US20040029845A1 - Combinations of ileal bile acid transport inhibitors and bile acid sequestering agents for cardiovascular indications - Google Patents

Combinations of ileal bile acid transport inhibitors and bile acid sequestering agents for cardiovascular indications Download PDF

Info

Publication number
US20040029845A1
US20040029845A1 US10/373,180 US37318003A US2004029845A1 US 20040029845 A1 US20040029845 A1 US 20040029845A1 US 37318003 A US37318003 A US 37318003A US 2004029845 A1 US2004029845 A1 US 2004029845A1
Authority
US
United States
Prior art keywords
bile acid
amount
compound
combination
knedel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/373,180
Inventor
Bradley Keller
Kevin Glenn
Joseph Schuh
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GD Searle LLC
Original Assignee
GD Searle LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26811681&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20040029845(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by GD Searle LLC filed Critical GD Searle LLC
Priority to US10/373,180 priority Critical patent/US20040029845A1/en
Publication of US20040029845A1 publication Critical patent/US20040029845A1/en
Assigned to FIRST-CITIZENS BANK & TRUST COMPANY reassignment FIRST-CITIZENS BANK & TRUST COMPANY SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: 605, LLC, ISPOT.TV, INC.
Assigned to FIRST-CITIZENS BANK & TRUST COMPANY reassignment FIRST-CITIZENS BANK & TRUST COMPANY SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: 605, LLC, ISPOT.TV, INC.
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/55Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole
    • A61K31/554Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole having at least one nitrogen and one sulfur as ring hetero atoms, e.g. clothiapine, diltiazem
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
    • A61K31/58Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids containing heterocyclic rings, e.g. danazol, stanozolol, pancuronium or digitogenin
    • A61K31/585Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids containing heterocyclic rings, e.g. danazol, stanozolol, pancuronium or digitogenin containing lactone rings, e.g. oxandrolone, bufalin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/55Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
    • A61K31/575Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids substituted in position 17 beta by a chain of three or more carbon atoms, e.g. cholane, cholestane, ergosterol, sitosterol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/74Synthetic polymeric materials
    • A61K31/785Polymers containing nitrogen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/02Non-specific cardiovascular stimulants, e.g. drugs for syncope, antihypotensives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis

Definitions

  • the present invention relates to methods of treating cardiovascular diseases, and specifically relates to combinations of compounds, compositions, and methods for their use in medicine, particularly in the prophylaxis and treatment of hyperlipidemic conditions such as are associated with atherosclerosis, hypercholesterolemia, and other coronary artery disease in mammals. More particularly, the invention relates to ileal bile acid transporter (IBAT) inhibiting compounds. The invention also relates to bile acid sequestering compounds.
  • IBAT ileal bile acid transporter
  • LDL low-density lipoprotein
  • Atherosclerosis underlies most coronary artery disease (CAD), a major cause of morbidity and mortality in modern society.
  • High LDL cholesterol (above about 180 mg/dl) and low HDL cholesterol (below 35 mg/dl) have been shown to be important contributors to the development of atherosclerosis.
  • Other diseases or risk factors, such as peripheral vascular disease, stroke, and hypercholesterolaemia are negatively affected by adverse HDL/LDL ratios.
  • Hoechst Aktiengesellschaft discloses polymers of various naturally occurring constituents of the enterohepatic circulation system and their derivatives, including bile acid, which inhibit the physiological bile acid transport with the goal of reducing the LDL cholesterol level sufficiently to be effective as pharmaceuticals and, in particular for use as hypocholesterolemic agents
  • bile acid which inhibit the physiological bile acid transport with the goal of reducing the LDL cholesterol level sufficiently to be effective as pharmaceuticals and, in particular for use as hypocholesterolemic agents
  • the individual Hoechst patent applications which disclose such bile acid transport inhibiting compounds are each separately listed below.
  • Selected benzothiepines are disclosed in world patent application number WO 93/321146 for numerous uses including fatty acid metabolism and coronary vascular diseases.
  • benzothiepines useful for the treatment of hypercholesterolemia and hyperlipidemia are disclosed in patent application no. PCT/US95/10863. More benzothiepines useful for the prophylaxis and treatment of hypercholesterolemia and hyperlipidemia as well as pharmaceutical compositions of such benzothiepines are described in PCT/US97/04076.. Still further benzothiepines and compositions thereof useful for the prophylaxis and treatment of hypercholesterolemia and hyperlipidemia are described in U.S. application Ser. No. 08/816,065.
  • IBAT inhibitor compounds include a class of naphthalene compounds, described by T. Ichihashi et al. in J. Pharmacol. Exp. Ther., 284(1), 43-50 (1998).
  • S-8921 methyl 1-(3,4-dimethoxyphenyl)-3-(3-ethylvaleryl)-4-hydroxy-6,7,8-trimethoxy-2-naphthoate
  • the structure of S-8921 is shown in formula B-20.
  • Further naphthalene compounds or lignin derivatives useful for the treatment or prophylaxis of hyperlipidemia or atherosclerosis are described in PCT Patent Application No. WO 94/24087.
  • a class of materials which operates by another mechanism to lower LDL cholesterol comprises bile acid sequestering agents (“bile acid sequestrants” or “bile acid sequestering compounds”).
  • bile acid sequestrants or “bile acid sequestering compounds”.
  • Such agents are typically anion exchange polymers administered orally to a patient.
  • anions of bile acids are sequestered by the agent and excreted.
  • sequestering has been speculated to prevent reabsorption by the gut, for example the ileum, causing the body to increase conversion of cholesterol into bile acids, and thereby decreasing serum cholesterol levels.
  • cholestyramine a Styrene-divinylbenzene copolymer containing quaternary ammonium cationic groups capable of binding bile acids. It is believed that cholestyramine binds the bile acids in the intestinal tract, thereby interfering with their normal enterohepatic circulation. This effect is described by Reihnér et al., in “Regulation of hepatic cholesterol metabolism in humans: stimulatory effects of cholestyramine on HMG-CoA reductase activity and low density lipoprotein receptor expression in gallstone patients”, Journal of Lipid Research, 31, 2219-2226 (1990) Further description of this effect is found in Suckling et al.
  • colestipol a copolymer of diethylenetriamine and 1-chloro-2,3-epoxypropane. Colestipol is described in U.S. Pat. No. 3,692,895. A frequent side effect of colestipol and of cholestyramine is gastric distress.
  • bile acid sequestering agents are described in U.S. Pat. No. 5,703,188, assigned to Geltex Pharmaceuticals, Inc.
  • one such bile acid sequestering agent is 3-methacrylamidopropyltrimethyl-ammonium chloride copolymerized with ethylene glycol dimethacrylate to yield a copolymer.
  • CholestaGel is N,N,N-trimethyl-6-(2-propenylamino)-1-hexanaminium chloride polymer with (chloromethyl)oxirane, 2-propen-1-amine and N-2-propenyl-1-decanamine hydrochloride.
  • Yet another class materials proposed as bile acid sequestering agents comprises particles comprising amphiphilic copolymers having a crosslinked shell domain and an interior core domain (Patent application no. PCT/US 97/11610). Structures and preparation of such crosslinked amphiphilic copolymers are described in PCT/US97/11345. Such particles have been given the common name of “knedels” (K. B. Thurmond et. al., J. Am. Chem. Soc., 118 (30), 7239-40 (1996))
  • a combination therapy of acipimox and simvastatin shows beneficial HDL effects in patients having high triglyceride levels (N. Hoogerbrugge et al., J. Internal Med., 241, 151-55 (1997)).
  • Brown et al. (New Eng. J. Med., 323 (19) , 1289-1339 (1990)) describe a combination therapy of lovastatin and colestipol which reduces atherosclerotic lesion progression and increase lesion regression relative to lovastatin alone.
  • Buch et al. (PCT Patent Application No. WO 9911263) describe a combination therapy comprising amlodipine and a statin compound for treating subjects suffering from angina pectoris, atherosclerosis, combined hypertension and hyperlipidemia, and to treat symptoms of cardiac arrest.
  • Buch et al. describe in PCT Patent Application No. WO 9911259 a combination therapy comprising amlodipine and atorvastatin.
  • Scott et al. (PCT Patent Application No. WO 9911260) describe a combination therapy comprising atorvastatin and an antihypertensive agent.
  • Dettmar and Gibson (UK Patent Application No. GB 2329334 A) claim a therapeutic composition useful for reducing plasma low density lipoprotein and cholesterol levels, wherein the composition comprises an HMG CoA reductase inhibitor and a bile complexing agent.
  • the present invention provides a combination therapy comprising the use of a first amount of an IBAT inhibitor and a second amount of another cardiovascular therapeutic useful in the prophylaxis or treatment of hyperlipidemia, atherosclerosis, or hypercholesterolemia, wherein said first and second amounts together comprise an anti-hyperlipidemic condition effective amount, an anti-atherosclerotic condition effective amount, or an anti-hypercholesterolemic condition effective amount of the compounds.
  • a combination therapy comprising therapeutic dosages of an IBAT inhibitor and a bile acid sequestrant.
  • a preferred embodiment of the present invention is a combination therapy comprising therapeutic dosages of a benzothiepine IBAT inhibitor and a bile acid sequestrant.
  • a further embodiment of the instant invention comprises the use of any of the cardiovascular combination therapies described herein for the prophylaxis or treatment of hypercholesterolemia, atherosclerosis, or hyperlipidemia. Therefore, in one embodiment the present invention provides a method for the prophylaxis or treatment of a hyperlipidemic condition comprising administering to a patient in need thereof a combination in unit dosage form wherein the combination comprises a first amount of an ileal bile acid transport inhibiting compound and a second amount of a bile acid sequestering compound wherein the first amount and the second amount together comprise an anti-hyperlipidemic condition effective amount of the compounds.
  • the present invention provides a method for the prophylaxis or treatment of an atherosclerotic condition comprising administering to a patient in need thereof a combination in unit dosage form wherein the combination comprises a first amount of an ileal bile acid transport inhibiting compound and a second amount of a bile acid sequestering compound wherein the first amount and the second amount together comprise an anti-atherosclerotic condition effective amount of the compounds.
  • the present invention provides method for the prophylaxis or treatment of hypercholesterolemia comprising administering to a patient in need thereof a combination in unit dosage form wherein the combination comprises a first amount of an ileal bile acid transport inhibiting compound and a second amount of a bile acid sequestering compound wherein the first amount and the second amount together comprise an anti-hypercholesterolemic condition effective amount of the compounds.
  • Ileal bile acid transporter or “IBAT” is synonymous with apical sodium co-dependent bile acid transporter, or ASBT.
  • Benzothiepine IBAT inhibitor means an ileal bile acid transport inhibitor which comprises a therapeutic compound comprising a 2,3,4,5-tetrahydro-1-benzothiepine 1,1-dioxide structure.
  • Combination therapy means the administration of two or more therapeutic agents to treat a hyperlipidemic condition, for example atherosclerosis and hypercholesterolemia. Such administration encompasses co-administration of these therapeutic agents in a substantially simultaneous manner, such as in a single dosage form having a fixed ratio of active ingredients or in multiple, separate dosage forms for each inhibitor agent. In addition, such administration also encompasses use of each type of therapeutic agent in a sequential manner. In either case, the treatment regimen will provide beneficial effects of the drug combination in treating the hyperlipidemic condition.
  • the phrase “therapeutically effective” is intended to qualify the combined amount of inhibitors in the combination therapy. This combined amount will achieve the goal of reducing or eliminating the hyperlipidemic condition.
  • “Therapeutic compound” means a compound useful in the prophylaxis or treatment of a hyperlipidemic condition, including atherosclerosis and hypercholesterolemia.
  • the combinations of the present invention will have a number of uses. For example, through dosage adjustment and medical monitoring, the individual dosages of the therapeutic compounds used in the combinations of the present invention will be lower than are typical for dosages of the therapeutic compounds when used in monotherapy.
  • the dosage lowering will provide advantages including reduction of side effects of the individual therapeutic compounds when compared to the monotherapy. In addition, fewer side effects of the combination therapy compared with the monotherapies will lead to greater patient compliance with therapy regimens.
  • IBAT Inhibitors decrease reabsorption of bile acids in the ileum by inhibiting bile acid transporters in the wall of the ileum.
  • bile acid sequestrants act in the intestinal tract to sequester bile acids and, sometimes, cholesterol.
  • a therapeutic combination of an IBAT inhibitor and a bile acid sequestrant will, when dosages are optimally adjusted, further decrease overall reabsorption of bile acids and cholesterol in the digestive tract to a greater extent than either component of the combination will do under monotherapeutic conditions.
  • Compounds useful in the present invention encompass a wide range of therapeutic compounds. Some IBAT inhibitors useful in the present invention are disclosed in patent application no. PCT/US95/10863, herein incorporated by reference. More IBAT inhibitors are described in PCT/US97/04076, herein incorporated by reference. Still further IBAT inhibitors useful in the present invention are described in U.S. application Ser. No. 08/816,065, herein incorporated by reference. More IBAT inhibitor compounds useful in the present invention are described in WO 98/40375, herein incorporated by reference. Additional IBAT inhibitor compounds useful in the present invention are described
  • IBAT inhibitors of particular interest in the present invention include those shown in Table 1, as well as the diastereomers, enantiomers, racemates, salts, and tautomers of the IBAT inhibitors of Table 1.
  • Table 1 Compound Number Structure B-1 B-2 B-3 B-4 B-5 B-6 B-7 B-8 B-9 B-10 B-11 B-12 B-13 B-14 B-15 B-16 B-17 B-18 B-19 B-20 B-21 B-22 B-23 B-24 B-25 B-26 B-27 B-28 B-29 B-30 B-31 B-32 B-33 B-34 B-35 B-36 B-37 B-38 B-39
  • Bile acid sequestrants useful in the combinations and methods of the present invention comprise a wide variety of structures and functionalities.
  • Preferred bile acid sequestrants for the present invention are described in Table 2.
  • the therapeutic compounds of Table 2 can be used in the present invention in a variety of forms, including acid form, salt form, racemates, enantiomers, zwitterions, and tautomers.
  • the individual patent documents referenced in Table 2 are each herein incorporated by reference.
  • Additional bile acid sequestrants useful herein are particles comprising amphiphilic copolymers having a crosslinked shell domain and an interior core domain (knedels, Patent application No.
  • Knedels of particular interest in the present invention comprise polystyrene-b-poly(acrylic acid) (PS-b-PAA) crosslinked with one or more polyamine.
  • PS-b-PAA polystyrene-b-poly(acrylic acid)
  • knedels comprise PS-b-PAA crosslinked with 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide methiodide and triethylenetetramine (“knedel A”) or 1,7-diaza-4,10-diazonium-4,4,10,10-tetramethylundecane diiodide (“knedel B”).
  • Another useful bile acid sequestering agent is DMP-504, described by Gillies et al., Drug Dev. Res. (1997), 41(2), 65-75.
  • Yet another useful bile acid sequestering agent is MCI-196, described by Mitsubishi Chemical Corp. TABLE 2 Com- Patent pound CAS Registry Document Number Common Name Number Reference G-35 cholestyramine 11041-12-6 G-46 colestipol 50925-79-6 U.S. Pat. No. 3,692,895 S-1 knedel A PCT/US97/11345. S-2 knedel B PCT/US97/11345 S-3 3-methacrylamindo- U.S. Pat. No.
  • the compounds (for example, ileal bile acid transport inhibiting compounds or bile acid sequestering compounds) useful in the present invention can have no asymmetric carbon atoms, or, alternatively, the useful compounds can have one or more asymmetric carbon atoms.
  • the useful compounds when they have one or more asymmetric carbon atoms, they therefore include racemates and stereoisomers, such as diastereomers and enantiomers, in both pure form and in admixture.
  • stereoisomers can be prepared using conventional techniques, either by reacting enantiomeric starting materials, or by malic, methanesulfonic, succinic, toluenesulfonic, tartaric, and trifluoroacetic acids.
  • the chloride salt is Particularly preferred for medical purposes.
  • Suitable pharmaceutically acceptable base salts include ammonium salts, alkali metal salts such as sodium and potassium salts, and alkaline earth salts such as magnesium and calcium salts.
  • anions useful in the present invention are, of course, also required to be pharmaceutically acceptable and are also selected from the above list.
  • the compounds useful in the present invention can be presented with an acceptable carrier in the form of a pharmaceutical composition.
  • the carrier must, of course, be acceptable in the sense of being compatible with the other ingredients of the composition and must not be deleterious to the recipient.
  • the carrier can be a solid or a liquid, or both, and is preferably formulated with the compound as a unit-dose composition, for example, a tablet, which can contain from 0.05% to 95% by weight of the active compound. other pharmacologically active substances can also be present, including other compounds of the present invention.
  • the pharmaceutical compositions of the invention can be prepared by any of the well known techniques of pharmacy, consisting essentially of admixing the components.
  • the combination of the present invention can comprise a composition comprising an ileal bile acid transport inhibiting compound and a bile acid sequestering compound.
  • the ileal bile acid transport inhibiting compound and the bile acid sequestering compound can be present in a single dosage form, for example a pill, a capsule, or a liquid which contains both of the compounds.
  • chloride salt is particularly preferred for medical purposes.
  • Suitable pharmaceutically acceptable base salts include ammonium salts, alkali metal salts such as sodium and potassium salts, and alkaline earth salts such as magnesium and calcium salts.
  • anions useful in the present invention are, of course, also required to be pharmaceutically acceptable and are also selected from the above list.
  • the compounds useful in the present invention can be presented with an acceptable carrier in the form of a pharmaceutical composition.
  • the carrier must, of course, be acceptable in the sense of being compatible with the other ingredients of the composition and must not be deleterious to the recipient.
  • the carrier can be a solid or a liquid, or both, and is preferably formulated with the compound as a unit-dose composition, for example, a tablet, which can contain from 0.05% to 95% by weight of the active compound.
  • Other pharmacologically active substances can also be present, including other compounds of the present invention.
  • the pharmaceutical compositions of the invention can be prepared by any of the well known techniques of pharmacy, consisting essentially of admixing the components.
  • the combination of the present invention can comprise a composition comprising an ileal bile acid transport inhibiting compound and a bile acid sequestering compound.
  • the ileal bile acid transport inhibiting compound and the bile acid sequestering compound can be present in a single dosage form, for example a pill, a capsule, or a liquid which contains both of the compounds.
  • the amount of compound which is required to achieve the desired biological effect will, of course, depend or. a number of factors such as the specific compound chosen, the use for which it is intended, the mode of administration, and the clinical condition of the recipient.
  • a total daily dose of an IBAT inhibitor can be in the range of from about 0.01 to about 1000 mg/day, preferably from about 0.1 mg to about 50 mg/day, more preferably from about 1 to about 10 mg/day.
  • a total daily dose can be in the range of from about 250 to about 30,000 mg/day, preferably from about 500 to about 15,000 mg/day, and more preferably about 500 to about 5,000 mg/day in a single or a divided dose.
  • the daily doses described in the preceding paragraphs for the various therapeutic compounds can be administered to the patient in a single dose, or in proportionate multiple subdoses. Subdoses can be administered 2 to 6 times per day. Doses can be in sustained release form effective to obtain desired results.
  • the weights indicated above refer to the weight of the acid equivalent or the base equivalent of the therapeutic compound derived from the salt.
  • Oral delivery of the combinations of the present invention can include formulations, as are well known in the art, to provide prolonged or sustained delivery of the drug to the gastrointestinal tract by any number of mechanisms. These include, but are not limited to, pH sensitive release from the dosage form based on the changing pH of the small intestine, slow erosion of a tablet or capsule, retention in the stomach based on the physical properties of the formulation, bioadhesion of the dosage form to the mucosal lining of the intestinal tract, or enzymatic release of the active drug from the dosage form.
  • enteric-coated and enteric-coated controlled release formulations are within the scope of the present invention.
  • Suitable enteric coatings include cellulose acetate phthalate, polyvinylacetate phthalate, hydroxypropylmethylcellulose phthalate and anionic polymers of methacrylic acid and methacrylic acid methyl ester.
  • the combinations of the present invention can be delivered orally either in a solid, in a semi-solid, or in a liquid form.
  • the combinations of the present invention can, for example, be in the form of a liquid, syrup, or contained in a gel capsule (e.g., a gel cap).
  • the IBAT inhibitor when used in a combination of the present invention, can be provided in the form of a liquid, syrup, or contained in a gel capsule.
  • a bile acid sequestrant when a bile acid sequestrant is used in a combination of the present invention, the bile acid sequestrant can be provided in the form of a liquid, a solid dispersed in a liquid, or in a capsule.
  • compositions according to the present invention include those suitable for oral, rectal, topical, buccal (e.g., sublingual), and parenteral (e.g., subcutaneous, intramuscular, intradermal, or intravenous) administration, although the most suitable route in any given case will depend on the nature and severity of the condition being treated and on the nature of the particular compound which is being used. In most cases, the preferred route of administration is oral. In most cases, a bile acid sequestrant will be administered orally.
  • compositions suitable for oral administration can be presented in discrete units, such as capsules, cachets, lozenges, or tablets, each containing a predetermined amount of at least one therapeutic compound useful in the present invention; as a powder or granules; as a solution or a suspension in an aqueous or non-aqueous liquid; or as an oil-in-water or water-in-oil emulsion.
  • such compositions can be prepared by any suitable method of pharmacy which includes the step of bringing into association the active compound(s) and the carrier (which can constitute one or more accessory ingredients) .
  • compositions are prepared by uniformly and intimately admixing the active compound with a liquid or finely divided solid carrier, or both, and then, if necessary, shaping the product.
  • a tablet can be prepared by compressing or molding a powder or granules of the compound, optionally with one or more assessory ingredients.
  • Compressed tablets can be prepared by compressing, in a suitable machine, the compound in a free-flowing form, such as a powder or granules optionally mixed with a binder, lubricant, inert diluent and/or surface active/dispersing agent(s). Molded tablets can be made by molding, in a suitable machine, the powdered compound moistened with an inert liquid diluent.
  • compositions suitable for buccal (sub-lingual) administration include lozenges comprising a compound of the present invention in a flavored base, usually sucrose, and acacia or tragacanth, and pastilles comprising the compound in an inert base such as gelatin and glycerin or sucrose and acacia.
  • compositions suitable for parenteral administration conveniently comprise sterile aqueous preparations of a compound of the present invention. These preparations are preferably administered intravenously, although administration can also be effected by means of subcutaneous, intramuscular, or intradermal injection. Such preparations can conveniently be prepared by admixing the compound with water and rendering the resulting solution sterile and isotonic with the blood. Injectable compositions according to the invention will generally contain from 0.1 to 5% w/w of a compound disclosed hereon.
  • compositions suitable for rectal administration are preferably presented as unit-dose suppositories. These can be prepared by admixing a compound of the present invention with one or more conventional solid carriers, for example, cocoa butter, and then shaping the resulting mixture.
  • compositions suitable for topical application to the skin preferably take the form of an ointment, cream, lotion, paste, gel, spray, aerosol, or oil.
  • Carriers which can be used include petroleum jelly (e.g., Vaseline) , lanolin, polyethylene glycols, alcohols, and combinations of two or more thereof.
  • the active compound is generally present at a concentration of from 0.1 to 50% w/w of the composition, for example, from 0.5 to 2%.
  • Transdermal administration is also possible.
  • Pharmaceutical compositions suitable for transdermal administration can be presented as discrete patches adapted to remain in intimate contact with the epidermis of the recipient for a prolonged period of time.
  • patches suitably contain a compound of the present invention in an optionally buffered, aqueous solution, dissolved and/or dispersed in an adhesive, or dispersed in a polymer.
  • a suitable concentration of the active Compound is about 1% to 35%, preferably about 3% to 15%.
  • the compound can be delivered from the patch by electrotransport or iontophoresis, for example, as described in Pharmaceutical Research, 3 (6), 318 (1986).
  • the amount of active ingredient that can be combined with carrier materials to produce a Single dosage form to be administered will vary depending upon the host treated and the particular mode of administration.
  • the solid dosage forms for oral administration including capsules, tablets, pills, powders, gel caps, and granules noted above comprise one or more compounds useful in the present invention admixed with at least one inert diluent such as sucrose, lactose, or starch.
  • Such dosage forms may also comprise, as in normal practice, additional substances other than inert diluents, e.g., lubricating agents such as magnesium stearate or solubilizing agents such as cyclodextrins.
  • the dosage forms may also comprise buffering agents. Tablets and pills can additionally be prepared with enteric coatings.
  • Liquid dosage forms for oral administration can include pharmaceutically acceptable emulsions, solutions, suspensions, syrups, and elixirs containing inert diluents commonly used in the art, such as water.
  • Such compositions may also comprise adjuvants, such as wetting agents, emulsifying and suspending agents, and sweetening, flavoring, and perfuming agents.
  • Injectable preparations for example, sterile injectable aqueous or oleaginous suspensions may be formulated according to the known art using suitable dispersing or setting agents and suspending agents.
  • the sterile injectable preparation may also be a sterile injectable solution or suspension in a nontoxic pareriterally acceptable diluent or solvent, for example, as a solution in 1,3-butanediol.
  • acceptable vehicles and solvents that may be employed are water, Ringer's solution, and isotonic sodium chloride solution.
  • sterile, fixed oils are conventionally employed as a solvent or suspending medium.
  • any bland fixed oil may be employed including synthetic mono- or diglycerides.
  • fatty acids such as oleic acid find use in the preparation of injectables.
  • compositions encompass all the foregoing and the like.
  • administration of two or more of the therapeutic agents useful in the present invention may take place sequentially in separate formulations, or may be accomplished by simultaneous administration in a single formulation or separate formulations. Administration may be accomplished by oral route, or by intravenous, intramuscular, or subcutaneous injections.
  • the formulation may be in the form of a bolus, or in the form of aqueous or non-aqueous isotonic sterile injection solutions or suspensions.
  • the pharmaceutical composition may be in the form of, for example, a tablet, capsule, suspension, or liquid. Capsules, tablets, etc., can be prepared by conventional methods well known in the art.
  • the pharmaceutical composition is Preferably made in the form of a dosage unit containing a particular amount of the active ingredient or ingredients. Examples of dosage units are tablets or capsules. These may with advantage contain one or more therapeutic compound in an amount described above.
  • the dose range may be from about 0.01 mg/day to about 500 mg/day or any other dose, dependent upon the specific inhibitor, as is known in the art.
  • an bile acid sequestrant the dose range can be from about 1,000 mg/day to about 30,000 mg/day or any other dose, dependent upon the specific bile acid sequestrant, as is known in the art.
  • the active ingredients may also be administered by injection as a composition wherein, for example, saline, dextrose, or water may be used as a suitable carrier.
  • a suitable daily dose of each active therapeutic compound is one that achieves the same blood serum level as produced by oral administration as described above.
  • the therapeutic compounds may further be administered by any combination of oral/oral, oral/parenteral, or parenteral/parenteral route.
  • the time period between the multiple ingestion steps may range from a few minutes to several hours, depending upon the properties of each therapeutic compound such as potency, solubility, bioavailability, plasma half-life and kinetic profile of the therapeutic compound, as well as depending upon the effect of food ingestion and the age and condition of the patient. Circadian variation of the target molecule concentration may also determine the optimal dose interval.
  • the therapeutic compounds of the combined therapy whether administered simultaneously, substantially simultaneously, or sequentially, may involve a regimen calling for administration of one therapeutic compound by oral route and another therapeutic compound by intravenous route.
  • each such therapeutic compound will be contained in a suitable pharmaceutical formulation of pharmaceutically-acceptable excipients, diluents or other formulations components.
  • suitable pharmaceutically-acceptable formulations containing the therapeutic compounds for oral administration are given above.
  • the dosage regimen to prevent, give relief from, or ameliorate a disease condition having hyperlipemia as an element of the disease, e.g., atherosclerosis, or to protect against or treat further high cholesterol plasma or blood levels with the compounds and/or compositions of the present invention is selected in accordance with a variety of factors. These include the type, age, weight, sex, diet, and medical condition of the patient, the severity of the disease, the route of administration, pharmacological considerations such as the activity, efficacy, pharmacokinetics and toxicology profiles of the particular compound employed, whether a drug delivery system is utilized, and whether the compound is administered as part of a drug combination. Thus, the dosage regimen actually employed may vary widely and therefore deviate from the preferred dosage regimen set forth above.
  • Initial treatment of a patient suffering from a hyperlipidemic condition can begin with the dosages indicated above. Treatment should generally be continued as necessary over a period of several weeks to several months or years until the hyperlipidemic disease condition has been controlled or eliminated.
  • Patients undergoing treatment with the compounds or compositions disclosed herein can be routinely monitored by, for example, measuring serum LDL and total cholesterol levels by any of the methods well known in the art, to determine the effectiveness of the combination therapy. Continuous analysis of such data permits modification of the treatment regimen during therapy so that optimal effective amounts of each type of therapeutic compound are administered at any point in time, and so that the duration of treatment can be determined as well. In this way, the treatment regimen/dosing schedule can be rationally modified over the course of therapy so that the lowest amount of the therapeutic compounds which together exhibit satisfactory effectiveness is administered, and so that administration is continued only so long as is necessary to successfully treat the hyperlipidemic condition.
  • One of the several embodiments of the present invention comprises a combination therapy comprising the use of a first amount of an IBAT inhibitor and a second amount of another cardiovascular therapeutic useful in the prophylaxis or treatment of hyperlipidemia or atherosclerosis, wherein said first and second amounts together comprise an anti-hyperlipidemic condition effective amount or an anti-atherosclerotic condition effective amount of said compounds.
  • a combination therapy comprising therapeutic dosages of an ISAT inhibitor and a bile acid sequestrant.
  • a preferred embodiment of the present invention is a combination therapy comprising therapeutic dosages of a benzothiepine IBAT inhibitor and a bile acid sequestrant.
  • Table 7 illustrates examples of some combinations of the present invention wherein the combination comprises a first amount of an IBAT inhibitor and a second amount of a bile acid sequestration agent, wherein said first and second amounts together comprise an anti-hyperlipidemic condition effective amount or an anti-atherosclerotic condition effective amount of said compounds.
  • Baby hamster kidney cells (BHK) transfected with the cDNA of human IBAT (H14 cells) are to be seeded at 60,000 cells/well in 96 well Top-Count tissue culture plates for assays run within in 24 hours of seeding. 30,000 cells/well for assays run within 48 hours, and 10,000 cells/well for assays run within 72 hours.
  • the cell monolayer is gently washed once with 100 ⁇ l assay buffer (Dulbecco's Modified Eagle's medium with 4.5 g/L glucose+0.2% (w/v) fatty acid free bovine serum albumin—(FAF)BSA).
  • assay buffer Dulbecco's Modified Eagle's medium with 4.5 g/L glucose+0.2% (w/v) fatty acid free bovine serum albumin—(FAF)BSA.
  • assay buffer Dulbecco's Modified Eagle's medium with 4.5 g/L glucose+0.2% (w/v) fatty acid free bovine serum albumin—(FAF)BSA
  • FAF fatty acid free bovine serum albumin
  • the alanine uptake assay can be performed in an identical fashion to the taurocholate assay, with the exception that labeled alanine is to be substituted for the labeled taurocholate.
  • the distal opening is cannulated with a 20 cm length of silicone tubing (0.02′′ I.D. ⁇ 0.037′′ O.D.).
  • the proximal cannulae is hooked up to a peristaltic pump and the intestine is washed for 20 min with warm PBS at 0.25 ml/min. Temperature of the gut segment is to be monitored continuously.
  • 2.0 ml of control sample [ 14 C]-taurocholate @ 0.05 mCi/ml with 5 mM non-radiolabeled taurocholate) is loaded into the gut segment with a 3 ml syringe and bile sample collection is begun.
  • Control sample is infused at a rate of 0.25 ml/min for 21 min. Bile samples fractions will be collected every 3 minute for the first 27 minutes of the procedure. After the 21 min of sample infusion, the ileal loop is washed out with 20 ml of warm PBS (using a 30 ml syringe), and then the loop is washed out for 21 min with warm PBS at 0.25 ml/min. A second perfusion is to be initiated as described above but with test compound being administered as well (21 min administration followed by 21 min of wash out) and bile to be sampled every 3 min for the first 27 min. If necessary, a third perfusion will be performed as above that typically contains the control sample.
  • Total fecal output from individually housed rats is to be collected for 24 or 48 hours, dried under a stream of nitrogen, pulverized, mixed, and weighed. Approximately 0.1 gram is weighed out and extracted into an organic solvent (butanol/water). Following separation and drying, the residue is dissolved in methanol and the amount of bile acid present will be measured enzymatically using the 3 ⁇ -hydroxysteroid steroid dehydrogenase reaction with bile acids to reduce NAD. (see Mashige, F. et al. Clin. Chem., 27, 1352 (1981), herein incorporated by reference).
  • mice Male Wister rats (275-300g) are to be administered IBAT inhibitors using an oral gavage procedure.
  • Drug or vehicle (0.2% TWEEN 80 in water) is administered once a day (9:00-10:0 a.m.) for 4 days at varying dosages in a final volume of 2 mL per kilogram of body weight.
  • TWEEN 80 is a 20 molar polyethyleneoxide sorbitan monooleate surfactant manufactured by ICI Specialty Chemicals, Wilmington, Del., U.S.A.
  • Total fecal samples are collected during the final 48 hours of the treatment period and analyzed for bile acid content using an enzymatic assay as described below. Compound efficacy will be determined by comparison of the increase in fecal bile acid (FBA) concentration in treated rats to the mean FBA concentration of rats in the vehicle group.
  • FBA fecal bile acid
  • Rabbit Ileal brush border membranes are to be prepared from frozen ileal mucosa by the calcium precipitation method describe by Malathi et al. ( Biochimica Biophysica Acta, 554, 259 (1979), herein incorporated by reference).
  • the method for measuring taurocholate is essentially as described by Kramer et al. ( Biochimica Biophysica Acta, 1111, 93 (1992), herein incorporated by reference) except the assay volume will be 200 ⁇ l instead of 100 ⁇ l.
  • a 190 ⁇ l solution containing 2 ⁇ M [ 3 H]-taurocholate(0.75 ⁇ Ci), 20 mM tris, 100 mM NaCl, 100 mM mannitol pH 7.4 is incubated for 5 sec with 10 ⁇ l of brush border membrane vesicles (60-120 ⁇ g protein).
  • the incubation is initiated by the addition of the BBMV while vortexing and the reaction is to be stopped by the addition of 5 ml of ice cold buffer (20 mM Hepes-tris, 150 mM KCl) followed immediately by filtration through a nylon filter (0.2 ⁇ m pore) and an additional 5 ml wash with stop buffer.
  • Hamster liver and rat intestinal microsomes are to be prepared from tissue as described previously ( J. Biol. Chem., 255, 9098 (1980), herein incorporated by reference) and used as a source of ACAT enzyme.
  • the assay will consist of a 2.0 ml incubation containing 24 ⁇ M Oleoyl-CoA (0.05 ⁇ Ci) in a 50 mM sodium phosphate, 2 mM DTT ph 7.4 buffer containing 0.25% BSA and 200 ⁇ g of microsomal protein.
  • the assay will be initiated by the addition of oleoyl-CoA. The reaction proceeds for 5 min at 37° C.
  • Liver tissue is to be weighed and homogenized in chloroform:methanol (2:1). After homogenization and centrifugation the supernatant is separated and dried under nitrogen. The residue is to be dissolved in isopropanol and the cholesterol content will be measured enzymatically, using a combination of cholesterol oxidase and peroxidase, as described by Allain, C. A. et al., Clin. Chem., 20, 470 (1974) (herein incorporated by reference).
  • HMG COA Hepatic HMG CoA-Reductase Activity
  • Hepatic microsomes are to be prepared by homogenizing liver samples in a phosphate/sucrose buffer, followed by centrifugal separation. The final pelleted material is resuspended in buffer and an aliquot will be assayed for HMG CoA reductase activity by incubating for 60 minutes at 37° C. in the presence of 14 C-HMG-CoA (Dupont-NEN). The reaction is stopped by adding 6N HCl followed by centrifugation. An aliquot of the supernatant is separated, by thin-layer chromatography, and the spot corresponding to the enzyme product is scraped off the plate, extracted and radioactivity is determined by scintillation counting. (Reference: Akerlund, J. and Bjorkhem, I. (1990) J. Lipid Res. 31, 2159).
  • Hepatic microsomes are to be prepared by homogenizing liver samples in a phosphate/sucrose buffer, followed by centrifugal separation. The final pelleted material is resuspended in buffer and an aliquot will be assayed for cholesterol 7- ⁇ -hydroxylase activity by incubating for 5 minutes at 37° C. in the presence of NADPH. Following extraction into petroleum ether, the organic solvent is evaporated and the residue is dissolved in acetonitrile/ methanol. The enzymatic product will be separated by injecting an aliquot of the extract onto a C 18 reversed phase HPLC column and quantitating the eluted material using UV detection at 240 nm. (Reference: Horton, J. D., et al. (1994) J. Clin. Invest. 93, 2084).
  • Total serum cholesterol (SER.CHOL) are to be measured enzymatically using a commercial kit from Wako Fine Chemicals (Richmond, Va.); Cholesterol C11, Catalog No. 276-64909. HDL cholesterol (HDL-CHOL) will be assayed using this same kit after precipitation of VLDL and LDL with Sigma Chemical Co. HDL Cholesterol reagent, Catalog No. 352-3 (dextran sulfate method). Total serum triglycerides (blanked) (TGI) will be assayed enzymatically with Sigma Chemical Co. GPO-Trinder, Catalog No. 337-B. VLDL and LDL (VLDL+LDL) cholesterol concentrations will be calculated as the difference between total and HDL cholesterol.
  • Total fecal output from individually housed hamsters is to be collected for 24 or 48 hours, dried under a stream of nitrogen, pulverized and weighed. Approximately 0.1 gram is weighed out and extracted into an organic solvent (butanol/water) . Following separation and drying, the residue is dissolved in methanol and the amount of bile acid present is measured enzymatically using the 3 ⁇ -hydroxysteroid steroid dehydrogenase reaction with bile acids to reduce NAD. (Mashige, F. et al. Clin. Chem., 27, 1352 (1981), herein incorporated by reference).
  • Dogs Male beagle dogs, obtained from a vendor such as Marshall farms and weighing 6-12 kg are fed once a day for two hours and given water ad libitum. Dogs may be randomly assigned to a dosing groups consisting of 6 to 12 dogs each, such as: vehicle, i.g.; 1 mg/kg, i.g.; 2 mg/kg, i.g.; 4 mg/kg, i.g.; 2 mg/kg, p.o. (powder in capsule).
  • Intra-gastric dosing of a therapeutic material dissolved in aqueous solution for example, 0.2% Tween 80 solution [polyoxyethylene mono-oleate, Sigma Chemical Co., St.
  • a gavage tube Prior to initiating dosing, blood samples may be drawn from the cephalic vein in the morning before feeding in order to evaluate serum cholesterol (total and HDL) and triglycerides. For several consecutive days animals are dosed in the morning, prior to feeding. Animals are to be allowed 2 hours to eat before any remaining food is removed. Feces are to be collected over a 2 day period at the end of the study and may be analyzed for bile acid or lipid content. Blood samples are also to be taken, at the end of the treatment period, for comparison with pre-study serum lipid levels. Statistical significance will be determined using the standard student's T-test with p ⁇ 0.05.
  • Blood is to be collected from the cephalic vein of fasted does in serum separator tubes (Vacutainer SST, Becton Dickinson and Co., Franklin Lakes, N.J.) The blood is centrifuged at 2000 rpm for 20 minutes and the serum decanted.
  • serum separator tubes Vacutainer SST, Becton Dickinson and Co., Franklin Lakes, N.J.
  • Total cholesterol may be measured in a 96 well format using a Wako enzymatic diagnostic kit (Cholesterol CII) (Wako Chemicals, Richmond, Va.), utilizing the cholesterol oxidase reaction to produce hydrogen peroxide which is measured colorimetrically.
  • a standard curve from 0.5 to 10 ⁇ g cholesterol is to be prepared in the first 2 columns of the plate.
  • the serum samples (20-40 ⁇ l, depending on the expected lipid concentration) or known serum control samples are added to separate wells in duplicate. Water is added to bring the volume to 100 ⁇ l in each well. A 100 ⁇ l aliquot of color reagent is added to each well and the plates will be read at 500 nm after a 15 minute incubation at 37 degrees centigrade.
  • HDL cholesterol may be assayed using Sigma kit No. 352-3 (Sigma Chemical Co., St. Louis, Mo.) which utilizes dextran sulfate and Mg ions to selectively precipitate LDL and VLDL.
  • a volume of 150 ⁇ l of each serum sample is to be added to individual microfuge tubes, followed by 15 ⁇ l of HDL cholesterol reagent (Sigma 352-3). Samples are to be mixed and centrifuged at 5000 rpm for 5 minutes. A 50 ⁇ l aliquot of the supernatant is to be then mixed with 200 ⁇ l of saline and assayed using the same procedure as for total cholesterol measurement.
  • Triglycerides are to be measured using Sigma kit No. 337 in a 96 well plate format. This procedure will triglycerides with lipoprotein lipase. Standard solutions of glycerol (Sigma 339-11) ranging from 1 to 24 ⁇ g are to be used to generate the standard curve. Serum samples (20-40 ⁇ l, depending on the expected lipid concentration) are added to wells in duplicate. Water is added to bring the volume to 100 ⁇ l in each well and 100 ⁇ l of color reagent is also added to each well. After mixing and a 15 minute incubation, the plates will be read at 540 nm and the triglyceride values calculated from the standard curve. A replicate plate is also to be run using a blank enzyme reagent to correct for any endogenous glycerol in the serum samples.
  • Fecal samples may be collected to determine the fecal bile acid (FBA) concentration for each animal. Fecal collections may be made during the final 48 hours of the study, for two consecutive 24 hour periods between 9:00 am and 10:00 am each day, prior to dosing and feeding. The separate two day collections from each animal are to be weighed, combined and homogenized with distilled water in a processor (Cuisinart) to generate a homogeneous slurry. About 1.4 g of the homogenate is to be extracted in a final concentration of 50% tertiary butanol/distilled water (2:0.6) for 45 minutes in a 37° C. water bath and centrifuged for 13 minutes at 2000 ⁇ g.
  • FBA fecal bile acid
  • the concentration of bile acids may be determined using a 96-well enzymatic assay system (1,2). A 20 ⁇ l aliquot of the fecal extract is to be added to two sets each of triplicate wells in a 96-well assay plate. A standardized sodium taurocholate solution and a standardized fecal extract solution (previously made from pooled samples and characterized for its bile acid concentration) will also analyzed for assay quality control. Twenty-microliter aliquots of sodium taurocholate, serially diluted to generate a standard curve are similarly to be added to two sets of triplicate wells.
  • a 230 ⁇ l reaction mixture containing 1M hydrazine hydrate, 0.1 M pyrophosphate and 0.46 mg/ml NAD is to be added to each well.
  • a 50 ⁇ l aliquot of 3a-hydroxysteroid dehydrogenase enzyme (HSD; 0.8 units/ml) or assay buffer (0.1 M sodium pyrophosphate) are then added to one of the two sets of triplicates. All reagents may be obtained from Sigma Chemical Co., St. Louis, Mo. Following 60 minutes of incubation at room temperature, the optical density at 340 nm will be measured and the mean of each set of triplicate samples will be calculated.
  • the difference in optical density ⁇ HSD enzyme is to be used to determine the bile acid concentration (mM) of each sample based on the sodium taurocholate standard curve.
  • the bile acid concentration of the extract, the weight of the fecal homogenate (grams) and the body weight of the animal are to be used to calculate the corresponding FBA concentration in mmoles/kg/day for each animal.
  • the mean FBA concentration (mmoles/kg/day) of the vehicle group is to be subtracted from the FBA concentration of each treatment group to determine the increase (delta value) in FBA concentration as a result of the treatment.
  • a variety of compounds are shown to inhibit cholesterol absorption from the intestinal tract. These compounds lower serum cholesterol levels by reducing intestinal absorption of cholesterol from both exogenous sources (dietary cholesterol) and endogenous cholesterol (secreted by the gall bladder into the intestinal tract).
  • each hamster is administered first an intravenous dose of 2.5 ⁇ Ci of [1,2- 3 H]cholesterol suspended in Intralipid (20%) and then an oral dose of [4- 14 C]cholesterol in an oil of medium chain triglycerides (MCT).
  • MCT medium chain triglycerides
  • the i.v. dose is given by injecting a 0.4 ml volume of the Intralipid mixture into the distal femoral vein.
  • the oral dose is given by gavaging a 0.6 ml volume of the MCT oil mixture introduced intragastrically via a polyethylene tube.
  • Percent ⁇ ⁇ cholesterol ⁇ ⁇ absorbed % ⁇ ⁇ of ⁇ ⁇ oral ⁇ ⁇ dose ⁇ ⁇ per ⁇ ⁇ ml ⁇ ⁇ of 72 ⁇ ⁇ hour ⁇ ⁇ plasma ⁇ ⁇ sample % ⁇ ⁇ of ⁇ ⁇ i . v . ⁇ dose ⁇ ⁇ per ⁇ ⁇ ml ⁇ ⁇ of 72 ⁇ ⁇ hour ⁇ ⁇ plasma ⁇ ⁇ sample ⁇ 100
  • MTP Microsomal triglyceride transfer protein
  • MTP can be purified from liver tissue or cultured cells (e.g. HepG2 cells) using standard methods as described by Ohringer et al. (Acta Crystallogr. D52, 224-225 (1996), herein incorporated by reference).
  • the basis of this assay is to measure the transfer of labeled triglycerides from a population of donor vesicles to a population of acceptor vesicles in the presence of MTP.
  • Inhibitors of MTP can be evaluated by adding them to the mixture prior to the introduction of MTP.
  • Donor vesicles are prepared by sonication of an aqueous mixture of egg phospholipids, cardiolipin, 3 H-labeled phospholipid and 14 C-labeled triglycerides.
  • Acceptor vesicles are prepared by sonication of an aqueous mixture of egg phospholipids. The vesicle solutions are mixed together, with or without added MTP inhibitors, and MTP is added to initiate the transfer reaction.
  • the assay is terminated after 60 minutes by addition of 0.5 ml of DE-52 cellulose followed by centrifugation to pellet the donor molecules.
  • the amount of 3 H and 14 C in the pellet and in the original amount of label in the mixture are determined by liquid scintillation spectrometry.
  • the lipid transfer rate will be calculated based on first order kinetics using the expression:
  • Plasma lipids can be assayed using standard methods as reported by J. R. Schuh et al., J. Clin. Invest., 91, 1453-1458 (1993), herein incorporated by reference. Groups of male, New Zealand white rabbits are placed on a standard diet (100 g/day) supplemented with 0.3% cholesterol and 2% corn oil (Zeigler Bothers, Inc., Gardners, Pa.). Water is available ad lib. Groups of control and treated animals are killed after 1 and 3 months o treatment. Tissues are removed for characterization of atherosclerotic lesions. Blood samples are to be taken for determination of plasma lipid concentrations.
  • Plasma for lipid analysis is to be obtained by withdrawing blood from the ear vein into EDTA-containing tubes (Vacutainer; Becton Dickenson & Co., Rutherford, N.J.), followed by centrifugal separation of the cells.
  • Total cholesterol will be determined enzymatically, using the cholesterol oxidase reaction (C.A. Allain et al., Clin. Chem., 20, 470-475 (1974), herein incorporated by reference).
  • HDL cholesterol will also be measured enzymatically, after selective precipitation of LDL and VLDL by dextran sulfate with magnesium (G. R. Warnick et al., Clin. Chem., 28, 1379-1388 (1982), herein incorporated by reference).
  • Tissue cholesterol will be measured enzymatically as described, after extraction with a chloroform/methanol mixture (2:1) according to the method of Folch et al. ( J. Biol. Chem., 226, 497-509 (1957), herein incorporated by reference).
  • the abdominal aortas are rapidly excised, after injection of sodium pentobarbital, and placed in oxygenated Krebs-bicarbonate buffer. After removal of perivascular tissue, 3-mm ring segments are cut, placed in a 37° C. muscle bath containing Krebs-bicarbonate solution, and suspended between two stainless steel wires, one of which is attached to a force transducer (Grass Instrument Co., Quincy, Mass.). Force changes in response to angiotensin II added to the bath will be recorded on a chart recorder.

Abstract

The present invention provides combinations of cardiovascular therapeutic compounds for the prophylaxis or treatment of cardiovascular disease including hypercholesterolemia, atherosclerosis, or hyperlipidemia. Combinations disclosed include an ileal bile acid transport inhibitor combined with a bile acid sequestrant.

Description

    This application claims priority of U.S. provisional application Ser. No. 60/143,043 filed Jul. 7, 1999 and of U.S. provisional application Ser. No. 60/113,955 filed Dec. 23, 1998. BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0001]
  • The present invention relates to methods of treating cardiovascular diseases, and specifically relates to combinations of compounds, compositions, and methods for their use in medicine, particularly in the prophylaxis and treatment of hyperlipidemic conditions such as are associated with atherosclerosis, hypercholesterolemia, and other coronary artery disease in mammals. More particularly, the invention relates to ileal bile acid transporter (IBAT) inhibiting compounds. The invention also relates to bile acid sequestering compounds. [0002]
  • 2. Description of Related Art [0003]
  • It is well-settled that hyperlipidemic conditions associated with elevated concentrations of total cholesterol and low-density lipoprotein (LDL) cholesterol are major risk factors for coronary heart disease and particularly atherosclerosis. Since high levels of LDL cholesterol increase the risk of atherosclerosis, methods for lowering plasma LDL cholesterol would be therapeutically beneficial for the treatment of atherosclerosis and other diseases associated with accumulation of lipid in the blood vessels These diseases include, but are not limited to, coronary heart disease, peripheral vascular disease, and stroke. [0004]
  • Atherosclerosis underlies most coronary artery disease (CAD), a major cause of morbidity and mortality in modern society. High LDL cholesterol (above about 180 mg/dl) and low HDL cholesterol (below 35 mg/dl) have been shown to be important contributors to the development of atherosclerosis. Other diseases or risk factors, such as peripheral vascular disease, stroke, and hypercholesterolaemia are negatively affected by adverse HDL/LDL ratios. [0005]
  • Interfering with the recirculation of bile acids from the lumen of the intestinal tract is found to reduce the levels of serum cholesterol in a causal relationship. Epidemiological data has accumulated which indicates such reduction leads to an improvement in the disease state of atherosclerosis. Stedronsky, in “Interaction of bile acids and cholesterol with nonsystemic agents having hypocholesterolemic properties,” [0006] Biochimica et Biophysica Acta, 1210, 255-287 (1994) discusses the biochemistry, physiology and known active agents surrounding bile acids and cholesterol.
  • Transient pathophysiologic alterations are shown to be consistent with interruption of the enterohepatic circulation of bile acids in humans with an inherited lack of IBAT activity, as reported by Heubi, J. E., et al. See “Primary Bile Acid Malabsorption: Defective in Vitro Ileal Active Bile Acid Transport”, [0007] Gastroenterology, 83, 804-11 (1982).
  • In another approach to the reduction of recirculation of bile acids, the ileal bile acid transport system is a putative pharmaceutical target for the treatment of hypercholesterolemia based on an interruption of the enterohepatic circulation with specific transport inhibitors (Kramer, et al. “Intestinal Bile Acid Absorption” [0008] The Journal of Biological Chemistry, 268 (24), 18035-46 (1993)
  • In several individual patent applications, Hoechst Aktiengesellschaft discloses polymers of various naturally occurring constituents of the enterohepatic circulation system and their derivatives, including bile acid, which inhibit the physiological bile acid transport with the goal of reducing the LDL cholesterol level sufficiently to be effective as pharmaceuticals and, in particular for use as hypocholesterolemic agents The individual Hoechst patent applications which disclose such bile acid transport inhibiting compounds are each separately listed below. [0009]
  • R1. Canadian Patent Application No. 2,025,294. [0010]
  • R2. Canadian Patent Application No. 2,078,588. [0011]
  • R3. Canadian Patent Application No. 2,085,782. [0012]
  • R4. Canadian Patent Application No. 2,085,830. [0013]
  • R5. EP Application No. 0 379 161. [0014]
  • R6. EP Application No. 0 549 967. [0015]
  • R7. EP Application No. 0 559 064. [0016]
  • R8. EP Application No. 0 563 731. [0017]
  • Selected benzothiepines are disclosed in world patent application number WO 93/321146 for numerous uses including fatty acid metabolism and coronary vascular diseases. [0018]
  • Other selected benzothiepines are known for use as hypolipaemic and hypocholesterolaemic agents, especially for the treatment or prevention of atherosclerosis as disclosed in application No. EP 508425. A French patent application, FR 2661676 discloses additional benzothiepines for use as hypolipaemic and hypocholesterolaemic agents. Furthermore, patent application no. WO 92/18462 lists other benzothiepines for use as hypolipaemic and hypocholesterolaemic agents. U.S. Pat. No. 5,994,391 (Lee et al.) Each of the benzothiepine hypolipaemic and hypocholesterolaemic agents described in these individual patent applications is limited by an amide bonded to the carbon adjacent the phenyl ring of the fused bicyclobenzothiepine ring. [0019]
  • Further benzothiepines useful for the treatment of hypercholesterolemia and hyperlipidemia are disclosed in patent application no. PCT/US95/10863. More benzothiepines useful for the prophylaxis and treatment of hypercholesterolemia and hyperlipidemia as well as pharmaceutical compositions of such benzothiepines are described in PCT/US97/04076.. Still further benzothiepines and compositions thereof useful for the prophylaxis and treatment of hypercholesterolemia and hyperlipidemia are described in U.S. application Ser. No. 08/816,065. [0020]
  • In vitro bile acid transport inhibition is disclosed to correlate with hypolipidemic activity in The Wellcome Foundation Limited disclosure of the Patent Application No. WO 93/16055 for “Hypolipidemic Benzothiazepine Compounds.” That publication describes a number of hypolipidemic benzothiazepine compounds. Additional hypolipidemic benzothiazepine compounds (particularly 2,3,4,5-tetrahydrobenzo-1-thi-4-azepine compounds) are disclosed in Patent Application No. WO 96/05188. A particularly useful benzothiazepine disclosed in WO 96/05188 is the compound of formula B-2. Further hypolipidemic benzothiazepine compounds are described in Patent Application No. WO 96/16051. [0021]
    Figure US20040029845A1-20040212-C00001
  • (3R, 5R)-3-butyl-3-ethyl-2,3,4,5-tetrahydro-7,8-dimethoxy-5-phenyl-1-4-benzothiazepine 1,1-dioxide
  • Other benzothiazepine compounds useful for control of cholesterol are described in PCT Patent Application No. WO 99/35135. Included in that description is the compound of formula B-7. [0022]
    Figure US20040029845A1-20040212-C00002
  • Further IBAT inhibitor compounds include a class of naphthalene compounds, described by T. Ichihashi et al. in [0023] J. Pharmacol. Exp. Ther., 284(1), 43-50 (1998). In this class, S-8921 (methyl 1-(3,4-dimethoxyphenyl)-3-(3-ethylvaleryl)-4-hydroxy-6,7,8-trimethoxy-2-naphthoate) is particularly useful. The structure of S-8921 is shown in formula B-20. Further naphthalene compounds or lignin derivatives useful for the treatment or prophylaxis of hyperlipidemia or atherosclerosis are described in PCT Patent Application No. WO 94/24087.
    Figure US20040029845A1-20040212-C00003
  • A class of materials which operates by another mechanism to lower LDL cholesterol comprises bile acid sequestering agents (“bile acid sequestrants” or “bile acid sequestering compounds”). Such agents are typically anion exchange polymers administered orally to a patient. As the agent passes through the gut, anions of bile acids are sequestered by the agent and excreted. Such sequestering has been speculated to prevent reabsorption by the gut, for example the ileum, causing the body to increase conversion of cholesterol into bile acids, and thereby decreasing serum cholesterol levels. One such bile acid sequestering agent is cholestyramine, a Styrene-divinylbenzene copolymer containing quaternary ammonium cationic groups capable of binding bile acids. It is believed that cholestyramine binds the bile acids in the intestinal tract, thereby interfering with their normal enterohepatic circulation. This effect is described by Reihnér et al., in “Regulation of hepatic cholesterol metabolism in humans: stimulatory effects of cholestyramine on HMG-CoA reductase activity and low density lipoprotein receptor expression in gallstone patients”, Journal of Lipid Research, 31, 2219-2226 (1990) Further description of this effect is found in Suckling et al. in “Cholesterol Lowering and bile acid excretion in the hamster with cholestyramine treatment”, [0024] Atherosclerosis, 89, 183-90 (1991). This results n an increase in liver bile acid synthesis because of the liver using cholesterol as well as an upregulation of the liver LDL receptors which enhances clearance of cholesterol and decreases serum LDL cholesterol levels.
  • Another bile acid sequestering agent is colestipol, a copolymer of diethylenetriamine and 1-chloro-2,3-epoxypropane. Colestipol is described in U.S. Pat. No. 3,692,895. A frequent side effect of colestipol and of cholestyramine is gastric distress. [0025]
  • Additional bile acid sequestering agents are described in U.S. Pat. No. 5,703,188, assigned to Geltex Pharmaceuticals, Inc. For example, one such bile acid sequestering agent is 3-methacrylamidopropyltrimethyl-ammonium chloride copolymerized with ethylene glycol dimethacrylate to yield a copolymer. [0026]
  • Further bile acid sequestering agents are described in PCT Patent Application No. WO 98/57652, assigned to Geltex Pharmaceuticals, Inc. The WO 98/57652 application describes polyallylamine polymers. [0027]
  • An example of a bile acid sequestering agent is CholestaGel, CAS Registry No. 182815-44-7. CholestaGel is N,N,N-trimethyl-6-(2-propenylamino)-1-hexanaminium chloride polymer with (chloromethyl)oxirane, 2-propen-1-amine and N-2-propenyl-1-decanamine hydrochloride. [0028]
  • Yet another class materials proposed as bile acid sequestering agents comprises particles comprising amphiphilic copolymers having a crosslinked shell domain and an interior core domain (Patent application no. PCT/US 97/11610). Structures and preparation of such crosslinked amphiphilic copolymers are described in PCT/US97/11345. Such particles have been given the common name of “knedels” (K. B. Thurmond et. al., J. Am. Chem. Soc., 118 (30), 7239-40 (1996)) [0029]
  • Some combination therapies for the treatment of cardiovascular disease have been described in the literature. Combinations of IBAT inhibitors with HMG CoA reductase inhibitors useful for the treatment of cardiovascular disease are disclosed in U.S. patent application Ser. No. 09/037,308. [0030]
  • A combination therapy of fluvastatin and niceritrol is described by J. Sasaki et al. (Id.). Those researchers conclude that the combination of fluvastatin with niceritrol “at a dose of 750 mg/day dose does not appear to augment or attenuate beneficial effects of fluvastatin.”[0031]
  • L. Cashin-Hemphill et al. (J. Am. Med. Assoc., 264 (23), 3013-17 (1990)) describe beneficial effects of a combination therapy of colestipol and niacin on coronary atherosclerosis. The described effects include nonprogression and regression in native coronary artery lesions. [0032]
  • A combination therapy of acipimox and simvastatin shows beneficial HDL effects in patients having high triglyceride levels (N. Hoogerbrugge et al., J. Internal Med., 241, 151-55 (1997)). [0033]
  • Sitostanol ester margarine and pravastatin combination therapy is described by H. Gylling et al. (J. Lipid Res., 37, 1776-85 (1996)). That therapy is reported to simultaneously inhibit cholesterol absorption and lower LDL cholesterol significantly in non-insulin-dependent diabetic men. [0034]
  • Brown et al. (New Eng. J. Med., 323 (19) , 1289-1339 (1990)) describe a combination therapy of lovastatin and colestipol which reduces atherosclerotic lesion progression and increase lesion regression relative to lovastatin alone. [0035]
  • Buch et al. (PCT Patent Application No. WO 9911263) describe a combination therapy comprising amlodipine and a statin compound for treating subjects suffering from angina pectoris, atherosclerosis, combined hypertension and hyperlipidemia, and to treat symptoms of cardiac arrest. Buch et al. describe in PCT Patent Application No. WO 9911259 a combination therapy comprising amlodipine and atorvastatin. [0036]
  • Scott et al. (PCT Patent Application No. WO 9911260) describe a combination therapy comprising atorvastatin and an antihypertensive agent. [0037]
  • Dettmar and Gibson (UK Patent Application No. GB 2329334 A) claim a therapeutic composition useful for reducing plasma low density lipoprotein and cholesterol levels, wherein the composition comprises an HMG CoA reductase inhibitor and a bile complexing agent. [0038]
  • The above references show continuing need to find safe, effective agents for the prophylaxis or treatment of cardiovascular diseases. [0039]
  • SUMMARY OF THE INVENTION
  • To address the continuing need to find safe and effective agents for the prophylaxis and treatment of cardiovascular diseases, combination therapies of cardiovascular drugs are now reported. [0040]
  • Among its several embodiments, the present invention provides a combination therapy comprising the use of a first amount of an IBAT inhibitor and a second amount of another cardiovascular therapeutic useful in the prophylaxis or treatment of hyperlipidemia, atherosclerosis, or hypercholesterolemia, wherein said first and second amounts together comprise an anti-hyperlipidemic condition effective amount, an anti-atherosclerotic condition effective amount, or an anti-hypercholesterolemic condition effective amount of the compounds. For example one of the many embodiments of the present invention is a combination therapy comprising therapeutic dosages of an IBAT inhibitor and a bile acid sequestrant. A preferred embodiment of the present invention is a combination therapy comprising therapeutic dosages of a benzothiepine IBAT inhibitor and a bile acid sequestrant. [0041]
  • A further embodiment of the instant invention comprises the use of any of the cardiovascular combination therapies described herein for the prophylaxis or treatment of hypercholesterolemia, atherosclerosis, or hyperlipidemia. Therefore, in one embodiment the present invention provides a method for the prophylaxis or treatment of a hyperlipidemic condition comprising administering to a patient in need thereof a combination in unit dosage form wherein the combination comprises a first amount of an ileal bile acid transport inhibiting compound and a second amount of a bile acid sequestering compound wherein the first amount and the second amount together comprise an anti-hyperlipidemic condition effective amount of the compounds. [0042]
  • In another embodiment, the present invention provides a method for the prophylaxis or treatment of an atherosclerotic condition comprising administering to a patient in need thereof a combination in unit dosage form wherein the combination comprises a first amount of an ileal bile acid transport inhibiting compound and a second amount of a bile acid sequestering compound wherein the first amount and the second amount together comprise an anti-atherosclerotic condition effective amount of the compounds. [0043]
  • In still another embodiment, the present invention provides method for the prophylaxis or treatment of hypercholesterolemia comprising administering to a patient in need thereof a combination in unit dosage form wherein the combination comprises a first amount of an ileal bile acid transport inhibiting compound and a second amount of a bile acid sequestering compound wherein the first amount and the second amount together comprise an anti-hypercholesterolemic condition effective amount of the compounds. [0044]
  • Further scope of the applicability of the present invention will become apparent from the detailed description provided below. However, it should be understood that the following detailed description and examples, while indicating preferred embodiments of the invention, are given by way of illustration only since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description. [0045]
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • The following detailed description is provided to aid those skilled in the art in practicing the present invention. Even so, this detailed description should not be construed to unduly limit the present invention as modifications and variations in the embodiments discussed herein can be made by those of ordinary skill in the art without departing from the spirit or scope of the present inventive discovery. [0046]
  • The contents of each of the references cited herein, including the contents of the references cited within these primary references, are herein incorporated by reference in their entirety. [0047]
  • a. Definitions [0048]
  • The following definitions are provided in order to aid the reader in understanding the detailed description of the present invention: [0049]
  • “Ileal bile acid transporter” or “IBAT” is synonymous with apical sodium co-dependent bile acid transporter, or ASBT. [0050]
  • “Benzothiepine IBAT inhibitor” means an ileal bile acid transport inhibitor which comprises a therapeutic compound comprising a 2,3,4,5-tetrahydro-1-benzothiepine 1,1-dioxide structure. [0051]
  • “Combination therapy” means the administration of two or more therapeutic agents to treat a hyperlipidemic condition, for example atherosclerosis and hypercholesterolemia. Such administration encompasses co-administration of these therapeutic agents in a substantially simultaneous manner, such as in a single dosage form having a fixed ratio of active ingredients or in multiple, separate dosage forms for each inhibitor agent. In addition, such administration also encompasses use of each type of therapeutic agent in a sequential manner. In either case, the treatment regimen will provide beneficial effects of the drug combination in treating the hyperlipidemic condition. [0052]
  • The phrase “therapeutically effective” is intended to qualify the combined amount of inhibitors in the combination therapy. This combined amount will achieve the goal of reducing or eliminating the hyperlipidemic condition. [0053]
  • “Therapeutic compound” means a compound useful in the prophylaxis or treatment of a hyperlipidemic condition, including atherosclerosis and hypercholesterolemia. [0054]
  • b. Combinations [0055]
  • The combinations of the present invention will have a number of uses. For example, through dosage adjustment and medical monitoring, the individual dosages of the therapeutic compounds used in the combinations of the present invention will be lower than are typical for dosages of the therapeutic compounds when used in monotherapy. The dosage lowering will provide advantages including reduction of side effects of the individual therapeutic compounds when compared to the monotherapy. In addition, fewer side effects of the combination therapy compared with the monotherapies will lead to greater patient compliance with therapy regimens. [0056]
  • Another use of the present invention will be in combinations having complementary effects or complementary modes of action. For example, IBAT Inhibitors decrease reabsorption of bile acids in the ileum by inhibiting bile acid transporters in the wall of the ileum. In contrast, bile acid sequestrants act in the intestinal tract to sequester bile acids and, sometimes, cholesterol. A therapeutic combination of an IBAT inhibitor and a bile acid sequestrant will, when dosages are optimally adjusted, further decrease overall reabsorption of bile acids and cholesterol in the digestive tract to a greater extent than either component of the combination will do under monotherapeutic conditions. [0057]
  • Compounds useful in the present invention encompass a wide range of therapeutic compounds. Some IBAT inhibitors useful in the present invention are disclosed in patent application no. PCT/US95/10863, herein incorporated by reference. More IBAT inhibitors are described in PCT/US97/04076, herein incorporated by reference. Still further IBAT inhibitors useful in the present invention are described in U.S. application Ser. No. 08/816,065, herein incorporated by reference. More IBAT inhibitor compounds useful in the present invention are described in WO 98/40375, herein incorporated by reference. Additional IBAT inhibitor compounds useful in the present invention are described [0058]
  • U.S. Pat. No. 5,994,391, herein incorporated by reference. IBAT inhibitors of particular interest in the present invention include those shown in Table 1, as well as the diastereomers, enantiomers, racemates, salts, and tautomers of the IBAT inhibitors of Table 1. [0059]
    TABLE 1
    Compound
    Number Structure
    B-1 
    Figure US20040029845A1-20040212-C00004
    B-2 
    Figure US20040029845A1-20040212-C00005
    B-3 
    Figure US20040029845A1-20040212-C00006
    B-4 
    Figure US20040029845A1-20040212-C00007
    B-5 
    Figure US20040029845A1-20040212-C00008
    B-6 
    Figure US20040029845A1-20040212-C00009
    B-7 
    Figure US20040029845A1-20040212-C00010
    B-8 
    Figure US20040029845A1-20040212-C00011
    B-9 
    Figure US20040029845A1-20040212-C00012
    B-10
    Figure US20040029845A1-20040212-C00013
    B-11
    Figure US20040029845A1-20040212-C00014
    B-12
    Figure US20040029845A1-20040212-C00015
    B-13
    Figure US20040029845A1-20040212-C00016
    Figure US20040029845A1-20040212-C00017
    B-14
    Figure US20040029845A1-20040212-C00018
    B-15
    Figure US20040029845A1-20040212-C00019
    B-16
    Figure US20040029845A1-20040212-C00020
    B-17
    Figure US20040029845A1-20040212-C00021
    B-18
    Figure US20040029845A1-20040212-C00022
    B-19
    Figure US20040029845A1-20040212-C00023
    B-20
    Figure US20040029845A1-20040212-C00024
    B-21
    Figure US20040029845A1-20040212-C00025
    B-22
    Figure US20040029845A1-20040212-C00026
    B-23
    Figure US20040029845A1-20040212-C00027
    B-24
    Figure US20040029845A1-20040212-C00028
    B-25
    Figure US20040029845A1-20040212-C00029
    B-26
    Figure US20040029845A1-20040212-C00030
    B-27
    Figure US20040029845A1-20040212-C00031
    B-28
    Figure US20040029845A1-20040212-C00032
    B-29
    Figure US20040029845A1-20040212-C00033
    B-30
    Figure US20040029845A1-20040212-C00034
    B-31
    Figure US20040029845A1-20040212-C00035
    B-32
    Figure US20040029845A1-20040212-C00036
    B-33
    Figure US20040029845A1-20040212-C00037
    B-34
    Figure US20040029845A1-20040212-C00038
    B-35
    Figure US20040029845A1-20040212-C00039
    B-36
    Figure US20040029845A1-20040212-C00040
    B-37
    Figure US20040029845A1-20040212-C00041
    B-38
    Figure US20040029845A1-20040212-C00042
    B-39
    Figure US20040029845A1-20040212-C00043
  • Bile acid sequestrants useful in the combinations and methods of the present invention comprise a wide variety of structures and functionalities. Preferred bile acid sequestrants for the present invention are described in Table 2. The therapeutic compounds of Table 2 can be used in the present invention in a variety of forms, including acid form, salt form, racemates, enantiomers, zwitterions, and tautomers. The individual patent documents referenced in Table 2 are each herein incorporated by reference. Additional bile acid sequestrants useful herein are particles comprising amphiphilic copolymers having a crosslinked shell domain and an interior core domain (knedels, Patent application No. PCT/US 97/11610, herein incorporated by reference) Knedels of particular interest in the present invention comprise polystyrene-b-poly(acrylic acid) (PS-b-PAA) crosslinked with one or more polyamine. Especially preferred knedels comprise PS-b-PAA crosslinked with 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide methiodide and triethylenetetramine (“knedel A”) or 1,7-diaza-4,10-diazonium-4,4,10,10-tetramethylundecane diiodide (“knedel B”). Another useful bile acid sequestering agent is DMP-504, described by Gillies et al., Drug Dev. Res. (1997), 41(2), 65-75. Yet another useful bile acid sequestering agent is MCI-196, described by Mitsubishi Chemical Corp. [0060]
    TABLE 2
    Com- Patent
    pound CAS Registry Document
    Number Common Name Number Reference
    G-35 cholestyramine 11041-12-6
    G-46 colestipol 50925-79-6 U.S. Pat. No. 3,692,895
    S-1 knedel A PCT/US97/11345.
    S-2 knedel B PCT/US97/11345
    S-3 3-methacrylamindo- U.S. Pat. No. 5,703,188
    propyltrimethyl-
    ammonium chloride
    copolymerized with
    ethylene glycol
    dimethacrylate
    S-4 CholestaGel 152751-57-0 WO 98/57652
    S-5 OmegaGel WO 98/57652
    S-6 MCI-196 95522-45-5 JP 04013627
    JP 02124819
    JP 59138228
    JP 59155421
    G-54 DMP-504 196823-66-2
  • The compounds (for example, ileal bile acid transport inhibiting compounds or bile acid sequestering compounds) useful in the present invention can have no asymmetric carbon atoms, or, alternatively, the useful compounds can have one or more asymmetric carbon atoms. When the useful compounds have one or more asymmetric carbon atoms, they therefore include racemates and stereoisomers, such as diastereomers and enantiomers, in both pure form and in admixture. Such stereoisomers can be prepared using conventional techniques, either by reacting enantiomeric starting materials, or by malic, methanesulfonic, succinic, toluenesulfonic, tartaric, and trifluoroacetic acids. The chloride salt is Particularly preferred for medical purposes. Suitable pharmaceutically acceptable base salts include ammonium salts, alkali metal salts such as sodium and potassium salts, and alkaline earth salts such as magnesium and calcium salts. [0061]
  • The anions useful in the present invention are, of course, also required to be pharmaceutically acceptable and are also selected from the above list. [0062]
  • The compounds useful in the present invention can be presented with an acceptable carrier in the form of a pharmaceutical composition. The carrier must, of course, be acceptable in the sense of being compatible with the other ingredients of the composition and must not be deleterious to the recipient. The carrier can be a solid or a liquid, or both, and is preferably formulated with the compound as a unit-dose composition, for example, a tablet, which can contain from 0.05% to 95% by weight of the active compound. other pharmacologically active substances can also be present, including other compounds of the present invention. The pharmaceutical compositions of the invention can be prepared by any of the well known techniques of pharmacy, consisting essentially of admixing the components. [0063]
  • Optionally, the combination of the present invention can comprise a composition comprising an ileal bile acid transport inhibiting compound and a bile acid sequestering compound. In such a composition, the ileal bile acid transport inhibiting compound and the bile acid sequestering compound can be present in a single dosage form, for example a pill, a capsule, or a liquid which contains both of the compounds. [0064]
  • These compounds can be administered by any conventional means available for use in conjunction with malic, methanesulfonic, succinic, toluenesulfonic, tartaric, and trifluoroacetic acids. The chloride salt is particularly preferred for medical purposes. Suitable pharmaceutically acceptable base salts include ammonium salts, alkali metal salts such as sodium and potassium salts, and alkaline earth salts such as magnesium and calcium salts. [0065]
  • The anions useful in the present invention are, of course, also required to be pharmaceutically acceptable and are also selected from the above list. [0066]
  • The compounds useful in the present invention can be presented with an acceptable carrier in the form of a pharmaceutical composition. The carrier must, of course, be acceptable in the sense of being compatible with the other ingredients of the composition and must not be deleterious to the recipient. The carrier can be a solid or a liquid, or both, and is preferably formulated with the compound as a unit-dose composition, for example, a tablet, which can contain from 0.05% to 95% by weight of the active compound. Other pharmacologically active substances can also be present, including other compounds of the present invention. The pharmaceutical compositions of the invention can be prepared by any of the well known techniques of pharmacy, consisting essentially of admixing the components. [0067]
  • Optionally, the combination of the present invention can comprise a composition comprising an ileal bile acid transport inhibiting compound and a bile acid sequestering compound. In such a composition, the ileal bile acid transport inhibiting compound and the bile acid sequestering compound can be present in a single dosage form, for example a pill, a capsule, or a liquid which contains both of the compounds. [0068]
  • These compounds can be administered by any conventional means available for use in conjunction with pharmaceuticals, either as individual therapeutic compounds or as a combination of therapeutic compounds [0069]
  • The amount of compound which is required to achieve the desired biological effect will, of course, depend or. a number of factors such as the specific compound chosen, the use for which it is intended, the mode of administration, and the clinical condition of the recipient. [0070]
  • In general, a total daily dose of an IBAT inhibitor can be in the range of from about 0.01 to about 1000 mg/day, preferably from about 0.1 mg to about 50 mg/day, more preferably from about 1 to about 10 mg/day. [0071]
  • For a bile acid sequestrant, a total daily dose can be in the range of from about 250 to about 30,000 mg/day, preferably from about 500 to about 15,000 mg/day, and more preferably about 500 to about 5,000 mg/day in a single or a divided dose. [0072]
  • The daily doses described in the preceding paragraphs for the various therapeutic compounds can be administered to the patient in a single dose, or in proportionate multiple subdoses. Subdoses can be administered 2 to 6 times per day. Doses can be in sustained release form effective to obtain desired results. [0073]
  • In the case of pharmaceutically acceptable salts, the weights indicated above refer to the weight of the acid equivalent or the base equivalent of the therapeutic compound derived from the salt. [0074]
  • Oral delivery of the combinations of the present invention can include formulations, as are well known in the art, to provide prolonged or sustained delivery of the drug to the gastrointestinal tract by any number of mechanisms. These include, but are not limited to, pH sensitive release from the dosage form based on the changing pH of the small intestine, slow erosion of a tablet or capsule, retention in the stomach based on the physical properties of the formulation, bioadhesion of the dosage form to the mucosal lining of the intestinal tract, or enzymatic release of the active drug from the dosage form. For some of the therapeutic compounds useful in the present invention (e.g., an IBAT inhibitor or a CETP inhibitor) , the intended effect is to extend the time period over which the active drug molecule is delivered to the site of action (e.g., the ileum) by manipulation of the dosage form. Thus, enteric-coated and enteric-coated controlled release formulations are within the scope of the present invention. Suitable enteric coatings include cellulose acetate phthalate, polyvinylacetate phthalate, hydroxypropylmethylcellulose phthalate and anionic polymers of methacrylic acid and methacrylic acid methyl ester. [0075]
  • The combinations of the present invention can be delivered orally either in a solid, in a semi-solid, or in a liquid form. When in a liquid or in a semi-solid form, the combinations of the present invention can, for example, be in the form of a liquid, syrup, or contained in a gel capsule (e.g., a gel cap). In one embodiment, when an IBAT inhibitor is used in a combination of the present invention, the IBAT inhibitor can be provided in the form of a liquid, syrup, or contained in a gel capsule. In another embodiment, when a bile acid sequestrant is used in a combination of the present invention, the bile acid sequestrant can be provided in the form of a liquid, a solid dispersed in a liquid, or in a capsule. [0076]
  • Pharmaceutical compositions according to the present invention include those suitable for oral, rectal, topical, buccal (e.g., sublingual), and parenteral (e.g., subcutaneous, intramuscular, intradermal, or intravenous) administration, although the most suitable route in any given case will depend on the nature and severity of the condition being treated and on the nature of the particular compound which is being used. In most cases, the preferred route of administration is oral. In most cases, a bile acid sequestrant will be administered orally. [0077]
  • Pharmaceutical compositions suitable for oral administration can be presented in discrete units, such as capsules, cachets, lozenges, or tablets, each containing a predetermined amount of at least one therapeutic compound useful in the present invention; as a powder or granules; as a solution or a suspension in an aqueous or non-aqueous liquid; or as an oil-in-water or water-in-oil emulsion. As indicated, such compositions can be prepared by any suitable method of pharmacy which includes the step of bringing into association the active compound(s) and the carrier (which can constitute one or more accessory ingredients) . In general, the compositions are prepared by uniformly and intimately admixing the active compound with a liquid or finely divided solid carrier, or both, and then, if necessary, shaping the product. For example, a tablet can be prepared by compressing or molding a powder or granules of the compound, optionally with one or more assessory ingredients. Compressed tablets can be prepared by compressing, in a suitable machine, the compound in a free-flowing form, such as a powder or granules optionally mixed with a binder, lubricant, inert diluent and/or surface active/dispersing agent(s). Molded tablets can be made by molding, in a suitable machine, the powdered compound moistened with an inert liquid diluent. [0078]
  • Pharmaceutical compositions suitable for buccal (sub-lingual) administration include lozenges comprising a compound of the present invention in a flavored base, usually sucrose, and acacia or tragacanth, and pastilles comprising the compound in an inert base such as gelatin and glycerin or sucrose and acacia. [0079]
  • Pharmaceutical compositions suitable for parenteral administration conveniently comprise sterile aqueous preparations of a compound of the present invention. These preparations are preferably administered intravenously, although administration can also be effected by means of subcutaneous, intramuscular, or intradermal injection. Such preparations can conveniently be prepared by admixing the compound with water and rendering the resulting solution sterile and isotonic with the blood. Injectable compositions according to the invention will generally contain from 0.1 to 5% w/w of a compound disclosed hereon. [0080]
  • Pharmaceutical compositions suitable for rectal administration are preferably presented as unit-dose suppositories. These can be prepared by admixing a compound of the present invention with one or more conventional solid carriers, for example, cocoa butter, and then shaping the resulting mixture. [0081]
  • Pharmaceutical compositions suitable for topical application to the skin preferably take the form of an ointment, cream, lotion, paste, gel, spray, aerosol, or oil. Carriers which can be used include petroleum jelly (e.g., Vaseline) , lanolin, polyethylene glycols, alcohols, and combinations of two or more thereof. The active compound is generally present at a concentration of from 0.1 to 50% w/w of the composition, for example, from 0.5 to 2%. [0082]
  • Transdermal administration is also possible. Pharmaceutical compositions suitable for transdermal administration can be presented as discrete patches adapted to remain in intimate contact with the epidermis of the recipient for a prolonged period of time. Such patches suitably contain a compound of the present invention in an optionally buffered, aqueous solution, dissolved and/or dispersed in an adhesive, or dispersed in a polymer. A suitable concentration of the active Compound is about 1% to 35%, preferably about 3% to 15%. As one particular possibility, the compound can be delivered from the patch by electrotransport or iontophoresis, for example, as described in [0083] Pharmaceutical Research, 3 (6), 318 (1986).
  • In any case, the amount of active ingredient that can be combined with carrier materials to produce a Single dosage form to be administered will vary depending upon the host treated and the particular mode of administration. [0084]
  • The solid dosage forms for oral administration including capsules, tablets, pills, powders, gel caps, and granules noted above comprise one or more compounds useful in the present invention admixed with at least one inert diluent such as sucrose, lactose, or starch. Such dosage forms may also comprise, as in normal practice, additional substances other than inert diluents, e.g., lubricating agents such as magnesium stearate or solubilizing agents such as cyclodextrins. In the case of capsules, tablets, powders, granules, gel caps, and pills, the dosage forms may also comprise buffering agents. Tablets and pills can additionally be prepared with enteric coatings. [0085]
  • Liquid dosage forms for oral administration can include pharmaceutically acceptable emulsions, solutions, suspensions, syrups, and elixirs containing inert diluents commonly used in the art, such as water. Such compositions may also comprise adjuvants, such as wetting agents, emulsifying and suspending agents, and sweetening, flavoring, and perfuming agents. [0086]
  • Injectable preparations, for example, sterile injectable aqueous or oleaginous suspensions may be formulated according to the known art using suitable dispersing or setting agents and suspending agents. The sterile injectable preparation may also be a sterile injectable solution or suspension in a nontoxic pareriterally acceptable diluent or solvent, for example, as a solution in 1,3-butanediol. Among the acceptable vehicles and solvents that may be employed are water, Ringer's solution, and isotonic sodium chloride solution. In addition, sterile, fixed oils are conventionally employed as a solvent or suspending medium. For this purpose any bland fixed oil may be employed including synthetic mono- or diglycerides. In addition, fatty acids such as oleic acid find use in the preparation of injectables. [0087]
  • Pharmaceutically acceptable carriers encompass all the foregoing and the like. [0088]
  • In combination therapy, administration of two or more of the therapeutic agents useful in the present invention may take place sequentially in separate formulations, or may be accomplished by simultaneous administration in a single formulation or separate formulations. Administration may be accomplished by oral route, or by intravenous, intramuscular, or subcutaneous injections. The formulation may be in the form of a bolus, or in the form of aqueous or non-aqueous isotonic sterile injection solutions or suspensions. These solutions and suspensions may be prepared from sterile powders or granules having one or more pharmaceutically-acceptable carriers or diluents, or a binder such as gelatin or hydroxypropylmethyl cellulose, together with one or more of a lubricant, preservative, surface active or dispersing agent. [0089]
  • For oral administration, the pharmaceutical composition may be in the form of, for example, a tablet, capsule, suspension, or liquid. Capsules, tablets, etc., can be prepared by conventional methods well known in the art. The pharmaceutical composition is Preferably made in the form of a dosage unit containing a particular amount of the active ingredient or ingredients. Examples of dosage units are tablets or capsules. These may with advantage contain one or more therapeutic compound in an amount described above. For example, in the case of an IBAT inhibitor, the dose range may be from about 0.01 mg/day to about 500 mg/day or any other dose, dependent upon the specific inhibitor, as is known in the art. In the case of an bile acid sequestrant the dose range can be from about 1,000 mg/day to about 30,000 mg/day or any other dose, dependent upon the specific bile acid sequestrant, as is known in the art. [0090]
  • The active ingredients may also be administered by injection as a composition wherein, for example, saline, dextrose, or water may be used as a suitable carrier. A suitable daily dose of each active therapeutic compound is one that achieves the same blood serum level as produced by oral administration as described above. [0091]
  • The therapeutic compounds may further be administered by any combination of oral/oral, oral/parenteral, or parenteral/parenteral route. [0092]
  • Pharmaceutical compositions for use in the treatment methods of the present invention may be administered in oral form or by intravenous administration. Oral administration of the combination therapy is preferred. Dosing for oral administration may be with a regimen calling for single daily dose, or for a single dose every other day, or for multiple, spaced doses throughout the day. The therapeutic compounds which make up the combination therapy may be administered simultaneously, either in a combined dosage form or in separate dosage forms intended for substantially simultaneous oral administration. The therapeutic compounds which make up the combination therapy may also be administered sequentially, with either therapeutic compound being administered by a regimen calling for two-step ingestion. Thus, a regimen may call for sequential administration of the therapeutic compounds with spaced-apart ingestion of the separate, active agents. The time period between the multiple ingestion steps may range from a few minutes to several hours, depending upon the properties of each therapeutic compound such as potency, solubility, bioavailability, plasma half-life and kinetic profile of the therapeutic compound, as well as depending upon the effect of food ingestion and the age and condition of the patient. Circadian variation of the target molecule concentration may also determine the optimal dose interval. The therapeutic compounds of the combined therapy whether administered simultaneously, substantially simultaneously, or sequentially, may involve a regimen calling for administration of one therapeutic compound by oral route and another therapeutic compound by intravenous route. Whether the therapeutic compounds of the combined therapy are administered by oral or intravenous route, separately or together, each such therapeutic compound will be contained in a suitable pharmaceutical formulation of pharmaceutically-acceptable excipients, diluents or other formulations components. Examples of suitable pharmaceutically-acceptable formulations containing the therapeutic compounds for oral administration are given above. [0093]
  • Treatment Regimen
  • The dosage regimen to prevent, give relief from, or ameliorate a disease condition having hyperlipemia as an element of the disease, e.g., atherosclerosis, or to protect against or treat further high cholesterol plasma or blood levels with the compounds and/or compositions of the present invention is selected in accordance with a variety of factors. These include the type, age, weight, sex, diet, and medical condition of the patient, the severity of the disease, the route of administration, pharmacological considerations such as the activity, efficacy, pharmacokinetics and toxicology profiles of the particular compound employed, whether a drug delivery system is utilized, and whether the compound is administered as part of a drug combination. Thus, the dosage regimen actually employed may vary widely and therefore deviate from the preferred dosage regimen set forth above. [0094]
  • Initial treatment of a patient suffering from a hyperlipidemic condition can begin with the dosages indicated above. Treatment should generally be continued as necessary over a period of several weeks to several months or years until the hyperlipidemic disease condition has been controlled or eliminated. Patients undergoing treatment with the compounds or compositions disclosed herein can be routinely monitored by, for example, measuring serum LDL and total cholesterol levels by any of the methods well known in the art, to determine the effectiveness of the combination therapy. Continuous analysis of such data permits modification of the treatment regimen during therapy so that optimal effective amounts of each type of therapeutic compound are administered at any point in time, and so that the duration of treatment can be determined as well. In this way, the treatment regimen/dosing schedule can be rationally modified over the course of therapy so that the lowest amount of the therapeutic compounds which together exhibit satisfactory effectiveness is administered, and so that administration is continued only so long as is necessary to successfully treat the hyperlipidemic condition. [0095]
  • A potential advantage of the combination therapy disclosed herein may be reduced dosage amount of any individual therapeutic compound, or all therapeutic compounds, effective in treating hyperlipidemic conditions such as atherosclerosis and hypercholesterolemia. The dosage lowering will provide advantages including reduction of side effects of the individual therapeutic compounds when compared to the monotherapy [0096]
  • One of the several embodiments of the present invention comprises a combination therapy comprising the use of a first amount of an IBAT inhibitor and a second amount of another cardiovascular therapeutic useful in the prophylaxis or treatment of hyperlipidemia or atherosclerosis, wherein said first and second amounts together comprise an anti-hyperlipidemic condition effective amount or an anti-atherosclerotic condition effective amount of said compounds. For example one of the many embodiments of the present invention is a combination therapy comprising therapeutic dosages of an ISAT inhibitor and a bile acid sequestrant. A preferred embodiment of the present invention is a combination therapy comprising therapeutic dosages of a benzothiepine IBAT inhibitor and a bile acid sequestrant. [0097]
  • Yet another embodiment of the present invention comprises a cardiovascular therapy which comprises therapeutic dosages of an amphiphilic copolymer having a crosslinked shell domain and an interior core domain in combination with another bile acid sequestration agent. The other bile acid sequestration agent can be, for example, cholestyramine or colestipol. [0098]
  • The following non-limiting examples serve to illustrate various aspects of the present invention.[0099]
  • C. EXAMPLES
  • Table 7 illustrates examples of some combinations of the present invention wherein the combination comprises a first amount of an IBAT inhibitor and a second amount of a bile acid sequestration agent, wherein said first and second amounts together comprise an anti-hyperlipidemic condition effective amount or an anti-atherosclerotic condition effective amount of said compounds. [0100]
    TABLE 7
    Example Number Component 1 Component 2
    1 B-1  cholestyramine
    2 B-2  cholestyramine
    2 B-2  cholestyramine
    4 B-4  cholestyramine
    5 B-5  cholestyramine
    6 B-6  cholestyramine
    7 B-7  cholestyramine
    8 B-8  cholestyramine
    9 B-9  cholestyramine
    10 B-10 cholestyramine
    11 B-11 cholestyramine
    12 B-12 cholestyramine
    13 B-13 cholestyramine
    14 B-14 cholestyramine
    15 B-15 cholestyramine
    16 B-16 cholestyramine
    17 B-17 cholestyramine
    18 B-18 cholestyramine
    19 B-19 cholestyramine
    20 B-20 cholestyramine
    21 B-21 cholestyramine
    22 B-22 cholestyramine
    23 B-22 cholestyramine
    24 B-24 cholestyramine
    25 B-25 cholestyramine
    26 B-26 cholestyramine
    27 B-27 cholestyramine
    28 B-28 cholestyramine
    29 B-29 cholestyramine
    30 B-30 cholestyramine
    31 B-31 cholestyramine
    32 B-32 cholestyramine
    33 B-33 cholestyramine
    34 B-34 cholestyramine
    35 B-35 cholestyramine
    36 B-36 cholestyramine
    37 B-37 cholestyramine
    38 B-38 cholestyramine
    39 B-39 cholestyramine
    40 B-1  colestipol
    41 B-2  colestipol
    42 B-3  colestipol
    43 B-4  colestipol
    44 B-5  colestipol
    45 B-6  colestipol
    46 B-7  colestipol
    47 B-8  colestipol
    48 B-9  colestipol
    49 B-10 colestipol
    50 B-11 colestipol
    51 B-12 colestipol
    52 B-13 colestipol
    53 B-14 colestipol
    54 B-15 colestipol
    55 B-16 colestipol
    56 B-17 colestipol
    57 B-18 colestipol
    58 B-19 colestipol
    59 B-20 colestipol
    60 B-21 colestipol
    61 B-22 colestipol
    62 B-23 colestipol
    63 B-24 colestipol
    64 B-25 colestipol
    65 B-26 colestipol
    66 B-27 colestipol
    67 B-28 colestipol
    68 B-29 colestipol
    69 B-30 colestipol
    70 B-31 colestipol
    71 B-32 colestipol
    72 B-33 colestipol
    73 B-34 colestipol
    74 B-35 colestipol
    75 B-36 colestipol
    76 B-37 colestipol
    77 B-38 colestipol
    78 B-39 colestipol
    79 B-1  knedel A
    80 B-2  knedel A
    81 B-3  knedel A
    82 B-4  knedel A
    83 B-5  knedel A
    84 B-6  knedel A
    85 B-7  knedel A
    86 B-8  knedel A
    87 B-9  knedel A
    88 B-10 knedel A
    89 B-11 knedel A
    90 B-12 knedel A
    91 B-13 knedel A
    92 B-14 knedel A
    93 B-15 knedel A
    94 B-16 knedel A
    95 B-17 knedel A
    96 B-18 knedel A
    97 B-19 knedel A
    98 B-20 knedel A
    99 B-21 knedel A
    100 B-22 knedel A
    101 B-23 knedel A
    102 B-24 knedel A
    103 B-25 knedel A
    104 B-26 knedel A
    105 B-27 knedel A
    106 B-28 knedel A
    107 B-29 knedel A
    108 B-30 knedel A
    109 B-31 knedel A
    110 B-32 knedel A
    111 B-33 knedel A
    112 B-34 knedel A
    113 B-35 knedel A
    114 B-36 knedel A
    115 B-37 knedel A
    116 B-38 knedel A
    117 B-39 knedel A
    118 B-1  knedel B
    119 B-2  knedel B
    120 B-3  knedel B
    121 B-4  knedel B
    122 B-5  knedel B
    123 B-6  knedel B
    124 B-7  knedel B
    125 B-8  knedel B
    126 B-9  knedel B
    127 B-10 knedel B
    128 B-11 knedel B
    129 B-12 knedel B
    130 B-13 knedel B
    131 B-14 knedel B
    132 B-15 knedel B
    133 B-16 knedel B
    134 B-17 knedel B
    135 B-18 knedel B
    136 B-19 knedel B
    137 B-20 knedel B
    138 B-21 knedel B
    139 B-22 knedel B
    140 B-23 knedel B
    141 B-24 knedel B
    142 B-25 knedel B
    143 B-26 knedel B
    144 B-27 knedel B
    145 B-28 knedel B
    146 B-29 knedel B
    147 B-30 knedel B
    148 B-31 knedel B
    149 B-32 knedel B
    150 B-33 knedel B
    151 B-34 knedel B
    152 B-35 knedel B
    153 B-36 knedel B
    154 B-37 knedel B
    155 B-38 knedel B
    156 B-39 knedel B
    157 B-1  S-3
    158 B-2  S-3
    159 B-3  S-3
    160 B-4  S-3
    161 B-5  S-3
    162 B-6  S-3
    163 B-7  S-3
    164 B-8  S-3
    165 B-9  S-3
    166 B-10 S-3
    167 B-11 S-3
    168 B-12 S-3
    169 B-13 S-3
    170 B-14 S-3
    171 B-15 S-3
    172 B-16 S-3
    173 B-17 S-3
    174 B-18 S-3
    175 B-19 S-3
    176 B-20 S-3
    177 B-21 S-3
    178 B-22 S-3
    179 B-23 S-3
    180 B-24 S-3
    181 B-25 S-3
    182 B-26 S-3
    183 B-27 S-3
    184 B-28 S-3
    185 B-29 S-3
    186 B-30 S-3
    187 B-31 S-3
    188 B-32 S-3
    189 B-33 S-3
    190 B-34 S-3
    191 B-35 S-3
    192 B-36 S-3
    193 B-37 S-3
    194 B-38 S-3
    195 B-39 S-3
    196 B-1  CholestaGel
    197 B-2  CholestaGel
    198 B-3  CholestaGel
    199 B-4  CholestaGel
    200 B-5  CholestaGel
    201 B-6  CholestaGel
    202 B-7  CholestaGel
    203 B-8  CholestaGel
    204 B-9  CholestaGel
    205 B-10 CholestaGel
    206 B-11 CholestaGel
    207 B-12 CholestaGel
    208 B-13 CholestaGel
    209 B-14 CholestaGel
    210 B-15 CholestaGel
    211 B-16 CholestaGel
    212 B-17 CholestaGel
    213 B-18 CholestaGel
    214 B-19 CholestaGel
    215 B-20 CholestaGel
    216 B-21 CholestaGel
    217 B-22 CholestaGel
    218 B-23 CholestaGel
    219 B-24 CholestaGel
    220 B-25 CholestaGel
    221 B-26 CholestaGel
    222 B-27 CholestaGel
    223 B-28 CholestaGel
    224 B-29 CholestaGel
    225 B-30 CholestaGel
    226 B-31 CholestaGel
    227 B-32 CholestaGel
    228 B-33 CholestaGel
    229 B-34 CholestaGel
    230 B-35 CholestaGel
    231 B-36 CholestaGel
    232 B-37 CholestaGel
    233 B-38 CholestaGel
    234 B-39 CholestaGel
    235 B-1  OmegaGel
    236 B-2  OmegaGel
    237 B-3  OmegaGel
    238 B-4  OmegaGel
    239 B-5  OmegaGel
    240 B-6  OmegaGel
    241 B-7  OmegaGel
    242 B-8  OmegaGel
    243 B-9  OmegaGel
    244 B-10 OmegaGel
    245 B-11 OmegaGel
    246 B-12 OmegaGel
    247 B-13 OmegaGel
    248 B-14 OmegaGel
    249 B-15 OmegaGel
    250 B-16 OmegaGel
    251 B-17 OmegaGel
    252 B-18 OmegaGel
    253 B-19 OmegaGel
    254 B-20 OmegaGel
    255 B-21 OmegaGel
    256 B-22 OmegaGel
    257 B-23 OmegaGel
    258 B-24 OmegaGel
    259 B-25 OmegaGel
    260 B-26 OmegaGel
    261 B-27 OmegaGel
    262 B-28 OmegaGel
    263 B-29 OmegaGel
    264 B-30 OmegaGel
    265 B-31 OmegaGel
    266 B-32 OmegaGel
    267 B-33 OmegaGel
    268 B-34 OmegaGel
    269 B-35 OmegaGel
    270 B-36 OmegaGel
    271 B-37 OmegaGel
    272 B-38 OmegaGel
    273 B-39 OmegaGel
    274 B-1  MCI-196
    275 B-2  MCI-196
    276 B-3  MCI-196
    277 B-4  MCI-196
    278 B-5  MCI-196
    279 B-6  MCI-196
    280 B-7  MCI-196
    281 B-8  MCI-196
    282 B-9  MCI-196
    283 B-10 MCI-196
    284 B-11 MCI-196
    285 B-12 MCI-196
    286 B-13 MCI-196
    287 B-14 MCI-196
    283 B-15 MCI-196
    289 B-16 MCI-196
    290 B-17 MCI-196
    291 B-18 MCI-196
    292 B-19 MCI-196
    293 B-20 MCI-196
    294 B-21 MCI-196
    295 B-22 MCI-196
    296 B-23 MCI-196
    297 B-24 MCI-196
    298 B-25 MCI-196
    299 B-26 MCI-196
    300 B-27 MCI-196
    301 B-28 MCI-196
    302 B-29 MCI-196
    303 B-30 MCI-196
    304 B-31 MCI-196
    305 B-32 MCI-196
    306 B-33 MCI-196
    307 B-34 MCI-196
    308 B-35 MCI-196
    309 B-36 MCI-196
    310 B-37 MCI-196
    311 B-38 MCI-196
    312 B-39 MCI-196
    313 B-1  DMP-504
    314 B-2  DMP-504
    315 B-3  DMP-504
    316 B-4  DMP-504
    317 B-5  DMP-504
    318 B-6  DMP-504
    319 B-7  DMP-504
    320 B-8  DMP-504
    321 B-9  DMP-504
    322 B-10 DMP-504
    323 B-11 DMP-504
    324 B-12 DMP-504
    325 B-13 DMP-504
    326 B-14 DMP-504
    327 B-15 DMP-504
    328 B-16 DMP-504
    329 B-17 DMP-504
    330 B-18 DMP-504
    331 B-19 DMP-504
    332 B-20 DMP-504
    333 B-21 DMP-504
    334 B-22 DMP-504
    335 B-23 DMP-504
    338 B-24 DMP-504
    337 B-25 DMP-504
    338 B-26 DMP-504
    339 B-27 DMP-504
    340 B-28 DMP-504
    341 B-29 DMP-504
    342 B-30 DMP-504
    343 B-31 DMP-504
    344 B-32 DMP-504
    345 B-33 DMP-504
    346 B-34 DMP-504
    347 B-35 DMP-504
    348 B-36 DMP-504
    349 B-37 DMP-504
    350 B-38 DMP-504
    351 B-39 DMP-504
  • Biological Assays
  • The utility of the combinations of the present invention can be shown by the following assays. These assays are performed in vitro and in animal models essentially using procedures recognized to show the utility of the present invention. [0101]
  • In Vitro Assay of compounds that inhibit IBAT-mediated uptake of [[0102] 14C]-Taurocholate (TC) in H14 Cells
  • Baby hamster kidney cells (BHK) transfected with the cDNA of human IBAT (H14 cells) are to be seeded at 60,000 cells/well in 96 well Top-Count tissue culture plates for assays run within in 24 hours of seeding. 30,000 cells/well for assays run within 48 hours, and 10,000 cells/well for assays run within 72 hours. [0103]
  • On the day of assay, the cell monolayer is gently washed once with 100 μl assay buffer (Dulbecco's Modified Eagle's medium with 4.5 g/L glucose+0.2% (w/v) fatty acid free bovine serum albumin—(FAF)BSA). To each well 50 μl of a two-fold concentrate of test compound in assay buffer is added along with 50 μl of 6 μM [[0104] 14C]-taurocholate in assay buffer (final concentration of 3 μM [14C]-taurocholate). The cell culture plates are incubated 2 hours at 37° C. prior to gently washing each well twice with 100 μl 4° C. Dulbecco's phosphate-buffered saline (PBS) containing 0.2% (w/v) (FAF)BSA. The wells are then to be gently washed once with 100 μl 4° C. PBS without (FAF)BSA. To each 200 μl of liquid scintillation counting fluid is to be added, the plates are heat sealed and shaken for 30 minutes at room temperature prior to measuring the amount of radioactivity in each well on a Packard Top-Count instrument.
  • In Vitro Assay of Compounds that Inhibit Uptake of [[0105] 14C]-Alanine
  • The alanine uptake assay can be performed in an identical fashion to the taurocholate assay, with the exception that labeled alanine is to be substituted for the labeled taurocholate. [0106]
  • In Vivo Assay of Compounds that Inhibit Rat Ileal Uptake of [[0107] 14C]-Taurocholate into Bile
  • (See “Metabolism of 3α,β7-dihydroxy-7α-methyl-5β-cholanoic acid and 3α,7β-dihydroxy-7α-methyl-5β-cholanoic acid in hamsters” in [0108] Biochimica et Biophysica Acta, 833, 196-202 (1985) by Une et al., herein incorporated by reference.)
  • Male wistar rats (200-300 g) are to be anesthetized with inactin @100 mg/kg. Bile ducts are cannulated with a 10″ length of PE10 tubing. The small intestine is exposed and laid out on a gauze pad. A canulae (⅛″ luer lock, tapered female adapter) is inserted at 12 cm from the junction of the small intestine and the cecum. A slit is cut at 4 cm from this same junction (utilizing a 8 cm length of ileum). 20 ml of warm Dulbecco's phosphate buffered saline, pH 6.5 (PBS) is used to flush out the intestine segment. The distal opening is cannulated with a 20 cm length of silicone tubing (0.02″ I.D.×0.037″ O.D.). The proximal cannulae is hooked up to a peristaltic pump and the intestine is washed for 20 min with warm PBS at 0.25 ml/min. Temperature of the gut segment is to be monitored continuously. At the start of the experiment, 2.0 ml of control sample ([[0109] 14C]-taurocholate @ 0.05 mCi/ml with 5 mM non-radiolabeled taurocholate) is loaded into the gut segment with a 3 ml syringe and bile sample collection is begun. Control sample is infused at a rate of 0.25 ml/min for 21 min. Bile samples fractions will be collected every 3 minute for the first 27 minutes of the procedure. After the 21 min of sample infusion, the ileal loop is washed out with 20 ml of warm PBS (using a 30 ml syringe), and then the loop is washed out for 21 min with warm PBS at 0.25 ml/min. A second perfusion is to be initiated as described above but with test compound being administered as well (21 min administration followed by 21 min of wash out) and bile to be sampled every 3 min for the first 27 min. If necessary, a third perfusion will be performed as above that typically contains the control sample.
  • Measurement of Rat Fecal Bile Acid Concentration (FBA) [0110]
  • Total fecal output from individually housed rats is to be collected for 24 or 48 hours, dried under a stream of nitrogen, pulverized, mixed, and weighed. Approximately 0.1 gram is weighed out and extracted into an organic solvent (butanol/water). Following separation and drying, the residue is dissolved in methanol and the amount of bile acid present will be measured enzymatically using the 3α-hydroxysteroid steroid dehydrogenase reaction with bile acids to reduce NAD. (see Mashige, F. et al. [0111] Clin. Chem., 27, 1352 (1981), herein incorporated by reference).
  • Rat Gavage Assay [0112]
  • Male Wister rats (275-300g) are to be administered IBAT inhibitors using an oral gavage procedure. Drug or vehicle (0.2% TWEEN 80 in water) is administered once a day (9:00-10:0 a.m.) for 4 days at varying dosages in a final volume of 2 mL per kilogram of body weight. (TWEEN 80 is a 20 molar polyethyleneoxide sorbitan monooleate surfactant manufactured by ICI Specialty Chemicals, Wilmington, Del., U.S.A.) Total fecal samples are collected during the final 48 hours of the treatment period and analyzed for bile acid content using an enzymatic assay as described below. Compound efficacy will be determined by comparison of the increase in fecal bile acid (FBA) concentration in treated rats to the mean FBA concentration of rats in the vehicle group. [0113]
  • [[0114] 3H]Taurocholate Uptake in Rabbit Brush Border Membrane Vesicles (BBMV)
  • Rabbit Ileal brush border membranes are to be prepared from frozen ileal mucosa by the calcium precipitation method describe by Malathi et al. ([0115] Biochimica Biophysica Acta, 554, 259 (1979), herein incorporated by reference). The method for measuring taurocholate is essentially as described by Kramer et al. (Biochimica Biophysica Acta, 1111, 93 (1992), herein incorporated by reference) except the assay volume will be 200 μl instead of 100 μl. Briefly, at room temperature a 190 μl solution containing 2 μM [3H]-taurocholate(0.75 μCi), 20 mM tris, 100 mM NaCl, 100 mM mannitol pH 7.4 is incubated for 5 sec with 10 μl of brush border membrane vesicles (60-120 μg protein). The incubation is initiated by the addition of the BBMV while vortexing and the reaction is to be stopped by the addition of 5 ml of ice cold buffer (20 mM Hepes-tris, 150 mM KCl) followed immediately by filtration through a nylon filter (0.2 μm pore) and an additional 5 ml wash with stop buffer.
  • Acyl-CoA; Cholesterol Acyl Transferase (ACAT) [0116]
  • Hamster liver and rat intestinal microsomes are to be prepared from tissue as described previously ([0117] J. Biol. Chem., 255, 9098 (1980), herein incorporated by reference) and used as a source of ACAT enzyme. The assay will consist of a 2.0 ml incubation containing 24 μM Oleoyl-CoA (0.05 μCi) in a 50 mM sodium phosphate, 2 mM DTT ph 7.4 buffer containing 0.25% BSA and 200 μg of microsomal protein. The assay will be initiated by the addition of oleoyl-CoA. The reaction proceeds for 5 min at 37° C. and will be terminated by the addition of 8.0 ml of chloroform/ methanol (2:1). To the extraction is added 125 μg of cholesterol oleate in chloroform methanol to act as a carrier and the organic and aqueous phases of the extraction are separated by centrifugation after thorough vortexing. The chloroform phase is to be taken to dryness and then spotted on a silica gel 60 TLC plate and developed in hexane/ethyl ether (9:1). The amount of cholesterol ester formed will be determined by measuring the amount of radioactivity incorporated into the cholesterol oleate spot on the TLC plate with a Packard Instaimaqer.
  • Measurement of Hepatic Cholesterol Concentration (HEPATIC CHOL) [0118]
  • Liver tissue is to be weighed and homogenized in chloroform:methanol (2:1). After homogenization and centrifugation the supernatant is separated and dried under nitrogen. The residue is to be dissolved in isopropanol and the cholesterol content will be measured enzymatically, using a combination of cholesterol oxidase and peroxidase, as described by Allain, C. A. et al., [0119] Clin. Chem., 20, 470 (1974) (herein incorporated by reference).
  • Measurement of Hepatic HMG CoA-Reductase Activity (HMG COA) [0120]
  • Hepatic microsomes are to be prepared by homogenizing liver samples in a phosphate/sucrose buffer, followed by centrifugal separation. The final pelleted material is resuspended in buffer and an aliquot will be assayed for HMG CoA reductase activity by incubating for 60 minutes at 37° C. in the presence of [0121] 14C-HMG-CoA (Dupont-NEN). The reaction is stopped by adding 6N HCl followed by centrifugation. An aliquot of the supernatant is separated, by thin-layer chromatography, and the spot corresponding to the enzyme product is scraped off the plate, extracted and radioactivity is determined by scintillation counting. (Reference: Akerlund, J. and Bjorkhem, I. (1990) J. Lipid Res. 31, 2159).
  • Measurement of Hepatic Cholesterol 7-α-Hydroxylase Activity (7a-OHase) [0122]
  • Hepatic microsomes are to be prepared by homogenizing liver samples in a phosphate/sucrose buffer, followed by centrifugal separation. The final pelleted material is resuspended in buffer and an aliquot will be assayed for cholesterol 7-α-hydroxylase activity by incubating for 5 minutes at 37° C. in the presence of NADPH. Following extraction into petroleum ether, the organic solvent is evaporated and the residue is dissolved in acetonitrile/ methanol. The enzymatic product will be separated by injecting an aliquot of the extract onto a C[0123] 18 reversed phase HPLC column and quantitating the eluted material using UV detection at 240 nm. (Reference: Horton, J. D., et al. (1994) J. Clin. Invest. 93, 2084).
  • Determination of Serum Cholesterol (SER.CHOL, HDL-CHOL, TGI and VLDL+LDL) [0124]
  • Total serum cholesterol (SER.CHOL) are to be measured enzymatically using a commercial kit from Wako Fine Chemicals (Richmond, Va.); Cholesterol C11, Catalog No. 276-64909. HDL cholesterol (HDL-CHOL) will be assayed using this same kit after precipitation of VLDL and LDL with Sigma Chemical Co. HDL Cholesterol reagent, Catalog No. 352-3 (dextran sulfate method). Total serum triglycerides (blanked) (TGI) will be assayed enzymatically with Sigma Chemical Co. GPO-Trinder, Catalog No. 337-B. VLDL and LDL (VLDL+LDL) cholesterol concentrations will be calculated as the difference between total and HDL cholesterol. [0125]
  • Measurement of Hamster Fecal Bile Acid Concentration (FBA) [0126]
  • Total fecal output from individually housed hamsters is to be collected for 24 or 48 hours, dried under a stream of nitrogen, pulverized and weighed. Approximately 0.1 gram is weighed out and extracted into an organic solvent (butanol/water) . Following separation and drying, the residue is dissolved in methanol and the amount of bile acid present is measured enzymatically using the 3α-hydroxysteroid steroid dehydrogenase reaction with bile acids to reduce NAD. (Mashige, F. et al. [0127] Clin. Chem., 27, 1352 (1981), herein incorporated by reference).
  • Dog Model for Evaluating Lipid Lowering Drugs [0128]
  • Male beagle dogs, obtained from a vendor such as Marshall farms and weighing 6-12 kg are fed once a day for two hours and given water ad libitum. Dogs may be randomly assigned to a dosing groups consisting of 6 to 12 dogs each, such as: vehicle, i.g.; 1 mg/kg, i.g.; 2 mg/kg, i.g.; 4 mg/kg, i.g.; 2 mg/kg, p.o. (powder in capsule). Intra-gastric dosing of a therapeutic material dissolved in aqueous solution (for example, 0.2% Tween 80 solution [polyoxyethylene mono-oleate, Sigma Chemical Co., St. Louis, Mo.]) may be done using a gavage tube. Prior to initiating dosing, blood samples may be drawn from the cephalic vein in the morning before feeding in order to evaluate serum cholesterol (total and HDL) and triglycerides. For several consecutive days animals are dosed in the morning, prior to feeding. Animals are to be allowed 2 hours to eat before any remaining food is removed. Feces are to be collected over a 2 day period at the end of the study and may be analyzed for bile acid or lipid content. Blood samples are also to be taken, at the end of the treatment period, for comparison with pre-study serum lipid levels. Statistical significance will be determined using the standard student's T-test with p<0.05. [0129]
  • Dog Serum Lipid Measurement [0130]
  • Blood is to be collected from the cephalic vein of fasted does in serum separator tubes (Vacutainer SST, Becton Dickinson and Co., Franklin Lakes, N.J.) The blood is centrifuged at 2000 rpm for 20 minutes and the serum decanted. [0131]
  • Total cholesterol may be measured in a 96 well format using a Wako enzymatic diagnostic kit (Cholesterol CII) (Wako Chemicals, Richmond, Va.), utilizing the cholesterol oxidase reaction to produce hydrogen peroxide which is measured colorimetrically. A standard curve from 0.5 to 10 μg cholesterol is to be prepared in the first 2 columns of the plate. The serum samples (20-40 μl, depending on the expected lipid concentration) or known serum control samples are added to separate wells in duplicate. Water is added to bring the volume to 100 μl in each well. A 100 μl aliquot of color reagent is added to each well and the plates will be read at 500 nm after a 15 minute incubation at 37 degrees centigrade. [0132]
  • HDL cholesterol may be assayed using Sigma kit No. 352-3 (Sigma Chemical Co., St. Louis, Mo.) which utilizes dextran sulfate and Mg ions to selectively precipitate LDL and VLDL. A volume of 150 μl of each serum sample is to be added to individual microfuge tubes, followed by 15 μl of HDL cholesterol reagent (Sigma 352-3). Samples are to be mixed and centrifuged at 5000 rpm for 5 minutes. A 50 μl aliquot of the supernatant is to be then mixed with 200 μl of saline and assayed using the same procedure as for total cholesterol measurement. [0133]
  • Triglycerides are to be measured using Sigma kit No. 337 in a 96 well plate format. This procedure will triglycerides with lipoprotein lipase. Standard solutions of glycerol (Sigma 339-11) ranging from 1 to 24 μg are to be used to generate the standard curve. Serum samples (20-40 μl, depending on the expected lipid concentration) are added to wells in duplicate. Water is added to bring the volume to 100 μl in each well and 100 μl of color reagent is also added to each well. After mixing and a 15 minute incubation, the plates will be read at 540 nm and the triglyceride values calculated from the standard curve. A replicate plate is also to be run using a blank enzyme reagent to correct for any endogenous glycerol in the serum samples. [0134]
  • Dog Fecal Bile Acid Measurement [0135]
  • Fecal samples may be collected to determine the fecal bile acid (FBA) concentration for each animal. Fecal collections may be made during the final 48 hours of the study, for two consecutive 24 hour periods between 9:00 am and 10:00 am each day, prior to dosing and feeding. The separate two day collections from each animal are to be weighed, combined and homogenized with distilled water in a processor (Cuisinart) to generate a homogeneous slurry. About 1.4 g of the homogenate is to be extracted in a final concentration of 50% tertiary butanol/distilled water (2:0.6) for 45 minutes in a 37° C. water bath and centrifuged for 13 minutes at 2000×g. The concentration of bile acids (mmoles/day) may be determined using a 96-well enzymatic assay system (1,2). A 20 μl aliquot of the fecal extract is to be added to two sets each of triplicate wells in a 96-well assay plate. A standardized sodium taurocholate solution and a standardized fecal extract solution (previously made from pooled samples and characterized for its bile acid concentration) will also analyzed for assay quality control. Twenty-microliter aliquots of sodium taurocholate, serially diluted to generate a standard curve are similarly to be added to two sets of triplicate wells. A 230 μl reaction mixture containing 1M hydrazine hydrate, 0.1 M pyrophosphate and 0.46 mg/ml NAD is to be added to each well. A 50 μl aliquot of 3a-hydroxysteroid dehydrogenase enzyme (HSD; 0.8 units/ml) or assay buffer (0.1 M sodium pyrophosphate) are then added to one of the two sets of triplicates. All reagents may be obtained from Sigma Chemical Co., St. Louis, Mo. Following 60 minutes of incubation at room temperature, the optical density at 340 nm will be measured and the mean of each set of triplicate samples will be calculated. The difference in optical density±HSD enzyme is to be used to determine the bile acid concentration (mM) of each sample based on the sodium taurocholate standard curve. The bile acid concentration of the extract, the weight of the fecal homogenate (grams) and the body weight of the animal are to be used to calculate the corresponding FBA concentration in mmoles/kg/day for each animal. The mean FBA concentration (mmoles/kg/day) of the vehicle group is to be subtracted from the FBA concentration of each treatment group to determine the increase (delta value) in FBA concentration as a result of the treatment. [0136]
  • Intestinal Cholesterol Absorption Assay [0137]
  • A variety of compounds are shown to inhibit cholesterol absorption from the intestinal tract. These compounds lower serum cholesterol levels by reducing intestinal absorption of cholesterol from both exogenous sources (dietary cholesterol) and endogenous cholesterol (secreted by the gall bladder into the intestinal tract). [0138]
  • In hamsters the use of a dual-isotope plasma ratio method to measure intestinal cholesterol absorption has been refined and evaluated as described by Turley et al. (J. Lipid Res. 35, 329-339 (1994), herein incorporated by reference). [0139]
  • Male hamsters weighing 80-100 g are to be given food and water ad libitum in a room with 12 hour alternating periods of light and dark. Four hours into the light period, each hamster is administered first an intravenous dose of 2.5 μCi of [1,2-[0140] 3H]cholesterol suspended in Intralipid (20%) and then an oral dose of [4-14C]cholesterol in an oil of medium chain triglycerides (MCT). The i.v. dose is given by injecting a 0.4 ml volume of the Intralipid mixture into the distal femoral vein. The oral dose is given by gavaging a 0.6 ml volume of the MCT oil mixture introduced intragastrically via a polyethylene tube. After 72 hours the hamsters are bled and the amount of 3H and 14C in the plasma and in the original amount of label administered are determined by liquid scintillation spectrometry. The cholesterol absorption will be calculated based on the following equation: Percent cholesterol absorbed = % of oral dose per ml of 72 hour plasma sample % of i . v . dose per ml of 72 hour plasma sample × 100
    Figure US20040029845A1-20040212-M00001
  • Microsomal triglyceride transfer protein (MTP) assay: [0141]
  • MTP can be purified from liver tissue or cultured cells (e.g. HepG2 cells) using standard methods as described by Ohringer et al. (Acta Crystallogr. D52, 224-225 (1996), herein incorporated by reference). [0142]
  • Subsequent analysis of MTP activity can be performed as described by Jamil et al. (Proc. Natl. Acad. Sci. 93, 11991-11995 (1996), herein incorporated by reference) [0143]
  • The basis of this assay is to measure the transfer of labeled triglycerides from a population of donor vesicles to a population of acceptor vesicles in the presence of MTP. Inhibitors of MTP can be evaluated by adding them to the mixture prior to the introduction of MTP. Donor vesicles are prepared by sonication of an aqueous mixture of egg phospholipids, cardiolipin, [0144] 3H-labeled phospholipid and 14C-labeled triglycerides. Acceptor vesicles are prepared by sonication of an aqueous mixture of egg phospholipids. The vesicle solutions are mixed together, with or without added MTP inhibitors, and MTP is added to initiate the transfer reaction. The assay is terminated after 60 minutes by addition of 0.5 ml of DE-52 cellulose followed by centrifugation to pellet the donor molecules. The amount of 3H and 14C in the pellet and in the original amount of label in the mixture are determined by liquid scintillation spectrometry. The lipid transfer rate will be calculated based on first order kinetics using the expression:
  • [S]=[S] 0 e −kt
  • where [S][0145] 0 and [S] are the fractions of 14C label in the donor membrane pellet at times 0 and t, respectively, and the term k is the fraction of label transferred per unit time.
  • Plasma Lipids Assay in Rabbits [0146]
  • Plasma lipids can be assayed using standard methods as reported by J. R. Schuh et al., [0147] J. Clin. Invest., 91, 1453-1458 (1993), herein incorporated by reference. Groups of male, New Zealand white rabbits are placed on a standard diet (100 g/day) supplemented with 0.3% cholesterol and 2% corn oil (Zeigler Bothers, Inc., Gardners, Pa.). Water is available ad lib. Groups of control and treated animals are killed after 1 and 3 months o treatment. Tissues are removed for characterization of atherosclerotic lesions. Blood samples are to be taken for determination of plasma lipid concentrations.
  • Plasma Lipids [0148]
  • Plasma for lipid analysis is to be obtained by withdrawing blood from the ear vein into EDTA-containing tubes (Vacutainer; Becton Dickenson & Co., Rutherford, N.J.), followed by centrifugal separation of the cells. Total cholesterol will be determined enzymatically, using the cholesterol oxidase reaction (C.A. Allain et al., [0149] Clin. Chem., 20, 470-475 (1974), herein incorporated by reference). HDL cholesterol will also be measured enzymatically, after selective precipitation of LDL and VLDL by dextran sulfate with magnesium (G. R. Warnick et al., Clin. Chem., 28, 1379-1388 (1982), herein incorporated by reference). Plasma triglyceride levels will be determined by measuring the amount of glycerol released by lipoprotein lipase through an enzyme-linked assay (G. Bucolo et al., Clin. Chem., 19, 476-482 (1973), herein incorporated by reference).
  • Atherosclerosis [0150]
  • Animals are to be killed by pentobarbital injection. Thoracic aortas are rapidly removed, immersion fixed in 10% neutral buffered formalin, and stained with oil red 0 (0.3%). After a single longitudinal incision along the wall opposite the arterial ostia, the vessels are pinned open for evaluation of the plaque area The percent plaque coveraoe is determined from the values for the total area examined and the stained area, by threshold analysis using a true color image analyzer (Videometric 150; American Innovision, Incl, San Diego, Calif.) interfaced to a color camera (Toshiba 3CCD) mounted on a dissecting microscope. Tissue cholesterol will be measured enzymatically as described, after extraction with a chloroform/methanol mixture (2:1) according to the method of Folch et al. ([0151] J. Biol. Chem., 226, 497-509 (1957), herein incorporated by reference).
  • In Vitro Vascular Response [0152]
  • The abdominal aortas are rapidly excised, after injection of sodium pentobarbital, and placed in oxygenated Krebs-bicarbonate buffer. After removal of perivascular tissue, 3-mm ring segments are cut, placed in a 37° C. muscle bath containing Krebs-bicarbonate solution, and suspended between two stainless steel wires, one of which is attached to a force transducer (Grass Instrument Co., Quincy, Mass.). Force changes in response to angiotensin II added to the bath will be recorded on a chart recorder. [0153]
  • The examples herein can be performed by substituting the generically or specifically described therapeutic compounds or inert ingredients for those used in the preceding examples. [0154]
  • The invention being thus described, it is apparent that the same can be varied in many ways. Such variations are not to be regarded as a departure from the spirit and scope of the present invention, and all such modifications and equivalents as would be obvious to one skilled in the art are intended to be included within the scope of the following claims. [0155]

Claims (15)

What is claimed is:
1. A therapeutic combination comprising a first amount of an ileal bile acid transport inhibiting compound and a second amount of a bile acid sequestering compound wherein the first amount and the second amount together comprise an anti-hyperlipidemic condition effective amount, an anti-atherosclerotic condition effective amount, or an anti-hypercholesterolemic condition effective amount of the compounds.
2. The therapeutic combination of claim 1 wherein the ileal bile acid transport inhibiting compound has the structure of formula B-2:
Figure US20040029845A1-20040212-C00044
or an enantiomer or racemate thereof.
3. The therapeutic combination of claim 1 wherein the ileal bile acid transport inhibiting compound has the structure of formula E-12:
Figure US20040029845A1-20040212-C00045
or an enantiomer or racemate thereof.
4. The therapeutic combination of claim 1 wherein the ileal bile acid transport inhibiting compound has the structure of formula B-29:
Figure US20040029845A1-20040212-C00046
or an enantiomer or racemate thereof, wherein PEG is an about 3000 to about 4000 molecular weight polyethylene glycol polymer chain.
5. The therapeutic combination of claim 1 wherein the ileal bile acid transport inhibiting compound has the structure of formula B-7:
Figure US20040029845A1-20040212-C00047
or an enantiomer or racemate thereof.
6. The therapeutic combination of claim 1 wherein the bile acid sequestering compound comprises cholestyramine.
7. The therapeutic combination of claim 1 wherein the bile acid sequestering compound comprises colestipol.
8. The therapeutic combination of claim 1 wherein the bile acid sequestering compound comprises an amphiphilic copolymer having a crosslinked shell domain and an interior core domain.
9. The therapeutic combination of claim 1 wherein the bile acid sequestering compound comprises a polyallylamine polymer.
10. The therapeutic combination of claim 9 wherein the polyallylamine polymer comprises CholestaGel.
11. The therapeutic combination of claim 9 wherein the polyallylamine polymer comprises OmegaGel.
12. The therapeutic combination of claim 1 wherein the combination comprises a composition comprising an ileal bile acid transport inhibiting compound and a bile acid sequestering compound.
13. A method for the prophylaxis or treatment of a hyperlipidemic condition comprising administering to a patient in need thereof a combination in unit dosage form wherein the combination comprises a first amount of an ileal bile acid transport inhibiting compound and a second amount of a bile acid sequestering compound wherein the first amount and the second amount together comprise an anti-hyperlipidemic condition effective amount of the compounds.
14. A method for the prophylaxis or treatment of an atherosclerotic condition comprising administering to a patient in need thereof a combination in unit dosage form wherein the combination comprises a first amount of an ileal bile acid transport inhibiting compound and a second amount of a bile acid sequestering compound wherein the first amount and the second amount together comprise an anti-atherosclerotic condition effective amount of the compounds.
15. A method for the prophylaxis or treatment of hypercholesterolemia comprising administering to a patient in need thereof a combination in unit dosage form wherein the combination comprises a first amount of an ileal bile acid transport inhibiting compound and a second amount or a bile acid sequestering compound wherein the first amount and the second amount together comprise an anti-hypercholesterolemic condition effective amount of the compounds.
US10/373,180 1998-12-23 2003-02-26 Combinations of ileal bile acid transport inhibitors and bile acid sequestering agents for cardiovascular indications Abandoned US20040029845A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/373,180 US20040029845A1 (en) 1998-12-23 2003-02-26 Combinations of ileal bile acid transport inhibitors and bile acid sequestering agents for cardiovascular indications

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US11395598P 1998-12-23 1998-12-23
US14304399P 1999-07-07 1999-07-07
US09/466,592 US6562860B1 (en) 1998-12-23 1999-12-17 Combinations of ileal bile acid transport inhibitors and bile acid sequestering agents for cardiovascular indications
US10/373,180 US20040029845A1 (en) 1998-12-23 2003-02-26 Combinations of ileal bile acid transport inhibitors and bile acid sequestering agents for cardiovascular indications

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/466,592 Division US6562860B1 (en) 1998-12-23 1999-12-17 Combinations of ileal bile acid transport inhibitors and bile acid sequestering agents for cardiovascular indications

Publications (1)

Publication Number Publication Date
US20040029845A1 true US20040029845A1 (en) 2004-02-12

Family

ID=26811681

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/466,592 Expired - Fee Related US6562860B1 (en) 1998-12-23 1999-12-17 Combinations of ileal bile acid transport inhibitors and bile acid sequestering agents for cardiovascular indications
US10/373,180 Abandoned US20040029845A1 (en) 1998-12-23 2003-02-26 Combinations of ileal bile acid transport inhibitors and bile acid sequestering agents for cardiovascular indications

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/466,592 Expired - Fee Related US6562860B1 (en) 1998-12-23 1999-12-17 Combinations of ileal bile acid transport inhibitors and bile acid sequestering agents for cardiovascular indications

Country Status (24)

Country Link
US (2) US6562860B1 (en)
EP (1) EP1140190B1 (en)
JP (1) JP2002533414A (en)
KR (1) KR20010102965A (en)
CN (1) CN1338945A (en)
AR (1) AR022022A1 (en)
AT (1) ATE228012T1 (en)
AU (1) AU776953B2 (en)
BR (1) BR9916484A (en)
CA (1) CA2356156A1 (en)
CZ (1) CZ20012345A3 (en)
DE (1) DE69904079T2 (en)
DK (1) DK1140190T3 (en)
EA (1) EA004877B1 (en)
ES (1) ES2189529T3 (en)
HK (1) HK1044292A1 (en)
HU (1) HUP0104745A3 (en)
IL (1) IL143943A0 (en)
MX (1) MXPA01006470A (en)
NO (1) NO20013159L (en)
NZ (1) NZ512535A (en)
PL (1) PL348609A1 (en)
PT (1) PT1140190E (en)
WO (1) WO2000038728A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013063512A1 (en) * 2011-10-28 2013-05-02 Lumena Pharmaceuticals, Inc Bile acid recycling inhibitors for treatment of pediatric cholestatic liver diseases
WO2013063526A1 (en) * 2011-10-28 2013-05-02 Lumena Pharmaceuticals, Inc. Bile acid recycling inhibitors for treatment of hypercholemia and cholestatic liver disease
US9301986B2 (en) 2011-02-22 2016-04-05 Kao Corporation PPAR activator

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE0000772D0 (en) 2000-03-08 2000-03-08 Astrazeneca Ab Chemical compounds
AU2002224109A1 (en) * 2000-11-28 2002-06-11 Mitsubishi Pharma Corporation Excretion accelerator for accumulative chlorine compound
EG26979A (en) 2000-12-21 2015-03-01 Astrazeneca Ab Chemical compounds
CA2444028A1 (en) * 2001-04-18 2002-10-31 Genzyme Corporation Methods of treating syndrome x with aliphatic polyamines
GB0121337D0 (en) 2001-09-04 2001-10-24 Astrazeneca Ab Chemical compounds
GB0121622D0 (en) 2001-09-07 2001-10-31 Astrazeneca Ab Chemical compounds
GB0121621D0 (en) 2001-09-07 2001-10-31 Astrazeneca Ab Chemical compounds
NZ531796A (en) 2001-09-08 2005-10-28 Astrazeneca Ab Benzothiazepine and benzothiadiazepine derivatives with ileal bile acid transport (ibat) inhibitory activity for the treatment of hyperlipidaemia
GB0209467D0 (en) 2002-04-25 2002-06-05 Astrazeneca Ab Chemical compounds
GB0213669D0 (en) 2002-06-14 2002-07-24 Astrazeneca Ab Chemical compounds
GB0304194D0 (en) 2003-02-25 2003-03-26 Astrazeneca Ab Chemical compounds
GB0307918D0 (en) 2003-04-05 2003-05-14 Astrazeneca Ab Therapeutic use
ES2552657T3 (en) 2010-05-26 2015-12-01 Satiogen Pharmaceuticals, Inc. Inhibitors of the recycling of bile acids and satiogens for the treatment of diabetes, obesity, and inflammatory gastrointestinal conditions
MX345040B (en) * 2010-11-08 2017-01-16 Albireo Ab A pharmaceutical combination comprising an ibat inhibitor and a bile acid binder.
HUE030062T2 (en) 2010-11-08 2017-04-28 Albireo Ab Ibat inhibitors for the treatment of liver diseases
BR112015023697A2 (en) 2013-03-15 2017-07-18 Lumena Pharmaceuticals Inc recycling bile acid inhibitors for treatment of barrett's esophagus and gastroesophageal reflux disease
JP2016514684A (en) 2013-03-15 2016-05-23 ルメナ ファーマシューティカルズ エルエルシー Bile acid recirculation inhibitors for the treatment of primary sclerosing cholangitis and inflammatory bowel disease
JO3301B1 (en) 2013-04-26 2018-09-16 Albireo Ab Crystal modifications of elobixibat
US10709755B2 (en) 2014-06-25 2020-07-14 Elobix Ab Solid formulation and method for preventing or reducing coloration thereof
EP3012252A1 (en) 2014-10-24 2016-04-27 Ferring BV Crystal modifications of elobixibat
CA3011565C (en) 2016-02-09 2024-01-02 Albireo Ab Oral cholestyramine formulation and use thereof
US10441605B2 (en) 2016-02-09 2019-10-15 Albireo Ab Oral cholestyramine formulation and use thereof
US10786529B2 (en) 2016-02-09 2020-09-29 Albireo Ab Oral cholestyramine formulation and use thereof
WO2017138878A1 (en) 2016-02-09 2017-08-17 Albireo Ab Oral cholestyramine formulation and use thereof
US10441604B2 (en) 2016-02-09 2019-10-15 Albireo Ab Cholestyramine pellets and methods for preparation thereof
EP3664782A1 (en) 2017-08-09 2020-06-17 Albireo AB Cholestyramine pellets, oral cholestyramine formulations and use thereof
EP3664781A1 (en) 2017-08-09 2020-06-17 Albireo AB Cholestyramine granules, oral cholestyramine formulations and use thereof
US10793534B2 (en) 2018-06-05 2020-10-06 Albireo Ab Benzothia(di)azepine compounds and their use as bile acid modulators
ES2942443T3 (en) 2018-06-05 2023-06-01 Albireo Ab Benzothia(di)azepine compounds and their use as bile acid modulators
AU2019290337B2 (en) 2018-06-20 2023-01-12 Albireo Ab Crystal modifications of odevixibat
US11801226B2 (en) 2018-06-20 2023-10-31 Albireo Ab Pharmaceutical formulation of odevixibat
US11549878B2 (en) 2018-08-09 2023-01-10 Albireo Ab In vitro method for determining the adsorbing capacity of an insoluble adsorbant
US11007142B2 (en) 2018-08-09 2021-05-18 Albireo Ab Oral cholestyramine formulation and use thereof
US10722457B2 (en) 2018-08-09 2020-07-28 Albireo Ab Oral cholestyramine formulation and use thereof
HUE060905T2 (en) 2019-02-06 2023-04-28 Albireo Ab Benzothiadiazepine compounds and their use as bile acid modulators
JP2022519664A (en) 2019-02-06 2022-03-24 アルビレオ・アクチボラグ Benzodiazepine compounds and their use as bile acid modulators
US10941127B2 (en) 2019-02-06 2021-03-09 Albireo Ab Benzothiadiazepine compounds and their use as bile acid modulators
US10975045B2 (en) 2019-02-06 2021-04-13 Aibireo AB Benzothiazepine compounds and their use as bile acid modulators
EP4245367A3 (en) 2019-02-12 2023-12-20 Mirum Pharmaceuticals, Inc. Methods for treating cholestasis
US11014898B1 (en) 2020-12-04 2021-05-25 Albireo Ab Benzothiazepine compounds and their use as bile acid modulators
AR120683A1 (en) 2019-12-04 2022-03-09 Albireo Ab BENZOTHI(DI)AZEPINE COMPOUNDS AND THEIR USE AS BILIARY ACID
TW202134218A (en) 2019-12-04 2021-09-16 瑞典商艾爾比瑞歐公司 Benzothiazepine compounds and their use as bile acid modulators
CA3158276A1 (en) 2019-12-04 2021-06-10 Per-Goran Gillberg Benzothia(di)azepine compounds and their use as bile acid modulators
AR120676A1 (en) 2019-12-04 2022-03-09 Albireo Ab BENZOTHI(DI)AZEPINE COMPOUNDS AND THEIR USE AS BILIARY ACID
CN114761018A (en) 2019-12-04 2022-07-15 阿尔比里奥公司 Benzothiadiazepine compounds and their use as bile acid modulators
TW202134223A (en) 2019-12-04 2021-09-16 瑞典商艾爾比瑞歐公司 Benzothia(di)azepine compounds and their use as bile acid modulators
EP4069361B1 (en) 2019-12-04 2024-01-03 Albireo AB Benzothia(di)azepine compounds and their use as bile acid modulators
AR120682A1 (en) 2019-12-04 2022-03-09 Albireo Ab BENZOTHIADIAZEPINE COMPOUNDS AND THEIR USE AS BILE ACID MODULATORS
CR20220315A (en) 2019-12-04 2022-10-26 Albireo Ab BENZOTI(DI)AZEPINE COMPOUNDS AND THEIR USE AS BILE ACID MODULATORS
JP2023537285A (en) 2020-08-03 2023-08-31 アルビレオ・アクチボラグ Benzothia(di)azepine compounds and their use as bile acid modulators
CA3196488A1 (en) 2020-11-12 2022-05-19 Albireo Ab Odevixibat for treating progressive familial intrahepatic cholestasis (pfic)
KR20230117393A (en) 2020-12-04 2023-08-08 알비레오 에이비 Benzothia(di)azepine compounds and their use as bile acid regulators
WO2023237728A1 (en) 2022-06-09 2023-12-14 Albireo Ab Treating hepatitis

Citations (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3262850A (en) * 1958-06-20 1966-07-26 Ici Ltd Methods for reducing cholesterol in the blood
US3287370A (en) * 1965-06-08 1966-11-22 Mcneilab Inc Tetrahydrobenzothiepins
US3389144A (en) * 1965-06-08 1968-06-18 Mcneilab Inc 5-pyridyl-2, 3, 4, 5-tetrahydrobenzothiepin-5-ols
US3520891A (en) * 1967-04-28 1970-07-21 Mcneilab Inc Piperazinomethyl 2,3 dihydro 5 phenyl 1-benzothiepins
US3674836A (en) * 1968-05-21 1972-07-04 Parke Davis & Co 2,2-dimethyl-{11 -aryloxy-alkanoic acids and salts and esters thereof
US3692895A (en) * 1970-09-08 1972-09-19 Norman A Nelson Method of reducing hypercholesteremia in humans employing a copolymer of polyethylenepolyamine and a bifunctional substance, such as epichlorohydria
US3694446A (en) * 1970-02-24 1972-09-26 William J Houlihan 5-(substituted-benzyl)-benzocycloheptenes and-1-benzthiepines
US3714190A (en) * 1970-02-10 1973-01-30 Roussel Uclaf 6-thiochroman-acetic-acid compounds
US3781328A (en) * 1971-10-01 1973-12-25 Boehringer Mannheim Gmbh Phenoxy-alkyl-carboxylic acid compounds
US3948973A (en) * 1972-08-29 1976-04-06 Sterling Drug Inc. Halocyclopropyl substituted phenoxyalkanoic acids
US3962261A (en) * 1974-02-04 1976-06-08 Warner-Lambert Company 2,3,4,5-tetra hydro-5-oxo-1-benzothiepi n-4-carboxamide 1,1-dioxides
US3972878A (en) * 1974-02-08 1976-08-03 Produits Chimiques Ugine Kuhlmann Method for preparing azines and hydrazones
US3983140A (en) * 1974-06-07 1976-09-28 Sankyo Company Limited Physiologically active substances
US4002750A (en) * 1972-04-28 1977-01-11 Carlo Erba S.P.A. Pyrazine 4-oxide derivatives and process for their preparation
US4058552A (en) * 1969-01-31 1977-11-15 Orchimed Sa Esters of p-carbonylphenoxy-isobutyric acids
US4185109A (en) * 1974-09-26 1980-01-22 Ciba-Geigy Corporation 1-Benzothiepin-4-carboxamides
US4231938A (en) * 1979-06-15 1980-11-04 Merck & Co., Inc. Hypocholesteremic fermentation products and process of preparation
US4251526A (en) * 1977-10-31 1981-02-17 Mccall John M 2-Benzothiepins and compositions and methods of use therefore
US4346227A (en) * 1980-06-06 1982-08-24 Sankyo Company, Limited ML-236B Derivatives and their preparation
US4444784A (en) * 1980-08-05 1984-04-24 Merck & Co., Inc. Antihypercholesterolemic compounds
US4559332A (en) * 1983-04-13 1985-12-17 Ciba Geigy Corporation 20-Spiroxanes and analogues having an open ring E, processes for their manufacture, and pharmaceutical preparations thereof
US5075293A (en) * 1989-10-10 1991-12-24 The Dow Chemical Company ((N-heterocyclyl)carbonyl)phosphoramidothioate ester insecticides
US5153184A (en) * 1989-10-10 1992-10-06 Dowelanco ((N-heterocyclyl)carbonyl)phosphoramidothioate ester insecticides
US5158943A (en) * 1988-11-21 1992-10-27 Takeda Chemical Industries, Ltd. Sulfur-containing heterocyclic compounds
US5244887A (en) * 1992-02-14 1993-09-14 Straub Carl D Stanols to reduce cholesterol absorption from foods and methods of preparation and use thereof
US5260316A (en) * 1991-07-30 1993-11-09 Ciba-Geigy Corporation Isoquinolyl substituted hydroxylamine derivatives
US5334600A (en) * 1991-07-30 1994-08-02 Ciba-Geigy Corporation Isoquinolyl substituted hydroxylamine derivatives
US5350761A (en) * 1991-07-30 1994-09-27 Ciba-Geigy Corporation Indolyl substituted hydroxylamine derivatives
US5354772A (en) * 1982-11-22 1994-10-11 Sandoz Pharm. Corp. Indole analogs of mevalonolactone and derivatives thereof
US5430116A (en) * 1991-12-20 1995-07-04 Hoechst Aktiengesellschaft Polymers and oligomers of bile acid derivatives, process for their preparation and their use as pharmaceuticals
US5502045A (en) * 1991-05-03 1996-03-26 Raision Tehtaat Oy Ab Use of a stanol fatty acid ester for reducing serum cholesterol level
US5512558A (en) * 1993-05-08 1996-04-30 Hoechst Aktiengesellschaft Nor-bile acid derivatives, processes for their preparation and the use of these compounds as medicaments
US5519001A (en) * 1991-12-19 1996-05-21 Southwest Foundation For Biomedical Research CETP inhibitor polypeptide antibodies against the synthetic polypeptide and prophylactic and therapeutic anti-atherosclerosis treatments
US5602152A (en) * 1992-12-07 1997-02-11 Merck Patent Gesellschaft Mit Beschrankter Haftung Benzoxepines
US5610151A (en) * 1993-05-08 1997-03-11 Hoechst Aktiengesellschaft Monomeric bile acid derivatives, processes for their preparation and the use of these compounds as medicaments
US5663165A (en) * 1992-02-17 1997-09-02 Glaxo Wellcome Inc. Hypolipidaemic benzothiazepine compounds
US5703188A (en) * 1993-06-02 1997-12-30 Geltex Pharmaceuticals, Inc. Process for removing bile salts from a patient and compositions therefor
US5705524A (en) * 1994-11-04 1998-01-06 Gilead Sciences, Inc. Thiepane compounds
US5723458A (en) * 1993-02-15 1998-03-03 Glaxo Wellcome Inc. Hypolipidaemic compounds
US5767115A (en) * 1993-09-21 1998-06-16 Schering-Plough Corporation Hydroxy-substituted azetidinone compounds useful as hypocholesterolemic agents
US5929062A (en) * 1997-06-19 1999-07-27 University Of Western Ontario Oxysterol inhibition of dietary cholesterol uptake
US5994391A (en) * 1994-09-13 1999-11-30 G.D. Searle And Company Benzothiepines having activity as inhibitors of ileal bile acid transport and taurocholate uptake
US6020330A (en) * 1997-03-14 2000-02-01 Hoechst Aktiengesellschaft Hypolipidemic 1,4-benzothiazepine-1,1-dioxides
US6034118A (en) * 1994-11-04 2000-03-07 Gilead Sciences, Inc. Thiepane compounds
US6277831B1 (en) * 1999-04-09 2001-08-21 Aventis Pharma Deutschland Gmbh 1,4-benzothiazepine-1,1-dioxide derivatives substituted by sugar residues, process for their preparation, pharmaceuticals comprising these compounds, and their use

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3253157A (en) 1963-02-08 1966-05-24 Robotron Corp Timing circuit for actuating a load in accurate relationship to two inputs
DE1593760A1 (en) 1967-02-01 1972-06-08 Boehringer Sohn Ingelheim Process for the production of new benz-epine derivatives
DE2928096A1 (en) 1979-07-12 1981-02-05 Basf Ag MAGNETIC RECORDING CARRIER
AU548996B2 (en) 1980-02-04 1986-01-09 Merck & Co., Inc. Tetrahydro-2h-pyran-2-one derivatives
AU548253B2 (en) 1981-05-11 1985-12-05 Pierre Fabre S.A. Benzoxepine derivatives and sulphur and nitrogen analogues thereof
CA1247547A (en) 1983-06-22 1988-12-28 Paul Hadvary Leucine derivatives
JPS6322056A (en) 1986-04-30 1988-01-29 サンド・アクチエンゲゼルシヤフト Manufacture of olefinic compound
AU597671B2 (en) 1986-06-20 1990-06-07 Suntory Limited 2-Phenylbenzoxepin derivative
AU2301988A (en) 1987-08-19 1989-03-09 E.I. Du Pont De Nemours And Company Process for preparing sulfonylurea salts
DE3835291A1 (en) 1988-04-19 1989-11-02 Bayer Ag 1,3-DISUBSTITUTED PYRROLIDINES
DE3901527A1 (en) 1989-01-20 1990-07-26 Hoechst Ag ALKYLATED POLYETHYLENE IMIN DERIVATIVES, METHOD FOR THE PRODUCTION THEREOF, THEIR USE AS MEDICINAL PRODUCTS AND PHARMACEUTICAL PREPARATIONS
FI94339C (en) 1989-07-21 1995-08-25 Warner Lambert Co Process for the preparation of pharmaceutically acceptable [R- (R *, R *)] - 2- (4-fluorophenyl) -, - dihydroxy-5- (1-methylethyl) -3-phenyl-4 - [(phenylamino) carbonyl] -1H- for the preparation of pyrrole-1-heptanoic acid and its pharmaceutically acceptable salts
DE3930696A1 (en) 1989-09-14 1991-03-28 Hoechst Ag GALLENSAEUREDERIVATE, METHOD FOR THE PRODUCTION THEREOF, USE AS MEDICAMENT
GB8926560D0 (en) 1989-11-24 1990-01-17 Zambeletti Spa L Pharmaceuticals
FR2661676A1 (en) 1990-05-02 1991-11-08 Lipha Aminobenzocycloalkane derivatives, preparation processes and medicaments containing them
WO1992017467A1 (en) 1991-04-06 1992-10-15 Dr Lo. Zambeletti S.P.A. Substituted azacyclic compounds, process for their preparation and their use as analgesics
JPH0825973B2 (en) 1991-04-12 1996-03-13 シェリング・コーポレーション Bicyclic amides as inhibitors of acyl coenzyme A: cholesterol acyltransferase
AU1532492A (en) 1991-04-18 1992-11-17 Dr. Lo Zambeletti S.P.A. Use of heterocyclic compounds for the treatment of inflammatory pain
DE69224115T2 (en) 1991-07-30 1998-08-20 Ciba Geigy Ag Heteroaryl substituted hydroxylamine derivatives as lipoxygenase inhibitors
US5356897A (en) 1991-09-09 1994-10-18 Fujisawa Pharmaceutical Co., Ltd. 3-(heteroaryl)-pyrazololi[1,5-a]pyrimidines
EP0534316A1 (en) 1991-09-21 1993-03-31 Hoechst Aktiengesellschaft Use of alkylated polyethylenimines to concentrate bile acids
AU664059B2 (en) 1991-12-20 1995-11-02 Hoechst Aktiengesellschaft Ethylenically unsaturated bile acid derivatives, processes for their preparation and precursors
DK0548794T3 (en) 1991-12-20 1999-12-06 Aventis Res & Tech Gmbh & Co Polyaspartamide derivatives as adsorbents for bile acids, polyaspartamide derivatives charged with bile acids, methods
DK0559064T3 (en) 1992-02-29 2001-10-08 Aventis Res & Tech Gmbh & Co Complexes containing glycosyl-phosphatidylinositol proteins and cholanoic acid derivatives, process for their preparation and use
ATE130193T1 (en) 1992-03-28 1995-12-15 Hoechst Ag MEDICINAL PRODUCTS MADE OF POLYHYDROXYMETHYLENE DERIVATIVES, METHOD FOR THE PRODUCTION AND USE THEREOF.
WO1993021146A1 (en) 1992-04-22 1993-10-28 Ligand Pharmaceuticals Incorporated Compounds having selectivity for retinoid x receptors
CA2093577C (en) 1992-05-07 2006-01-03 Michael Klaus Alkyl or alkoxy substituted s-heterocyclic retinoids
IL108634A0 (en) 1993-02-15 1994-05-30 Wellcome Found Hypolipidaemic heterocyclic compounds, their prepatation and pharmaceutical compositions containing them
ES2119190T3 (en) 1993-04-16 1998-10-01 Shionogi & Co PROCEDURE FOR PRODUCING A LIGNAN COMPOUND.
EP0624593A3 (en) 1993-05-08 1995-06-07 Hoechst Ag Bile acid derivates, a method for their production and their use as medicines.
US5607669A (en) * 1994-06-10 1997-03-04 Geltex Pharmaceuticals, Inc. Amine polymer sequestrant and method of cholesterol depletion
IT1273751B (en) 1994-02-11 1997-07-10 Smithkline Beecham Farma AZACYCLIC DERIVATIVES
ZA956647B (en) 1994-08-10 1997-02-10 Wellcome Found Hypolipidaemic compounds.
WO1996008484A1 (en) 1994-09-13 1996-03-21 Monsanto Company Novel benzothiepines having activity as inhibitors of ileal bile acid transport and taurocholate uptake
GB9423172D0 (en) 1994-11-17 1995-01-04 Wellcom Foundation The Limited Hypolipidemic benzothiazepines
WO1996040255A2 (en) 1995-06-07 1996-12-19 G.D. Searle & Co. Method to treat cardiofibrosis with a combination therapy of an angiotensin ii antagonist and an epoxy-steroidal aldosterone antagonist
JPH11510485A (en) 1995-07-21 1999-09-14 ニィコメド・オーストリア・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Derivatives of benzenesulfonamide as inhibitors of the enzyme cyclooxygenase II
GB2305665A (en) 1995-09-26 1997-04-16 Merck & Co Inc Selective ß3 agonists for the treatment of diabetes aand obesity
DE19610932A1 (en) 1996-03-20 1997-09-25 Bayer Ag 2-aryl substituted pyridines
EP0801060A1 (en) 1996-04-09 1997-10-15 Pfizer Inc. Heterocyclic Beta-3 Adrenergenic Agonists
DE19627430A1 (en) 1996-07-08 1998-01-15 Bayer Ag Bicyclic condensed pyridines
HRP970330B1 (en) 1996-07-08 2004-06-30 Bayer Ag Cycloalkano pyridines
DE19627431A1 (en) 1996-07-08 1998-01-15 Bayer Ag Heterocyclically fused pyridines
JPH10287662A (en) 1997-04-08 1998-10-27 Kitasato Inst:The Fo-5637a and b substance, and their production
GB2329334A (en) 1997-09-18 1999-03-24 Reckitt & Colmann Prod Ltd Cholesterol-lowering agents

Patent Citations (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3262850A (en) * 1958-06-20 1966-07-26 Ici Ltd Methods for reducing cholesterol in the blood
US3287370A (en) * 1965-06-08 1966-11-22 Mcneilab Inc Tetrahydrobenzothiepins
US3389144A (en) * 1965-06-08 1968-06-18 Mcneilab Inc 5-pyridyl-2, 3, 4, 5-tetrahydrobenzothiepin-5-ols
US3520891A (en) * 1967-04-28 1970-07-21 Mcneilab Inc Piperazinomethyl 2,3 dihydro 5 phenyl 1-benzothiepins
US3674836A (en) * 1968-05-21 1972-07-04 Parke Davis & Co 2,2-dimethyl-{11 -aryloxy-alkanoic acids and salts and esters thereof
US4058552A (en) * 1969-01-31 1977-11-15 Orchimed Sa Esters of p-carbonylphenoxy-isobutyric acids
US3714190A (en) * 1970-02-10 1973-01-30 Roussel Uclaf 6-thiochroman-acetic-acid compounds
US3694446A (en) * 1970-02-24 1972-09-26 William J Houlihan 5-(substituted-benzyl)-benzocycloheptenes and-1-benzthiepines
US3692895A (en) * 1970-09-08 1972-09-19 Norman A Nelson Method of reducing hypercholesteremia in humans employing a copolymer of polyethylenepolyamine and a bifunctional substance, such as epichlorohydria
US3781328A (en) * 1971-10-01 1973-12-25 Boehringer Mannheim Gmbh Phenoxy-alkyl-carboxylic acid compounds
US4002750A (en) * 1972-04-28 1977-01-11 Carlo Erba S.P.A. Pyrazine 4-oxide derivatives and process for their preparation
US3948973A (en) * 1972-08-29 1976-04-06 Sterling Drug Inc. Halocyclopropyl substituted phenoxyalkanoic acids
US3962261A (en) * 1974-02-04 1976-06-08 Warner-Lambert Company 2,3,4,5-tetra hydro-5-oxo-1-benzothiepi n-4-carboxamide 1,1-dioxides
US3972878A (en) * 1974-02-08 1976-08-03 Produits Chimiques Ugine Kuhlmann Method for preparing azines and hydrazones
US3983140A (en) * 1974-06-07 1976-09-28 Sankyo Company Limited Physiologically active substances
US4185109A (en) * 1974-09-26 1980-01-22 Ciba-Geigy Corporation 1-Benzothiepin-4-carboxamides
US4251526A (en) * 1977-10-31 1981-02-17 Mccall John M 2-Benzothiepins and compositions and methods of use therefore
US4231938A (en) * 1979-06-15 1980-11-04 Merck & Co., Inc. Hypocholesteremic fermentation products and process of preparation
US4346227A (en) * 1980-06-06 1982-08-24 Sankyo Company, Limited ML-236B Derivatives and their preparation
US4410629A (en) * 1980-06-06 1983-10-18 Sankyo Company Limited ML-236B Derivatives and their preparation
US4448979A (en) * 1980-06-06 1984-05-15 Sankyo Company, Limited ML-236B Derivatives
US4444784A (en) * 1980-08-05 1984-04-24 Merck & Co., Inc. Antihypercholesterolemic compounds
US5354772A (en) * 1982-11-22 1994-10-11 Sandoz Pharm. Corp. Indole analogs of mevalonolactone and derivatives thereof
US4559332A (en) * 1983-04-13 1985-12-17 Ciba Geigy Corporation 20-Spiroxanes and analogues having an open ring E, processes for their manufacture, and pharmaceutical preparations thereof
US5158943A (en) * 1988-11-21 1992-10-27 Takeda Chemical Industries, Ltd. Sulfur-containing heterocyclic compounds
US5153184A (en) * 1989-10-10 1992-10-06 Dowelanco ((N-heterocyclyl)carbonyl)phosphoramidothioate ester insecticides
US5075293A (en) * 1989-10-10 1991-12-24 The Dow Chemical Company ((N-heterocyclyl)carbonyl)phosphoramidothioate ester insecticides
US5502045A (en) * 1991-05-03 1996-03-26 Raision Tehtaat Oy Ab Use of a stanol fatty acid ester for reducing serum cholesterol level
US5260316A (en) * 1991-07-30 1993-11-09 Ciba-Geigy Corporation Isoquinolyl substituted hydroxylamine derivatives
US5334600A (en) * 1991-07-30 1994-08-02 Ciba-Geigy Corporation Isoquinolyl substituted hydroxylamine derivatives
US5350761A (en) * 1991-07-30 1994-09-27 Ciba-Geigy Corporation Indolyl substituted hydroxylamine derivatives
US5519001A (en) * 1991-12-19 1996-05-21 Southwest Foundation For Biomedical Research CETP inhibitor polypeptide antibodies against the synthetic polypeptide and prophylactic and therapeutic anti-atherosclerosis treatments
US5430116A (en) * 1991-12-20 1995-07-04 Hoechst Aktiengesellschaft Polymers and oligomers of bile acid derivatives, process for their preparation and their use as pharmaceuticals
US5244887A (en) * 1992-02-14 1993-09-14 Straub Carl D Stanols to reduce cholesterol absorption from foods and methods of preparation and use thereof
US5663165A (en) * 1992-02-17 1997-09-02 Glaxo Wellcome Inc. Hypolipidaemic benzothiazepine compounds
US5602152A (en) * 1992-12-07 1997-02-11 Merck Patent Gesellschaft Mit Beschrankter Haftung Benzoxepines
US5723458A (en) * 1993-02-15 1998-03-03 Glaxo Wellcome Inc. Hypolipidaemic compounds
US5512558A (en) * 1993-05-08 1996-04-30 Hoechst Aktiengesellschaft Nor-bile acid derivatives, processes for their preparation and the use of these compounds as medicaments
US5610151A (en) * 1993-05-08 1997-03-11 Hoechst Aktiengesellschaft Monomeric bile acid derivatives, processes for their preparation and the use of these compounds as medicaments
US5703188A (en) * 1993-06-02 1997-12-30 Geltex Pharmaceuticals, Inc. Process for removing bile salts from a patient and compositions therefor
US5767115A (en) * 1993-09-21 1998-06-16 Schering-Plough Corporation Hydroxy-substituted azetidinone compounds useful as hypocholesterolemic agents
US5994391A (en) * 1994-09-13 1999-11-30 G.D. Searle And Company Benzothiepines having activity as inhibitors of ileal bile acid transport and taurocholate uptake
US5705524A (en) * 1994-11-04 1998-01-06 Gilead Sciences, Inc. Thiepane compounds
US6034118A (en) * 1994-11-04 2000-03-07 Gilead Sciences, Inc. Thiepane compounds
US6020330A (en) * 1997-03-14 2000-02-01 Hoechst Aktiengesellschaft Hypolipidemic 1,4-benzothiazepine-1,1-dioxides
US5929062A (en) * 1997-06-19 1999-07-27 University Of Western Ontario Oxysterol inhibition of dietary cholesterol uptake
US6277831B1 (en) * 1999-04-09 2001-08-21 Aventis Pharma Deutschland Gmbh 1,4-benzothiazepine-1,1-dioxide derivatives substituted by sugar residues, process for their preparation, pharmaceuticals comprising these compounds, and their use

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9301986B2 (en) 2011-02-22 2016-04-05 Kao Corporation PPAR activator
WO2013063512A1 (en) * 2011-10-28 2013-05-02 Lumena Pharmaceuticals, Inc Bile acid recycling inhibitors for treatment of pediatric cholestatic liver diseases
WO2013063526A1 (en) * 2011-10-28 2013-05-02 Lumena Pharmaceuticals, Inc. Bile acid recycling inhibitors for treatment of hypercholemia and cholestatic liver disease
CN104023727A (en) * 2011-10-28 2014-09-03 鲁美纳医药公司 Bile acid recycling inhibitors for treatment of pediatric cholestatic liver diseases
CN104023718A (en) * 2011-10-28 2014-09-03 鲁美纳医药公司 Bile acid recycling inhibitors for treatment of hypercholemia and cholestatic liver disease
EA029581B1 (en) * 2011-10-28 2018-04-30 ЛУМЕНА ФАРМАСЬЮТИКАЛС ЭлЭлСи Use of bile acid recycling inhibitors for treatment of cholestatic liver disease or pruritis
EA030839B1 (en) * 2011-10-28 2018-10-31 ЛУМЕНА ФАРМАСЬЮТИКАЛС ЭлЭлСи Bile acid recycling inhibitors for treatment of pediatric cholestatic liver diseases
US10512657B2 (en) 2011-10-28 2019-12-24 Lumena Pharmaceutials Llc Bile acid recycling inhibitors for treatment of pediatric cholestatic liver diseases
US11229661B2 (en) 2011-10-28 2022-01-25 Shire Human Genetic Therapies, Inc. Bile acid recycling inhibitors for treatment of pediatric cholestatic liver diseases
US11376251B2 (en) 2011-10-28 2022-07-05 Shire Human Genetic Therapies, Inc. Bile acid recycling inhibitors for treatment of pediatric cholestatic liver diseases

Also Published As

Publication number Publication date
AU2348000A (en) 2000-07-31
EP1140190B1 (en) 2002-11-20
WO2000038728A1 (en) 2000-07-06
CA2356156A1 (en) 2000-07-06
AR022022A1 (en) 2002-09-04
EA200100702A1 (en) 2001-12-24
DK1140190T3 (en) 2002-12-23
EA004877B1 (en) 2004-08-26
NO20013159L (en) 2001-08-22
JP2002533414A (en) 2002-10-08
HK1044292A1 (en) 2002-10-18
HUP0104745A2 (en) 2002-04-29
MXPA01006470A (en) 2003-06-06
AU776953B2 (en) 2004-09-30
US6562860B1 (en) 2003-05-13
ES2189529T3 (en) 2003-07-01
CZ20012345A3 (en) 2001-12-12
IL143943A0 (en) 2002-04-21
CN1338945A (en) 2002-03-06
NZ512535A (en) 2003-12-19
DE69904079D1 (en) 2003-01-02
NO20013159D0 (en) 2001-06-22
HUP0104745A3 (en) 2003-01-28
BR9916484A (en) 2002-01-22
DE69904079T2 (en) 2003-07-17
PT1140190E (en) 2003-02-28
PL348609A1 (en) 2002-06-03
KR20010102965A (en) 2001-11-17
EP1140190A1 (en) 2001-10-10
ATE228012T1 (en) 2002-12-15

Similar Documents

Publication Publication Date Title
US6562860B1 (en) Combinations of ileal bile acid transport inhibitors and bile acid sequestering agents for cardiovascular indications
EP1140189B1 (en) Combinations of ileal bile acid transport inhibitors and fibric acid derivatives for cardiovascular indications
EP1140191B1 (en) Combinations of ileal bile acid transport inhibitors and nicotinic acid derivatives for cardiovascular indications
US6458851B1 (en) Combinations of ileal bile acid transport inhibitors and cholesteryl ester transfer protein inhibitors for cardiovascular indications
EP1140186B1 (en) Combinations of cholesteryl ester transfer protein inhibitors and fibric acid derivatives for cardiovascular indications
EP1140185B1 (en) Combinations of cholesteryl ester transfer protein inhibitors and bile acid sequestering agents for cardiovascular indications
EP1293211A1 (en) Combinations of ileal bile acid transport inhibitors and bile acid sequestering agents for cardiovascular indications

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: FIRST-CITIZENS BANK & TRUST COMPANY, CALIFORNIA

Free format text: SECURITY INTEREST;ASSIGNORS:ISPOT.TV, INC.;605, LLC;REEL/FRAME:066391/0042

Effective date: 20240205

Owner name: FIRST-CITIZENS BANK & TRUST COMPANY, CALIFORNIA

Free format text: SECURITY INTEREST;ASSIGNORS:ISPOT.TV, INC.;605, LLC;REEL/FRAME:066390/0848

Effective date: 20240205