Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20030195564 A1
Publication typeApplication
Application numberUS 10/431,621
Publication date16 Oct 2003
Filing date7 May 2003
Priority date14 Jul 2000
Also published asUS6582453
Publication number10431621, 431621, US 2003/0195564 A1, US 2003/195564 A1, US 20030195564 A1, US 20030195564A1, US 2003195564 A1, US 2003195564A1, US-A1-20030195564, US-A1-2003195564, US2003/0195564A1, US2003/195564A1, US20030195564 A1, US20030195564A1, US2003195564 A1, US2003195564A1
InventorsMinh Tran, Seth Foerster
Original AssigneeOpus Medical, Inc.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Method and apparatus for attaching connective tissues to bone using a suture anchoring device
US 20030195564 A1
Abstract
A bone anchor and methods for using same to secure connective tissue, such as tendons, to bone are disclosed which permit a suture attachment that lies entirely beneath the cortical bone surface. The bone anchor of the invention incorporates a deformable body that creates an increased anchor body diameter after it is inserted into the cancellous bone and deployed beneath the cortical surface of the bone. The increased body diameter, by virtue of its intrinsic geometry, creates both axial and rotational fixation of the bone anchor or suture fixation point.
Images(10)
Previous page
Next page
Claims(35)
What is claimed is:
1. Apparatus for attaching connective tissue to bone, comprising a shaft having a longitudinal axis, a proximal end, and a distal end, which is adapted to be inserted into a bone, said shaft including a plurality of spaced slits disposed about said periphery and having an aperture disposed on said proximal end for receiving a suture, said proximal end having a diameter which is no larger than a diameter of said distal end.
2. The apparatus as recited in claim 1, wherein said proximal end diameter is smaller than the distal end diameter.
3. The apparatus as recited in claim 1, wherein said shaft comprises a peripheral wall bounding a lumen, said aperture being disposed in said peripheral wall.
4. The apparatus as recited in claim 1, wherein said plurality of spaced slits are generally parallel to said longitudinal axis.
5. The apparatus as recited in claim 1, wherein said plurality of spaced slits each lie at an acute angle relative to said longitudinal axis.
6. The apparatus as recited in claim 5, wherein said acute angle is between 0 and 45 degrees.
7. The apparatus as recited in claim 1, wherein said plurality of spaced slits comprises at least six slits.
8. The apparatus as recited in claim 5, wherein said plurality of spaced slits is sufficient in number such that when an axial length of said shaft is shortened, thereby causing a plurality of ribs which are disposed between each of said plurality of slits to each expand radially to form respective petals, each of said petals overlap adjacent ones thereof.
9. The apparatus as recited in claim 3, and further comprising a second aperture disposed on said peripheral wall in opposed alignment with said first aperture, to thereby create a suture conduit through the lumen of said shaft.
10. The apparatus as recited in claim 1, wherein said shaft is cylindrical.
11. Apparatus for attaching connective tissue to bone, comprising a shaft having a longitudinal axis, a proximal end, and a distal end, which is adapted to be inserted into a bone, said shaft including a plurality of spaced slits disposed about said periphery, said apparatus being of a unitary construction and including no structure which is disposed proximally of said shaft, the proximal end of said shaft having a diameter which is not substantially larger than a diameter of the distal end of said shaft, so that the entire apparatus may be disposed within a hole in the bone to which the connective tissue is to be attached.
12. The apparatus as recited in claim 11, and further comprising an aperture disposed on said proximal shaft end for receiving a suture.
13. The apparatus as recited in claim 11, wherein said proximal end diameter is smaller than the distal end diameter.
14. The apparatus as recited in claim 12, wherein said shaft comprises a peripheral wall bounding a lumen, said aperture being disposed in said peripheral wall.
15. The apparatus as recited in claim 11, wherein said plurality of spaced slits are generally parallel to said longitudinal axis.
16. The apparatus as recited in claim 11, wherein said plurality of spaced slits each lie at an acute angle relative to said longitudinal axis.
17. The apparatus as recited in claim 16, wherein said acute angle is between 0 and 45 degrees.
18. The apparatus as recited in claim 11, wherein said plurality of spaced slits comprises at least six slits.
19. The apparatus as recited in claim 16, wherein said plurality of spaced slits is sufficient in number such that when an axial length of said shaft is shortened, thereby causing a plurality of ribs which are disposed between each of said plurality of slits to each expand radially to form respective petals, each of said petals overlap adjacent ones thereof.
20. Apparatus for attaching connective tissue to bone, comprising a shaft having a longitudinal axis, a proximal end, and a distal end, which is adapted to be inserted into a bone, said shaft including at least six spaced slits disposed about said periphery and at least six ribs, one of which is disposed between each pair of spaced slits, wherein when an axial length of said shaft is shortened, because of the application of a compressive force, center portions of each of said ribs expand radially outwardly, thereby each forming a petal, such that there are a plurality of petals equal in number to the number of ribs.
21. The apparatus as recited in claim 20, wherein said plurality of spaced slits each lie at an acute angle relative to said longitudinal axis.
22. The apparatus as recited in claim 21, wherein said acute angle is between 0 and 45 degrees.
23. The apparatus as recited in claim 21, wherein, when said ribs are each in the radially expanded configuration, thereby forming said petal, the formed petals overlap one another to create a relatively strong structure for resisting axial pull-out forces.
24. Apparatus for attaching connective tissue to bone, consisting essentially of a shaft having a longitudinal axis, a proximal end, and a distal end, which is adapted to be inserted into a bone, said shaft including a plurality of spaced slits disposed about said periphery, said shaft being of a unitary construction.
25. The apparatus as recited in claim 24, wherein the proximal end of said shaft has a diameter which is not substantially larger than a diameter of the distal end of said shaft, so that the entire apparatus may be disposed within a hole in the bone to which the connective tissue is to be attached.
26. A method of fabricating an apparatus for attaching connective tissue to bone, comprising:
making a flat pattern of a bone anchor using a bio-compatible material;
disposing a plurality of spaced slits across a width of said flat pattern; and
roll forming said flat pattern into a generally cylindrical body.
27. The method as recited in claim 26, and further comprising a step of forming a hole in said pattern at a proximal end thereof.
28. The method as recited in claim 26, and further comprising a step of forming two complementary notches in said pattern on opposing sides thereof and at a proximal end thereof, prior to completing said roll forming step.
29. The method as recited in claim 28, and further comprising a step of forming a hole in said pattern in widthwise alignment with each of said two complementary notches, prior to completing said roll forming step.
30. The method as recited in claim 29, wherein said roll forming step further comprises ensuring that said two complementary notches are joined together to form an aperture once said cylindrical body if formed, said aperture being in alignment with said hole to create a suture channel through a lumen of said cylindrical body.
31. The method as recited in claim 27, and further comprising a step of coining said proximal end of the cylindrical body to form a neck therein, on which is disposed said hole.
32. A method for securing connective tissue to bone, comprising:
creating a hole in said bone which extends distally beyond a cortical surface thereof and into a cancellous portion thereof;
inserting an apparatus comprising a shaft having a plurality of spaced slits disposed axially along a peripheral surface of the shaft into said hole, so that no portion of the apparatus is disposed above the hole;
radially expanding a plurality of ribs disposed between said spaced slits to thereby form an anchor structure which is adapted to prevent axial pull-out of said apparatus from said hole; and
securing a suture to said apparatus and to said connective tissue.
33. The method as recited in claim 32, wherein said radially expanding step is performed by applying a compressive force axially on said shaft, to shorten an axial length thereof.
34. The method as recited in claim 32, wherein said suture securing step is performed prior to said radially expanding step.
35. The method as recited in claim 32, wherein said suture securing step is performed after said radially expanding step.
Description
    BACKGROUND OF THE INVENTION
  • [0001]
    This invention relates generally to methods and apparatus for attaching soft tissue to bone, and more particularly to anchors and methods for securing connective tissue, such as ligaments or tendons, to bone. The invention has particular application to arthroscopic surgical techniques for reattaching the rotator cuff to the humeral head, in order to repair the rotator cuff.
  • [0002]
    It is an increasingly common problem for tendons and other soft, connective tissues to tear or to detach from associated bone. One such type of tear or detachment is a “rotator cuff” tear, wherein the supraspinatus tendon separates from the humerus, causing pain and loss of ability to elevate and externally rotate the arm. Complete separation can occur if the shoulder is subjected to gross trauma, but typically, the tear begins as a small lesion, especially in older patients.
  • [0003]
    To repair a torn rotator cuff, the typical course today is to do so surgically, through a large incision. This approach is presently taken in almost 99% of rotator cuff repair cases. There are two types of open surgical approaches for repair of the rotator cuff, one known as the “classic open” and the other as the “mini-open”. The classic open approach requires a large incision and complete detachment of the deltoid muscle from the acromion to facilitate exposure. The cuff is debrided to ensure suture attachment to viable tissue and to create a reasonable edge approximation. In addition, the humeral head is abraded or notched at the proposed soft tissue to bone reattachment point, as healing is enhanced on a raw bone surface. A series of small diameter holes, referred to as “transosseous tunnels”, are “punched” through the bone laterally from the abraded or notched surface to a point on the outside surface of the greater tuberosity, commonly a distance of 2 to 3 cm. Finally, the cuff is sutured and secured to the bone by pulling the suture ends through the transosseous tunnels and tying them together using the bone between two successive tunnels as a bridge, after which the deltoid muscle must be surgically reattached to the acromion. Because of this maneuver, the deltoid requires postoperative protection, thus retarding rehabilitation and possibly resulting in residual weakness. Complete rehabilitation takes approximately 9 to 12 months.
  • [0004]
    The mini-open technique, which represents the current growing trend and the majority of all surgical repair procedures, differs from the classic approach by gaining access through a smaller incision and splitting rather than detaching the deltoid. Additionally, this procedure is typically performed in conjunction with arthroscopic acromial decompression. Once the deltoid is split, it is retracted to expose the rotator cuff tear. As before, the cuff is debrided, the humeral head is abraded, and the so-called “transosseous tunnels”, are “punched” through the bone or suture anchors are inserted. Following the suturing of the rotator cuff to the humeral head, the split deltoid is surgically repaired.
  • [0005]
    Although the above described surgical techniques are the current standard of care for rotator cuff repair, they are associated with a great deal of patient discomfort and a lengthy recovery time, ranging from at least four months to one year or more. It is the above described manipulation of the deltoid muscle together with the large skin incision that causes the majority of patient discomfort and an increased recovery time.
  • [0006]
    Less invasive arthroscopic techniques are beginning to be developed in an effort to address the shortcomings of open surgical repair. Working through small trocar portals that minimize disruption of the deltoid muscle, a few surgeons have been able to reattach the rotator cuff using various bone anchor and suture configurations. The rotator cuff is sutured intracorporeally and an anchor is driven into bone at a location appropriate for repair. Rather than thread the suture through transosseous tunnels which are difficult or impossible to create arthroscopically using current techniques, the repair is completed by tying the cuff down against bone using the anchor and suture. Early results of less invasive techniques are encouraging, with a substantial reduction in both patient recovery time and discomfort. The major stumbling block for many surgeons is the extreme difficulty in performing the procedure with the currently available tools and techniques.
  • [0007]
    There are various bone anchor designs available for use by an orthopedic surgeon for attachment of soft tissues to bone. The basic commonality between the designs is that they create an attachment point in the bone for a suture that may then be passed through the soft tissues and tied, thereby immobilizing the soft tissue. This attachment point may be accomplished by different means. Screws are known for creating such attachments, but suffer from a number of disadvantages, including their tendency to loosen over time, requiring a second procedure to later remove them, and their requirement for a relatively flat attachment geometry.
  • [0008]
    Another approach is to utilize the difference in density in the cortical bone (the tough, dense outer layer of bone) and the cancellous bone (the less dense, airy and somewhat vascular interior of the bone). There is a clear demarcation between the cortical bone and cancellous bone, where the cortical bone presents a kind of hard shell over the less dense cancellous bone. In one prior art approach that utilizes this physiological construct, the anchor is designed so that it has a longer axis and a shorter axis and is usually pre-threaded with suture. These designs use a hole in the cortical bone through which an anchor is inserted. The hole is drilled such that the shorter axis of the anchor will fit through the diameter of the hole, with the longer axis of the anchor being parallel to the axis of the drilled hole. After deployment in to the cancellous bone, the anchor is rotated 90 so that the long axis is aligned perpendicularly to the axis of the hole. The suture is pulled, and the anchor is seated up against the inside surface of the cortical layer of bone. Due to the mismatch in the dimensions of the long axis of the anchor and the hole diameter, the anchor cannot be retracted proximally from the hole, thus providing resistance to pull-out.
  • [0009]
    Examples of such an approach are seen in U.S. Pat. No. 5,879,372 to Bartlett and U.S. Pat. No. 6,007,4567 to Bonutti. Depending upon the density of the cancellous bone, these devices may be somewhat difficult to deploy. If the cancellous bone density is high, it is difficult to force the inserted anchor to rotated into a secured position.
  • [0010]
    It is possible to utilize other anchor geometry to take advantage of the cortical and cancellous bone interface. Various methods of creating an expanded or tortuous frontal area beneath the cortical surface have been described in the prior art. An example of this approach is seen is U.S. Pat. No. 5,797,963 to McDevitt. This patent describes a sub-cortical anchor that utilizes a tapered flaring tool which deploys fingers circumferentially disposed about the periphery of the anchor to engage the cancellous bone and to resist retraction through the limited diameter hole in the cortical bone. A similar approach is disclosed in U.S. Pat. Nos. 5,690,649 and 6,022,373, both to Li. The Li patents describe an anchor that incorporates two cylindrical halves with fingers that are interdigitated. When a force is imposed on the two halves, the interlocked fingers cause the deflection and deployment of the concomitant adjacent fingers on the opposite half, creating the expanded areas that resists pullout. In all of these designs, the expanding mechanism is adapted to resist axial loading, but there is no disclosure that they are capable of rotational fixation.
  • [0011]
    Still other prior art approaches have attempted to us a “pop rivet” approach. This type of design requires a hole in the cortical bone into which a split shaft is inserted. The split shaft is hollow, and has a tapered plug leading into its inner lumen. The tapered plug is extended out through the top of the shaft, and when the plug is retracted into the inner lumen, the tapered portion causes the split shaft to be flared outwardly, ostensibly locking the device into the bone.
  • [0012]
    Other methods of securing soft tissue to bone are known in the prior art, but are not presently considered to be feasible for shoulder repair procedures, because of physicians' reluctance to leave anything but a suture in the capsule area of the shoulder. The reason for this is that staples, tacks, and the like could possibly fall out and cause injury during movement. As a result of this constraint, the attachment point often must be located at a less than ideal position. Also, the tacks or staples require a substantial hole in the soft tissue, and make it difficult for the surgeon to precisely locate the soft tissue relative to the bone.
  • [0013]
    By now it should be clear that many existing fastener technologies have been adapted for use in creating an anchor point for sutures in bone. Screws, pop rivets, and the like are certainly adaptable to the wooden-like structure exhibited by bone. However, as previously discussed, bone also incorporates a structure that presents a hard, dense, outside surface and a softer, less dense core. Because of this structure, another type of fastener, commonly referred to as a “moly bolt” or “expandable bolt”, may be adapted for use in the bone. These types of fasteners were originally designed for creating attachment points in plaster board walls where the wall is analogous to the hard cortical bone surface and the airspace or insulation space is analogous to the softer cancellous bone.
  • [0014]
    One example of such a fastener is shown in U.S. Pat. No. 4,828,439, to Giannuzzi. A screw anchor is disclosed which includes a four-legged compressible shank whose normal shape is diamond-like, the front legs of the shank being joined together by a front apex hinge and the rear legs being joined to the front legs by side apex hinges. The rear legs terminate in feet whose adjacent soles normally assume the form of an inverted V-inlet. A socket whose bore lies in axial registration with a hole in the front apex of the shank is secured by a pair of normally outstretched resilient webs to the respective rear legs. To install the anchor, its side apex hinges are manually compressed to collapse the shank into a tongue which is then inserted through a hole drilled in the wall until the socket is seated therein and the shank which is now behind the wall resumes its diamond-like shape. Then a screw for holding the fixture against the wall is inserted in the socket bore and turned therein until its tip is intercepted by the inlet which is dilated thereby to admit the screw. As the turning screw continues to advance, its crests engage the soles of the feet to force the rear legs apart and in doing so compels the shank to assume a triangular shape. At the conclusion of the screw advance, its tip is threadedly received in the hole of the front apex to create behind the wall a triangular truss in which the screw forms a central strut. It is clear in reference to this patent that the principal fixation is axial, and that no provision for rotational fixation is provided.
  • [0015]
    U.S. Pat. No. 5,893,850 to Cachia describes a fixation device of a type useful for connecting two or more bone segments during the healing process. In the preferred embodiment, the device comprises an elongate pin having a distal anchor thereon. This distal anchor is essentially an umbrella-shaped end to the pin that may be selectively collapsed for pushing through a hole drilled through the bone segments, and then deployed at the distal end of the hole to prevent the elongate pin from retracting back through the hole. A proximal anchor is co-axially and slidably disposed with respect to the pin, and fixable to accommodate different bone dimensions and permit appropriate tensioning of the fixation device. An additional embodiment may be used when the preferred embodiment is not possible to deploy. This situation may occur, for example, when there is not a distal bone surface to allow for the deployment of the umbrella-shaped pin end. This embodiment describes a construction with multiple, axially expanding strips that are configured to engage the cancellous bone to resist axial withdrawal of the main body of the anchor. The patent describes two or more sets of strips, as the disclosed function of the anchor is to fixate at least two bone segments together to promote healing of the bone. There is no mention of providing an anchor point to which a suture may be secured, nor is one contemplated.
  • [0016]
    Still another bone fixation device of interest is disclosed in U.S. Pat. No. 5,501,695 to Anspach, Jr. et al. In this patent, there is disclosed a bone anchor apparatus which comprises a rivet body having a lower annular portion 12 and an upper annular portion 100. The lower annular portion includes an outer surface formed as an extension of the outer surface of the upper annular portion. Because the thickness of the lower annular portion is less than that of the upper annular portion, the upper annular portion acts as an annular step or stop. A plurality of longitudinal slots are formed on the outer surface of the lower annular portion, and lengthwise ribs are formed between the slots. The apparatus comprises multiple components, including, additionally, a separate puller, including a head and a puller rod, which extends upwardly through the inner diameter of the lower and upper parts of the rivet's annular portions. In operation, the puller is actuated upwardly until it strikes the annular step, thereby axially compressing the lower annular portion so that the ribs are expanded radially outwardly.
  • [0017]
    There is shown in FIG. 8 of the '695 patent a disk 38 which includes apertures 40 for accommodating attachment of a suture 42 thereto. This disk, however, remains above the surface of the bone once the anchor is in place. While the '695 patent discloses an apparently functional device, it is complicated and difficult to use in the close quarters attendant to arthroscopic procedures.
  • [0018]
    It may be seen, then, that as different fasteners have been adapted for use in providing an anchor point for a surgical suture in conjunction with attaching soft tissues to bone, various problems and challenges have appeared. Although some of those problems and challenges have been addressed, not all of the requirements for simple, secure fixation have been met, particularly for creating a simple and facile apparatus and method for soft tissue fixation that may be deployed arthroscopically.
  • [0019]
    What is needed, therefore, is a new arthroscopic approach for providing an anchor point in bone structure, wherein the anchor resides completely below the superficial cortical bone surface, provides both axial and rotational fixation, is better for the patient, is uncomplicated to use, thereby saving time during the repair procedure, and is easily mastered by properly skilled personnel.
  • SUMMARY OF THE INVENTION
  • [0020]
    The present invention solves the problems outlined above by providing an innovative bone anchor and connective techniques which permit a suture attachment which lies entirely beneath the cortical bone surface. The anchor design permits easy and facile insertion into the bone, and simple and secure anchoring after deployment.
  • [0021]
    More particularly, there is provided by the inventive apparatus a means and method for attaching soft or connective tissue to bone, comprising a hollow cylinder having a longitudinal axis and a periphery which is adapted to be inserted into a hole pre-drilled into bone. The cylinder is adapted to have a plurality of slits and ribs running parallel to or roughly along the longitudinal axis of the cylinder and equally distributed about the diameter of the cylinder. For example, there may be 4 slits defining 4 ribs, equally spaced at 90 intervals around the cylinder. These ribs are predisposed to bend in a direction radially outwardly from their resting position when an axial load is placed upon the cylinder. The ribs bend in a characteristic fashion that has each end of the ribs bending outwardly, with the center of the rib bending at an angle approximately twice that of the ends, and in the opposite direction. Such structure creates a “flower” or an expansion of the outside diameter of the cylinder. The “flower” moniker is chosen because, as the ribs bend outwardly away from the body of the cylinder, they create “petals” around the periphery of the cylinder.
  • [0022]
    As previously mentioned, the structure of the bone in the humerus, for example, has a dense outer layer called the cortical bone, and a lacy, cellular inner structure called the cancellous bone. When the hole for the present invention is drilled in the bone, the hole extends through the cortical layer and into the cancellous layer. As it may be seen, if the anchor is placed such that the deployment of the ribs creating the flower is undertaken below the cortical layer and in the cancellous layer, it is not possible to remove the anchor proximally from the hole, as it is trapped underneath the cortical layer. This provides an extremely secure anchoring point that distributes any load placed upon it over a relatively large surface area when compared to anchors known in the prior art. This distribution of load is a significant advance in the art, and allows loads that typically would surpass the tensile strength of the sutures used to secure the tissues. In other words, because of the innovative design of the anchor, the sutures will break before the anchor is displaced.
  • [0023]
    In the present state of the art, as discussed supra, the sutures which are passed through the tissues to be attached to bone typically are threaded through a small eyelet incorporated into the head of the anchor and then secured by tying knots in the sutures. Although the anchor means herein described certainly are amenable to such attachment, if desired, an eyelet is by no means the only way that sutures may be secured to the bone anchor. Other means of attachment which allow for adjustable, releasable suture fixation that does not require knot tying is contemplated. One such method and associated apparatus is described and disclosed in U.S. patent application Ser. No. 09/475,495 entitled METHOD AND APPARATUS FOR ATTACHING CONNECTIVE TISSUES TO BONE USING KNOTLESS SUTURE ANCHORING DEVICE which is commonly assigned and incorporated in its entirety herein by reference. In that patent application, a unique new bone anchoring system is described that eliminates the need for tying knots. The system includes a winch-like wrapping up of the sutures attached to the soft tissues. Such an anchor embodiment has the additional requirement of requiring angular or rotational fixation along with axial fixation. It may be seen that the geometry created by the present invention may provide both axial and rotational means of fixation for the bone anchor. The petals of the flower, as previously discussed, do prevent the anchor from being pulled axially out through the hole through which it was deployed. Also, because of the fact that the petals expand radially outward from the body of the anchor, they create anchor points within the cancellous bone that also resist rotational forces.
  • [0024]
    Additionally, the inventors have refined the “flower” concept to incorporate a unique and advantageous modification to the pattern of slits and ribs. By creating, in one preferred embodiment, the slits and ribs on a bias (in other words, at an acute angle when viewed relative to the axis of the body of the anchor), a different deployment mechanism is effected. With substantially axial ribs and slits, the ribs fold up in their characteristic fashion as previously described, i.e. each end of the ribs bending outwardly, with the center of the rib bending at an angle twice that of the ends and in the opposite direction and ultimately the two ends of the ribs flattening against each other. Instead, when the ribs are formed on the aforementioned bias, they tend to bend in a semi circular fashion and stack on top of each other, forming overlapping petals that create a substantial bulge in the body of the anchor.
  • [0025]
    More particularly, there is provided an apparatus for attaching connective tissue to bone, which comprises a shaft having a longitudinal axis, a proximal end, and a distal end. The shaft is adapted to be inserted into a bone, and includes a plurality of spaced slits disposed about the shaft periphery. Preferably, the shaft comprises a peripheral (cylindrical) wall defining a central lumen, and an aperture is disposed directly on the proximal end of the shaft (specifically on the peripheral wall) for receiving a suture. Unlike the prior art, the proximal end of the shaft, where the aperture is disposed in the peripheral wall thereof, has a diameter which is no larger (and preferably smaller) than a diameter of said distal end. This unique configuration permits the entire apparatus, including the suture anchoring point, to be disposed within a hole drilled in the bone, so that no portion thereof extends above the cortical bone surface.
  • [0026]
    In one embodiment, the plurality of spaced slits are generally parallel to the longitudinal axis. In another preferred embodiment, the plurality of spaced slits each lie at an acute angle (preferably between 0 and 45 degrees) relative to the longitudinal axis.
  • [0027]
    In a preferred embodiment, there is preferably a second aperture disposed on the peripheral wall in opposed alignment with the first aperture, to thereby create a suture conduit through the lumen of the shaft.
  • [0028]
    In another aspect of the invention, there is disclosed an apparatus for attaching connective tissue to bone, comprising a shaft having a longitudinal axis, a proximal end, and a distal end, which is adapted to be inserted into a bone. The inventive shaft or tubular structure includes a plurality of spaced slits disposed about the periphery thereof. The apparatus is of a unitary construction and includes no structure which is disposed proximally of the shaft. The proximal end of the shaft has a diameter which is not substantially larger than a diameter of the distal end of the shaft, so that the entire apparatus may be disposed within a hole in the bone to which the connective tissue is to be attached.
  • [0029]
    In yet another aspect of the invention, an apparatus is provided for attaching connective tissue to bone, comprising a shaft having a longitudinal axis, a proximal end, and a distal end, which is adapted to be inserted into a bone. Advantageously, the inventive shaft includes at least six spaced slits disposed about the periphery and at least six ribs, one of which is disposed between each pair of spaced slits, wherein when an axial length of the shaft is shortened, because of the application of a compressive force, center portions of each of the ribs expand radially outwardly, thereby each forming a petal, such that there are a plurality of petals equal in number to the number of ribs. The inventors have found that a minimum of six ribs is preferred in order to provide the expanded anchor structure with adequate rigidity to function effectively in resisting pullout forces applied to the inventive anchor. In particular, in preferred embodiments, the plurality of spaced slits each lie at an acute angle (preferably 0 to 45 degrees) relative to the longitudinal axis of the shaft.
  • [0030]
    In this embodiment, when the aforementioned petals are created by radial expansion of the ribs, the inventors have found that the formed petals should overlap one another. Six or more ribs are preferred to assure this overlapping arrangement.
  • [0031]
    In still another aspect of the invention, there is provided an apparatus for attaching connective tissue to bone, consisting essentially of a shaft having a longitudinal axis, a proximal end, and a distal end, which is adapted to be inserted into a bone. The shaft includes a plurality of spaced slits disposed about its periphery, and is of a unitary construction.
  • [0032]
    In another aspect of the invention, there is disclosed a method of fabricating an apparatus for attaching connective tissue to bone. This method comprises an initial step of making a flat pattern of a bone anchor using a bio-compatible material. Then, a plurality of spaced slits are disposed across a width of the flat pattern. The flat pattern is then roll formed into a generally cylindrical tubular body or shaft. In preferred approaches, a hole is formed in the pattern at a proximal end thereof, prior to roll forming. Additionally, the method preferably includes a step of forming two complementary notches in the pattern on opposing sides thereof and at a proximal end thereof. These two notches and the aforementioned hole should be in widthwise alignment with one another, so that when the structure is roll formed, they will together form a pair of aligned holes that create a suture channel through a lumen of the cylindrical body.
  • [0033]
    In yet another aspect of the invention, there is disclosed a method for securing connective tissue to bone. The method comprises a step of creating a hole in the bone which extends distally beyond a cortical surface thereof and into a cancellous portion thereof. Then, an apparatus comprising a shaft having a plurality of spaced slits disposed axially along a peripheral surface thereof is inserted into the hole, so that no portion of the apparatus is disposed above the hole. A plurality of ribs disposed between the spaced slits are then radially expanded to form an anchor structure which is adapted to prevent axial pull-out of the apparatus from the hole. A suture is secured to the apparatus and to the connective tissue.
  • [0034]
    Preferably, the aforementioned radially expanding step is performed by applying a compressive force axially on the shaft, to shorten an axial length thereof. The suture securing step may be performed prior to or after the radially expanding step.
  • [0035]
    The invention, together with additional features and advantages thereof, may best be understood by reference to the following description taken in conjunction with the accompanying illustrative drawing.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0036]
    [0036]FIG. 1 illustrates a humerus and a tendon to be attached thereto in cross-section;
  • [0037]
    [0037]FIG. 2A is a plan view of a flat pattern to be formed into a bone anchor of the present invention;
  • [0038]
    [0038]FIG. 2B is a perspective view of the flat pattern illustrated in FIG. 2A which has been roll formed into a cylinder;
  • [0039]
    [0039]FIG. 3 is a perspective view of the structure illustrated in FIG. 2B, coined into a bone anchor of the present invention;
  • [0040]
    [0040]FIG. 4 is a perspective view of the bone anchor of FIG. 3 after deployment in accordance with a method of the present invention;
  • [0041]
    [0041]FIG. 5 is a cross-sectional view showing the bone anchor of FIG. 3 inserted into a hole drilled into the humerus of FIG. 1, according to a method of the present invention;
  • [0042]
    [0042]FIG. 6 is a cross-sectional view of the bone anchor of FIG. 5 after it has been deployed;
  • [0043]
    [0043]FIG. 6A is a perspective view of an alternative application for the bone anchor of the present invention;
  • [0044]
    [0044]FIG. 7 is a perspective view of an alternative embodiment of the bone anchor of the present invention;
  • [0045]
    [0045]FIG. 8 is a perspective view of the bone anchor of FIG. 7 in a deployed state;
  • [0046]
    [0046]FIG. 9 is a cross-sectional plan view of a humerus and tendon showing the anchor of FIG. 7 inserted into the humerus of FIG. 1, in accordance with a method of the present invention; and
  • [0047]
    [0047]FIG. 10 is a cross-sectional plan view similar to FIG. 9, showing the anchor in a deployed state and the tendon sutured to the humeral bone.
  • DESCRIPTION OF THE PREFERRED EMBODIMENT
  • [0048]
    Referring now more particularly to the drawings, there is shown in FIG. 1 a partial cross-sectional view of a humeral head 10 which includes an outer surface of cortical bone 12 and inner cancellous bone 14. A rotator cuff tendon 16 is disposed across the surface of the cortical bone 12. A blind hole 18 has been made, preferably by drilling, through a desired location on the cortical bone 12 and into the cancellous bone 14. This illustration is intended to provide a simple overview of the physiological elements and structure involved in a typical situation wherein reattachment of connective tissue such as the tendon 16 to the cortical bone 12 is desired. It is to be understood that the proximity in the illustration of the rotator cuff tendon 16 to the cortical bone 12 is merely exemplary, and that the rotator cuff tendon 16 is not attached to the cortical bone 12 at the interface 20 between the two.
  • [0049]
    Referring now to FIG. 2A, there is illustrated a flat pattern 22 of a bone anchor constructed in accordance with the principles of the present invention, including slits 24 and ribs 26 which are formed by the pattern of slits 24, together with a hole 28 and half holes 30 a, 30 b, aligned across the width of the pattern 22 at one end thereof. Such flat pattern 22 may be fabricated from any material suitable for implantation into the body as is known in the art, such as stainless steel 316L, and may be formed by flat stamping or photochemical machining or the like.
  • [0050]
    Referring to FIG. 2B, the flat pattern 22 has been roll formed into a cylindrical body 32, which includes the slits 24 and ribs 26 seen in FIG. 2A, as well as the hole 28, and the half holes 30 which are now formed into a single hole 34, as a result of the roll forming process. It is to be understood, of course, that the flat form of the anchor has been shown for informational purposes as to one possible method of fabrication, and is not to be deemed limiting. Clearly, to those skilled in the art, many other methods of manufacture, such as laser cutting drawn hypodermic tubing, or deep draw progressive die stamping, may be employed.
  • [0051]
    [0051]FIG. 3 shows the cylindrical body 32 of FIG. 2B, but it has now been coined to form a neck 36 at a proximal end 38, such that the hole 28 and the single hole 34 are aligned with each other to form a conduit 40 for suture to be passed through, to thereby provide an anchor point for the suture. How this anchor point is used will be more fully described below in connection with subsequent drawing figures.
  • [0052]
    The bone anchor of FIG. 3 is shown in its undeployed state. Referring, however, to FIG. 4, it may be seen that the geometry of the ribs 26 has now been changed such that the ribs 26 have been bent to form one petal 44 that includes roots 46 a,b and an apex 48. It is to be understood that although this description of the petal 44 is singular, it is clear that the geometry and configuration of the anchor includes multiple petals, and that this description therefore is applicable to all of the petals. In fact, in preferred embodiments a minimum of five petals, comprising, of course, six ribs and six associated slits, are employed, for reasons to be discussed hereinbelow.
  • [0053]
    The deformation of the ribs 26 is accomplished by imposing a compressive force on the distal end 42 and the proximal end 38 of the cylindrical body 32. Because each of the ribs 26 act as an independent column, when the compressive force is imposed, they eventually bend as a result of column buckling. After the onset of such buckling, the characteristic geometry has an angle of buckling at the apex 48 of the petal 44 which is equal to the sum of the angles at the roots 46 a,b. At the formation of the petals 44, interstices 50 are created between the petals 44. The interstices 50 are important to the creation of a rotational fixation moment, in that edges 52 of the petals 44 are in direct contact with the cancellous bone as the flower is formed. The apex 48 creates a channel in the cancellous bone that traps material in the interstices 50 of the flower. Any rotational moment imposed on the bone anchor is resisted by the petals 44, and specifically by the edges 52 of the petals 44.
  • [0054]
    Referring to FIGS. 5 and 6, it can be seen how the inventive apparatus can be used as a bone anchor for attachment of soft tissues to bone. FIG. 5 illustrates a bone anchor 54 of the type shown in FIGS. 2-4 that has been inserted into the drilled hole 18 in the humeral head 10. The bone anchor 54 includes slits 24 and ribs 26 on a cylindrical body 32, as previously described. A length of suture 56 has been passed through the conduit 40 at the proximal end 38 of the bone anchor 54, and then through the soft tissue represented by the rotator cuff tendon 16. After insertion into the drilled hole 18, the slits 24 and ribs 26 are in position in the cancellous bone 14 and below the surface of the cortical bone 12.
  • [0055]
    Now referring particularly to FIG. 6, the bone anchor 54 is illustrated in its deployed state. The slits 24 and ribs 26 have been converted into petals 44, and the apex 48 of each petal 44 has dug its way into the cancellous bone 14. The petals create a large surface area that bears against the underside of the cortical bone 12, and prevents the bone anchor 24 from being retracted proximally out of the drilled hole 18 in the cortical bone 12. The suture 56 has been tied into a knot 58, which pulls the rotator cuff tendon 16 down against the cortical bone 12.
  • [0056]
    As previously described, the inventive anchor fixation structure may be used not only to provide axial fixation, but also rotational fixation. Referring now to FIG. 6A, it can be seen how the petals 44 may create a rotational fixation structure. As previously noted, the contents of commonly assigned U.S. patent application Ser. No. 09/475,495 have been incorporated in their entirety in the present application. In that application, there is disclosed a unique bone anchoring system which utilizes an anchor structure that mimics a winch in order to create the fixation point and create tension in the sutures that are disposed through the tendon or soft tissue to be attached to bone. This novel system has the additional structural requirement of rotational fixation, as the suture is wrapped around the anchor body to create the aforementioned fixation and tension.
  • [0057]
    Accordingly, in FIG. 6A there is shown a bone anchor 60 which includes an anchor body 62 and petals 64. The bone anchor is inserted into a drilled hole 66 in the bone through cortical bone 68 and into cancellous bone 70. A suture 72 is passed through a tendon 74, threaded through a slit 76 in the bone, and is wrapped around the anchor body 62 by rotation of the anchor body 62. As previously discussed, the formation of the petals 64 create interstices 78 in the cancellous bone 70, which in turn provides a rotational moment about the axis of the anchor body 62. The created rotational moment resists any rotational force imposed by the suture 72 on the anchor body 62. it is important to note that this anti-rotational structure is deliberately created by judicious selection of petal geometry, i.e. the number of petals, how far they extend from the body 62, the breadth of their shoulders, and the thickness of the material from which they are fabricated. These factors affect the size and shape of the interstices that are formed between the petals, and, of course, the concomitant rotational moment that may be developed thereby.
  • [0058]
    More particularly, the inventors have found that a minimum of six ribs, forming six petals, are preferably employed, in order to ensure that the interstices between expanded ribs are not too large to be effective in containing trapped cancellous bone material, which functions in resisting applied rotational forces. A greater number of petals are also preferred to provide adequate expanded surface area to resist any applied rotational forces, as well as to provide a sufficiently strong expanded structure to adequately resist applied pullout forces. On the other hand, too many ribs, and consequent petals, will result in interstices which are too small to effectively trap an adequate amount of cancellous bone material.
  • [0059]
    Another embodiment of the present invention may be seen by referring to FIG. 7, where there is illustrated a bone anchor 80 which includes a cylindrical body 82, into which slits 84 have been formed, creating ribs 86. The bone anchor 80 also includes a proximal end 88, a distal end 90, and a suture conduit 92. As may be observed from FIG. 7, the slits 84 have been formed at an acute angle (i.e. between 0 and 90 degrees, and preferably less than 45 degrees) to the axis of the cylindrical body 82. As before, it is to be understood that in referring to a single slit 84 or rib 86, we are also referring to the multiplicity of slits 84 and ribs 86 that are formed in the cylindrical body 82, as a single slit 84 or rib 86 is representative of each of the slits 84 or ribs 86. In other words, each petal has the same geometry and physical behavior, though the precise number of slits and ribs may vary in different embodiments, without deviating from the overall inventive concept. It may also be observed that the materials and construction of this embodiment of the bone anchor may be chosen using criteria similar to those described earlier with respect to alternate embodiments.
  • [0060]
    As may be seen by referring now to FIG. 8, as a compressive force is impressed on the distal end 90 and the proximal end 88, the ribs 86 buckle and deform into the characteristic shape shown. Because of the bias cut on the slits 84, instead of buckling in a linear fashion like the ribs 26 of FIG. 6, the ribs 86 buckle such that they take on a semi-circular shape, and adjacent ribs overlap and support each other. The inventors have found that a minimum of six ribs should be employed to obtain this important overlapping feature, which feature is significant in the configuration of an anchor point for a suture, as will be described hereinbelow.
  • [0061]
    Referring now to FIGS. 9-10, there may be seen a cross section of a humeral head 10 identical to that described in connection with previous FIGS. 1, 5 and 6. The bone anchor 80 has been disposed within the drilled hole 18, with the proximal end entirely below the surface of the cortical bone 12. A length of suture 94 is shown threaded through the suture conduit 92 at the proximal end 88 of the bone anchor 80. The length of suture 94 is also shown threaded through the rotator cuff tendon 16 laying on top of the humeral head 10. As shown particularly in FIG. 10, the bone anchor 80 has been deployed by the application of a compressive force to create the characteristic bending of the ribs 86 into their semi-circular state. The creation of this semi-circular geometry in the ribs 86 increases the body diameter of the bone anchor 80 such that the aggregate outside diameter of the deformed ribs 86 is substantially larger than the nominal diameter of the cylindrical body 82. In this manner, the anchor is prevented from passing proximally out of the drilled hole 18 in the hard cortical bone 12, as it is retained up against the inner surface of the cortical bone 12. As discussed supra, the structure is strengthened because of the overlapping expanded ribs 86. A knot 96, tied in the length of suture 94, secures the rotator cuff tendon 16 to the humeral head 10.
  • [0062]
    It is to be understood that the figures of the bone and anchors seen above are purely illustrative in nature, and are not intended to perfectly reproduce the physiologic and anatomic nature of the humeral head as expected to be seen in the human species, nor to limit the application of the inventive embodiments to repair of the rotator cuff. The invention is applicable to many different types of procedures involving, in particular, the attachment of connective or soft tissue to bone.
  • [0063]
    Accordingly, although an exemplary embodiment of the invention has been shown and described, it is to be understood that all the terms used herein are descriptive rather than limiting, and that many changes, modifications, and substitutions may be made by one having ordinary skill in the art without departing from the spirit and scope of the invention.
Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2202004 *20 Dec 193828 May 1940Heiner John NValve
US3143916 *3 Apr 196211 Aug 1964A A Rice IncCollapsible self-anchoring device
US3942407 *6 Aug 19749 Mar 1976Aackersberg MortensenExpandable screw anchoring devices
US3994521 *3 Sep 197530 Nov 1976Brammall, Inc.Portable cable lock with ball detents
US4210148 *3 Nov 19781 Jul 1980Stivala Oscar GRetention suture system
US4274324 *16 May 197923 Jun 1981Giannuzzi LouisHollow wall screw anchor
US4301551 *9 Jul 197924 Nov 1981Ecole PolythechniqueDeformable high energy storage tension spring
US4456270 *8 Dec 198126 Jun 1984Zettl Otto JunChuck
US4467478 *20 Sep 198228 Aug 1984Jurgutis John AHuman ligament replacement
US4483023 *21 Aug 198120 Nov 1984Meadox Medicals, Inc.High-strength ligament prosthesis
US4493323 *13 Dec 198215 Jan 1985University Of Iowa Research FoundationSuturing device and method for using same
US4590928 *22 Sep 198127 May 1986South African Invention Development CorporationSurgical implant
US4597776 *22 Jan 19851 Jul 1986Rockwell International CorporationHydropyrolysis process
US4605414 *6 Jun 198412 Aug 1986John CzajkaReconstruction of a cruciate ligament
US4672957 *26 Sep 198416 Jun 1987South African Inventions Development CorporationSurgical device
US4712542 *30 Jun 198615 Dec 1987Medmetric CorporationSystem for establishing ligament graft orientation and isometry
US4750492 *27 Feb 198514 Jun 1988Richards Medical CompanyAbsorbable suture apparatus, method and installer
US4772286 *17 Feb 198720 Sep 1988E. Marlowe GobleLigament attachment method and apparatus
US4823780 *13 Mar 198525 Apr 1989Odensten Magnus GDrill guiding and aligning device
US4828439 *15 May 19879 May 1989Giannuzzi LouisScrew anchor
US4851005 *15 Jul 198825 Jul 1989South African Invention Development CorporationSurgical implant
US4968315 *8 Feb 19896 Nov 1990Mitek Surgical Products, Inc.Suture anchor and suture anchor installation tool
US5002550 *7 Feb 199026 Mar 1991Mitek Surgical Products, Inc.Suture anchor installation tool
US5195542 *25 Apr 199023 Mar 1993Dominique GaziellyReinforcement and supporting device for the rotator cuff of a shoulder joint of a person
US5219359 *17 Sep 199115 Jun 1993Femcare LimitedSuture apparatus
US5258016 *14 Feb 19922 Nov 1993American Cyanamid CompanySuture anchor and driver assembly
US5275176 *30 Dec 19914 Jan 1994Chandler Eugene JStabilization device and method for shoulder arthroscopy
US5326205 *27 May 19925 Jul 1994Anspach Jr William EExpandable rivet assembly
US5330468 *12 Oct 199319 Jul 1994Burkhart Stephen SDrill guide device for arthroscopic surgery
US5330488 *9 Apr 199319 Jul 1994Goldrath Milton HVerres needle suturing kit
US5364407 *21 Mar 199415 Nov 1994Poll Wayne LLaparoscopic suturing system
US5413579 *10 May 19939 May 1995Technology Finance Corporation (Proprietary) LimitedSurgical saw guide and drill guide
US5441508 *22 Mar 199315 Aug 1995Gazielly; DominiqueReinforcement and supporting device for the rotator cuff of a shoulder joint of a person
US5501695 *21 Mar 199426 Mar 1996The Anspach Effort, Inc.Fastener for attaching objects to bones
US5571120 *30 May 19955 Nov 1996Yoon; InbaeLigating instrument and methods of ligating tissue in endoscopic operative procedures
US5573540 *18 Jul 199412 Nov 1996Yoon; InbaeApparatus and method for suturing an opening in anatomical tissue
US5573548 *9 Jun 199412 Nov 1996Zimmer, Inc.Suture anchor
US5575801 *26 Aug 199419 Nov 1996Arthrex, Inc.Method and apparatus for arthroscopic rotator cuff repair
US5584839 *12 Dec 199417 Dec 1996Gieringer; Robert E.Intraarticular drill guide and arthroscopic methods
US5584860 *15 Feb 199517 Dec 1996Mitek Surgical Products, Inc.Suture anchor loader and driver
US5591207 *30 Mar 19957 Jan 1997Linvatec CorporationDriving system for inserting threaded suture anchors
US5611801 *29 Nov 199418 Mar 1997Pioneer Laboratories, Inc.Method and apparatus for bone fracture fixation
US5618314 *13 Dec 19938 Apr 1997Harwin; Steven F.Suture anchor device
US5681333 *8 Nov 199528 Oct 1997Arthrex, Inc.Method and apparatus for arthroscopic rotator cuff repair utilizing bone tunnels for suture attachment
US5683419 *15 Jul 19964 Nov 1997Thal; RaymondKnotless suture anchor assembly
US5690649 *5 Dec 199525 Nov 1997Li Medical Technologies, Inc.Anchor and anchor installation tool and method
US5697950 *7 Feb 199616 Dec 1997Linvatec CorporationPre-loaded suture anchor
US5702397 *20 Feb 199630 Dec 1997Medicinelodge, Inc.Ligament bone anchor and method for its use
US5707394 *22 Aug 199613 Jan 1998Bristol-Myers Squibb CompanyPre-loaded suture anchor with rigid extension
US5725529 *6 Dec 199310 Mar 1998Innovasive Devices, Inc.Bone fastener
US5725541 *27 Feb 199710 Mar 1998The Anspach Effort, Inc.Soft tissue fastener device
US5741282 *22 Jan 199621 Apr 1998The Anspach Effort, Inc.Soft tissue fastener device
US5782865 *21 Aug 199621 Jul 1998Grotz; Robert ThomasStabilizer for human joints
US5797963 *6 Dec 199525 Aug 1998Innovasive Devices, Inc.Suture anchor assembly and methods
US5810854 *24 Jan 199722 Sep 1998Beach; William R.Method and apparatus for attaching connective tissue to each other or underlying bone
US5860978 *9 Aug 199619 Jan 1999Innovasive Devices, Inc.Methods and apparatus for preventing migration of sutures through transosseous tunnels
US5868789 *3 Feb 19979 Feb 1999Huebner; Randall J.Removable suture anchor apparatus
US5879372 *5 May 19979 Mar 1999Bartlett; Edwin C.Apparatus and method for anchoring sutures
US5893850 *12 Nov 199613 Apr 1999Cachia; Victor V.Bone fixation device
US5941900 *12 Sep 199724 Aug 1999Bonutti; Peter M.Method and apparatus for anchoring a suture
US5944739 *12 Mar 199831 Aug 1999Surgical Dynamics, Inc.Suture anchor installation system
US6007567 *1 Mar 199928 Dec 1999Bonutti; Peter M.Suture anchor
US6013083 *2 May 199711 Jan 2000Bennett; William F.Arthroscopic rotator cuff repair apparatus and method
US6022373 *3 Apr 19988 Feb 2000Li Medical Technologies, Inc.Surgical anchor and package and cartridge for surgical anchor
US6045572 *16 Oct 19984 Apr 2000Cardiac Assist Technologies, Inc.System, method and apparatus for sternal closure
US6045573 *21 Jan 19994 Apr 2000Ethicon, Inc.Suture anchor having multiple sutures
US6149669 *30 Oct 199721 Nov 2000Li Medical Technologies, Inc.Surgical fastener assembly method of use
US6171317 *14 Sep 19999 Jan 2001Perclose, Inc.Knot tying device and method
US6241736 *11 May 19995 Jun 2001Scimed Life Systems, Inc.Manual bone anchor placement devices
US6355053 *28 Jun 200012 Mar 2002Li Medical Technologies, Inc.Anchor, tool and method and apparatus for emplacing anchor in a borehole
US6436109 *28 Jun 199920 Aug 2002X-Site, L.L.C.Device and method for suturing blood vessels and the like
US6491714 *11 May 200010 Dec 2002William F. BennettSurgical tissue repair and attachment apparatus and method
US6520980 *2 Nov 200018 Feb 2003Opus Medical, Inc.Method and apparatus for attaching connective tissues to bone using a self-locking knotless suture anchoring device
US6540770 *21 Apr 19991 Apr 2003Tornier SaReversible fixation device for securing an implant in bone
US6582453 *14 Jul 200024 Jun 2003Opus Medical, Inc.Method and apparatus for attaching connective tissues to bone using a suture anchoring device
US6635073 *21 Feb 200121 Oct 2003Peter M. BonuttiMethod of securing body tissue
US6648903 *8 Sep 199818 Nov 2003Pierson, Iii Raymond H.Medical tensioning system
US6652561 *13 Oct 200025 Nov 2003Opus Medical, IncMethod and apparatus for attaching connective tissues to bone using a perforated suture anchoring device
US6656183 *8 Nov 20012 Dec 2003Smith & Nephew, Inc.Tissue repair system
US6679896 *28 Mar 200220 Jan 2004Scimed Life Systems, Inc.Transvaginal suture spacer devices and methods of use
US6689154 *29 Aug 200110 Feb 2004Edwin C. BartlettSuture anchor and associated method of implantation
US6855157 *4 Feb 200215 Feb 2005Arthrocare CorporationMethod and apparatus for attaching connective tissues to bone using a knotless suture anchoring device
US6972027 *26 Jun 20026 Dec 2005Stryker EndoscopySoft tissue repair system
US7083638 *12 Feb 20011 Aug 2006Arthrocare CorporationMethod and apparatus for attaching connective tissues to bone using a knotless suture anchoring device
US7104999 *28 Jun 200312 Sep 2006Ethicon, Inc.Surgical anchor inserter
US7329272 *3 Apr 200312 Feb 2008Arthrex, Inc.Graft fixation using a plug against suture
US20040093031 *3 Apr 200313 May 2004Burkhart Stephen S.Graft fixation using a plug against suture
US20050033364 *6 Jul 200410 Feb 2005Opus Medical, Inc.Bone anchor insertion device
US20050090827 *28 Oct 200328 Apr 2005Tewodros GedebouComprehensive tissue attachment system
US20060004364 *1 Jun 20055 Jan 2006Green Michael LSystem and method for attaching soft tissue to bone
US20060079904 *12 Oct 200513 Apr 2006Raymond ThalMultirow knotless suture anchor assembly
US20070142838 *19 Dec 200521 Jun 2007Christopher JordanSurgical suture staple and attachment device for securing a soft tissue to a bone
USD385352 *2 May 199421 Oct 1997Zimmer, Inc.Suture anchor screw
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US767427425 Mar 20039 Mar 2010Arthrocare CorporationMethod and apparatus for attaching connective tissues to bone using a cortical bone anchoring device
US768237413 Mar 200623 Mar 2010Arthrocare CorporationKnotless suture lock and bone anchor implant method
US769549429 Jun 200413 Apr 2010Arthrocare CorporationMethod and apparatus for attaching connective tissues to bone using a knotless suture anchoring device
US796397212 Sep 200721 Jun 2011Arthrocare CorporationImplant and delivery system for soft tissue repair
US80623346 Nov 200622 Nov 2011Kfx Medical CorporationSuture anchor
US810094226 Sep 201124 Jan 2012Kfx Medical CorporationSystem and method for attaching soft tissue to bone
US810996617 Jul 20077 Feb 2012Arthrocare CorporationMethods for attaching connective tissues to bone using a multi-component anchor
US810996926 Sep 20117 Feb 2012Kfx Medical CorporationSystem and method for attaching soft tissue to bone
US811883528 Sep 200521 Feb 2012Surgical Solutions, LlcSuture anchor
US811883622 Aug 200821 Feb 2012Biomet Sports Medicine, LlcMethod and apparatus for coupling soft tissue to a bone
US812865822 Aug 20086 Mar 2012Biomet Sports Medicine, LlcMethod and apparatus for coupling soft tissue to bone
US81332583 Aug 200613 Mar 2012Arthrocare CorporationMethod and apparatus for attaching connective tissues to bone using a knotless suture anchoring device
US813738121 Apr 200820 Mar 2012Arthrocare CorporationKnotless suture anchor having discrete polymer components and related methods
US813738222 Aug 200820 Mar 2012Biomet Sports Medicine, LlcMethod and apparatus for coupling anatomical features
US822145427 Oct 200917 Jul 2012Biomet Sports Medicine, LlcApparatus for performing meniscus repair
US82316546 May 201131 Jul 2012Biomet Sports Medicine, LlcAdjustable knotless loops
US825199812 Feb 200828 Aug 2012Biomet Sports Medicine, LlcChondral defect repair
US82679646 Feb 201218 Sep 2012Kfx Medical CorporationSystem and method for attaching soft tissue to bone
US827310622 Dec 201025 Sep 2012Biomet Sports Medicine, LlcSoft tissue repair and conduit device
US829292111 Mar 201123 Oct 2012Biomet Sports Medicine, LlcSoft tissue repair device and associated methods
US829826222 Jun 200930 Oct 2012Biomet Sports Medicine, LlcMethod for tissue fixation
US830360430 Sep 20096 Nov 2012Biomet Sports Medicine, LlcSoft tissue repair device and method
US83178257 Apr 200927 Nov 2012Biomet Sports Medicine, LlcSoft tissue conduit device and method
US831782924 Feb 201227 Nov 2012Arthrocare CorporationMethod and apparatus for attaching connective tissues to bone using a knotless suture anchoring device
US833752511 Mar 201125 Dec 2012Biomet Sports Medicine, LlcSoft tissue repair device and associated methods
US834322727 May 20101 Jan 2013Biomet Manufacturing Corp.Knee prosthesis assembly with ligament link
US8361113 *22 Jun 200929 Jan 2013Biomet Sports Medicine, LlcMethod and apparatus for coupling soft tissue to a bone
US84092531 Jul 20102 Apr 2013Biomet Sports Medicine, LlcSoft tissue repair assembly and associated method
US842553612 May 201123 Apr 2013Arthrocare CorporationImplant and delivery system for soft tissue repair
US844467212 May 200921 May 2013Arthrocare CorporationMethods and devices for attaching connective tissues to bone using a knotless suture anchoring device
US850081827 May 20106 Aug 2013Biomet Manufacturing, LlcKnee prosthesis assembly with ligament link
US850659725 Oct 201113 Aug 2013Biomet Sports Medicine, LlcMethod and apparatus for interosseous membrane reconstruction
US851237822 Nov 201120 Aug 2013Kfx Medical CorporationSuture anchor
US852390229 Jan 20103 Sep 2013Kfx Medical CorporationSystem and method for attaching soft tissue to bone
US852960127 Aug 200910 Sep 2013Kfx Medical CorporationSystem and method for attaching soft tissue to bone
US855114013 Jul 20118 Oct 2013Biomet Sports Medicine, LlcMethod and apparatus for coupling soft tissue to bone
US85626452 May 201122 Oct 2013Biomet Sports Medicine, LlcMethod and apparatus for forming a self-locking adjustable loop
US856264729 Oct 201022 Oct 2013Biomet Sports Medicine, LlcMethod and apparatus for securing soft tissue to bone
US857423519 May 20115 Nov 2013Biomet Sports Medicine, LlcMethod for trochanteric reattachment
US85973273 Nov 20103 Dec 2013Biomet Manufacturing, LlcMethod and apparatus for sternal closure
US860877721 Oct 201117 Dec 2013Biomet Sports MedicineMethod and apparatus for coupling soft tissue to a bone
US863256920 Dec 201221 Jan 2014Biomet Sports Medicine, LlcSoft tissue repair device and associated methods
US86521712 May 201118 Feb 2014Biomet Sports Medicine, LlcMethod and apparatus for soft tissue fixation
US86521726 Jul 201118 Feb 2014Biomet Sports Medicine, LlcFlexible anchors for tissue fixation
US86578541 Jun 200625 Feb 2014Arthrocare CorporationKnotless suture anchoring device having deforming section to accommodate sutures of various diameters
US86729688 Feb 201018 Mar 2014Biomet Sports Medicine, LlcMethod for implanting soft tissue
US86729697 Oct 201118 Mar 2014Biomet Sports Medicine, LlcFracture fixation device
US868506012 May 20091 Apr 2014Arthrocare CorporationMethods and devices for attaching connective tissues to bone using a knotless suture anchoring device
US87216845 Mar 201213 May 2014Biomet Sports Medicine, LlcMethod and apparatus for coupling anatomical features
US87713165 Mar 20128 Jul 2014Biomet Sports Medicine, LlcMethod and apparatus for coupling anatomical features
US877135217 May 20118 Jul 2014Biomet Sports Medicine, LlcMethod and apparatus for tibial fixation of an ACL graft
US877795616 Aug 201215 Jul 2014Biomet Sports Medicine, LlcChondral defect repair
US880178327 May 201012 Aug 2014Biomet Sports Medicine, LlcProsthetic ligament system for knee joint
US884064517 Feb 201223 Sep 2014Biomet Sports Medicine, LlcMethod and apparatus for coupling soft tissue to a bone
US890031419 Dec 20122 Dec 2014Biomet Manufacturing, LlcMethod of implanting a prosthetic knee joint assembly
US892666319 Nov 20136 Jan 2015Kfx Medical CorporationSystem and method for attaching soft tissue to bone
US89323315 Mar 201213 Jan 2015Biomet Sports Medicine, LlcMethod and apparatus for coupling soft tissue to bone
US89366213 Nov 201120 Jan 2015Biomet Sports Medicine, LlcMethod and apparatus for forming a self-locking adjustable loop
US895128728 Oct 201410 Feb 2015Kfx Medical CorporationSystem and method for attaching soft tissue to bone
US896836417 May 20113 Mar 2015Biomet Sports Medicine, LlcMethod and apparatus for fixation of an ACL graft
US899894916 Aug 20067 Apr 2015Biomet Sports Medicine, LlcSoft tissue conduit device
US90052874 Nov 201314 Apr 2015Biomet Sports Medicine, LlcMethod for bone reattachment
US901738110 Apr 200728 Apr 2015Biomet Sports Medicine, LlcAdjustable knotless loops
US902308327 Jan 20125 May 2015Arthrocare CorporationMethod for soft tissue repair with free floating suture locking member
US903401427 Jan 201219 May 2015Arthrocare CorporationFree floating wedge suture anchor for soft tissue repair
US90442265 Sep 20132 Jun 2015Kfx Medical CorporationSystem and method for attaching soft tissue to bone
US90443137 Oct 20112 Jun 2015Kfx Medical CorporationSystem and method for securing tissue to bone
US90786448 Mar 201014 Jul 2015Biomet Sports Medicine, LlcFracture fixation device
US910135529 Jun 201211 Aug 2015Pivot Medical, Inc.Method and apparatus for re-attaching the labrum to the acetabulum, including the provision and use of a novel suture anchor system
US914926710 Nov 20116 Oct 2015Biomet Sports Medicine, LlcMethod and apparatus for coupling soft tissue to a bone
US914926814 Mar 20136 Oct 2015Pivot Medical, Inc.Method and apparatus for attaching tissue to bone, including the provision and use of a novel knotless suture anchor system
US917365122 Oct 20123 Nov 2015Biomet Sports Medicine, LlcSoft tissue repair device and associated methods
US917990519 Jul 201010 Nov 2015Pivot Medical, Inc.Method and apparatus for re-attaching the labrum to the acetabulum, including the provision and use of a novel suture anchor system
US919864927 Jan 20121 Dec 2015Arthrocare CorporationRotating locking member suture anchor and method for soft tissue repair
US92160788 May 201322 Dec 2015Biomet Sports Medicine, LlcMethod and apparatus for tibial fixation of an ACL graft
US922674227 Jan 20125 Jan 2016Arthrocare CorporationRestricted wedge suture anchor and method for soft tissue repair
US927171314 Nov 20111 Mar 2016Biomet Sports Medicine, LlcMethod and apparatus for tensioning a suture
US93142411 Feb 201319 Apr 2016Biomet Sports Medicine, LlcApparatus for coupling soft tissue to a bone
US935799119 Dec 20127 Jun 2016Biomet Sports Medicine, LlcMethod and apparatus for stitching tendons
US93579921 Feb 20137 Jun 2016Biomet Sports Medicine, LlcMethod for coupling soft tissue to a bone
US936421027 Jan 201214 Jun 2016Arthrocare CorporationBiased wedge suture anchor and method for soft tissue repair
US93703508 Mar 201321 Jun 2016Biomet Sports Medicine, LlcApparatus for coupling soft tissue to a bone
US93810138 Mar 20135 Jul 2016Biomet Sports Medicine, LlcMethod for coupling soft tissue to a bone
US940262124 Sep 20122 Aug 2016Biomet Sports Medicine, LLC.Method for tissue fixation
US9414833 *14 Feb 201316 Aug 2016Biomet Sports Medicine, LlcSoft tissue repair assembly and associated method
US941483525 May 201616 Aug 2016Kfx Medical, LlcSystem and method for attaching soft tissue to bone
US94149255 Aug 201316 Aug 2016Biomet Manufacturing, LlcMethod of implanting a knee prosthesis assembly with a ligament link
US944582712 Aug 201320 Sep 2016Biomet Sports Medicine, LlcMethod and apparatus for intraosseous membrane reconstruction
US945194313 Jan 201127 Sep 2016Pivoc Medical, Inc.Method and apparatus for re-attaching the labrum to the acetabulum, including the provision and use of a novel suture anchor system
US94684333 Nov 201118 Oct 2016Biomet Sports Medicine, LlcMethod and apparatus for forming a self-locking adjustable loop
US948621114 Mar 20148 Nov 2016Biomet Sports Medicine, LlcMethod for implanting soft tissue
US949215828 Jan 201315 Nov 2016Biomet Sports Medicine, LlcMethod and apparatus for coupling soft tissue to a bone
US94982047 Jul 201422 Nov 2016Biomet Sports Medicine, LlcMethod and apparatus for coupling anatomical features
US95044605 Oct 201229 Nov 2016Biomet Sports Medicine, LLC.Soft tissue repair device and method
US951081915 Mar 20136 Dec 2016Biomet Sports Medicine, LlcSoft tissue repair device and associated methods
US951082112 May 20146 Dec 2016Biomet Sports Medicine, LlcMethod and apparatus for coupling anatomical features
US953277716 Dec 20133 Jan 2017Biomet Sports Medicine, LlcMethod and apparatus for coupling soft tissue to a bone
US953899825 Oct 201110 Jan 2017Biomet Sports Medicine, LlcMethod and apparatus for fracture fixation
US953900316 Oct 201310 Jan 2017Biomet Sports Medicine, LLC.Method and apparatus for forming a self-locking adjustable loop
US956102515 Mar 20137 Feb 2017Biomet Sports Medicine, LlcSoft tissue repair device and associated methods
US957265522 Sep 201421 Feb 2017Biomet Sports Medicine, LlcMethod and apparatus for coupling soft tissue to a bone
US960359117 Feb 201428 Mar 2017Biomet Sports Medicine, LlcFlexible anchors for tissue fixation
US961582230 May 201411 Apr 2017Biomet Sports Medicine, LlcInsertion tools and method for soft anchor
US962273620 Jan 201418 Apr 2017Biomet Sports Medicine, LlcSoft tissue repair device and associated methods
US96361014 Sep 20122 May 2017Arthrocare CorporationBone anchor having an integrated stress isolator
US96426612 Dec 20139 May 2017Biomet Sports Medicine, LlcMethod and Apparatus for Sternal Closure
US965561114 Oct 201623 May 2017Kfx Medical, LlcSystem and method for attaching soft tissue to bone
US968194011 Aug 201420 Jun 2017Biomet Sports Medicine, LlcLigament system for knee joint
US97002913 Jun 201411 Jul 2017Biomet Sports Medicine, LlcCapsule retractor
US970698421 Aug 201318 Jul 2017Conmed CorporationSystem and method for attaching soft tissue to bone
US972409016 Oct 20138 Aug 2017Biomet Manufacturing, LlcMethod and apparatus for attaching soft tissue to bone
US97571198 Mar 201312 Sep 2017Biomet Sports Medicine, LlcVisual aid for identifying suture limbs arthroscopically
US976365617 Feb 201419 Sep 2017Biomet Sports Medicine, LlcMethod and apparatus for soft tissue fixation
US97755974 Oct 20123 Oct 2017Conmed CorporationDual expansion anchor
US978887617 Mar 201417 Oct 2017Biomet Sports Medicine, LlcFracture fixation device
US980162012 Jan 201531 Oct 2017Biomet Sports Medicine, LlcMethod and apparatus for coupling soft tissue to bone
US98017082 Dec 201531 Oct 2017Biomet Sports Medicine, LlcMethod and apparatus for coupling soft tissue to a bone
US20040236336 *21 Oct 200325 Nov 2004Opus Medical, Inc.Method and apparatus for attaching connective tissues to bone using a suture anchoring device
US20060106423 *28 Sep 200518 May 2006Thomas WeiselSuture anchor
US20060271060 *26 May 200530 Nov 2006Arthrocare CorporationThreaded knotless suture anchoring device and method
US20080312689 *22 Aug 200818 Dec 2008Biomet Sports Medicine, LlcMethod and apparatus for coupling sof tissue to a bone
US20090318961 *22 Jun 200924 Dec 2009Biomet Sports Medicine,LlcMethod and Apparatus for Coupling Soft Tissue to a Bone
US20130158601 *14 Feb 201320 Jun 2013Biomet Sports Medicine, LlcSoft Tissue Repair Assembly And Associated Method
WO2014176270A1 *22 Apr 201430 Oct 2014Pivot Medical, Inc.Method and apparatus for attaching tissue to bone
WO2016191416A1 *24 May 20161 Dec 2016Marino James FAnchor devces and methods of use
Classifications
U.S. Classification606/232
International ClassificationA61B19/00, A61B17/04, A61B17/00
Cooperative ClassificationA61B2017/0414, A61B2017/00004, A61B2090/037, A61B17/0401, A61B2017/0438, A61B2017/0458, A61B2017/042, A61B2017/0412
European ClassificationA61B17/04A
Legal Events
DateCodeEventDescription
3 Jan 2005ASAssignment
Owner name: ARTHROCARE CORPORATION, TEXAS
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:OPUS MEDICAL, INC.;REEL/FRAME:015509/0008
Effective date: 20041221
Owner name: ARTHROCARE CORPORATION,TEXAS
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:OPUS MEDICAL, INC.;REEL/FRAME:015509/0008
Effective date: 20041221
21 Mar 2005ASAssignment
Owner name: ARTHROCARE CORPORATION, TEXAS
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:OPUS MEDICAL, INC.;REEL/FRAME:015931/0782
Effective date: 20041221
Owner name: ARTHROCARE CORPORATION,TEXAS
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:OPUS MEDICAL, INC.;REEL/FRAME:015931/0782
Effective date: 20041221
2 Feb 2006ASAssignment
Owner name: BANK OF AMERICA, N.A., WASHINGTON
Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:ARTHROCARE CORPORATION;REEL/FRAME:017105/0855
Effective date: 20060113
Owner name: BANK OF AMERICA, N.A.,WASHINGTON
Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:ARTHROCARE CORPORATION;REEL/FRAME:017105/0855
Effective date: 20060113
20 Jun 2008ASAssignment
Owner name: OPUS MEDICAL, INC., CALIFORNIA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TRAN, MINH;FOERSTER, SETH A.;REEL/FRAME:021130/0757
Effective date: 20001102
4 Sep 2009ASAssignment
Owner name: ARTHROCARE CORPORATION, TEXAS
Free format text: RELEASE OF PATENT SECURITY AGREEMENT RECORDED AT REEL 017105 FRAME 0855;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:023180/0892
Effective date: 20060113
Owner name: ARTHROCARE CORPORATION,TEXAS
Free format text: RELEASE OF PATENT SECURITY AGREEMENT RECORDED AT REEL 017105 FRAME 0855;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:023180/0892
Effective date: 20060113