US20030158645A1 - Adaptive load torque for gear selection in an automatic transmission - Google Patents

Adaptive load torque for gear selection in an automatic transmission Download PDF

Info

Publication number
US20030158645A1
US20030158645A1 US10/076,509 US7650902A US2003158645A1 US 20030158645 A1 US20030158645 A1 US 20030158645A1 US 7650902 A US7650902 A US 7650902A US 2003158645 A1 US2003158645 A1 US 2003158645A1
Authority
US
United States
Prior art keywords
transmission
torque
engine
output
gear ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US10/076,509
Other versions
US6609056B1 (en
Inventor
Edward Czarnecki
Howard Benford
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FCA US LLC
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US10/076,509 priority Critical patent/US6609056B1/en
Application filed by Individual filed Critical Individual
Assigned to DAIMLERCHRYSLER CORPORATION reassignment DAIMLERCHRYSLER CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BENFORD, HOWARD L, CZARNECKI, EDWARD W
Application granted granted Critical
Publication of US6609056B1 publication Critical patent/US6609056B1/en
Publication of US20030158645A1 publication Critical patent/US20030158645A1/en
Assigned to WILMINGTON TRUST COMPANY reassignment WILMINGTON TRUST COMPANY GRANT OF SECURITY INTEREST IN PATENT RIGHTS - FIRST PRIORITY Assignors: CHRYSLER LLC
Assigned to WILMINGTON TRUST COMPANY reassignment WILMINGTON TRUST COMPANY GRANT OF SECURITY INTEREST IN PATENT RIGHTS - SECOND PRIORITY Assignors: CHRYSLER LLC
Assigned to DAIMLERCHRYSLER COMPANY LLC reassignment DAIMLERCHRYSLER COMPANY LLC CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: DAIMLERCHRYSLER CORPORATION
Assigned to CHRYSLER LLC reassignment CHRYSLER LLC CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: DAIMLERCHRYSLER COMPANY LLC
Assigned to US DEPARTMENT OF THE TREASURY reassignment US DEPARTMENT OF THE TREASURY GRANT OF SECURITY INTEREST IN PATENT RIGHTS - THIR Assignors: CHRYSLER LLC
Assigned to CHRYSLER LLC reassignment CHRYSLER LLC RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: US DEPARTMENT OF THE TREASURY
Assigned to THE UNITED STATES DEPARTMENT OF THE TREASURY reassignment THE UNITED STATES DEPARTMENT OF THE TREASURY SECURITY AGREEMENT Assignors: NEW CARCO ACQUISITION LLC
Assigned to CHRYSLER LLC reassignment CHRYSLER LLC RELEASE OF SECURITY INTEREST IN PATENT RIGHTS - FIRST PRIORITY Assignors: WILMINGTON TRUST COMPANY
Assigned to CHRYSLER LLC reassignment CHRYSLER LLC RELEASE OF SECURITY INTEREST IN PATENT RIGHTS - SECOND PRIORITY Assignors: WILMINGTON TRUST COMPANY
Assigned to NEW CARCO ACQUISITION LLC reassignment NEW CARCO ACQUISITION LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHRYSLER LLC
Assigned to CHRYSLER GROUP LLC reassignment CHRYSLER GROUP LLC CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: NEW CARCO ACQUISITION LLC
Assigned to CHRYSLER GROUP LLC, CHRYSLER GROUP GLOBAL ELECTRIC MOTORCARS LLC reassignment CHRYSLER GROUP LLC RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: THE UNITED STATES DEPARTMENT OF THE TREASURY
Assigned to CITIBANK, N.A. reassignment CITIBANK, N.A. SECURITY AGREEMENT Assignors: CHRYSLER GROUP LLC
Assigned to CITIBANK, N.A. reassignment CITIBANK, N.A. SECURITY AGREEMENT Assignors: CHRYSLER GROUP LLC
Assigned to JPMORGAN CHASE BANK, N.A. reassignment JPMORGAN CHASE BANK, N.A. SECURITY AGREEMENT Assignors: CHRYSLER GROUP LLC
Assigned to FCA US LLC reassignment FCA US LLC CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: CHRYSLER GROUP LLC
Assigned to FCA US LLC, FORMERLY KNOWN AS CHRYSLER GROUP LLC reassignment FCA US LLC, FORMERLY KNOWN AS CHRYSLER GROUP LLC RELEASE OF SECURITY INTEREST RELEASING SECOND-LIEN SECURITY INTEREST PREVIOUSLY RECORDED AT REEL 026426 AND FRAME 0644, REEL 026435 AND FRAME 0652, AND REEL 032384 AND FRAME 0591 Assignors: CITIBANK, N.A.
Assigned to FCA US LLC (FORMERLY KNOWN AS CHRYSLER GROUP LLC) reassignment FCA US LLC (FORMERLY KNOWN AS CHRYSLER GROUP LLC) RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: CITIBANK, N.A.
Assigned to FCA US LLC (FORMERLY KNOWN AS CHRYSLER GROUP LLC) reassignment FCA US LLC (FORMERLY KNOWN AS CHRYSLER GROUP LLC) RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: JPMORGAN CHASE BANK, N.A.
Adjusted expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/16Inhibiting or initiating shift during unfavourable conditions, e.g. preventing forward reverse shift at high vehicle speed, preventing engine over speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K31/00Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator
    • B60K31/02Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator including electrically actuated servomechanism including an electric control system or a servomechanism in which the vehicle velocity affecting element is actuated electrically
    • B60K31/04Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator including electrically actuated servomechanism including an electric control system or a servomechanism in which the vehicle velocity affecting element is actuated electrically and means for comparing one electrical quantity, e.g. voltage, pulse, waveform, flux, or the like, with another quantity of a like kind, which comparison means is involved in the development of an electrical signal which is fed into the controlling means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0657Engine torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/10Change speed gearings
    • B60W2510/104Output speed
    • B60W2510/1045Output speed change rate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/28Wheel speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2530/00Input parameters relating to vehicle conditions or values, not covered by groups B60W2510/00 or B60W2520/00
    • B60W2530/10Weight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2530/00Input parameters relating to vehicle conditions or values, not covered by groups B60W2510/00 or B60W2520/00
    • B60W2530/20Tyre data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H59/46Inputs being a function of speed dependent on a comparison between speeds
    • F16H2059/465Detecting slip, e.g. clutch slip ratio
    • F16H2059/467Detecting slip, e.g. clutch slip ratio of torque converter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/16Inhibiting or initiating shift during unfavourable conditions, e.g. preventing forward reverse shift at high vehicle speed, preventing engine over speed
    • F16H2061/161Inhibiting or initiating shift during unfavourable conditions, e.g. preventing forward reverse shift at high vehicle speed, preventing engine over speed by checking feasibility of shifts, i.e. determine if requested shift can be successfully completed and post shift values are in an acceptable range
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • F16H61/0202Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric
    • F16H61/0204Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal
    • F16H61/0213Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal characterised by the method for generating shift signals

Definitions

  • the present invention relates to an automotive vehicle cruise control system and, more particularly, to a method of controlling vehicle speed with improved gear shifting for an automatic transmission.
  • Automotive vehicles generally incorporate a motive force system having three basic components: an engine, a drivetrain and drive wheels.
  • the engine produces force by converting chemical energy from a liquid fuel into the mechanical energy of motion.
  • the drivetrain transmits the resultant force of this kinetic energy to the wheels which frictionally contact a surface for moving the vehicle.
  • the main component of the drivetrain is the transmission, which transmits engine torque over a relatively limited angular speed range to the wheels over a broader speed range, in accordance with the tractive-power demand of the vehicle.
  • the transmission also controls the direction of rotation applied to the wheels so that the vehicle may be driven both forward and backward.
  • One advanced type of transmission is a multiple speed electronically controlled automatic transmission with overdrive. Examples of this type of electronically controlled automatic transmission are described in U.S. Pat. No. 4,875,391, entitled “An Electronically-Controlled, Adaptive Automatic Transmission System”, issued on Oct. 24, 1989 to Leising et al.; U.S. Pat. No. 4,905,545, entitled “Method of Controlling the Speed Change of a Kickdown Shift for an Electronic Transmission System”, issued on Mar. 6, 1990 to Leising et al.; U.S. Pat. No. 4,951,200, entitled “Method of Controlling the Apply Element During a Kickdown Shift for an Electronic Automatic Transmission System”, issued on Aug.
  • a vehicle is generally equipped with an electronic engine control system for controlling the operation of the engine and drivetrain of the vehicle.
  • the electronic control system includes a microcomputer-based transmission control module capable of receiving and monitoring input signals indicative of various vehicle operating conditions such as engine speed, torque converter turbine speed, vehicle output speed, throttle angle position, brake application, hydraulic pressures, a driver selected gear or operating condition (PRNODDL), engine coolant temperature and/or the ambient air temperature.
  • PRNODDL driver selected gear or operating condition
  • the controller Based on the information contained in the monitored signals, the controller generates command or control signals for causing actuation of solenoid-actuated valves to regulate the application and release of fluid pressure to and from apply cavities of clutches or frictional elements of the transmission.
  • the controller is typically programmed to execute predetermined shift schedules stored in memory of the controller through appropriate command signals to the solenoid-actuated valves.
  • the conventional cruise control system generally includes an operator input for selecting a desired setpoint speed, an operator input for incrementally increasing and/or decreasing the desired setpoint speed and a resume speed control input to resume cruise control operation with a previously selected setpoint speed.
  • the basic cruise control system operates to control the engine throttle position so as to attempt to continually maintain the vehicle speed at or near the desired setpoint speed.
  • the cruise control system may cause various repetitive and cyclical up-shifting and downshifting of the automatic transmission as the transmission controller follows the predetermined shift schedules that are generally programmed in memory. For example, when traveling uphill, especially uphill on a steep incline, the transmission controller may up-shift and downshift between gears several times in order to maintain the vehicle speed at or near the desired setpoint speed. Cyclical up-shifting and downshifting of the transmission to maintain a speed setpoint can lead to a “shift hunting” condition. Repeated up-shifts and downshifts in turn affect the overall sound and feel of the vehicle which can be noticeable to the driver and passengers. In addition, the individual up-shifts or downshifts of the conventional automatic transmission can cause a sudden momentary increase or decrease in acceleration in an abrupt manner, especially when such changes cause large engine speed changes.
  • the present invention provides an interactive cruise control system and automatic transmission for a vehicle with improved shifting of the automatic transmission.
  • the automatic system and method controls gear shifts of the transmission so as to prevent the occurrence of shift hunting.
  • FIG. 1 is a diagrammatic view of a vehicle with an automatic transmission and apparatus for controlling the gear selection in the automatic transmission, according to an embodiment of the present invention.
  • FIGS. 2A and 2B are flow diagrams which illustrate a methodology for controlling the gear selection of an automatic transmission according to the principles of the present invention.
  • a vehicle powertrain system 12 is illustrated for a motor vehicle, generally shown at 10 .
  • the powertrain system 12 includes a heat engine 14 operating on a hydrocarbon based or fossil fuel.
  • the powertrain system 12 also includes a torque converter 16 , as is known in the art, for operably interconnecting engine 14 and automatic transmission 18 .
  • the torque converter 16 changes the torque speed between the engine 14 and automatic transmission 18 .
  • Automatic transmission 18 connects to engine 14 through torque converter 16 and transmits engine rotation and power at various ratios to a pair of drive wheels 24 of the motor vehicle.
  • automatic transmission 18 enables the motor vehicle 10 to accelerate through predetermined gear ratios, while engine 14 functions within a predetermined operating range.
  • transmission 18 is a four or five-speed automatic transmission, as is well known in the art.
  • Automatic transmission 18 drives a differential unit 19 .
  • Differential unit 19 engages a pair of axle shafts 22 which are operably connected to the pair of drive wheels 24 .
  • the powertrain system 12 also includes a transmission controller 20 , such as an electronic control unit.
  • Transmission controller 20 enables electronic control of automatic transmission 18 to enable various ratios to be utilized in driving the drive wheels 24 .
  • transmission controller 20 receives input signals from engine 14 or an engine controller 21 . Examples of such information received from engine controller 21 include vehicle speed, engine speed (rpm), engine torque, or the like.
  • transmission controller 20 generates output signals to control automatic transmission 18 , and also outputs diagnostic and other communication signals to engine 14 and/or engine controller 21 .
  • Transmission controller 20 may also receive other vehicle condition signals depending on a particular configuration of the transmission 18 . It should be noted that the above description of a powertrain system is merely exemplary and that the method of controlling the gear shifting is not intended to be limited by the exemplary powertrain system.
  • the output torque and power of an engine may be affected by many factors. Some of the factors are loads that cause a change in the automatic transmission or the engine itself. These loads may include, but are not limited to, increased electrical loading on the alternator, operation of a compressor for an air conditioning system or a change in combustion properties of the engine fuel. Additionally, other loads that may cause a change in the output speed of the automatic transmission may act on the rest of the vehicle or drive wheels. These loads may include, but are not limited to changes in aerodynamic load on the vehicle, change in topography of the road surface or towing of a trailer. Therefore, it is desirable that the maximum output torque and power that engine 12 is capable of producing be determined for purposes of determining if an up-shift is desirable. In the powertrain system 12 , shown in FIG. 1, the transmission controller 20 determines the maximum torque value, based on the current operating conditions of the engine.
  • Controller 20 also monitors the output of the automatic transmission 18 . Controller 20 preferably detects the rotational speed of the output of the transmission, using a method well known in the art.
  • controller 20 While vehicle 10 is operating in a cruise mode, controller 20 , controls the changing of gear ratios of the automatic transmission 18 , i.e. shifting.
  • a transmission transmits the power and torque that is transmitted from an engine to the drive wheels by use of predetermined gear ratios, which function within a predetermined operating range.
  • Controller 20 operatively selects the optimal gear and associated gear ratio for automatic transmission 18 using the methodology 50 shown in FIGS. 2A and 2B. It is preferred that methodology 50 includes the steps shown in FIGS. 2A and 2B. However, it is conceivable that fewer or more steps may be employed and not depart from the scope of the present invention. Methodology 50 starts at Step 54 .
  • Step 54 the Engine Output Torque (Tedpr) is determined.
  • the Engine Output Torque (Tedpr) is provided directly from the engine controller 21 by a signal that represents the Engine Output Torque (Tedpr) on a real-time basis.
  • the engine output torque signal is measured from the powertrain controller.
  • the Engine Output Torque (Tedpr) may be determined many different ways and transferred using many different devices.
  • Step 56 the Ratio of the Torque Converter (Rt) is determined.
  • the ratio of the torque converter (Rt) is the ratio of the torque that is released by the torque converter compared to torque that is applied to the torque converter.
  • the torque converter can increase the torque into the transmission when accelerating from a stop. Modern torque converters can multiply the torque of the engine by as much as two to three times. This effect only happens when the engine is turning much faster than the transmission input. At higher speeds, the transmission input catches up to the engine, eventually moving at almost the same speed.
  • the ratio of the torque converter is determined by the physical characteristics of the impeller, stator and turbine.
  • Step 58 the next step in methodology 50 is Step 58 .
  • the parasitic losses in the torque converter (Ttcp) are determined.
  • any mechanical device has inherent losses due to friction, tolerances, etc. These losses affect the overall efficiency of the device.
  • the losses affect the amount of power and torque that is transferred from the engine to the transmission.
  • the parasitic losses of the torque converter (Ttcp) are based on efficiency of torque transmittal via fluid flow and mechanical losses due to friction of moving components.
  • Step 60 determines the amount of torque input to the transmission (Ti).
  • the torque input to the transmission (Ti) represents the amount of torque, accounting for losses from the torque converter that is inputted to the automatic transmission 18 for use by the transmission for selectively driving the drive wheels in a plurality of gears and associated gear ratios.
  • Step 60 determines the torque input to the transmission (Ti) using the following equation:
  • Step 62 determines the gear ratio of the transmission (R 1 ).
  • the gear ratio (R 1 ) of the transmission determines the ratio of revolutions of input to each revolution of output of the transmission per the geartrain of the automatic transmission 18 .
  • Step 64 the parasitic losses in the transmission (Ttp) are determined.
  • any mechanical device has inherent losses due to friction, tolerances, etc. These losses affect the efficiency of the device.
  • the losses affect the amount of power and torque that is transferred from the torque converter to the driving wheels 24 .
  • the parasitic losses of the transmission (Ttp) are based on frictional losses of moving components and internal parasitics, such as hydraulic pump.
  • Step 66 determines the amount of torque output from the transmission (To).
  • the torque output from the transmission (To) represents the amount of torque, accounting for losses from the transmission that is inputted to the differential and drives drive wheels 24 .
  • the torque output of the transmission is determined utilizing the torque input (Ti) (as calculated above) the gear ratio (R 1 ) of the current gear that the transmission 18 is operating in, and the parasitic losses of the transmission (Ttp).
  • Step 66 determines the torque output to the transmission, To, using the following equation:
  • Step 68 measures the change in the output speed of the automatic transmission 18 in revolutions per minute. It is preferred that the change in the transmission output speed be measured using a sensor mounted to the output shaft of the transmission. However, it is understood that other methods of determining the change in the output speed of the transmission may be utilized.
  • Step 70 measures the time over which the change in engine output speed of the automatic transmission 18 was determined in Step 68 .
  • the measurement of the time in Step 70 will allow the rate of change of the output of the transmission to be determined.
  • Step 72 determines the inertia of the vehicle (J).
  • the inertia of the vehicle (J) is simply the resistance of the vehicle to change in motion.
  • the inertia of the vehicle (J) is determined by multiplying the mass of the vehicle and the square of the rolling ratios of the drive wheels 24 and dividing by the square of the final drive ratio.
  • the inertia of the vehicle (J) is useful for determining the amount of energy that must be utilized to keep a vehicle that is already moving in a direction continually moving in that direction.
  • Step 74 utilizes a conversion factor K to be utilized to calculate the load on the transmission in Step 76 .
  • the conversion factor K has a standard value of 30/ ⁇ .
  • Step 76 the adaptive load on the transmission (TI) is determined.
  • the adaptive load on the transmission (TI) represents the actual amount of torque from the transmission that is required to drive the vehicle at a constant speed given the current loads, as determined above.
  • the torque output from the transmission (To), as stated above, represents the amount of torque that is outputted from the transmission after accounting for losses in the transmission and the torque converter.
  • the torque output from the transmission is decreased by a second term ( ⁇ n/ ⁇ t)(J/K) to determine the amount of adaptive torque (TI), the torque that would actually be utilized by the differential and drive wheels to operate at a constant speed.
  • the second term as stated above, is composed of the change in the speed of the output of the transmission ( ⁇ n), the change in time ( ⁇ t) the change in output speed of the transmission ( ⁇ n) is determined, the inertia of the vehicle (J), and a conversion factor (K) to convert the change in the output speed of the transmission to match the units of the torque.
  • Step 78 the Maximum Engine Output Torque (Temax) is determined.
  • the Maximum Engine Output Torque (Temax) is provided directly from the engine controller 21 by a signal that represents the Maximum Engine Output Torque (Temax) over the entire engine operating range on a real-time basis.
  • the torque of an internal combustion engine varies depending on the speed of the engine. At lower engine speeds, the amount of torque produced by the engine increases with respect to the speed of the engine. However, the torque of the engine eventually reaches a maximum value prior to a maximum engine speed, whereafter the torque decreases as the speed of the engine continues to increase.
  • the Maximum Engine Output Torque (Temax) is determined based on this scenario. In a preferred embodiment, the Maximum Engine Output Torque (Temax) is gathered from the powertrain controller. However, it is also understood that the Maximum Engine Output Torque (Temax) may be determined in many different ways and transferred using many different devices. Once the Maximum Engine Output Torque (Temax) is determined, the methodology proceeds to Step 80 .
  • Step 80 the Ratio of the Torque Converter (Rt) is determined.
  • the ratio of the torque converter (Rt) as stated above, is the ratio of the torque that is released by the torque converter compared to torque that is applied to the torque converter.
  • the ratio of the torque converter depends on the variation in speed of the engine and the transmission.
  • the ratio of the torque converter (Rt) is determined by the physical characteristics of the impeller, stator and turbine.
  • Step 82 the parasitic losses in the torque converter (Ttcp) are determined for one gear higher than the current gear of the automatic transmission.
  • Ttcp the parasitic losses in the torque converter
  • any mechanical device has inherent losses due to friction, tolerances, etc. These losses affect efficiency of the device.
  • the losses affect the amount of power and torque that is transferred from the engine to the transmission.
  • the parasitic losses of the torque converter, Ttcp are determined based on efficiency of torque transmittal via fluid flow and mechanical losses due to friction of moving components.
  • Step 84 determines the Maximum Torque Input to the Transmission (Timax).
  • the torque input to the transmission (Ti) represents the maximum amount of torque based on the Maximum Engine Output Torque (Temax) determined in Step 78 , torque converter ratio (R t ) determined in Step 80 , and accounting for losses from the torque converter 16 that is inputted to the automatic transmission 18 for use by the transmission for selectively driving the drive wheels in a plurality of gears and associated gear ratios.
  • Step 84 determines the Maximum Torque Input to the Transmission (Timax) using the following equation:
  • Step 86 determines the gear ratio to the transmission in the gear one higher than the current gear of the automatic transmission (R 2 ).
  • the gear ratio (R 2 ) of the transmission determines the ratio of revolutions of input to each revolution of output of the transmission per the gear train of the automatic transmission 18 .
  • Step 88 the next step in methodology 50 is Step 88 .
  • the parasitic losses in the transmission (Ttp) are determined for one gear higher than the current gear of the automatic transmission.
  • any mechanical device has inherent losses due to friction, tolerances, etc. These losses affect efficiency of the device.
  • the losses affect the amount of power and torque that is transferred from the torque converter 16 to the driving wheels 24 .
  • the parasitic losses of the transmission (Ttp) are determined based on frictional losses of moving components and internal parasitics such as hydraulic pump.
  • the next step in methodology 50 determines the Maximum Torque Output from the transmission (Tomax).
  • the Maximum Torque Output from the transmission (Tomax) represents the amount of torque, based on the Maximum Transmission Input Torque (Timax) determined in Step 84 and accounting for losses from the transmission that is inputted to the differential and drives drive wheels 24 .
  • the Maximum Torque Output (Tomax) of the transmission is determined utilizing the torque input (Timax) (as calculated above), the gear ratio (R 2 ) of the next higher gear than the transmission 18 is currently operating in, and the parasitic losses of the transmission (Ttp).
  • Step 90 determines the torque output to the transmission (To) using the following equation:
  • Step 92 of methodology 50 it is determined if the criteria has been met to allow the automatic transmission to up-shift to the next higher gear.
  • Step 92 determines if the Maximum Transmission Output Torque (Tomax) is greater than the Adaptive Torque load on the transmission (TI). Basically, it is determined if the output torque (Tomax), as calculated for the gear above the current gear, is larger than the amount of torque that is required to operate the vehicle at constant speed, given the current conditions. If the result to Step 92 is YES, then the methodology proceeds to Step 94 .
  • Step 94 the automatic transmission is shifted up one gear and one associated gear ratio.
  • Step 92 If the result of Step 92 is NO, indicating that the Maximum Output Torque (Tomax) in the next higher gear is not greater than the Adaptive Load on the Transmission (TI) an up-shift of the transmission is not allowed and the methodology proceeds to Step 96 .
  • Step 96 indicates the end of methodology 50 .

Abstract

A method of controlling an automatic transmission of a motor vehicle operating in a automatic speed control speed mode is provided. The first step in the method is measuring the torque output of the engine. A torque load acting on the transmission in a first gear is then determined. A maximum torque capable of being produced by the engine is then predicted. A torque output of the transmission in a second gear is then determined based upon the predicted maximum torque capable of being produced by the engine. A transmission shift from the first gear to the second gear is then allowed if the determined torque output of the transmission in the second gear is greater than the torque load of the transmission in a first gear.

Description

    FIELD OF THE INVENTION
  • The present invention relates to an automotive vehicle cruise control system and, more particularly, to a method of controlling vehicle speed with improved gear shifting for an automatic transmission. [0001]
  • BACKGROUND OF THE INVENTION
  • Automotive vehicles generally incorporate a motive force system having three basic components: an engine, a drivetrain and drive wheels. The engine produces force by converting chemical energy from a liquid fuel into the mechanical energy of motion. The drivetrain transmits the resultant force of this kinetic energy to the wheels which frictionally contact a surface for moving the vehicle. The main component of the drivetrain is the transmission, which transmits engine torque over a relatively limited angular speed range to the wheels over a broader speed range, in accordance with the tractive-power demand of the vehicle. The transmission also controls the direction of rotation applied to the wheels so that the vehicle may be driven both forward and backward. [0002]
  • One advanced type of transmission is a multiple speed electronically controlled automatic transmission with overdrive. Examples of this type of electronically controlled automatic transmission are described in U.S. Pat. No. 4,875,391, entitled “An Electronically-Controlled, Adaptive Automatic Transmission System”, issued on Oct. 24, 1989 to Leising et al.; U.S. Pat. No. 4,905,545, entitled “Method of Controlling the Speed Change of a Kickdown Shift for an Electronic Transmission System”, issued on Mar. 6, 1990 to Leising et al.; U.S. Pat. No. 4,951,200, entitled “Method of Controlling the Apply Element During a Kickdown Shift for an Electronic Automatic Transmission System”, issued on Aug. 21, 1990 to Leising et al.; and U.S. Pat. No. 5,669,850, entitled “Shift Hunting Prevention For An Automatic Transmission”, issued to Dourra et al. These patents are owned by the Assignee of the present application and are incorporated herein by reference. However, it should be appreciated that the principles of the present invention are not limited to any particular automatic transmission, and that the present invention may be applied to a wide variety of other powertrain configurations. [0003]
  • A vehicle is generally equipped with an electronic engine control system for controlling the operation of the engine and drivetrain of the vehicle. The electronic control system includes a microcomputer-based transmission control module capable of receiving and monitoring input signals indicative of various vehicle operating conditions such as engine speed, torque converter turbine speed, vehicle output speed, throttle angle position, brake application, hydraulic pressures, a driver selected gear or operating condition (PRNODDL), engine coolant temperature and/or the ambient air temperature. Based on the information contained in the monitored signals, the controller generates command or control signals for causing actuation of solenoid-actuated valves to regulate the application and release of fluid pressure to and from apply cavities of clutches or frictional elements of the transmission. Accordingly, the controller is typically programmed to execute predetermined shift schedules stored in memory of the controller through appropriate command signals to the solenoid-actuated valves. [0004]
  • In addition to controlling the vehicle operation based on a manual operator throttle input, a large number of today's vehicles are also equipped with a cruise control system for allowing automatic speed control of the vehicle. The conventional cruise control system generally includes an operator input for selecting a desired setpoint speed, an operator input for incrementally increasing and/or decreasing the desired setpoint speed and a resume speed control input to resume cruise control operation with a previously selected setpoint speed. As is commonly known, the basic cruise control system operates to control the engine throttle position so as to attempt to continually maintain the vehicle speed at or near the desired setpoint speed. [0005]
  • With vehicles equipped with an automatic transmission, the cruise control system may cause various repetitive and cyclical up-shifting and downshifting of the automatic transmission as the transmission controller follows the predetermined shift schedules that are generally programmed in memory. For example, when traveling uphill, especially uphill on a steep incline, the transmission controller may up-shift and downshift between gears several times in order to maintain the vehicle speed at or near the desired setpoint speed. Cyclical up-shifting and downshifting of the transmission to maintain a speed setpoint can lead to a “shift hunting” condition. Repeated up-shifts and downshifts in turn affect the overall sound and feel of the vehicle which can be noticeable to the driver and passengers. In addition, the individual up-shifts or downshifts of the conventional automatic transmission can cause a sudden momentary increase or decrease in acceleration in an abrupt manner, especially when such changes cause large engine speed changes. [0006]
  • In conventional cruise control systems, many factors are considered in the methodology for determining when a shift between a first and a second gear is desirable. For example, the speed of the vehicle, throttle angle and manifold air pressure are compared to a set of predetermined setpoints to determine if an up-shift is feasible. These setpoints, typically derived from testing, do not account for variations in the loads acting on the vehicle such as changes in road topography, road surface, aerodynamics, or other loads acting on the engine such as increased electrical load, change in operation of an air-conditioning compressor or change in fuel quality. These changes, while directly affecting the performance of the engine, are not inherently easy to measure and thus do not allow for relatively easy monitoring of the performance of the engine. [0007]
  • It is therefore desirable to monitor the output performance of the engine in a real time basis to accurately show the output of the engine for use in cruise control operation. Additionally, it is desirable to predict the maximum output of the engine for use in determining cruise control operation. Furthermore, it is desirable to combine the current real time engine output performance and predicted engine output performance to accurately determine the current loads acting on the vehicle or engine which would preclude an engine up-shift. [0008]
  • SUMMARY OF THE INVENTION
  • To achieve the foregoing objectives, the present invention provides an interactive cruise control system and automatic transmission for a vehicle with improved shifting of the automatic transmission. The automatic system and method controls gear shifts of the transmission so as to prevent the occurrence of shift hunting. With the transmission engaged in a first gear, the output torque required to maintain a predetermined speed in the first gear is determined and a maximum output torque available in an up-shift condition to a second gear is predicted. An up-shift from the first gear to the second gear is inhibited when the predicted maximum output torque available in the second gear is less than the determined output torque required to maintain the predetermined speed in the first gear. An up-shift is allowed once the determined maximum output torque available in the second gear exceeds the output determined torque required to maintain the predetermined speed in the first gear. [0009]
  • Further areas of applicability of the present invention will become apparent from the detailed description provided hereinafter. It should be understood that the detailed description and specific examples, while indicating the preferred embodiment of the invention, are intended for purposes of illustration only and are not intended to limit the scope of the invention.[0010]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The present invention will become more fully understood from the detailed description and the accompanying drawings, wherein: [0011]
  • FIG. 1 is a diagrammatic view of a vehicle with an automatic transmission and apparatus for controlling the gear selection in the automatic transmission, according to an embodiment of the present invention; and [0012]
  • FIGS. 2A and 2B are flow diagrams which illustrate a methodology for controlling the gear selection of an automatic transmission according to the principles of the present invention.[0013]
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • The following description of the preferred embodiment(s) is merely exemplary in nature and is in no way intended to limit the invention, its application, or uses. [0014]
  • Referring to FIG. 1, a [0015] vehicle powertrain system 12 according to the present invention is illustrated for a motor vehicle, generally shown at 10. The powertrain system 12 includes a heat engine 14 operating on a hydrocarbon based or fossil fuel.
  • The [0016] powertrain system 12 also includes a torque converter 16, as is known in the art, for operably interconnecting engine 14 and automatic transmission 18. The torque converter 16 changes the torque speed between the engine 14 and automatic transmission 18.
  • [0017] Automatic transmission 18 connects to engine 14 through torque converter 16 and transmits engine rotation and power at various ratios to a pair of drive wheels 24 of the motor vehicle. Thus, automatic transmission 18 enables the motor vehicle 10 to accelerate through predetermined gear ratios, while engine 14 functions within a predetermined operating range. It should be appreciated that a preferred embodiment, transmission 18 is a four or five-speed automatic transmission, as is well known in the art. Automatic transmission 18 drives a differential unit 19. Differential unit 19 engages a pair of axle shafts 22 which are operably connected to the pair of drive wheels 24.
  • The [0018] powertrain system 12 also includes a transmission controller 20, such as an electronic control unit. Transmission controller 20 enables electronic control of automatic transmission 18 to enable various ratios to be utilized in driving the drive wheels 24. In order to generate such control, transmission controller 20 receives input signals from engine 14 or an engine controller 21. Examples of such information received from engine controller 21 include vehicle speed, engine speed (rpm), engine torque, or the like. Similarly, transmission controller 20 generates output signals to control automatic transmission 18, and also outputs diagnostic and other communication signals to engine 14 and/or engine controller 21. Transmission controller 20 may also receive other vehicle condition signals depending on a particular configuration of the transmission 18. It should be noted that the above description of a powertrain system is merely exemplary and that the method of controlling the gear shifting is not intended to be limited by the exemplary powertrain system.
  • Additionally, as is well known in the art, the output torque and power of an engine may be affected by many factors. Some of the factors are loads that cause a change in the automatic transmission or the engine itself. These loads may include, but are not limited to, increased electrical loading on the alternator, operation of a compressor for an air conditioning system or a change in combustion properties of the engine fuel. Additionally, other loads that may cause a change in the output speed of the automatic transmission may act on the rest of the vehicle or drive wheels. These loads may include, but are not limited to changes in aerodynamic load on the vehicle, change in topography of the road surface or towing of a trailer. Therefore, it is desirable that the maximum output torque and power that [0019] engine 12 is capable of producing be determined for purposes of determining if an up-shift is desirable. In the powertrain system 12, shown in FIG. 1, the transmission controller 20 determines the maximum torque value, based on the current operating conditions of the engine.
  • [0020] Controller 20 also monitors the output of the automatic transmission 18. Controller 20 preferably detects the rotational speed of the output of the transmission, using a method well known in the art.
  • While [0021] vehicle 10 is operating in a cruise mode, controller 20, controls the changing of gear ratios of the automatic transmission 18, i.e. shifting. As is well known, a transmission transmits the power and torque that is transmitted from an engine to the drive wheels by use of predetermined gear ratios, which function within a predetermined operating range.
  • [0022] Controller 20 operatively selects the optimal gear and associated gear ratio for automatic transmission 18 using the methodology 50 shown in FIGS. 2A and 2B. It is preferred that methodology 50 includes the steps shown in FIGS. 2A and 2B. However, it is conceivable that fewer or more steps may be employed and not depart from the scope of the present invention. Methodology 50 starts at Step 54.
  • In [0023] Step 54, the Engine Output Torque (Tedpr) is determined. In the preferred embodiment, the Engine Output Torque (Tedpr) is provided directly from the engine controller 21 by a signal that represents the Engine Output Torque (Tedpr) on a real-time basis. The engine output torque signal is measured from the powertrain controller. However, it is also understood that the Engine Output Torque (Tedpr) may be determined many different ways and transferred using many different devices. Once the Engine Output Torque (Tedpr) is determined, the methodology proceeds to Step 56.
  • In [0024] Step 56, the Ratio of the Torque Converter (Rt) is determined. The ratio of the torque converter (Rt) is the ratio of the torque that is released by the torque converter compared to torque that is applied to the torque converter. As is well known, the torque converter can increase the torque into the transmission when accelerating from a stop. Modern torque converters can multiply the torque of the engine by as much as two to three times. This effect only happens when the engine is turning much faster than the transmission input. At higher speeds, the transmission input catches up to the engine, eventually moving at almost the same speed. The ratio of the torque converter is determined by the physical characteristics of the impeller, stator and turbine.
  • The next step in [0025] methodology 50 is Step 58. In Step 58, the parasitic losses in the torque converter (Ttcp) are determined. As is well known, any mechanical device has inherent losses due to friction, tolerances, etc. These losses affect the overall efficiency of the device. In a torque converter, the losses affect the amount of power and torque that is transferred from the engine to the transmission. The parasitic losses of the torque converter (Ttcp) are based on efficiency of torque transmittal via fluid flow and mechanical losses due to friction of moving components.
  • The next step in [0026] methodology 50, Step 60, determines the amount of torque input to the transmission (Ti). The torque input to the transmission (Ti) represents the amount of torque, accounting for losses from the torque converter that is inputted to the automatic transmission 18 for use by the transmission for selectively driving the drive wheels in a plurality of gears and associated gear ratios. Step 60 determines the torque input to the transmission (Ti) using the following equation:
  • Ti=(Tedpr×Rt)−Ttcp
  • The next step in [0027] methodology 50, Step 62, determines the gear ratio of the transmission (R1). The gear ratio (R1) of the transmission, determines the ratio of revolutions of input to each revolution of output of the transmission per the geartrain of the automatic transmission 18.
  • The next step in [0028] methodology 50 is Step 64. In Step 64, the parasitic losses in the transmission (Ttp) are determined. As stated above, any mechanical device has inherent losses due to friction, tolerances, etc. These losses affect the efficiency of the device. In an automatic transmission, the losses affect the amount of power and torque that is transferred from the torque converter to the driving wheels 24. The parasitic losses of the transmission (Ttp) are based on frictional losses of moving components and internal parasitics, such as hydraulic pump.
  • The next step in [0029] methodology 50, Step 66, determines the amount of torque output from the transmission (To). The torque output from the transmission (To) represents the amount of torque, accounting for losses from the transmission that is inputted to the differential and drives drive wheels 24. The torque output of the transmission is determined utilizing the torque input (Ti) (as calculated above) the gear ratio (R1) of the current gear that the transmission 18 is operating in, and the parasitic losses of the transmission (Ttp). Step 66 determines the torque output to the transmission, To, using the following equation:
  • To=(Ti×R1)−Ttp
  • Next, Step [0030] 68 measures the change in the output speed of the automatic transmission 18 in revolutions per minute. It is preferred that the change in the transmission output speed be measured using a sensor mounted to the output shaft of the transmission. However, it is understood that other methods of determining the change in the output speed of the transmission may be utilized.
  • The next step in [0031] methodology 50, Step 70, measures the time over which the change in engine output speed of the automatic transmission 18 was determined in Step 68. The measurement of the time in Step 70 will allow the rate of change of the output of the transmission to be determined.
  • Next, [0032] Step 72 determines the inertia of the vehicle (J). The inertia of the vehicle (J), is simply the resistance of the vehicle to change in motion. The inertia of the vehicle (J) is determined by multiplying the mass of the vehicle and the square of the rolling ratios of the drive wheels 24 and dividing by the square of the final drive ratio. The inertia of the vehicle (J) is useful for determining the amount of energy that must be utilized to keep a vehicle that is already moving in a direction continually moving in that direction.
  • The next step of [0033] methodology 50, Step 74, utilizes a conversion factor K to be utilized to calculate the load on the transmission in Step 76. The conversion factor K, has a standard value of 30/Π.
  • In [0034] Step 76, the adaptive load on the transmission (TI) is determined. The adaptive load on the transmission (TI) represents the actual amount of torque from the transmission that is required to drive the vehicle at a constant speed given the current loads, as determined above. The adaptive load on the transmission (TI) is calculated in Step 76 utilizing the following equation: Tl = To - Δ n Δ t × J K
    Figure US20030158645A1-20030821-M00001
  • The torque output from the transmission (To), as stated above, represents the amount of torque that is outputted from the transmission after accounting for losses in the transmission and the torque converter. The torque output from the transmission is decreased by a second term (Δn/Δt)(J/K) to determine the amount of adaptive torque (TI), the torque that would actually be utilized by the differential and drive wheels to operate at a constant speed. The second term, as stated above, is composed of the change in the speed of the output of the transmission (Δn), the change in time (Δt) the change in output speed of the transmission (Δn) is determined, the inertia of the vehicle (J), and a conversion factor (K) to convert the change in the output speed of the transmission to match the units of the torque. [0035]
  • Following [0036] Step 76, methodology 50 continues in FIG. 2B at Step 78. In Step 78, the Maximum Engine Output Torque (Temax) is determined. In the preferred embodiment, the Maximum Engine Output Torque (Temax) is provided directly from the engine controller 21 by a signal that represents the Maximum Engine Output Torque (Temax) over the entire engine operating range on a real-time basis. As is well known in the art, the torque of an internal combustion engine varies depending on the speed of the engine. At lower engine speeds, the amount of torque produced by the engine increases with respect to the speed of the engine. However, the torque of the engine eventually reaches a maximum value prior to a maximum engine speed, whereafter the torque decreases as the speed of the engine continues to increase. The Maximum Engine Output Torque (Temax) is determined based on this scenario. In a preferred embodiment, the Maximum Engine Output Torque (Temax) is gathered from the powertrain controller. However, it is also understood that the Maximum Engine Output Torque (Temax) may be determined in many different ways and transferred using many different devices. Once the Maximum Engine Output Torque (Temax) is determined, the methodology proceeds to Step 80.
  • In [0037] Step 80, the Ratio of the Torque Converter (Rt) is determined. The ratio of the torque converter (Rt) as stated above, is the ratio of the torque that is released by the torque converter compared to torque that is applied to the torque converter. The ratio of the torque converter depends on the variation in speed of the engine and the transmission. The ratio of the torque converter (Rt) is determined by the physical characteristics of the impeller, stator and turbine.
  • The next step in [0038] methodology 50 is Step 82. In Step 82, the parasitic losses in the torque converter (Ttcp) are determined for one gear higher than the current gear of the automatic transmission. As is well known, any mechanical device has inherent losses due to friction, tolerances, etc. These losses affect efficiency of the device. In a torque converter, the losses affect the amount of power and torque that is transferred from the engine to the transmission. The parasitic losses of the torque converter, Ttcp, are determined based on efficiency of torque transmittal via fluid flow and mechanical losses due to friction of moving components.
  • The next step in [0039] methodology 50, Step 84, determines the Maximum Torque Input to the Transmission (Timax). The torque input to the transmission (Ti) represents the maximum amount of torque based on the Maximum Engine Output Torque (Temax) determined in Step 78, torque converter ratio (Rt) determined in Step 80, and accounting for losses from the torque converter 16 that is inputted to the automatic transmission 18 for use by the transmission for selectively driving the drive wheels in a plurality of gears and associated gear ratios. Step 84 determines the Maximum Torque Input to the Transmission (Timax) using the following equation:
  • Ti max=Te max×Rt−Ttcp
  • The next step in [0040] methodology 50, Step 86, determines the gear ratio to the transmission in the gear one higher than the current gear of the automatic transmission (R2). The gear ratio (R2) of the transmission, determines the ratio of revolutions of input to each revolution of output of the transmission per the gear train of the automatic transmission 18.
  • The next step in [0041] methodology 50 is Step 88. In Step 88, the parasitic losses in the transmission (Ttp) are determined for one gear higher than the current gear of the automatic transmission. As stated above, any mechanical device has inherent losses due to friction, tolerances, etc. These losses affect efficiency of the device. In an automatic transmission, the losses affect the amount of power and torque that is transferred from the torque converter 16 to the driving wheels 24. The parasitic losses of the transmission (Ttp) are determined based on frictional losses of moving components and internal parasitics such as hydraulic pump.
  • The next step in [0042] methodology 50, Step 90, determines the Maximum Torque Output from the transmission (Tomax). The Maximum Torque Output from the transmission (Tomax) represents the amount of torque, based on the Maximum Transmission Input Torque (Timax) determined in Step 84 and accounting for losses from the transmission that is inputted to the differential and drives drive wheels 24. The Maximum Torque Output (Tomax) of the transmission is determined utilizing the torque input (Timax) (as calculated above), the gear ratio (R2) of the next higher gear than the transmission 18 is currently operating in, and the parasitic losses of the transmission (Ttp). Step 90 determines the torque output to the transmission (To) using the following equation:
  • To max=Ti max×R2−Ttp
  • As stated above, operating a transmission in the highest gear and associated gear ratio while still providing the required amount of torque is highly desirable. Therefore, a methodology that determines when an upshift is possible is also desirable. In [0043] Step 92 of methodology 50, it is determined if the criteria has been met to allow the automatic transmission to up-shift to the next higher gear. Step 92 determines if the Maximum Transmission Output Torque (Tomax) is greater than the Adaptive Torque load on the transmission (TI). Basically, it is determined if the output torque (Tomax), as calculated for the gear above the current gear, is larger than the amount of torque that is required to operate the vehicle at constant speed, given the current conditions. If the result to Step 92 is YES, then the methodology proceeds to Step 94. In Step 94 the automatic transmission is shifted up one gear and one associated gear ratio.
  • If the result of [0044] Step 92 is NO, indicating that the Maximum Output Torque (Tomax) in the next higher gear is not greater than the Adaptive Load on the Transmission (TI) an up-shift of the transmission is not allowed and the methodology proceeds to Step 96. Step 96 indicates the end of methodology 50.
  • The description of the invention is merely exemplary in nature and, thus, variations that do not depart from the gist of the invention are intended to be within the scope of the invention. Such variations are not to be regarded as a departure from the spirit and scope of the invention. [0045]

Claims (5)

What is claimed is:
1. A method of controlling an automatic transmission of a motor vehicle operating in an automatic speed control mode, the motor vehicle including an engine coupled to the transmission, the transmission operative in a plurality of gear configurations for driving at least one drive wheel, the method comprising the steps of:
determining a torque output of the engine;
determining a torque load acting on the transmission in a predetermined first gear ratio based on the determined torque output of the engine;
predicting a maximum torque capable of being produced by the engine;
determining a torque output of the transmission in a predetermined second gear ratio based on the predicted maximum torque capable of being produced by the engine; and
shifting the transmission from the predetermined first gear ratio to the predetermined second gear ratio if the determined torque output of the transmission in a predetermined second gear ratio is greater than the determined torque load acting on the transmission in the predetermined first gear ratio.
2. The method of controlling an automatic transmission of claim 1 wherein the step of determining the torque load acting on the transmission in a predetermined first gear ratio includes the steps of;
determining the transmission output torque in a predetermined first gear ratio at a first period of time;
determining the difference in transmission output torque from the transmission at a second period of time as compared to the first period of time; and
calculating the actual torque load on the transmission at the second period of time based on the transmission output torque in a predetermined first gear ratio at a first period of time and the change in transmission output torque from the transmission at a second period of time as compared to the first period of time.
3. The method of controlling an automatic transmission of claim 2 wherein the step of determining the transmission output torque in a predetermined first gear ratio at a first period of time includes the steps of:
determining a transmission gear ratio;
determining transmission losses; and
calculating the transmission input torque at a first period of time based on the transmission gear ratio, transmission losses, and torque output of the engine.
4. The method of controlling an automatic transmission of claim 2 wherein the step of determining the torque load acting on the transmission in a first predetermined gear ratio further includes the steps of:
determining a rate of change of speed of the output of the transmission;
determining a vehicle inertia; and
calculating the torque load acting on the transmission based on the rate of change of speed of the output of the transmission, and the determined vehicle inertia.
5. The method of controlling an automatic transmission of claim 4 wherein the step of determining a torque output of the transmission in a predetermined second gear ratio includes the step of:
calculating the transmission torque output in a second gear based on a torque converter ratio, torque converter losses, and the predicted maximum torque capable of being produced by the engine.
US10/076,509 2002-02-15 2002-02-15 Adaptive load torque for gear selection in an automatic transmission Expired - Lifetime US6609056B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/076,509 US6609056B1 (en) 2002-02-15 2002-02-15 Adaptive load torque for gear selection in an automatic transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/076,509 US6609056B1 (en) 2002-02-15 2002-02-15 Adaptive load torque for gear selection in an automatic transmission

Publications (2)

Publication Number Publication Date
US6609056B1 US6609056B1 (en) 2003-08-19
US20030158645A1 true US20030158645A1 (en) 2003-08-21

Family

ID=27732506

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/076,509 Expired - Lifetime US6609056B1 (en) 2002-02-15 2002-02-15 Adaptive load torque for gear selection in an automatic transmission

Country Status (1)

Country Link
US (1) US6609056B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050246083A1 (en) * 2004-04-30 2005-11-03 Koski Jack P Single wire dual speed signal system
US20090143946A1 (en) * 2007-11-30 2009-06-04 Brian Douglas Hoff Power train control system with engine speed override
WO2009095250A1 (en) * 2008-02-01 2009-08-06 Getrag Getriebe- Und Zahnradfabrik Hermann Hagenmeyer Gmbh & Cie Kg Device and method for preventing erroneous shifting in automatic transmissions of motorized vehicles
US20090319126A1 (en) * 2008-06-18 2009-12-24 Aisin Aw Co., Ltd. Driving support device and driving support method
US20150197242A1 (en) * 2014-01-10 2015-07-16 Ford Global Technologies, Llc Hybrid vehicle transmission shift management system and method
US11378182B2 (en) * 2020-02-07 2022-07-05 Toyota Jidosha Kabushiki Kaisha Vehicle controller and method of controlling vehicle

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7058496B2 (en) * 2004-02-20 2006-06-06 Cnh America Llc Method and apparatus for determining a vehicle gear ratio
GB0609333D0 (en) * 2006-05-11 2006-06-21 Zeroshift Ltd Engagement member actuator control
GB0510129D0 (en) * 2005-05-18 2005-06-22 Zeroshift Ltd Sequential hub layout
JP4462148B2 (en) * 2005-09-01 2010-05-12 株式会社デンソー Cruise control equipment
US9126598B2 (en) * 2006-06-05 2015-09-08 Deere & Company Power management for infinitely variable transmission (IVT) equipped machines
US7853382B2 (en) * 2006-09-29 2010-12-14 Deere & Company Loader boom control system
GB0623292D0 (en) * 2006-11-22 2007-01-03 Zeroshift Ltd Transmission system
EP2101088B1 (en) * 2006-11-30 2017-10-18 KCM Corporation Shift control device for industrial vehicle
US7681675B2 (en) * 2007-12-17 2010-03-23 Gm Global Technology Operations, Inc. Hybrid drive powertrains with reduced parasitic losses
US8145398B2 (en) * 2008-11-12 2012-03-27 Caterpillar Inc. Method for controlling gear ratio changes in an automatic transmission
US9175765B2 (en) * 2010-11-19 2015-11-03 Ikeya Forumla Co., Ltd. Transmission and shift control system
GB201109100D0 (en) 2011-05-27 2011-07-13 Zeroshift Ltd Transmission system
DE102013112967A1 (en) * 2013-11-25 2015-05-28 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Method for controlling an internal combustion engine
US9199640B2 (en) * 2014-02-28 2015-12-01 Ford Global Technologies, Llc Control of electronic limited slip differential while towing
KR101807618B1 (en) * 2016-10-04 2018-01-18 현대자동차주식회사 Apparatus and method for controlling transmission in vehicle
DE102018211095A1 (en) * 2018-07-05 2020-01-09 Volkswagen Aktiengesellschaft Method for operating a motor vehicle and motor vehicle

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0270036B1 (en) 1986-11-29 1993-08-04 Aisin Seiki Kabushiki Kaisha Vehicle speed control system for motor vehicle having an automatic transmission control system
US4875391A (en) 1988-04-29 1989-10-24 Chrysler Motors Corporation Electronically-controlled, adaptive automatic transmission system
US4905545A (en) 1988-04-29 1990-03-06 Chrysler Motors Corporation Method of controlling the speed change of a kickdown shift for an electronic automatic transmission system
US4951200A (en) 1988-04-29 1990-08-21 Chrysler Corporation Method of controlling the apply element during a kickdown shift for an electronic automatic transmission system
JP2853173B2 (en) 1989-06-07 1999-02-03 日産自動車株式会社 Vehicle travel control device
US5182970A (en) * 1990-04-04 1993-02-02 Aisin Seiki Kabushiki Kaisha Hydraulic control system for automatic transmission
JPH04191132A (en) 1990-11-26 1992-07-09 Mitsubishi Electric Corp Running resistance detecting device of vehicle
EP0801250B1 (en) 1991-03-13 2003-09-10 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Speed change control apparatus for an automatic transmission for vehicles
EP0503942B1 (en) 1991-03-13 1997-05-14 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Speed change control method for an automatic transmission for vehicles
JP3013591B2 (en) 1992-04-14 2000-02-28 日産自動車株式会社 Transmission control device for automatic transmission
JPH0840115A (en) 1994-08-02 1996-02-13 Jatco Corp Control device of automatic transmission
US5498195A (en) 1994-11-10 1996-03-12 Cummins Electronics Company, Inc. Apparatus and method for verifying gear engagement in controlling the automatic shifting of a manual-automatic transmission
DE19650450A1 (en) * 1995-12-18 1997-06-19 Luk Getriebe Systeme Gmbh Apparatus for adjusting or actuating clutches in power train of motor vehicle
US5669850A (en) 1996-06-13 1997-09-23 Chrysler Corporation Shift hunting prevention for an automatic transmission
US5685801A (en) 1996-06-14 1997-11-11 Chrysler Corporation Cruise control overspeed reduction with automatic transmission
US5778331A (en) 1996-06-14 1998-07-07 Chrysler Corporation Kickdown delay in cruise control for automatic transmission
DE19757328A1 (en) * 1997-12-23 1999-06-24 Bosch Gmbh Robert Transmission control for vehicle
US6019703A (en) 1999-03-23 2000-02-01 Daimlerchrysler Corporation Transmission assembly for vehicle with torque converter clutch and method for engaging this clutch
US6090012A (en) 1999-04-01 2000-07-18 Daimlerchrysler Corporation Method and apparatus for controlling upshift on an automatic transmission
US6231477B1 (en) 1999-05-21 2001-05-15 Daimlerchrysler Corporation Apparatus and method for providing automatic shift modes in an automatic transmission

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050246083A1 (en) * 2004-04-30 2005-11-03 Koski Jack P Single wire dual speed signal system
US7243016B2 (en) * 2004-04-30 2007-07-10 General Motors Corporation Single wire dual speed signal system
US20090143946A1 (en) * 2007-11-30 2009-06-04 Brian Douglas Hoff Power train control system with engine speed override
US7877183B2 (en) 2007-11-30 2011-01-25 Caterpillar Inc. Power train control system with engine speed override
WO2009095250A1 (en) * 2008-02-01 2009-08-06 Getrag Getriebe- Und Zahnradfabrik Hermann Hagenmeyer Gmbh & Cie Kg Device and method for preventing erroneous shifting in automatic transmissions of motorized vehicles
US20110010061A1 (en) * 2008-02-01 2011-01-13 Getrag Getriebe-Und Zahnradfabrik Hermann Hagenmeyer Gmbh & Cie Kg Apparatus and method for preventing incorrect gear shifts in automatic transmissions of motor vehicles
US8108113B2 (en) 2008-02-01 2012-01-31 Getrag Getriebe- Und Zahnradfabrik Hermann Hagenmeyer Gmbh & Cie Kg Apparatus and method for preventing incorrect gear shifts in automatic transmissions of motor vehicles
US20090319126A1 (en) * 2008-06-18 2009-12-24 Aisin Aw Co., Ltd. Driving support device and driving support method
US20150197242A1 (en) * 2014-01-10 2015-07-16 Ford Global Technologies, Llc Hybrid vehicle transmission shift management system and method
US9718462B2 (en) * 2014-01-10 2017-08-01 Ford Global Technologies, Llc Hybrid vehicle transmission shift management system and method
US11378182B2 (en) * 2020-02-07 2022-07-05 Toyota Jidosha Kabushiki Kaisha Vehicle controller and method of controlling vehicle

Also Published As

Publication number Publication date
US6609056B1 (en) 2003-08-19

Similar Documents

Publication Publication Date Title
US6609056B1 (en) Adaptive load torque for gear selection in an automatic transmission
US8142329B2 (en) Controlling torque in a flywheel powertrain
CN100460725C (en) Controller of driver for vehicle
US6502027B2 (en) Road gradient detecting device and starter clutch controlling device
US7563196B2 (en) Controller for automatic transmission
US8301349B2 (en) Use of gradient road resistance strategies
US7463962B2 (en) Shift point strategy for hybrid electric vehicle transmission
EP1439975B1 (en) Motor vehicle having an automated transmission
US7509202B2 (en) Neutral idle hill detection
US5738605A (en) Anti-hunt strategy for an automatic transmission
KR20000064824A (en) Method and apparatus for controlling drive train of vehicle
US6640177B2 (en) Method for determining a transmission ratio for an automatic transmission arranged in a drive train of a motor vehicle
US6645121B2 (en) Vehicle transmission system for controlling clutch temperature
US6098004A (en) Preventing gear hunting in an automatic transmission for a motor vehicle
JPH11257472A (en) Gear shift control device for prime mover
US20090228180A1 (en) Shift control device for automatic transmission and control method thereof
US5685801A (en) Cruise control overspeed reduction with automatic transmission
US5778331A (en) Kickdown delay in cruise control for automatic transmission
EP0457585A2 (en) System for and method of controlling automatic transmission
Phillips et al. Development and use of a vehicle powertrain simulation for fuel economy and performance studies
US8190340B2 (en) Shift control device for automatic transmission and control method thereof
CN100377945C (en) Transmission system control method and device of automotive vehicle with power branch and gear device
JP3003757B2 (en) Vehicle driving force control device
CN102549309B (en) For the system of the control of gearbox
KR101401626B1 (en) Method for determination of motive force capacity of a motor vehicle

Legal Events

Date Code Title Description
AS Assignment

Owner name: DAIMLERCHRYSLER CORPORATION, MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CZARNECKI, EDWARD W;BENFORD, HOWARD L;REEL/FRAME:012500/0646;SIGNING DATES FROM 20020124 TO 20020206

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: WILMINGTON TRUST COMPANY, DELAWARE

Free format text: GRANT OF SECURITY INTEREST IN PATENT RIGHTS - FIRST PRIORITY;ASSIGNOR:CHRYSLER LLC;REEL/FRAME:019773/0001

Effective date: 20070803

Owner name: WILMINGTON TRUST COMPANY,DELAWARE

Free format text: GRANT OF SECURITY INTEREST IN PATENT RIGHTS - FIRST PRIORITY;ASSIGNOR:CHRYSLER LLC;REEL/FRAME:019773/0001

Effective date: 20070803

AS Assignment

Owner name: WILMINGTON TRUST COMPANY, DELAWARE

Free format text: GRANT OF SECURITY INTEREST IN PATENT RIGHTS - SECOND PRIORITY;ASSIGNOR:CHRYSLER LLC;REEL/FRAME:019767/0810

Effective date: 20070803

Owner name: WILMINGTON TRUST COMPANY,DELAWARE

Free format text: GRANT OF SECURITY INTEREST IN PATENT RIGHTS - SECOND PRIORITY;ASSIGNOR:CHRYSLER LLC;REEL/FRAME:019767/0810

Effective date: 20070803

AS Assignment

Owner name: DAIMLERCHRYSLER COMPANY LLC, MICHIGAN

Free format text: CHANGE OF NAME;ASSIGNOR:DAIMLERCHRYSLER CORPORATION;REEL/FRAME:021779/0793

Effective date: 20070329

AS Assignment

Owner name: CHRYSLER LLC, MICHIGAN

Free format text: CHANGE OF NAME;ASSIGNOR:DAIMLERCHRYSLER COMPANY LLC;REEL/FRAME:021826/0001

Effective date: 20070727

AS Assignment

Owner name: US DEPARTMENT OF THE TREASURY, DISTRICT OF COLUMBI

Free format text: GRANT OF SECURITY INTEREST IN PATENT RIGHTS - THIR;ASSIGNOR:CHRYSLER LLC;REEL/FRAME:022259/0188

Effective date: 20090102

Owner name: US DEPARTMENT OF THE TREASURY,DISTRICT OF COLUMBIA

Free format text: GRANT OF SECURITY INTEREST IN PATENT RIGHTS - THIR;ASSIGNOR:CHRYSLER LLC;REEL/FRAME:022259/0188

Effective date: 20090102

AS Assignment

Owner name: CHRYSLER LLC, MICHIGAN

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:US DEPARTMENT OF THE TREASURY;REEL/FRAME:022902/0310

Effective date: 20090608

Owner name: CHRYSLER LLC,MICHIGAN

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:US DEPARTMENT OF THE TREASURY;REEL/FRAME:022902/0310

Effective date: 20090608

AS Assignment

Owner name: CHRYSLER LLC, MICHIGAN

Free format text: RELEASE OF SECURITY INTEREST IN PATENT RIGHTS - FIRST PRIORITY;ASSIGNOR:WILMINGTON TRUST COMPANY;REEL/FRAME:022910/0498

Effective date: 20090604

Owner name: CHRYSLER LLC, MICHIGAN

Free format text: RELEASE OF SECURITY INTEREST IN PATENT RIGHTS - SECOND PRIORITY;ASSIGNOR:WILMINGTON TRUST COMPANY;REEL/FRAME:022910/0740

Effective date: 20090604

Owner name: NEW CARCO ACQUISITION LLC, MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CHRYSLER LLC;REEL/FRAME:022915/0001

Effective date: 20090610

Owner name: THE UNITED STATES DEPARTMENT OF THE TREASURY, DIST

Free format text: SECURITY AGREEMENT;ASSIGNOR:NEW CARCO ACQUISITION LLC;REEL/FRAME:022915/0489

Effective date: 20090610

Owner name: CHRYSLER LLC,MICHIGAN

Free format text: RELEASE OF SECURITY INTEREST IN PATENT RIGHTS - FIRST PRIORITY;ASSIGNOR:WILMINGTON TRUST COMPANY;REEL/FRAME:022910/0498

Effective date: 20090604

Owner name: CHRYSLER LLC,MICHIGAN

Free format text: RELEASE OF SECURITY INTEREST IN PATENT RIGHTS - SECOND PRIORITY;ASSIGNOR:WILMINGTON TRUST COMPANY;REEL/FRAME:022910/0740

Effective date: 20090604

Owner name: NEW CARCO ACQUISITION LLC,MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CHRYSLER LLC;REEL/FRAME:022915/0001

Effective date: 20090610

Owner name: THE UNITED STATES DEPARTMENT OF THE TREASURY,DISTR

Free format text: SECURITY AGREEMENT;ASSIGNOR:NEW CARCO ACQUISITION LLC;REEL/FRAME:022915/0489

Effective date: 20090610

AS Assignment

Owner name: CHRYSLER GROUP LLC, MICHIGAN

Free format text: CHANGE OF NAME;ASSIGNOR:NEW CARCO ACQUISITION LLC;REEL/FRAME:022919/0126

Effective date: 20090610

Owner name: CHRYSLER GROUP LLC,MICHIGAN

Free format text: CHANGE OF NAME;ASSIGNOR:NEW CARCO ACQUISITION LLC;REEL/FRAME:022919/0126

Effective date: 20090610

FPAY Fee payment

Year of fee payment: 8

AS Assignment

Owner name: CHRYSLER GROUP LLC, MICHIGAN

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:THE UNITED STATES DEPARTMENT OF THE TREASURY;REEL/FRAME:026343/0298

Effective date: 20110524

Owner name: CHRYSLER GROUP GLOBAL ELECTRIC MOTORCARS LLC, NORT

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:THE UNITED STATES DEPARTMENT OF THE TREASURY;REEL/FRAME:026343/0298

Effective date: 20110524

AS Assignment

Owner name: CITIBANK, N.A., NEW YORK

Free format text: SECURITY AGREEMENT;ASSIGNOR:CHRYSLER GROUP LLC;REEL/FRAME:026404/0123

Effective date: 20110524

AS Assignment

Owner name: CITIBANK, N.A., NEW YORK

Free format text: SECURITY AGREEMENT;ASSIGNOR:CHRYSLER GROUP LLC;REEL/FRAME:026435/0652

Effective date: 20110524

AS Assignment

Owner name: JPMORGAN CHASE BANK, N.A., ILLINOIS

Free format text: SECURITY AGREEMENT;ASSIGNOR:CHRYSLER GROUP LLC;REEL/FRAME:032384/0640

Effective date: 20140207

FPAY Fee payment

Year of fee payment: 12

AS Assignment

Owner name: FCA US LLC, MICHIGAN

Free format text: CHANGE OF NAME;ASSIGNOR:CHRYSLER GROUP LLC;REEL/FRAME:035553/0356

Effective date: 20141203

AS Assignment

Owner name: FCA US LLC, FORMERLY KNOWN AS CHRYSLER GROUP LLC,

Free format text: RELEASE OF SECURITY INTEREST RELEASING SECOND-LIEN SECURITY INTEREST PREVIOUSLY RECORDED AT REEL 026426 AND FRAME 0644, REEL 026435 AND FRAME 0652, AND REEL 032384 AND FRAME 0591;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:037784/0001

Effective date: 20151221

AS Assignment

Owner name: FCA US LLC (FORMERLY KNOWN AS CHRYSLER GROUP LLC),

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:042885/0255

Effective date: 20170224

AS Assignment

Owner name: FCA US LLC (FORMERLY KNOWN AS CHRYSLER GROUP LLC),

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A.;REEL/FRAME:048177/0356

Effective date: 20181113