US20030110779A1 - Apparatus and method for augmented cooling of computers - Google Patents

Apparatus and method for augmented cooling of computers Download PDF

Info

Publication number
US20030110779A1
US20030110779A1 US10/017,710 US1771001A US2003110779A1 US 20030110779 A1 US20030110779 A1 US 20030110779A1 US 1771001 A US1771001 A US 1771001A US 2003110779 A1 US2003110779 A1 US 2003110779A1
Authority
US
United States
Prior art keywords
heat
heat transfer
computer
module
thermoelectric device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/017,710
Inventor
Robert Otey
Brian Rabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/017,710 priority Critical patent/US20030110779A1/en
Priority to PCT/US2002/040122 priority patent/WO2003052819A2/en
Priority to AU2002364002A priority patent/AU2002364002A1/en
Publication of US20030110779A1 publication Critical patent/US20030110779A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • F25B21/02Machines, plants or systems, using electric or magnetic effects using Peltier effect; using Nernst-Ettinghausen effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0275Arrangements for coupling heat-pipes together or with other structures, e.g. with base blocks; Heat pipe cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/38Cooling arrangements using the Peltier effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/13Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the heat-exchanging means at the junction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B23/00Machines, plants or systems, with a single mode of operation not covered by groups F25B1/00 - F25B21/00, e.g. using selective radiation effect
    • F25B23/006Machines, plants or systems, with a single mode of operation not covered by groups F25B1/00 - F25B21/00, e.g. using selective radiation effect boiling cooling systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/02Details of machines, plants or systems, using electric or magnetic effects using Peltier effects; using Nernst-Ettinghausen effects
    • F25B2321/025Removal of heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/02Details of machines, plants or systems, using electric or magnetic effects using Peltier effects; using Nernst-Ettinghausen effects
    • F25B2321/025Removal of heat
    • F25B2321/0251Removal of heat by a gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates generally to the field of heat removal from electronic components. More particularly, the present invention relates to the removal of heat from an integrated circuit.
  • the heat sink surface area and air velocity are the controlling parameters for the heat sink's power dissipation capacity.
  • power dissipation capacity is at a minimum.
  • area and air velocity are maximized, power dissipation capacity is maximized.
  • surface area or air velocity or both must be maximized.
  • Thermal solutions can be divided into two categories.
  • One is referred to as passive solutions like heat sinks, heat pipes and metal plates since there is no need of external power to drive the cooling system to function.
  • the other is called active solutions like fans and fan-heat sinks where external power is needed for the cooling system.
  • heat sinks, fans and heat pipes are employed to dissipate heat from integrated circuits and other electronic components. Increases in heat generation are often accommodated by simply increasing the quantity or size of these heat dissipation elements. Specifically, heat sinks with greater heat dissipation capacity are generally larger, heavier, or require more airflow. Similarly, fans added to cool components occupy space, produce noise, and provide a potential for failure. Maintaining circuit temperatures at an appropriate level is a serious technical problem in ensuring peak performance and reliability of computers.
  • a heat pipe is used to transport the heat from the processor to a remote heat exchanger.
  • a small fan blows air over the remote heat exchanger and dissipates the heat to the ambient air outside the computer chassis.
  • U.S. Pat. No. 5,383,340 (1995, Larson et al.) discloses a two-phase cooling system for a portable computer which in one embodiment consists of an evaporator which is positioned within the base of the computer and a condenser which is positioned within or attached to the lid of the computer.
  • the evaporator and condenser are connected by flexible tubing.
  • the tubing may run externally from the lid to the base or it may extend through one or more of the hinges that connect the base and the lid.
  • both the evaporator and the condenser of the two-phase system are incorporated into either the base or the lid of the computer.
  • U.S. Pat. No. 5,513,070 (1996, Xie et al.) discloses an improved heat dissipation device particularly suited for removing heat from a surface mounted integrated circuit component coupled to a printed circuit board in a portable computer.
  • Vias which are at least partially filled with a heat conductive material, improve heat transfer between a component and a heat conductive block mounted on opposite surfaces of the circuit board.
  • a first section near one end of the heat pipe is attached to the heat conductive block in a channel formed receptive to the heat pipe.
  • a second section of the heat pipe including the second end is attached to a metal plate that is affixed beneath the keyboard. Heat from the component flows through the vias to the block and is transferred by the heat pipe to the metal plate where it is dissipated.
  • the industry has adopted dual performance modes for the laptop computer.
  • the first mode is battery/DC mode where the computer runs at reduced processor and video performance along with special storage device operations to conserve power.
  • the second mode is AC mode where the system runs at full design capacity and performance. This level of performance being limited by heat removal from the computer.
  • the desktop solution includes multiple fans, specially designed heat sinks, and even built-in mechanical refrigeration devices. The size, weight, and power constraints have limited the application of this technology in laptop and notebook computers. This separation or difference in performance prevents power users from using just one device, i.e. laptop or notebook, for all their needs.
  • a heat transfer module that is capable of increasing the heat removal capability of standard cooling systems used in computers. What is further needed is a heat transfer module whose characteristics allow electronic components to operate at cooler temperatures when powered at high performance levels. What is still further needed is a heat transfer module that is adapted for connection to internal thermal management systems of computers ranging in size from laptop to desktop computers.
  • the present invention achieves these and other objectives by providing an external heat transfer module having an interface coupling that connects to a thermal interface port of a computer for augmenting the heat removal system of the internal, thermal management system of the computer.
  • a heat transfer module is one that includes a thermoelectric device, a heat conductive plate in thermal contact with a cool side of the thermoelectric device, and at least one heat transfer medium having a first portion adjacent to one end of the medium and adapted for coupling to a computer's heat removal system and a second portion adjacent to the other end of the medium and in thermal contact with the heat conductive plate.
  • the heat transfer medium may be a solid, thermally conductive rod or a heat pipe that employs a two-phase system.
  • Another embodiment of such a heat transfer module is one that includes a high-end, thermally conductive heat sink coupled to a fan and to the heat transfer medium, which is adapted for coupling to a thermal interface port of a computer.
  • the present invention has a thermoelectric device that is in thermal contact on its cool side with a heat conductive plate and on its hot side with a heat sink.
  • the heat sink is coupled to a fan to aid in dissipating the heat from the thermoelectric's hot side.
  • the thermally conductive plate has attached thereto a heat transfer medium such as a metal rod or a heat pipe.
  • the heat transfer medium has a connector at its opposite end designed to mate with a thermal interface port connected to the heat dissipating unit of a computer's thermal management system.
  • power is supplied to the thermoelectric device to create the hot and cool side of the thermoelectric device.
  • a thermally conductive paste or other thermal interface material is used at their interfaces.
  • this heat removal system would provide the capability of installing faster, high performance processors and video cards without raising internal temperatures, or provide a cooler environment for existing configurations that will improve performance and reliability.
  • the present invention will enable laptop or notebook computer full operating potential. As currently designed, the computer will limit performance and power draw when removed from the docking station.
  • the incorporation of the present invention will enable the power user to perform all required tasks on a single computer by providing both power and portability while eliminating the need to carry back-up data on separate media, or performing lengthy data synchronization operations.
  • FIG. 1 is a perspective view of the heat transfer module of the present invention.
  • FIG. 2 is an enlarged, cross-sectional view of the present invention showing the thermoelectric element, the heat conductive plate, the heat transfer medium, and the heat sink.
  • FIG. 3 is an enlarged, perspective view of three embodiments of thermal connectors for connecting the present invention to a computer's thermal management system.
  • FIG. 4 is a perspective view of a docking station for a portable computer incorporating the heat transfer module.
  • FIG. 1 illustrates a heat transfer module 10 having a thermoelectric device (not shown), heat receiving portion 20 , and a heat dissipation portion 40 .
  • Heat receiving portion 20 includes a heat conductive plate 22 and a first end 31 of a heat transfer conduit or heat pipe 30 .
  • Heat dissipation portion 40 has a heat sink 42 and a fan 46 .
  • Fan 46 is typical of the fans used in computers.
  • Heat conductive plate 22 is typically a copper plate having a thickness in the range of about ⁇ fraction (1/32) ⁇ inch (0.79 mm) to 1 ⁇ 8 inch (3.18 mm).
  • Heat pipe 30 is typical of those commonly used in heat transfer, generally having a diameter between 2 to 8 mm.
  • a first portion 32 of heat pipe 30 is preferably flattened to create an oblong shape having a flat portion for soldering to one side of heat conductive plate 22 and to enhance heat transfer. It is noted that, even though first portion 32 is deformed, it maintains enough of its structure to function as a heat pipe.
  • This configuration provides for a thinner profile of the heat receiving portion 20 than would be achieved with a heat conductive plate 22 having a thickness sufficient to form a semi-circular groove for receiving a portion of a cylindrical heat pipe or have a bore hole sized to receive a heat pipe.
  • a heat conductive plate 22 having a thickness sufficient to form a semi-circular groove for receiving a portion of a cylindrical heat pipe or have a bore hole sized to receive a heat pipe.
  • thermoelectric device 12 is sandwiched between heat receiving portion 20 and heat sink 42 .
  • Thermoelectric device 12 has a matrix of thermoelectric elements 14 electrically connected between a pair of electrically insulating substrates 13 .
  • Thermoelectric device 12 also includes a pair of electrically conductive, insulated wires 15 electrically coupled to the matrix of thermoelectric elements 14 to provide voltage to device 12 .
  • thermoelectric device 12 When power is supplied to thermoelectric device 12 , one of the electrically insulting substrates 13 becomes cool while the other substrate 13 becomes hot. This is caused by the Peltier effect, which occurs in the thermoelectric elements 14 .
  • a typical thermoelectric device requires DC power in order to produce a net current flow through the thermoelectric elements in one direction. The direction of the current flow determines the direction of heat transfer across the thermoelectric elements.
  • Heat sink 42 has a base portion 43 formed as a planar sheet and a fin portion 44 .
  • a thermally conductive epoxy or other adhesive methods are acceptable in bonding the outer planar surfaces of thermoelectric device 12 to heat dissipating portion 40 and heat conductive portion 30
  • a compression mounting method such as using screws or the like passing through openings at the four corners of heat plate 22 and into threaded recesses in base portion 43 of heat sink 42 is preferred in larger thermoelectric applications.
  • Another embodiment includes a heat transfer module that has a high-end, thermally conductive heat sink coupled to a fan and to the heat transfer medium or conduit, which is adapted for coupling to a thermal interface port of a computer.
  • FIGS. 3 A- 3 C show three embodiments of a second end of heat pipe 30 .
  • Heat pipe coupling system 50 includes heat module coupling end 52 and a thermal management system end 56 .
  • Heat module coupling end 52 includes a flattened portion 54 of heat pipe 30 soldered to a heat transfer board 55 .
  • Thermal management system end 56 includes a heat transfer base 57 and a pair of biasing springs 58 connected at or near one end of heat transfer base 57 .
  • Thermal management system end 56 is sized to receive heat module coupling end 52 and hold heat transfer board 55 in thermally conductive contact with heat transfer base 57 .
  • Thermal management system end 56 is preferably secured to the heat dissipation end of a computer's thermal management system such as the remote heat exchanger. It should be understood by those skilled in the art that the terms used to describe the heat pipe coupling system 50 is not restrictive of which end 52 or 56 is part of the heat transfer module 10 or the thermal management system of the computer. These are interchangeable, depending on design and manufacturing parameters used for a thermal interface port.
  • FIG. 3B shows another embodiment of a useable thermal connection.
  • Thermal connection 60 includes receiving prongs 61 thermally mounted to second end of heat pipe 30 .
  • Receiving prongs 61 are sized and configured to receive an end portion 63 of a heat pipe 62 in a friction fit, much like that of a phone plug and jack.
  • End portion 63 is typically connected to the heat dissipation end such as a remote heat exchanger of a computer's thermal management system.
  • FIG. 3C shows yet another embodiment of a usable thermal connection.
  • Thermal connection 70 includes a flattened portion 72 of heat pipe 30 .
  • Receiving portion 74 includes a spring-loaded, elongated, flat portion 76 contained within an elongated receiving housing 78 .
  • Receiving portion 74 is sized to receive flattened portion 72 such that flattened portion 72 is in intimate, thermal contact with springloaded flat portion 76 .
  • thermal connection to be used as a thermal interface between the external heat transfer module 10 and the computer's internal heat management system are not limiting. It will occur to those skilled in the art that other embodiments of a thermal interface may be used for defining a thermal interface port. It is the combination of an external heat transfer module coupled through a thermal interface port to a computer's internal heat management system that is considered novel, and that the scope of the present invention is not limited to the detailed embodiments described herein.
  • FIG. 4 shows one embodiment of a docking station 80 for a notebook-type computer 100 .
  • Docking station 80 includes as many interface connections 81 as required for a particular brand and model of notebook/portable computer. Also included in docking station 80 is a heat transfer module 82 of the present invention with an appropriate thermal interface port or connection 84 to computer 100 .
  • the ability to augment the thermal management system of notebook computers allows one to perform all required tasks on a single computer. This is achieved by providing both power and portability while eliminating the need to carry back-up data on separate media, or performing lengthy data synchronization operations.

Abstract

A combination of a computer and an external heat transfer module to improve the heat removing capability of a computer's internal heat removal system, the combination includes a computer with a thermal interface port connected to the computer's internal heat removal system and a heat transfer module connected to the thermal interface port. The heat transfer module has a heat dissipation component and at least one heat transfer conduit having one end thermally coupled to the computer's internal heat removal system, and the other end thermally coupled to the heat dissipation component.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0001]
  • The present invention relates generally to the field of heat removal from electronic components. More particularly, the present invention relates to the removal of heat from an integrated circuit. [0002]
  • 2. Description of the Prior Art [0003]
  • Improved processing technology and higher levels of integration produce increasingly complex integrated circuits. These new generations of integrated circuits often operate at higher frequencies and generate more heat than their predecessors. [0004]
  • In device thermal management, as in the electrical design, the limitations to performance are relatively straightforward. Maintaining electronic devices at acceptable temperature levels requires that the heat they generate be transferred to the surrounding air by a combination of conduction, natural and/or force convection, and radiation. In typical electronic operating temperature ranges, the effect of radiation is less significant. Hence, a combination of conduction, natural or forced convection becomes the primary means of heat removal. [0005]
  • In natural and forced convection heat sink applications, the heat sink surface area and air velocity are the controlling parameters for the heat sink's power dissipation capacity. When heat sink surface area and air velocity are at a minimum, power dissipation capacity is at a minimum. Conversely, when area and air velocity are maximized, power dissipation capacity is maximized. To provide a high performance heat sink either surface area or air velocity or both must be maximized. [0006]
  • Thermal solutions can be divided into two categories. One is referred to as passive solutions like heat sinks, heat pipes and metal plates since there is no need of external power to drive the cooling system to function. The other is called active solutions like fans and fan-heat sinks where external power is needed for the cooling system. [0007]
  • Typically, heat sinks, fans and heat pipes are employed to dissipate heat from integrated circuits and other electronic components. Increases in heat generation are often accommodated by simply increasing the quantity or size of these heat dissipation elements. Specifically, heat sinks with greater heat dissipation capacity are generally larger, heavier, or require more airflow. Similarly, fans added to cool components occupy space, produce noise, and provide a potential for failure. Maintaining circuit temperatures at an appropriate level is a serious technical problem in ensuring peak performance and reliability of computers. [0008]
  • Meanwhile, computers have a tendency to decrease in size to enhance value, portability and convenience. Dealing successfully with the contradictory problems of removing heat and reducing size is a key in developing the next generation of medium and small-sized computers. [0009]
  • Most of the more recent designs incorporate a heat sink/fan/vent and some use an internal heat pipe. In one design, a heat pipe is used to transport the heat from the processor to a remote heat exchanger. A small fan blows air over the remote heat exchanger and dissipates the heat to the ambient air outside the computer chassis. [0010]
  • Examples of some thermal management systems are as follows. U.S. Pat. No. 5,339,214 (1994, Nelson) discloses a computer chassis assembly that includes a heat pipe which thermally couples an electronic package to multiple fan units. The heat pipe provides a computer chassis that sufficiently cools internal heat generating components without placing the components in close proximity to the fans. [0011]
  • U.S. Pat. No. 5,383,340 (1995, Larson et al.) discloses a two-phase cooling system for a portable computer which in one embodiment consists of an evaporator which is positioned within the base of the computer and a condenser which is positioned within or attached to the lid of the computer. The evaporator and condenser are connected by flexible tubing. The tubing may run externally from the lid to the base or it may extend through one or more of the hinges that connect the base and the lid. In an alternative embodiment, both the evaporator and the condenser of the two-phase system are incorporated into either the base or the lid of the computer. [0012]
  • U.S. Pat. No. 5,513,070 (1996, Xie et al.) discloses an improved heat dissipation device particularly suited for removing heat from a surface mounted integrated circuit component coupled to a printed circuit board in a portable computer. Vias, which are at least partially filled with a heat conductive material, improve heat transfer between a component and a heat conductive block mounted on opposite surfaces of the circuit board. A first section near one end of the heat pipe is attached to the heat conductive block in a channel formed receptive to the heat pipe. A second section of the heat pipe including the second end is attached to a metal plate that is affixed beneath the keyboard. Heat from the component flows through the vias to the block and is transferred by the heat pipe to the metal plate where it is dissipated. [0013]
  • Despite these advancements, heat transfer is even more of a problem with laptop and notebook computers. Today's laptop and notebook computers are performance limited not by electronic power density or computing power, but instead by the heat associated with increased power density and advanced computing power. Additionally, today's performance potential has led to power constraints associated with battery capacity including large capacity designs such as Lithium Ion. While electronic packaging and performance advances have reached a point where notebooks could achieve performance levels equivalent to today's personal desktop units, the heat and power constraints have provided a barrier, which limits their performance. [0014]
  • To solve the power limit issue, the industry has adopted dual performance modes for the laptop computer. The first mode is battery/DC mode where the computer runs at reduced processor and video performance along with special storage device operations to conserve power. The second mode is AC mode where the system runs at full design capacity and performance. This level of performance being limited by heat removal from the computer. The desktop solution, as previously mentioned, includes multiple fans, specially designed heat sinks, and even built-in mechanical refrigeration devices. The size, weight, and power constraints have limited the application of this technology in laptop and notebook computers. This separation or difference in performance prevents power users from using just one device, i.e. laptop or notebook, for all their needs. [0015]
  • In addition, there is and always has been a segment of the computing public that attempts to push current microprocessors beyond their rated limits. This is generally achieved by a procedure called “over-clocking” a microprocessor. Inside all PCs, the system clock sets the pace for the speed of the computer. When computer manufacturers build a system, they assemble components that are known to operate at a predetermined speed. The speed of the bus on the motherboard in a computer tells the processor how fast to execute instructions. Bus speed is controlled by a clock setting on the motherboard. By simply changing a jumper or two on the motherboard, the speed increases. [0016]
  • Many motherboards are designed to accept several speeds of processors. Manually changing the clock speed and voltage to a microprocessor produces performance outside the chip design. This is called by those skilled in the art as “over-clocking” the processor. Increasing the clock speed causes the components to run faster. However, increasing the frequency causes the components to run hotter. Experts agree that over-clocking shortens the life of the processor chip because is runs at a higher temperature caused by the over-clocking than for which the processor was designed. The standard cooling systems used in computers today are insufficient to cool an “over-clocked” microprocessor to a level sufficient to prevent heat damage to the microprocessor. [0017]
  • Therefore, what is needed is a heat transfer module that is capable of increasing the heat removal capability of standard cooling systems used in computers. What is further needed is a heat transfer module whose characteristics allow electronic components to operate at cooler temperatures when powered at high performance levels. What is still further needed is a heat transfer module that is adapted for connection to internal thermal management systems of computers ranging in size from laptop to desktop computers. [0018]
  • SUMMARY OF THE INVENTION
  • It is an object of the present invention to provide a heat transfer module that connects to the internal thermal management system of a computer to increase heat removal from operating electronic components. It is a further object of the present invention to provide a heat transfer module that augments the internal thermal management system of a computer to allow electronic components to operate at cooler working temperatures thus increasing reliability and life expectancy of the electronic components. It is another object of the present invention to provide a heat transfer module that augments the internal thermal management system of a computer such that the electronic components can be operated at higher performance levels while maintaining the operational temperature of the electronic component below the maximum recommended component temperature specification. It is still another object of the present invention to provide a heat transfer module that augments the internal thermal management system of a computer by connecting the heat transfer module to a thermal interface port on the computer. It is yet another object of the present invention to provide a computer docking station that incorporates a heat transfer module that connects to and augments the internal thermal management system of a laptop computer. [0019]
  • The present invention achieves these and other objectives by providing an external heat transfer module having an interface coupling that connects to a thermal interface port of a computer for augmenting the heat removal system of the internal, thermal management system of the computer. One embodiment of such a heat transfer module is one that includes a thermoelectric device, a heat conductive plate in thermal contact with a cool side of the thermoelectric device, and at least one heat transfer medium having a first portion adjacent to one end of the medium and adapted for coupling to a computer's heat removal system and a second portion adjacent to the other end of the medium and in thermal contact with the heat conductive plate. The heat transfer medium may be a solid, thermally conductive rod or a heat pipe that employs a two-phase system. Another embodiment of such a heat transfer module is one that includes a high-end, thermally conductive heat sink coupled to a fan and to the heat transfer medium, which is adapted for coupling to a thermal interface port of a computer. [0020]
  • The efficiency of prior-art heat removal systems is limited to the ability of those systems to dissipate and transfer heat to the surroundings. Even in so-called “optimized” systems that use fans, heat sinks and heat pipes, the temperature difference between the ambient air and the heat sink will limit the systems heat removal efficiency. The higher the ambient air temperature, the less heat that can be dissipated and, thus, the less heat throughput available. The essence of the present invention is the coupling of a computer's internal heat management system with an external heat removal module through a thermal interface port. [0021]
  • The present invention has a thermoelectric device that is in thermal contact on its cool side with a heat conductive plate and on its hot side with a heat sink. Typically, the heat sink is coupled to a fan to aid in dissipating the heat from the thermoelectric's hot side. The thermally conductive plate has attached thereto a heat transfer medium such as a metal rod or a heat pipe. The heat transfer medium has a connector at its opposite end designed to mate with a thermal interface port connected to the heat dissipating unit of a computer's thermal management system. As is well known, power is supplied to the thermoelectric device to create the hot and cool side of the thermoelectric device. To enhance the thermal conductance between the hot and cool side of the thermoelectric device with the heat sink and heat conductive plate, respectively, a thermally conductive paste or other thermal interface material is used at their interfaces. [0022]
  • For laptops and notebooks in particular, this heat removal system would provide the capability of installing faster, high performance processors and video cards without raising internal temperatures, or provide a cooler environment for existing configurations that will improve performance and reliability. In a docking station configuration combined with the multi-mode operation of the laptop or notebook computer, the present invention will enable laptop or notebook computer full operating potential. As currently designed, the computer will limit performance and power draw when removed from the docking station. The incorporation of the present invention will enable the power user to perform all required tasks on a single computer by providing both power and portability while eliminating the need to carry back-up data on separate media, or performing lengthy data synchronization operations.[0023]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a perspective view of the heat transfer module of the present invention. [0024]
  • FIG. 2 is an enlarged, cross-sectional view of the present invention showing the thermoelectric element, the heat conductive plate, the heat transfer medium, and the heat sink. [0025]
  • FIG. 3 is an enlarged, perspective view of three embodiments of thermal connectors for connecting the present invention to a computer's thermal management system. [0026]
  • FIG. 4 is a perspective view of a docking station for a portable computer incorporating the heat transfer module.[0027]
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
  • The preferred embodiment of the present invention is illustrated in FIGS. 14. FIG. 1 illustrates a [0028] heat transfer module 10 having a thermoelectric device (not shown), heat receiving portion 20, and a heat dissipation portion 40. Heat receiving portion 20 includes a heat conductive plate 22 and a first end 31 of a heat transfer conduit or heat pipe 30. Heat dissipation portion 40 has a heat sink 42 and a fan 46. Fan 46 is typical of the fans used in computers.
  • Heat [0029] conductive plate 22 is typically a copper plate having a thickness in the range of about {fraction (1/32)} inch (0.79 mm) to ⅛ inch (3.18 mm). Heat pipe 30 is typical of those commonly used in heat transfer, generally having a diameter between 2 to 8 mm. A first portion 32 of heat pipe 30 is preferably flattened to create an oblong shape having a flat portion for soldering to one side of heat conductive plate 22 and to enhance heat transfer. It is noted that, even though first portion 32 is deformed, it maintains enough of its structure to function as a heat pipe. This configuration provides for a thinner profile of the heat receiving portion 20 than would be achieved with a heat conductive plate 22 having a thickness sufficient to form a semi-circular groove for receiving a portion of a cylindrical heat pipe or have a bore hole sized to receive a heat pipe. In the groove configuration, it is typical to place the heat pipe in a pair of coupling grooves in the conforming surfaces between two, heat transfer plates. It should be understood that these latter configurations, though not shown, are also within the scope of the present invention.
  • Turning now to FIG. 2, [0030] thermoelectric device 12 is sandwiched between heat receiving portion 20 and heat sink 42. Thermoelectric device 12 has a matrix of thermoelectric elements 14 electrically connected between a pair of electrically insulating substrates 13. Thermoelectric device 12 also includes a pair of electrically conductive, insulated wires 15 electrically coupled to the matrix of thermoelectric elements 14 to provide voltage to device 12. When power is supplied to thermoelectric device 12, one of the electrically insulting substrates 13 becomes cool while the other substrate 13 becomes hot. This is caused by the Peltier effect, which occurs in the thermoelectric elements 14. A typical thermoelectric device requires DC power in order to produce a net current flow through the thermoelectric elements in one direction. The direction of the current flow determines the direction of heat transfer across the thermoelectric elements.
  • [0031] Heat sink 42 has a base portion 43 formed as a planar sheet and a fin portion 44. Although a thermally conductive epoxy or other adhesive methods are acceptable in bonding the outer planar surfaces of thermoelectric device 12 to heat dissipating portion 40 and heat conductive portion 30, a compression mounting method such as using screws or the like passing through openings at the four corners of heat plate 22 and into threaded recesses in base portion 43 of heat sink 42 is preferred in larger thermoelectric applications.
  • Another embodiment (not shown) includes a heat transfer module that has a high-end, thermally conductive heat sink coupled to a fan and to the heat transfer medium or conduit, which is adapted for coupling to a thermal interface port of a computer. [0032]
  • FIGS. [0033] 3A-3C show three embodiments of a second end of heat pipe 30. Turning first to FIG. 3A, there is shown a heat pipe coupling system 50. Heat pipe coupling system 50 includes heat module coupling end 52 and a thermal management system end 56. Heat module coupling end 52 includes a flattened portion 54 of heat pipe 30 soldered to a heat transfer board 55. Thermal management system end 56 includes a heat transfer base 57 and a pair of biasing springs 58 connected at or near one end of heat transfer base 57. Thermal management system end 56 is sized to receive heat module coupling end 52 and hold heat transfer board 55 in thermally conductive contact with heat transfer base 57. Thermal management system end 56 is preferably secured to the heat dissipation end of a computer's thermal management system such as the remote heat exchanger. It should be understood by those skilled in the art that the terms used to describe the heat pipe coupling system 50 is not restrictive of which end 52 or 56 is part of the heat transfer module 10 or the thermal management system of the computer. These are interchangeable, depending on design and manufacturing parameters used for a thermal interface port.
  • FIG. 3B shows another embodiment of a useable thermal connection. [0034] Thermal connection 60 includes receiving prongs 61 thermally mounted to second end of heat pipe 30. Receiving prongs 61 are sized and configured to receive an end portion 63 of a heat pipe 62 in a friction fit, much like that of a phone plug and jack. End portion 63 is typically connected to the heat dissipation end such as a remote heat exchanger of a computer's thermal management system.
  • FIG. 3C shows yet another embodiment of a usable thermal connection. [0035] Thermal connection 70 includes a flattened portion 72 of heat pipe 30. Receiving portion 74 includes a spring-loaded, elongated, flat portion 76 contained within an elongated receiving housing 78. Receiving portion 74 is sized to receive flattened portion 72 such that flattened portion 72 is in intimate, thermal contact with springloaded flat portion 76.
  • It is noted that the three embodiments for a thermal connection to be used as a thermal interface between the external [0036] heat transfer module 10 and the computer's internal heat management system are not limiting. It will occur to those skilled in the art that other embodiments of a thermal interface may be used for defining a thermal interface port. It is the combination of an external heat transfer module coupled through a thermal interface port to a computer's internal heat management system that is considered novel, and that the scope of the present invention is not limited to the detailed embodiments described herein.
  • FIG. 4 shows one embodiment of a [0037] docking station 80 for a notebook-type computer 100. Docking station 80 includes as many interface connections 81 as required for a particular brand and model of notebook/portable computer. Also included in docking station 80 is a heat transfer module 82 of the present invention with an appropriate thermal interface port or connection 84 to computer 100. The ability to augment the thermal management system of notebook computers allows one to perform all required tasks on a single computer. This is achieved by providing both power and portability while eliminating the need to carry back-up data on separate media, or performing lengthy data synchronization operations.
  • Although the preferred embodiments of the present invention have been described herein, the above description is merely illustrative. Further modification of the invention herein disclosed will occur to those skilled in the respective arts and all such modifications are deemed to be within the scope of the invention as defined by the appended claims. [0038]

Claims (29)

What is claimed is:
1. An external heat transfer module to improve the heat removing capability of a computer's internal heat removal system, said module comprising:
a thermoelectric device;
a heat conductive plate in thermal contact with a cool side of said thermoelectric device; and
at least one heat transfer conduit having a first portion adjacent to one end of said at least one heat transfer conduit and thermally coupled to said computer's internal heat removal system, and a second portion adjacent the other end of said at least one heat transfer conduit, said second portion thermally coupled to said heat conductive plate.
2. The module of claim 1 wherein said heat transfer conduit is a heat pipe.
3. The module of claim 1 further comprising a heat sink thermally connected to a hot side of said thermoelectric device.
4. The module of claim 1 further comprising a fan for moving air over said hot side of said thermoelectric device.
5. The module of claim 1 wherein said second portion of said heat transfer conduit has a flattened shape.
6. An external heat transfer module for improving the heat removing capability of a computer's internal heat removal system, said module comprising:
thermoelectric means having a hot side and a cold side; and
heat transfer means thermally coupled to said cold side of said thermoelectric means for transferring heat from said computer's heat removal system to said thermoelectric means.
7. The module of claim 6 wherein said thermoelectric means includes a heat dissipation means for dissipating heat from a hot side of said thermoelectric means.
8. The module of claim 6 wherein said heat transfer means includes a heat plate means thermally connected to a heat conduit means.
9. The module of claim 7 wherein said heat dissipation means is a heat sink.
10. The module of claim 9 wherein said heat dissipation means further includes a fan.
11. The module of claim 8 wherein said heat conduit means is a heat pipe.
12. In combination a computer and an external heat transfer module, said combination comprising:
a computer with a thermal interface port connected to the computer's internal heat removal system; and
a heat transfer module external to said computer, said heat transfer module connected to said thermal interface port of said computer.
13. The combination of claim 12 wherein said heat transfer module includes a heat dissipation component and at least one heat transfer conduit having a first end thermally coupled to said heat dissipation component, and a second end connected to said thermal interface port.
14. The combination of claim 13 wherein said heat dissipation component includes a thermoelectric device wherein a cool side of said thermoelectric device is coupled to said first end of said at least one heat transfer conduit.
15. The combination of claim 14 wherein said heat dissipation component further includes a thermal conductive plate in thermal contact with said cool side of said thermoelectric device.
16. The combination of claim 13 wherein said at least one heat transfer conduit is a heat pipe.
17. A docking station for a laptop computer comprising:
an enclosure;
a laptop computer interface on at least one side of said enclosure wherein said interface has at least a thermal interface port; and
a heat transfer module within said enclosure and coupled to said thermal interface port, said heat transfer module comprising:
a heat dissipating device; and
at least one heat transfer conduit having a first portion adjacent one end of said at least one heat transfer conduit thermally connected to said heat dissipating device, and a second portion adjacent the other end of said at least one heat transfer conduit, said second portion being thermally connected to said thermal interface port.
18. The docking station of claim 17 wherein said heat dissipating device is a thermoelectric device wherein a cool side of said thermoelectric device is thermally connected to said heat transfer conduit.
19. The docking station of claim 18 wherein said heat dissipating device further includes a thermal conductive plate thermally coupled to said cool side of said thermoelectric device and said heat transfer conduit.
20. The docking station of claim 19 wherein said thermoelectric device further includes a heat sink thermally coupled to said second substrate.
21. The docking station of claim 20 wherein said thermoelectric device further includes a fan coupled to said heat sink for moving air over said heat sink.
22. The docking station of claim 17 wherein said heat transfer conduit is a heat pipe.
23. A method of making an external device for improving the heat removing capability of a computer's internal heat management system, said method comprising:
attaching a first portion of one end of a heat transfer conduit to a heat dissipating device; and
configuring a second portion of the other end of said heat transfer conduit for thermally mating with a heat dissipation end of said computer's internal heat management system.
24. The method of claim 23 wherein said heat dissipating device is a thermoelectric device wherein a cool side of said thermoelectric device is thermally coupled to said heat transfer conduit.
25. The method of claim 24 further comprising thermally coupling a heat conductive plate to said cool side of said thermoelectric device.
26. The method of claim 25 further comprising thermally coupling a heat sink to a hot side of said thermoelectric device.
27. The method of claim 26 further comprising coupling a fan to said heat sink for moving air over said heat sink.
28. A method of improving the heat removing capability of a computers internal heat removal system, said method comprising:
obtaining a heat transfer module having one end of a heat transfer conduit thermally coupled to said heat transfer module and the other end of said heat transfer conduit configured for mating to a thermal interface port of a computer, said thermal interface port thermally coupled to said computer's internal heat removal system;
thermally connecting said other end of said heat transfer conduit to said thermal interface port; and
enabling said heat transfer module.
29. The method of claim 28 wherein said heat transfer module is a thermoelectric device wherein a cool side of said thermoelectric device is connected to said heat transfer conduit.
US10/017,710 2001-12-14 2001-12-14 Apparatus and method for augmented cooling of computers Abandoned US20030110779A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/017,710 US20030110779A1 (en) 2001-12-14 2001-12-14 Apparatus and method for augmented cooling of computers
PCT/US2002/040122 WO2003052819A2 (en) 2001-12-14 2002-12-12 Apparatus and method for augmented cooling of computers
AU2002364002A AU2002364002A1 (en) 2001-12-14 2002-12-12 Apparatus and method for augmented cooling of computers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/017,710 US20030110779A1 (en) 2001-12-14 2001-12-14 Apparatus and method for augmented cooling of computers

Publications (1)

Publication Number Publication Date
US20030110779A1 true US20030110779A1 (en) 2003-06-19

Family

ID=21784115

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/017,710 Abandoned US20030110779A1 (en) 2001-12-14 2001-12-14 Apparatus and method for augmented cooling of computers

Country Status (3)

Country Link
US (1) US20030110779A1 (en)
AU (1) AU2002364002A1 (en)
WO (1) WO2003052819A2 (en)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050145371A1 (en) * 2003-12-31 2005-07-07 Eric Distefano Thermal solution for electronics cooling using a heat pipe in combination with active loop solution
US20050153649A1 (en) * 2004-01-13 2005-07-14 Bettridge James M. Cabinet for computer devices with air distribution device
US20050257532A1 (en) * 2004-03-11 2005-11-24 Masami Ikeda Module for cooling semiconductor device
US20070079615A1 (en) * 2005-10-06 2007-04-12 Foxconn Technology Co., Ltd. Cooling system for computer
US20080156003A1 (en) * 2006-12-30 2008-07-03 Mongia Rajiv K Using refrigeration and heat pipe for electronics cooling applications
US20080173022A1 (en) * 2007-01-10 2008-07-24 Amerigon Incorporated Thermoelectric device
US20090323276A1 (en) * 2008-06-25 2009-12-31 Mongia Rajiv K High performance spreader for lid cooling applications
US20100107657A1 (en) * 2007-02-23 2010-05-06 Vistakula Kranthi K Apparel with heating and cooling capabilities
US20120292658A1 (en) * 2011-05-18 2012-11-22 Neobulb Technologies, Inc. Semiconductor optoelectronic converting system and the fabricating method thereof
US8397518B1 (en) 2012-02-20 2013-03-19 Dhama Innovations PVT. Ltd. Apparel with integral heating and cooling device
US9335073B2 (en) 2008-02-01 2016-05-10 Gentherm Incorporated Climate controlled seating assembly with sensors
US20160150677A1 (en) * 2014-11-26 2016-05-26 Hoffman Enclosures, Inc. Thermoelectric Cooler Controller
US20160319697A1 (en) * 2014-01-24 2016-11-03 United Technologies Corporation Systems for thermoelectric cooling for jet aircraft propulsion systems
US9622588B2 (en) 2008-07-18 2017-04-18 Gentherm Incorporated Environmentally-conditioned bed
US9662962B2 (en) 2013-11-05 2017-05-30 Gentherm Incorporated Vehicle headliner assembly for zonal comfort
US9685599B2 (en) 2011-10-07 2017-06-20 Gentherm Incorporated Method and system for controlling an operation of a thermoelectric device
US9857107B2 (en) 2006-10-12 2018-01-02 Gentherm Incorporated Thermoelectric device with internal sensor
US9989267B2 (en) 2012-02-10 2018-06-05 Gentherm Incorporated Moisture abatement in heating operation of climate controlled systems
US10005337B2 (en) 2004-12-20 2018-06-26 Gentherm Incorporated Heating and cooling systems for seating assemblies
US10405667B2 (en) 2007-09-10 2019-09-10 Gentherm Incorporated Climate controlled beds and methods of operating the same
US10502463B2 (en) 2014-11-26 2019-12-10 Hoffman Enclosures, Inc. Thermoelectric cooler controller and angled mounting thereof
CN111562832A (en) * 2020-05-17 2020-08-21 济南得德环保科技有限公司 Refrigerating device adopting semiconductor refrigerating sheet for refrigeration and CPU radiator
CN111596746A (en) * 2020-05-17 2020-08-28 济南得德环保科技有限公司 Device for cooling liquid by using semiconductor refrigeration piece and liquid-cooled CPU radiator
US10991869B2 (en) 2018-07-30 2021-04-27 Gentherm Incorporated Thermoelectric device having a plurality of sealing materials
US11033058B2 (en) 2014-11-14 2021-06-15 Gentherm Incorporated Heating and cooling technologies
US11152557B2 (en) 2019-02-20 2021-10-19 Gentherm Incorporated Thermoelectric module with integrated printed circuit board
US11240882B2 (en) 2014-02-14 2022-02-01 Gentherm Incorporated Conductive convective climate controlled seat
US11409340B2 (en) * 2020-06-23 2022-08-09 Qualcomm Incorporated Thermal mitigation in a portable computing device by active heat transfer to a docking device
US20230035904A1 (en) * 2021-07-27 2023-02-02 Dell Products L.P. Extended thermal battery for cooling portable devices
US11639816B2 (en) 2014-11-14 2023-05-02 Gentherm Incorporated Heating and cooling technologies including temperature regulating pad wrap and technologies with liquid system
US11649993B2 (en) * 2019-06-28 2023-05-16 Intel Corporation Hybrid thermal cooling system
US20230247755A1 (en) * 2022-01-31 2023-08-03 Microsoft Technology Licensing, Llc Electronic device with active heat transfer
US11857004B2 (en) 2014-11-14 2024-01-02 Gentherm Incorporated Heating and cooling technologies

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5704212A (en) * 1996-09-13 1998-01-06 Itronix Corporation Active cooling system for cradle of portable electronic devices
US5974556A (en) * 1997-05-02 1999-10-26 Intel Corporation Circuit and method for controlling power and performance based on operating environment
US6191943B1 (en) * 1998-11-12 2001-02-20 Compaq Computer Corporation Docking station with thermoelectric heat dissipation system for docked portable computer
JP2001091174A (en) * 1999-09-22 2001-04-06 Kel Corp Heat transfer connector

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050145371A1 (en) * 2003-12-31 2005-07-07 Eric Distefano Thermal solution for electronics cooling using a heat pipe in combination with active loop solution
US20050153649A1 (en) * 2004-01-13 2005-07-14 Bettridge James M. Cabinet for computer devices with air distribution device
US7074123B2 (en) 2004-01-13 2006-07-11 Power Of 4, L.L.C. Cabinet for computer devices with air distribution device
US7226353B2 (en) 2004-01-13 2007-06-05 Power Of 4, Llc Cabinet for computer devices with air distribution device
US20100269517A1 (en) * 2004-03-11 2010-10-28 The Furukawa Electric Co., Ltd. Module for cooling semiconductor device
US20050257532A1 (en) * 2004-03-11 2005-11-24 Masami Ikeda Module for cooling semiconductor device
US10005337B2 (en) 2004-12-20 2018-06-26 Gentherm Incorporated Heating and cooling systems for seating assemblies
US7325406B2 (en) * 2005-10-06 2008-02-05 Fu Zhun Precision Industry (Shenzhen) Co., Ltd. Cooling system for computer
US20070079615A1 (en) * 2005-10-06 2007-04-12 Foxconn Technology Co., Ltd. Cooling system for computer
US9857107B2 (en) 2006-10-12 2018-01-02 Gentherm Incorporated Thermoelectric device with internal sensor
US7805955B2 (en) * 2006-12-30 2010-10-05 Intel Corporation Using refrigeration and heat pipe for electronics cooling applications
US20080156003A1 (en) * 2006-12-30 2008-07-03 Mongia Rajiv K Using refrigeration and heat pipe for electronics cooling applications
US20080173022A1 (en) * 2007-01-10 2008-07-24 Amerigon Incorporated Thermoelectric device
US9105808B2 (en) 2007-01-10 2015-08-11 Gentherm Incorporated Thermoelectric device
US20100107657A1 (en) * 2007-02-23 2010-05-06 Vistakula Kranthi K Apparel with heating and cooling capabilities
US10405667B2 (en) 2007-09-10 2019-09-10 Gentherm Incorporated Climate controlled beds and methods of operating the same
US9335073B2 (en) 2008-02-01 2016-05-10 Gentherm Incorporated Climate controlled seating assembly with sensors
US10228166B2 (en) 2008-02-01 2019-03-12 Gentherm Incorporated Condensation and humidity sensors for thermoelectric devices
US9651279B2 (en) 2008-02-01 2017-05-16 Gentherm Incorporated Condensation and humidity sensors for thermoelectric devices
US20090323276A1 (en) * 2008-06-25 2009-12-31 Mongia Rajiv K High performance spreader for lid cooling applications
US11297953B2 (en) 2008-07-18 2022-04-12 Sleep Number Corporation Environmentally-conditioned bed
US10226134B2 (en) 2008-07-18 2019-03-12 Gentherm Incorporated Environmentally-conditioned bed
US9622588B2 (en) 2008-07-18 2017-04-18 Gentherm Incorporated Environmentally-conditioned bed
US20120292658A1 (en) * 2011-05-18 2012-11-22 Neobulb Technologies, Inc. Semiconductor optoelectronic converting system and the fabricating method thereof
US10208990B2 (en) 2011-10-07 2019-02-19 Gentherm Incorporated Thermoelectric device controls and methods
US9685599B2 (en) 2011-10-07 2017-06-20 Gentherm Incorporated Method and system for controlling an operation of a thermoelectric device
US9989267B2 (en) 2012-02-10 2018-06-05 Gentherm Incorporated Moisture abatement in heating operation of climate controlled systems
US10495322B2 (en) 2012-02-10 2019-12-03 Gentherm Incorporated Moisture abatement in heating operation of climate controlled systems
US8397518B1 (en) 2012-02-20 2013-03-19 Dhama Innovations PVT. Ltd. Apparel with integral heating and cooling device
US9662962B2 (en) 2013-11-05 2017-05-30 Gentherm Incorporated Vehicle headliner assembly for zonal comfort
US10266031B2 (en) 2013-11-05 2019-04-23 Gentherm Incorporated Vehicle headliner assembly for zonal comfort
US20160319697A1 (en) * 2014-01-24 2016-11-03 United Technologies Corporation Systems for thermoelectric cooling for jet aircraft propulsion systems
US10472986B2 (en) * 2014-01-24 2019-11-12 United Technologies Corporation Systems for thermoelectric cooling for jet aircraft propulsion systems
US11240882B2 (en) 2014-02-14 2022-02-01 Gentherm Incorporated Conductive convective climate controlled seat
US11240883B2 (en) 2014-02-14 2022-02-01 Gentherm Incorporated Conductive convective climate controlled seat
US11857004B2 (en) 2014-11-14 2024-01-02 Gentherm Incorporated Heating and cooling technologies
US11639816B2 (en) 2014-11-14 2023-05-02 Gentherm Incorporated Heating and cooling technologies including temperature regulating pad wrap and technologies with liquid system
US11033058B2 (en) 2014-11-14 2021-06-15 Gentherm Incorporated Heating and cooling technologies
US20160150677A1 (en) * 2014-11-26 2016-05-26 Hoffman Enclosures, Inc. Thermoelectric Cooler Controller
US10502463B2 (en) 2014-11-26 2019-12-10 Hoffman Enclosures, Inc. Thermoelectric cooler controller and angled mounting thereof
US9516783B2 (en) * 2014-11-26 2016-12-06 Hoffman Enclosures, Inc. Thermoelectric cooler controller
US10991869B2 (en) 2018-07-30 2021-04-27 Gentherm Incorporated Thermoelectric device having a plurality of sealing materials
US11075331B2 (en) 2018-07-30 2021-07-27 Gentherm Incorporated Thermoelectric device having circuitry with structural rigidity
US11223004B2 (en) 2018-07-30 2022-01-11 Gentherm Incorporated Thermoelectric device having a polymeric coating
US11152557B2 (en) 2019-02-20 2021-10-19 Gentherm Incorporated Thermoelectric module with integrated printed circuit board
US11649993B2 (en) * 2019-06-28 2023-05-16 Intel Corporation Hybrid thermal cooling system
CN111596746A (en) * 2020-05-17 2020-08-28 济南得德环保科技有限公司 Device for cooling liquid by using semiconductor refrigeration piece and liquid-cooled CPU radiator
CN111562832A (en) * 2020-05-17 2020-08-21 济南得德环保科技有限公司 Refrigerating device adopting semiconductor refrigerating sheet for refrigeration and CPU radiator
US11409340B2 (en) * 2020-06-23 2022-08-09 Qualcomm Incorporated Thermal mitigation in a portable computing device by active heat transfer to a docking device
US20230035904A1 (en) * 2021-07-27 2023-02-02 Dell Products L.P. Extended thermal battery for cooling portable devices
US11599168B2 (en) * 2021-07-27 2023-03-07 Dell Products L.P. Extended thermal battery for cooling portable devices
US20230247755A1 (en) * 2022-01-31 2023-08-03 Microsoft Technology Licensing, Llc Electronic device with active heat transfer

Also Published As

Publication number Publication date
AU2002364002A1 (en) 2003-06-30
WO2003052819A2 (en) 2003-06-26
WO2003052819A3 (en) 2003-11-27
AU2002364002A8 (en) 2003-06-30

Similar Documents

Publication Publication Date Title
US20030110779A1 (en) Apparatus and method for augmented cooling of computers
US5898569A (en) Power cable heat exchanger for a computing device
US6415612B1 (en) Method and apparatus for external cooling an electronic component of a mobile hardware product, particularly a notebook computer, at a docking station having a thermoelectric cooler
US6392883B1 (en) Heat exchanger having phase change material for a portable computing device
US6118654A (en) Heat exchanger for a portable computing device and docking station
JP4144983B2 (en) Thin electromagnetic interference shield with heat spreading plate
US5430609A (en) Microprocessor cooling in a portable computer
US7400506B2 (en) Method and apparatus for cooling a memory device
US9668377B2 (en) Storage device
US5966286A (en) Cooling system for thin profile electronic and computer devices
US5880929A (en) Heat exchanger system for cooling a hinged computing device
US7403384B2 (en) Thermal docking station for electronics
US20010033475A1 (en) Thermally efficient portable computer system incorporating thermal connection port and dock
KR100310099B1 (en) Radiating device for semiconductor integrated circuit device and portable computer having same
US6313987B1 (en) Thermal connector for joining mobile electronic devices to docking stations
US20040196630A1 (en) [cooling system]
US6657859B1 (en) Device bay heat exchanger for a portable computing device
JP2001284865A (en) Heat sink and method of manufacturing the same, and electronic device with this heat sink
US7626821B1 (en) Adaptor for graphics module
JP2009193350A (en) Electronic device
US6366463B2 (en) Cooling mechanism, heat sink, electronic equipment and fabrication method therefor
JP4549659B2 (en) Heat sink, housing and cooling fan, and electronic device having heat sink
KR100313310B1 (en) Portable computer with the dissipating apparatus of electronic system
US20060215366A1 (en) Apparatus, system, and method for removing excess heat from a component
JP2000353887A (en) Cooling structure of portable electronic equipment

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION