to be developed that can be connected to the I/O space (memory mapped I/O, PCI, CAN-bus, Ethernet, etc.) of the controller as an extender chip. As already mentioned above, this chip would most probably be a custom design and is expanding the number and the type of the controller interfaces in order to exactly offer the right number and type of interfaces as required by the devices to perform their specific tasks. However, even if all of these devices would need the same sort or type of I/O interfaces (such as GPI/O, UART, IIC, and the like), the quantity of the interfaces may be different for each of the different device types to be controlled. The traditional methods to solve this problem would be to a) develop one individual chip (ASIC) for each device type or, b) develop one single chip (ASIC) providing a superset (in number and type) of all the interfaces needed for all the different device types. [0004]
  • The disadvantage of solution a) is obvious as it is clear that developing and producing n (assumed n being the number of different device types that shall be controlled) different chips (ASICs) is much more expensive then doing all this just once for one chip being produced in bigger volumes. [0005]
  • However, using solution b) would not only maximize the number of transistors on the chip, but would at the same time maximize the number of pins. Since industry is able to double the transistor density on a chip about every 18 months, the number of I/O pins is more and more determining the size and at the same time the costs (for each individual chip as well as for the space in the cards) of a chip. [0006]
  • BRIEF SUMMARY OF THE INVENTION
  • It is therefore an object of the present invention to provide one single chip providing a superset of all the interfaces needed for all the different device types, this chip not being bigger than any individual chip for each device type. [0007]
  • It is a further object of the present invention to provide a method to perform an individual initialization procedure at the time the device gets attached to a system. [0008]
  • It is still a further object of the invention to do this initialization when new hardware is attached to a running system, in computer technique known as hot-plugging.[0009]
  • BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING
  • These and other objects will be apparent to one skilled in the art from the following detailed description of the invention taken in conjunction with the accompanying drawings in which: [0010]
  • FIG. 1 is a flow-chart indicating the initialization sequence according to the invention; [0011]
  • FIG. 2 schematically shows a first embodiment of a control network according to the invention; [0012]
  • FIG. 3 schematically shows a second embodiment of a control network according to the invention; and [0013]
  • FIG. 4 schematically shows how the invention is employed on a chip.[0014]
  • DETAILED DESCRIPTION OF THE INVENTION
  • With the present invention, a flexible way is provided to assign I/O connectivity to different function units on a chip, depending on the functionality needed for the specific field of operation the chip will be employed for. This requires a special initialization step to personalize the hardware according to the special requirements of the specific device during the device driver initialization. To do so allows to build a more generic hardware for a certain variance of I/O devices which could be produced with lower costs in a higher volume. [0015]
  • The following table gives an example for three different devices needing various numbers of the three interface types GPI/O, UART and IIC. It has to be mentioned that the present invention is not restricted to a special number or type of devices or interfaces but can be used with any number and type of devices and interfaces. [0016]
    Device Device Device
    Type A Type B Type C Max
    I/O # of # of # of # of # of # of # of
    Type interfaces pins interfaces pins interfaces pins pins
    GPI/O 48 48 20 20 60 60 60
    IIC 10 20 14 28 8 16 28
    UART 30 60 40 80 24 48 80
    Sum 128 128 124 168
  • In case one would develop one individual chip (ASIC) for each device type, three different chips would be needed, each of them not bigger than 128 pins. It has to be mentioned that this is only an academic example where just the functional pins are taken into account. The power supply pins, e.g., are not counted in this example. However, this has no influence on the subject-matter of the invention. [0017]
  • In case one single chip (ASIC) providing a superset (in number and type) of all the interfaces needed for all the different device types is to be developed, this universal chip would need at least 168 (this being the sum of the maximum number of pins for each of the three devices given in the table), if not 196 pins (depending on the granularity of the chips. This, however, would enlarge the chip size by at least 31%. [0018]
  • The present invention solves this problem by providing a universal, generic chip which reduces the number of pins to the highest number of pins of the biggest individual chip, i.e., 128 in the above example. These 128 pins are the maximum of the three individual chips mentioned above. The reduction is achieved by a switch matrix that is assigning the pins according to the needs of the specific device. The assignment of this switch matrix can be done either [0019]
  • a) in hardware by the use of ID-bits on the card. These ID-bits would be implemented a select lines preselecting the functions of the chip required in the specific field of operation; or [0020]
  • b) by software initialization. [0021]
  • Method a) is inflexible. Depending on the source of identification, e.g., ID-bits which are defined due to specific patterns on default GP-I/O lines, the pins are assigned by the switch matrix to the pin-out appropriate for the device according to the ID. The disadvantage is that, at the point in time when the chip is designed, all IDs and their exact pin assignments will have to be known. The software method b) is more flexible and will therefore be described in the following in more detail. [0022]
  • The main idea is that the controller prior to any control task is setting up the chip (ASIC), according to the device that has to be controlled. The chip may consist either of an active (e.g., a microprocessor design MACROS together with the custom design MACRO on one chip) or an inactive (ASIC, just the custom design on the chip) element. After this set up the chip can be used by the controller software for the intrinsic controlling task in the same way as any traditional device. To do this setup, the software has to identify the chip or the device before the switch matrix can be initialized accordingly. It is proposed that the identification can be done, e.g., by reading the ID-bits, using the default settings of the switch matrix (cf. FIG. 4). To support this, the switch matrix control unit will always force the switch matrix in this state after initial power-on of the chip. The requirement for an identification is not a special additional requirement of the present invention. Whenever the controller controls a number of different devices, a device identification is needed. This is independent for the proposed solution. Therefore, the requirement is not evoked from the present invention. [0023]
  • In the above mentioned example, the identification would be done by data stored in an SEEPROM. The SEEPROM would be connected to the chip by an IIC bus or in any other possible way, e.g., via UART, GPI/O, etc. In this case the default connection of the matrix would always—this especially also means before any initialization—support this default connection to the IIC engine in the chip. The identification could of course also be done in other ways, for example by reading some ID-bits via the GPI/O engine, or by using the UART engine for communication to another chip on the card to get the unambiguous identifier of the device. In both latter cases, of course, the GPI/O respectively the UART engine must be connected to fixed output pins by the default matrix. In any case the initialization sequence would look like in FIG. 1. In the first step ([0024] 1) the device driver would be initialized so that the device can be accessed at all. Subsequently, the default connection on the device would be initialized (2). In the above example this would be the IIC device to access the identification information. In the next step (3) this information would be read. The code would use this information to set the matrix according to requirements of the identified device. This would be done before in the next step (4) the code would initialize the now known hardware of the entire device and the device driver. If all steps were completed successfully the code now can start using the full functionality of this device (5). If any of the steps 1 to 5 fail, the code would execute (7), report the error and the device would stay uninitialized and can not be used for further work.
  • The purpose of the invention is the requirement to control a higher number of different card types or the like. These cards may be installed in a computer frame and, according to their type, have different requirements regarding their I/O connectivity, depending on the task that has to be served on the specific card. For all these cards the generic chip is more or less the entrance of control for the embedded controller. For this purpose all these chips are connected with the controller by a proprietary serial interface. [0025]
  • This type of interface and protocol could be replaced by any communication infrastructure (like IIC, UART, Ethernet, USB, PCI-Bus, Firewire, or others), and protocol (like TCP/IP, PPP, etc.), or it could be even attached directly to the memory bus of the controller. Whenever special hardware has to be designed, because the I/O capacity of standard controllers is not sufficient, the present invention is applicable for the control task. [0026]
  • Given the present invention, in these cases one generic chip can be used to serve the requirements of all the different devices. Other operational fields could be the control of an assembly belt or for instance a stack of different hubs, switches, or other network devices that shall be controlled by one central point of control. A first way to build such a control network is shown in FIG. 2. Here a [0027] centralized microprocessor 2 is talking to the distributed devices (not shown) each having the generic chip 6 according to the invention via a chip protocol 4 like IIC.
  • The other way would be an arrangement as depicted in FIG. 3, where a [0028] main controller 8 is used. This controller 8 is connected to smaller autarchic distributed controllers 10 (auxiliary controller) which talk to each others via Ethernet 12 or any other Network interface. In this case the generic chip according to the invention would be something like an extender chip to the auxiliary controllers to generate the required I/O fan out.
  • FIG. 4 schematically depicts how the switch matrix is employed on the chip. The matrix itself could be implemented in any state of the art implementation as, e.g., known from crossbar switches used in telecommunication hardware. [0029]
  • On top of FIG. 4, a [0030] unit 14 of the chip 6 is depicted, which is building the interface, that is connecting the chip and the controller. This interface can be any type of interface applicable for inter chip connection. In case of a passive implementation of the chip no processing unit is part of interface unit. This means, the protocol connecting the chip with an outer controller needs to be applicable for passive chips (protocols like: IIC and the like. In case of an active implementation of the chip the interface unit would comprise a processing unit. In this case for the communication to the main controller and communication protocol applicable for the communication between processors (e.g. UART, ethernet, and the like) can be used to communicate to the chip. An on-chip bus 16 is used to connect the interface unit 14 with a control unit 18 of the switch matrix and a certain number of working units 20. This working units 20 are used to serve all the different types of interfaces needed of the controlled card (e.g. IIC, UART, GPI/O, JTAG, and the like). The output lines of these working units are connected to the switch matrix 22. This switch matrix is the main hardware requirement for the present invention. It allows to connect the n output lines of the working units 20 to the m pins of the chip via I/O connections 24, where n is (much) bigger than m. The switch matrix control unit allows to assign up to m of the n lines to the m pins. This assignment has to be done in the initialization step. By default, without any special assignment some lines j (j=n−1) of a working unit are connected to the j pins (j=m−k) of a default I/O connection 26. These j pins are connected to, e.g., ID-Bits or any other source of identification 28 (e.g., SEEPROM via IIC bus according to the example). After the initialization the chip can be used to perform any control task for a specific card not needing more then m pins.
  • The following is a short summary of the different steps of the method according to the present invention. [0031]
  • In the first step the device driver is initialized by the software. This is the start point of the following initialization process. As already mentioned, the software needs a default access path to get the information to identify the device. In the special case this default path is the path to the IIC unit. In this step the software resets and initializes this default path. Via the known and predefined default path, the software reads the identification information. In the present case this information will be read via IIC from the SEEPROM. The software keeps a list of known and supported chips according to the read ID. Depending on the ID, the software then sets the switch matrix. After initialization and configuration of the switch matrix the universal chip works according to the ID found in the SEEPROM content. This means the pins are set up and from now on the software can work on the universal chip like it would do with a specific type of chip. [0032]
  • Depending on the matrix configuration (in our example for device A, B or C) the units of the chip have to be initialized in a specific way. According to the already known ID, the controller can execute the appropriate initialization procedures of the chip units to be able to handle the specific device. In case of success of all earlier steps the chip can now be used by higher software layers. [0033]
  • While the preferred embodiment of the invention has been illustrated and described herein, it is to be understood that the invention is not limited to the precise construction herein disclosed, and the right is reserved to all changes and modifications coming within the scope of the invention as defined in the appended claims. [0034]

Claims (58)

What is claimed is:
1. A method for controlling a plurality of I/O devices being attached to a microprocessor by a special number and type of interfaces comprising:
connecting a configurable chip to the I/O space of said microprocessor, said configurable chip having a switch matrix;
initializing said I/O devices; and
assigning to said switch matrix, said special number and type of interfaces to each I/O device during said initialization.
2. The method according to claim 1, wherein said configurable chip is an active element.
3. The method according to claim 2, wherein said configurable chip is a controller.
4. The method according to claim 1, wherein said configurable chip is a passive element.
5. The method according to claim 4, wherein said configurable chip is an ASIC.
6. The method according to claim 1, wherein said I/O devices support different I/O protocols.
7. The method according to claim 6, wherein said different I/O protocols comprise IC bus (I2C), Universal Asynchronous Receiver/Transmitter (UART), General Purpose I/O (GPI/O) protocols.
8. The method according to claim 1, wherein said switch matrix is adapted to assign I/O pins according to the needs of each I/O device.
9. The method according to claim 1 further comprising switching in hardware using ID bits on each I/O device.
10. The method according to claim 1, wherein each I/O device contains configuration data.
11. The method according to claim 10, wherein said configuration data includes an identifier for each of said I/O devices.
12. The method according to claim 10, wherein said configuration data includes initialization data.
13. The method according to claim 12, wherein said configuration data is stored in an SEEPROM on said I/O device.
14. The method according to claim 11, wherein said identifier is transmitted to said configurable chip.
15. The method according to any one of claims 9 wherein said switching is done by software initialization.
16. The method according to claim 15, wherein said microprocessor sets up said chip prior to any control task with regard to the device to be controlled.
17. The method according to claim 16, wherein said set up is done by the software identifying each specific device.
18. The method according to claim 16, wherein initialization of said specific device is done after said set up.
19. The method according to claim 1 wherein said initialization is started each time a new I/O device is attached to said microprocessor.
20. The method according to claim 19, wherein said new I/O device is hot plugged to a system.
21. The method according to claim 20, wherein hot plugging is indicated by an interrupt.
22. A computer system comprising:
a microprocessor for controlling I/O devices;
a plurality of I/O devices attached to said microprocessor by a special number and type of interfaces;
a configurable chip connected to the I/O space of said microprocessor, said configurable chip having a switch matrix;
an initializing program initializing one of said I/O devices; and
said initializing program assigning to said switch matrix, said special number and type of interfaces to each I/O device during said initialization.
23. The system according to claim 22, wherein said configurable chip is an active element.
24. The system according to claim 23, wherein said configurable chip is a controller.
25. The system according to claim 22, wherein said configurable chip is a passive element.
26. The system according to claim 25, wherein said configurable chip is an ASIC.
27. The system according to claim 22, wherein said I/O devices support different I/O protocols.
28. The system according to claim 27, wherein said different I/O protocols comprise IC bus (I2C), Universal Asynchronous Receiver/Transmitter (UART), General Purpose I/O (GPI/O) protocols.
29. The system according to claim 22, wherein said switch matrix is adapted to assign I/O pins according to the needs of each I/O device.
30. The system according to claim 22 further comprising switching in hardware using ID bits on each I/O device.
31. The system according to claim 22, wherein each I/O device contains configuration data.
32. The system according to claim 31, wherein said configuration data includes an identifier for each of said I/O devices.
33. The system according to claim 31, wherein said configuration data includes initialization data.
34. The system according to claim 33, wherein said configuration data is stored in an SEEPROM on said I/O device.
35. The system according to claim 32, wherein said identifier is transmitted to said configurable chip.
36. The system according to any one of claims 30 wherein said switching is done by software initialization.
37. The system according to claim 36, wherein said microprocessor sets up said chip prior to any control task with regard to the device to be controlled.
38. The system according to claim 37, wherein said set up is done by the software identifying each specific I/O device.
39. The system according to claim 37, wherein initialization of said specific device is done after said set up.
40. The system according to claim 22, wherein said initialization is started each time a new I/O device is attached to said microprocessor.
41. The system according to claim 40, wherein said new I/O device is hot plugged to a system.
42. The system according to claim 41, wherein hot plugging is indicated by an interrupt.
43. A program product for controlling a plurality of I/O devices being attached to a microprocessor by a special number and type of interface and having a generic configurable chip connected to the I/O space of the microprocessor, the configurable chip having a switch matrix, said program product comprising:
a computer readable medium having recorded thereon computer readable program code performing the method comprising:
initializing said I/O devices; and
assigning to said switch matrix, said special number and type of interfaces to each I/O device during said initialization.
44. The program product according to claim 43, wherein said I/O devices support different I/O protocols.
45. The program product according to claim 44, wherein said different I/O protocols comprise IC bus (I2C), Universal Asynchronous Receiver/Transmitter (UART), General Purpose I/O (GPI/O) protocols.
46. The program product according to claim 43 further comprising switching in hardware using ID bits on each I/O device.
47. The program product according to claim 43, wherein each I/O device contains configuration data.
48. The program product according to claim 47, wherein said configuration data includes an identifier for each of said I/O devices.
49. The program product according to claim 47, wherein said configuration data includes initialization data.
50. The program product according to claim 49, wherein said configuration data is stored in an SEEPROM on said I/O device.
51. The program product according to claim 48, wherein said identifier is transmitted to said configurable chip.
52. The program product according to any one of claims 46 wherein said switching is done by software initialization.
53. The program product according to claim 52, wherein said microprocessor sets up said chip prior to any control task with regard to the device to be controlled.
54. The program product according to claim 53, wherein said set up is done by the software identifying each specific device.
54. The program product according to claim 53, wherein initialization of said specific device is done after said set up.
55. The program product according to claim 43 wherein said initialization is started each time a new I/O device is attached to said microprocessor.
56. The program product according to claim 55, wherein said new I/O device is hot plugged to a system.
57. The program product according to claim 56, wherein hot plugging is indicated by an interrupt.
US10/614,965 2002-07-09 2003-07-08 Method and system for personalized I/O device initialization Abandoned US20040133709A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/232,809 US7725612B2 (en) 2002-07-09 2005-09-22 Method and system for personalized I/O device initialization

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP02015239 2002-07-09
EP02015239.3 2002-07-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/232,809 Division US7725612B2 (en) 2002-07-09 2005-09-22 Method and system for personalized I/O device initialization

Publications (1)

Publication Number Publication Date
US20040133709A1 true US20040133709A1 (en) 2004-07-08

Family

ID=32668724

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/614,965 Abandoned US20040133709A1 (en) 2002-07-09 2003-07-08 Method and system for personalized I/O device initialization
US11/232,809 Expired - Fee Related US7725612B2 (en) 2002-07-09 2005-09-22 Method and system for personalized I/O device initialization

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/232,809 Expired - Fee Related US7725612B2 (en) 2002-07-09 2005-09-22 Method and system for personalized I/O device initialization

Country Status (1)

Country Link
US (2) US20040133709A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060037457A1 (en) * 2004-08-06 2006-02-23 Yamaha Corporation Electrical music apparatus capable of connecting with external device
US20080155072A1 (en) * 2006-12-22 2008-06-26 International Business Machines Corporation In-System Memory Personalization
US20220405182A1 (en) * 2021-06-18 2022-12-22 Micron Technology, Inc. Automatic chip initialization retry

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8997156B2 (en) * 2009-11-09 2015-03-31 Echostar Technologies Llc Systems and methods for distributing user generated content
US8719112B2 (en) * 2009-11-24 2014-05-06 Microsoft Corporation Invocation of accessory-specific user experience
US7865629B1 (en) * 2009-11-24 2011-01-04 Microsoft Corporation Configurable connector for system-level communication

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5424589A (en) * 1993-02-12 1995-06-13 The Board Of Trustees Of The Leland Stanford Junior University Electrically programmable inter-chip interconnect architecture
US5646544A (en) * 1995-06-05 1997-07-08 International Business Machines Corporation System and method for dynamically reconfiguring a programmable gate array
US5760607A (en) * 1995-07-10 1998-06-02 Xilinx, Inc. System comprising field programmable gate array and intelligent memory
US5784636A (en) * 1996-05-28 1998-07-21 National Semiconductor Corporation Reconfigurable computer architecture for use in signal processing applications
US6181159B1 (en) * 1997-05-06 2001-01-30 Altera Corporation Integrated circuit incorporating a programmable cross-bar switch
US20010042226A1 (en) * 2000-03-02 2001-11-15 Jonathan Dzoba System and method for automatically configuring a debug system
US6507213B1 (en) * 2001-03-15 2003-01-14 Cypress Semiconductor Corp. Parallel configuration method and/or architecture for PLDs or FPGAs
US6531889B1 (en) * 2000-10-10 2003-03-11 Altera Corporation Data processing system with improved latency and associated methods
US6539418B2 (en) * 1997-08-22 2003-03-25 Apex Inc. Method and system for intelligently controlling a remotely located computer

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG118066A1 (en) * 2000-08-25 2006-01-27 Serial System Ltd A reconfigurable communication interface and method therefor
US7010624B1 (en) * 2002-04-01 2006-03-07 Adaptec, Inc. System and method of software/firmware uploading and upgrading for peripheral devices

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5424589A (en) * 1993-02-12 1995-06-13 The Board Of Trustees Of The Leland Stanford Junior University Electrically programmable inter-chip interconnect architecture
US5646544A (en) * 1995-06-05 1997-07-08 International Business Machines Corporation System and method for dynamically reconfiguring a programmable gate array
US5760607A (en) * 1995-07-10 1998-06-02 Xilinx, Inc. System comprising field programmable gate array and intelligent memory
US5784636A (en) * 1996-05-28 1998-07-21 National Semiconductor Corporation Reconfigurable computer architecture for use in signal processing applications
US6181159B1 (en) * 1997-05-06 2001-01-30 Altera Corporation Integrated circuit incorporating a programmable cross-bar switch
US6539418B2 (en) * 1997-08-22 2003-03-25 Apex Inc. Method and system for intelligently controlling a remotely located computer
US20010042226A1 (en) * 2000-03-02 2001-11-15 Jonathan Dzoba System and method for automatically configuring a debug system
US6531889B1 (en) * 2000-10-10 2003-03-11 Altera Corporation Data processing system with improved latency and associated methods
US6507213B1 (en) * 2001-03-15 2003-01-14 Cypress Semiconductor Corp. Parallel configuration method and/or architecture for PLDs or FPGAs

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060037457A1 (en) * 2004-08-06 2006-02-23 Yamaha Corporation Electrical music apparatus capable of connecting with external device
US7825323B2 (en) * 2004-08-06 2010-11-02 Yamaha Corporation Electrical music apparatus capable of connecting with external device
US20080155072A1 (en) * 2006-12-22 2008-06-26 International Business Machines Corporation In-System Memory Personalization
US8527603B2 (en) 2006-12-22 2013-09-03 International Business Machines Corporation In-system memory personalization
US20220405182A1 (en) * 2021-06-18 2022-12-22 Micron Technology, Inc. Automatic chip initialization retry
US11740987B2 (en) * 2021-06-18 2023-08-29 Micron Technology, Inc. Automatic chip initialization retry

Also Published As

Publication number Publication date
US20060015657A1 (en) 2006-01-19
US7725612B2 (en) 2010-05-25

Similar Documents

Publication Publication Date Title
US5768542A (en) Method and apparatus for automatically configuring circuit cards in a computer system
EP0281999B1 (en) Data processing system with pluggable option card
US6347367B1 (en) Data bus structure for use with multiple memory storage and driver receiver technologies and a method of operating such structures
US5038320A (en) Computer system with automatic initialization of pluggable option cards
US7725612B2 (en) Method and system for personalized I/O device initialization
US6493770B1 (en) System for reconfiguring a peripheral device by downloading information from a host and electronically simulating a physical disconnection and reconnection to reconfigure the device
US7412544B2 (en) Reconfigurable USB I/O device persona
CN1085864C (en) Add-in board with enable/disable expansion ROM for PCI bus computer
US7219846B2 (en) Circuit module and memory card kit compliant with various access protocols
US20080270654A1 (en) Bus System for Selectively Controlling a Plurality of Identical Slave Circuits Connected to the Bus and Method Therefore
US20070067539A1 (en) Enhanced CCID circuits and systems utilizing USB and PCI functions
CN106250340A (en) A kind of hardware control circuit and control method thereof
CN103412838A (en) Expansion system, communication method, address configuration method, equipment and device
CN111104696B (en) Multi-path safety element cluster board card
US7000052B2 (en) System and method for configuring and deploying input/output cards in a communications environment
CN116032746B (en) Information processing method and device of resource pool, storage medium and electronic device
CN112231251A (en) Board card slot identification method and device, communication equipment and readable storage medium
US7024494B1 (en) Method and system for configuring a peripheral card in a communications environment
US6826628B2 (en) PCI-PCMCIA smart card reader
WO2023125108A1 (en) Controller, control system, and communication method for controller
CN114020681B (en) Method, device and system for distributing logical drive letter, electronic equipment and storage medium
CN100520727C (en) Method and system for identification of erection switching card type
CN111258763B (en) Server system and control method and device thereof
CN101189577A (en) Accessing configuration registers by automatically changing an index
CN114691573A (en) Hardware identification circuit, method and related equipment

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION