US20030096283A1 - Electrochemical detection of single base extension - Google Patents

Electrochemical detection of single base extension Download PDF

Info

Publication number
US20030096283A1
US20030096283A1 US10/259,532 US25953202A US2003096283A1 US 20030096283 A1 US20030096283 A1 US 20030096283A1 US 25953202 A US25953202 A US 25953202A US 2003096283 A1 US2003096283 A1 US 2003096283A1
Authority
US
United States
Prior art keywords
chain
oligonucleotide
species
array
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/259,532
Inventor
Vi-en Choong
Song Shi
George Maracas
Sean Gallagher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Motorola Solutions Inc
Original Assignee
Motorola Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Motorola Inc filed Critical Motorola Inc
Priority to US10/259,532 priority Critical patent/US20030096283A1/en
Publication of US20030096283A1 publication Critical patent/US20030096283A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • G01N33/54373Apparatus specially adapted for solid-phase testing involving physiochemical end-point determination, e.g. wave-guides, FETS, gratings
    • G01N33/5438Electrodes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means
    • C12Q1/6825Nucleic acid detection involving sensors

Landscapes

  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

This invention relates to apparatus and methods for detecting single base extension to an oligonucleotide array using electrochemical labels.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0001]
  • This invention relates to detection of mutated nucleic acid and genetic polymorphisms by single base extension analysis. Specifically, the invention relates to single base extension following hybridization of a biological sample comprising a nucleic acid with an oligonucleotide array. In particular, the invention provides apparatus and methods for electronic detection of single base extension of a particular oligonucleotide in an oligonucleotide array after hybridization to a nucleic acid in a biological sample and single base extension thereof. [0002]
  • 2. Background of the Invention [0003]
  • The detection of single base mutations and genetic polymorphisms in nucleic acids is an important tool in modern diagnostic medicine and biological research. In addition, nucleic acid-based assays also play an important role in identifying infectious microorganisms such as bacteria and viruses, in assessing levels of both normal and defective gene expression, and in detecting and identifying mutant genes associated with disease such as oncogenes. Improvements in the speed, efficiency, economy and specificity of such assays are thus significant needs in the medical arts. [0004]
  • Ideally, such assays should be sensitive, specific and easily amenable to automation. Efforts to improve sensitivity in nucleic acid assays are known in the prior art. For example, the polymerase chain reaction (Mullis, U.S. Pat. No. 4,683,195, issued Jul. 28, 1987) provides the capacity to produce useful amounts (about 1 μg) of a specific nucleic acid in a sample in which the original amount of the specific nucleic acid is substantially smaller (about 1 μg). However, the prior art has been much less successful in improving specificity of nucleic acid hybridization assays. [0005]
  • The specificity of nucleic acid assays is determined by the extent of molecular complementarity of hybridization between probe and target sequences. Although it is theoretically possible to distinguish complementary targets from one or two mismatched targets under rigorously-defined conditions, the dependence of hybridization on target/probe concentration and hybridization conditions limits the extent to which hybridization mismatch can be used to reliably detect, inter alia, mutations and genetic polymorphisms. [0006]
  • Detection of single base extension has been used for mutation and genetic polymorphism detection in the prior art. [0007]
  • U.S. Pat. No. 5,925,520 disclosed a method for detecting genetic polymorphisms using single base extension and capture groups on oligonucleotide probes using at least two types of dideoxy, chain-terminating nucleotide triphosphates, each labeled with a detectable and distinguishable fluorescent labeling group. [0008]
  • U.S. Pat. No. 5,710,028 disclosed a method of determining the identity of nucleotide bases at specific positions in nucleic acids of interest, using detectably-labeled chain-terminating nucleotides, each detectably and distinguishably labeled with a fluorescent labeling group. [0009]
  • U.S. Pat. No. 5,547,839 disclosed a method for determining the identity of nucleotide bases at specific positions in a nucleic acid of interest, using chain-terminating nucleotides comprising a photoremovable protecting group. [0010]
  • U.S. Pat. No. 5,534,424 disclosed a method for determining the identity of nucleotide bases at specific positions in a nucleic acid of interest, using each of four aliquots of a target nucleic acid annealed to an extension primer and extended with one of four chain-terminating species, and then further extended with all four chain-extending nucleotides, whereby the identity of the nucleotide at the position of interest is identified by failure of the primer to be extended more that a single base. [0011]
  • U.S. Pat. No. 4,988,617 disclosed a method for determining the identity of nucleotide bases at specific positions in a nucleic acid of interest, by annealing two adjacent nucleotide primers to a target nucleic acid and providing a linking agent such as a ligase that covalently links the two oligonucleotides to produce a third, combined oligonucleotide only under circumstances wherein the two oligonucleotides are perfectly matched to the target nucleic acid at the 3′ extent of the first oligonucleotide and at the 5′ extent of the second oligonucleotide. [0012]
  • U.S. Pat. No. 4,656,127 disclosed a method for determining the identity of nucleotide bases at specific positions in a nucleic acid of interest, using primer extension with a chain-terminating or other nucleotide comprising an exonuclease-resistant linkage, followed by exonuclease treatment of the plurality of extension products to detect the resistant species therein. One common feature in this prior art is that single base extension has been detected by incorporation of fluorescent labels into the extended nucleic acid species. [0013]
  • A significant drawback of single base extension methods based on fluorescent label detection is the need for expensive and technically-complex optical components for detecting the fluorescent label. Although fluorescent probes used in such methods impart an adequate level of discrimination between extended and unextended positions in an oligonucleotide array, these methods typically require detection of up to four different fluorescent labels, each having a unique excitation and fluorescence emission frequency. As a consequence of these properties, such assay systems must be capable of producing and distinguishing light at all of these different excitation and emission frequencies, significantly increasing the cost and complexity of producing and operating apparatus used in the practice thereof. [0014]
  • An alternative method for detecting a target nucleic acid molecule is to use an electrochemical tag (or label) such as a redox moiety in combination with an electrochemical detection means such as cyclic voltammetry. [0015]
  • U.S. Pat. No. 5,591,578 provides for the selective covalent modification of nucleic acids with redox-active moieties such as transition metal complexes of specifically-claimed transition metals, wherein the complexes are covalently linked to a ribose sugar comprising the ribose-phosphate backbone. The resulting complexes are capable of transferring electrons over very large distances at extremely fast rates. [0016]
  • U.S. Pat. No. 5,705,348, related to U.S. Pat. No. 5,591,578, encompasses generally selective covalent modification of nucleic acids with redox-active moieties such as transition metal complexes, wherein the transition metals are generically-claimed. [0017]
  • U.S. Pat. No. 5,770,369, related to U.S. Pat. No. 5,591,578 discloses electron donor and acceptor moieties that are not redox proteins. [0018]
  • U.S. Pat. No. 5,780,234 369, related to U.S. Pat. No. 5,591,578, discloses methods wherein two single stranded nucleic acid are used to hybridize to two different domains of the target sequence. [0019]
  • In addition, disclosure of similar methods for detecting biological molecules such as DNA and proteins can be found in Ihara et al., 1996, [0020] Nucleic Acids Res. 24: 4273-4280; Livache et al., 1995, Synthetic Metals 71: 2143-2146; Hashimoto, 1993, Supramolecular Chem. 2: 265-270; Millan et al., 1993, Anal. Chem. 65: 2317-2323.
  • However, most of the electrochemical tag-dependent methods known in the prior art require hybridization of the probe/target in the presence of a redox intercalator. Electrochemical detection based on redox intercalators are generally not as reproducible as redox tags that are covalently bound to an incorporated moiety. Redox intercalator methods are exceedingly dependent on washing conditions to remove excess label while not reducing the actual signal. As a consequence, false positives are often obtained using these methods. The specificity of redox intercalator methods is often much worse than can be achieved with covalently-bound redox tags. [0021]
  • There remains a need in this art for simple, economical, and efficient ways to detect single base extension products of nucleic acid assays for detecting mutation and genetic polymorphisms in biological samples containing a nucleic acid of interest. [0022]
  • SUMMARY OF THE INVENTION
  • This invention provides methods and apparatus for detecting mutations and genetic polymorphisms in a biological sample containing a nucleic acid of interest. Detection of single base extension using the methods and apparatus of the invention is achieved by sequence-specific incorporation of chain-terminating nucleotide species chemically labeled with an electrochemical species. In preferred embodiments, single base extension is performed using hybridization to an oligonucleotide array, most preferably an addressable array wherein the sequence of each oligonucleotide in the array is known and associated with a particular address in the array. In additional preferred embodiments, single base extension is detected using extension products labeled with electrochemical reporter groups, wherein the electrochemical reporter groups comprise a transition metal complex, most preferably containing a transition metal ion that is ruthenium, cobalt, iron or osmium. [0023]
  • In the practice of the methods of the invention, the invention provides an array of oligonucleotide probes immobilized to a surface that defines a first electrode. Preferably, the sequence of each oligonucleotide at each particular identified position (or “address”) in the array is known and at least one of said oligonucleotides is complementary to a sequence in a nucleic acid contained in the biological sample to be assayed (termed the “target” or “target nucleic acid”). In one preferred embodiment, the sequence of at least one oligonucleotide is selected to hybridize to a position immediately adjacent to the nucleotide position in the sample nucleic acid that is to be interrogated, i.e., for mutation or genetic polymorphism. The term “adjacent” in this context is intended to encompass positions that are one nucleotide base upstream of base to be interrogated, i.e. in the 3′ direction with respect to the template strand of the target DNA. Hybridization of the oligonucleotides in the array to nucleic acid in the sample is performed in a reaction chamber and in a hybridization buffer for a time and at a temperature that permits hybridization to occur between nucleic acid in the sample and the oligonucleotides in the array complementary thereto. Single base extension is performed using a polymerase, most preferably a thermally stable polymerase, in the presence of chain-terminating primer extension units that are covalently linked to an electrochemical label. In a preferred embodiment, each chain-terminating nucleotide species (for example, dideoxy(dd)ATP, ddGTP, ddCTP and ddTTP) is labeled with a different electrochemical label, most preferably having a different, distinct and differentially-detectable reduction/oxidation potential. Single base extension is detected by applying conventional electrochemical detection methods, such as cyclic voltammetry or stripping voltammetry. Other electric or/and electrochemical methods that may also be used, include, but are not limited to, AC impedance, pulse voltammetry, square wave voltammetry, AC voltammetry (ACV), hydrodynamic modulation voltammetry, potential step method, potentiometric measurements, amperometric measurements, current step method, and combinations thereof. [0024]
  • In alternative embodiments, the sequence of at least one oligonucleotide is selected to hybridize to the target nucleic acid at a position whereby the 3′ residue of the oligonucleotide hybridizes to the nucleotide position in the sample nucleic acid that is to be interrogated for mutation or genetic polymorphism. In the array, oligonucleotides having sequence identity to the oligonucleotide that hybridizes to the target nucleic acid at it's 3′ residue will also hybridize to the target, but the 3′ residue of such oligonucleotides will produce a “mismatch” with the target and will not hybridize at the 3′ residue. Single base extension is performed with a polymerase that will not recognize the mismatch, so that only the oligonucleotide that hybridizes to the target including at its 3′ residue will be extended. In these embodiments of the invention, only a single chain-terminating species labeled with an electrochemical species can be employed, or the same electrochemical species can be used for all four chain-terminating species, provided that the nucleotide sequence of each oligonucleotide in the array is known and properly associated with its position in the array. The detection of an electrochemical signal from the redox species using conventional electrochemical detection methods, such as cyclic voltammetry, at a particular position in the array thus provides the identity of the 3′ residue of the probe and hence the identity of the complementary nucleotide at the corresponding position in the target nucleic acid. [0025]
  • In the practice of a preferred embodiment of the methods and use of the apparatus of the invention, electric current is recorded as a function of sweeping voltage to the first electrode specific for each particular chain-terminating nucleotide species labeled with an electrochemically-active reporter. In preferred embodiments, current flow at each specific potential is detected at each address in the array where single base extension has occurred with the corresponding chain-terminating nucleotide species labeled with a particular electrochemical reporter group. The detection of the electrical signal at a particular position in the array wherein the nucleotide sequence of the oligonucleotide occupying that position is known enables the identity of the extended nucleotide, and therefore the mutation or genetic polymorphism, to be determined. [0026]
  • Specific preferred embodiments of the present invention will become evident from the following more detailed description of certain preferred embodiments and the claims.[0027]
  • DESCRIPTION OF THE DRAWINGS
  • FIG. 1 illustrates single base extension using chain-terminating nucleotide species labeled with an electrochemical reporter group, according to the invention.[0028]
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • The present invention provides an apparatus and methods for detecting single nucleotide polymorphisms (SNP) in a nucleic acid sample comprising a specific target nucleic acid. [0029]
  • The devices of the invention are particularly useful for analyzing target nucleic acid for the diagnosis of infectious and genetic disease. The target nucleic acid is generally a portion of a gene having a known nucleotide sequence that is associated with an infectious agent or genetic disease; more specifically, the disease is caused by a single nucleotide (or point) mutation. The device incorporates a nucleic acid oligonucleotide array specific for the target gene, and means for detecting and determining the identity of a specific single base in the target sequence adjacent to the hybridization site of at least one probe in the oligonucleotide array (termed the “3′ offset method”) or encompassing the 3′ residue of at least one oligonucleotide probe in the array (termed the “3′ inclusive method”). [0030]
  • The present invention provides an array of oligonucleotide primers or probes immobilized to a surface that defines a first electrode. Preferably, the sequence of each oligonucleotide at each address in the array is known and at least one oligonucleotide in said oligonucleotide array is complementary to part of a sequence in a nucleic acid in the sample to be assayed. The sequence of at least one oligonucleotide is most preferably selected to extend to a position immediately adjacent to the nucleotide position in the sample nucleic acid that is to be interrogated, i.e., for mutation or genetic polymorphism. Alternatively, the oligonucleotide is selected to encompass the site of mutation or genetic polymorphism; in these latter embodiments, it is generally preferred to provide a multiplicity of oligonucleotides having one of each possible nucleotide at the polymorphic position to ensure hybridization of at least one of the oligonucleotides in the array to nucleic acid in the sample. Hybridization and extension reactions are performed in a reaction chamber and in a hybridization buffer for a time and at temperature that permits hybridization to occur between nucleic acid in the sample and the oligonucleotides in the array complementary thereto. [0031]
  • In one embodiment, the apparatus of the present invention comprises a supporting substrate, a plurality of a first electrode (or an array of microelectrodes) in contact with the supporting substrate to which probes are immobilized, at least one counter-electrode and optionally a reference electrode, and an electrolyte solution in contact with the plurality of microelectrodes, counter electrode and reference electrode. [0032]
  • In another embodiment, the apparatus of the present invention comprises a supporting substrate, a plurality of first electrodes (or an array of microelectrodes) in contact with the supporting substrate, a plurality of polyacrylamide gel pads in contact with the microelectrodes and to which probes are immobilized, at least one counter-electrode and optionally a reference electrode, and an electrolyte solution in contact with the plurality of microelectrodes, counter electrode and reference electrode. [0033]
  • In the preferred embodiment of the apparatus of the present invention, the substrate is composed of silicon. In alternative embodiments, the substrate is prepared from substances including, but not limited to, glass, plastic, rubber, fabric, or ceramics. [0034]
  • The electrode comprising the first surface to which the oligonucleotide or array thereof is attached is made of at least one of the following materials: metals such as gold, silver, platinum, copper, and electrically-conductive alloys thereof; conductive metal oxides such as indium oxide, indium-tin oxide, zinc oxide; and other conductive materials such carbon black, conductive epoxy. [0035]
  • In preferred embodiments, microelectrodes are prepared from substances including, but not limited to, metals such as gold, silver, platinum, titanium or copper, in solid or porous form and preferably as foils or films, metal oxides, metal nitrides, metal carbides, or carbon. In certain preferred embodiments, probes are attached to conjugated polymers or copolymers including, but not limited to, polypyrrole, polythiophene, polyaniline, polyfuran, polypyridine, polycarbazole, polyphenylene, poly(phenylenvinylene), polyfluorene, polyindole, their derivatives, their copolymers, and combinations thereof. In alternative embodiments, probes are attached to polyacrylamide gel pads that are in contact with the microelectrodes. [0036]
  • The substrate of the present invention has a surface area of between 0.01 μm[0037] 2 and 5 cm2 containing between 1 and 1×108 microelectrodes. In one embodiment, the substrate has a surface area of 100 μm2 and contains 104 microelectrodes, each microelectrode having an oligonucleotide having a particular sequence immobilized thereto. In another embodiment, the substrate has a surface area of 100 μm2 and contains 104 microelectrodes, each microelectrode in contact with a polyacrylamide gel pad to which an oligonucleotide having a particular sequence has been immobilized thereto. In preferred embodiments, the microelectrodes are arranged on the substrate so as to be separated by a distance of between 0.05 μm2 to 0.5 mm. Most preferably, the microelectrodes are regularly spaced on the solid substrate with a uniform spacing there between.
  • In one embodiment, the apparatus comprises a microarray containing at least 10[0038] 3 microelectrodes on a single substrate to which oligonucleotide probes have been attached. Alternatively, arrayed oligonucleotides are attached to polyacrylamide gel pads that are in contact with the microelectrodes of the apparatus of the present invention. Most preferably, oligonucleotides having a particular nucleotide sequence, or groups of such oligonucleotides having related (e.g., overlapping) nucleotide sequences, are immobilized at each of the plurality of microelectrodes. In further preferred embodiments, the nucleotide sequence(s) of the immobilized oligonucleotides at each microelectrode, and the identity and correspondence between a particular microelectrode and the nucleotide sequence of the oligonucleotide immobilized thereto, are known.
  • The primer or probe used in the present invention is preferred to be an oligonucleotide having a length, both the upper and lower limits of which are empirically determined. The lower limit on probe length is stable hybridization: it is known in the art that probes that are too short do not form thermodynamically-stable duplexes sufficient for single base extension under the hybridization conditions of the assay. The upper limit on probe length are probes that produce a duplex in a region other than that of the predetermined interrogation target, leading to artifactual incorporation of primer extension unit(s) labeled with electrochemically active moieties. Preferred oligonucleotide primer or probes used in the present invention have a length of from about 8 to about 50, more preferably from about 10 to about 40, even more preferably from about 12 to about 30, and most preferably from about 15-25 nucleotides. However, longer probes, i.e. longer than 40 nucleotides, may also be used. [0039]
  • In the present invention, the primer or probe is preferably immobilized directly on the first electrode surface through an anchoring group. As will be appreciated by those in the art, advantageous anchoring groups include, for example, moieties comprising thiols, carboxylates, hydroxyls, amines, hydrazines, esters, amides, halides, vinyl groups, vinyl carboxylates, phosphates, silicon-containing organic compounds, and their derivatives. For example, an oligonucleotide which is complementary to a target DNA is covalently linked to a metallic gold electrode through a thiol-containing anchoring group. In a preferred embodiment, the length of these anchoring groups is chosen such that the conductivity of these molecules do not hinder electron transfer from the electrochemical reporter groups, to the electrode, via the hybridized probe and target DNA, and these anchoring groups in series. Stated differently, these anchoring groups are preferred to have higher conductivities than double-stranded nucleic acid. A conductivity, S, of from between about 10[0040] −6 to about 10−4 Ω−1 cm−1, more preferably from about 10−5 to about 103 Ω−1 cm−1, corresponds to a length for the anchoring groups ranging from about 5 Å to about 200 Å.
  • Alternatively, the primer or probe can be covalently bound onto an intermediate support that is placed on top of the first electrode. The support is preferred to be either a thin layer of porous inorganic material such as TiOx, SiO[0041] 2, NOx or a porous organic polymer such as polyacrylamide, agarose, nitrocellulose membranes, nylon, and dextran supports. Primers are covalently bound to the support through a linker. Preferred linker moieties include, but are not limited to, thioethers, ethers, esters, amides, amines, hydrazines, carboxylates, halides, hydroxyls, vinyls, vinyl carboxylates, thiols, phosphates, silicon containing organic compounds, and their derivatives and other carboxylate moieties. More preferably, biotin-streptavidin pairs are advantageous arranged to provide probe binding onto the intermediate support.
  • The apparatus of the invention also includes a second electrode and a reference electrode to permit current flow. The second electrode is most preferably comprised of any conducting material, including, for example, metals such as gold, silver, platinum, copper, and alloys; conductive metal oxides such as indium oxide, indium-tin oxide, zinc oxide; or other conductive materials such as carbon black, conductive epoxy; most preferred is a platinum (Pt)-wire auxiliary electrode. The reference electrode is preferably a silver wire electrode, a silver/silver chloride (Ag/AgCl) reference electrode, or a saturated calomel electrode. [0042]
  • The apparatus also comprises one or a multiplicity of reaction chambers, each reaction chamber being in electrochemical contact with at least one of each of the aforementioned electrodes, wherein each of the electrodes are connected to a power source and a means for controlling said power source. For the purposes of this invention, the term “in electrochemical contact” is intended to mean, inter alia, that the components are connected such that current can flow through the electrodes when a voltage potential is created between the two electrodes. [0043]
  • Electrochemical contact is advantageously provided using an electrolyte solution in contact with each of the electrodes or microelectrode arrays of the invention. Electrolyte solutions useful in the apparatus and methods of the invention include any electrolyte solution at physiologically-relevant ionic strength (equivalent to about 0.15M NaCl) and neutral pH. Nonlimiting examples of electrolyte solutions useful with the apparatus and methods of the invention include but are not limited to phosphate buffered saline, HEPES buffered solutions, and sodium bicarbonate buffered solutions. [0044]
  • Preferred polymerases for performing single base extensions using the methods and apparatus of the invention are polymerases having little or no exonuclease activity. More preferred are polymerases that tolerate and are biosynthetically-active at temperatures greater than physiological temperatures, for example, at 50° C. or 60° C. or 70° C. or are tolerant of temperatures of at least 90° C. to about 95° C. Preferred polymerases include Taq polymerase from [0045] T. aquaticus (commercially available from Perkin-Elmer Cetus, Foster City, Calif.), Sequenase® and ThermoSequenase® (commercially available from U.S. Biochemical, Cleveland, Ohio), and Exo(-)Pfu polymerase (commercially available from New England Biolabs, Beverley, Mass.).
  • The inventive methods for SNP detection provided by the invention generally comprise: (1) preparing a sample containing the target nucleic acid(s) of interest to obtain single-stranded nucleic acid that spans the specific position (typically by denaturing the sample); (2) contacting the single-stranded target nucleic acid with an oligonucleotide primer of known sequence that hybridizes with a portion of the nucleotide sequence in the target nucleic acid immediately adjacent the nucleotide base to be interrogated (thereby forming a duplex between the primer and the target such that the nucleotide base to be interrogated is the first unpaired base in the target immediately 5′ of the nucleotide base annealed with the 3′-end of the primer in the duplex; this oligonucleotide is preferably a specific oligonucleotide occupying a particular address in an addressable array); (3) contacting the duplex with a reagent which includes an aqueous carrier, a polymerase, and at least one primer extension unit, wherein the primer extension unit comprises an extension moiety, an optional linker, and an electrochemical detection moiety. The primer extension reaction catalyzed by the polymerase results in incorporation of the extension moiety of the primer extension unit at the 3′-end of the primer, and the extension of the primer by a single base; (4) removing the unincorporated primer extension unit(s); and (5) determining the identity of the incorporated primer extension unit in the extended duplex by its unique electrochemical detection moiety. [0046]
  • The extension moiety in the primer extension unit is preferably a chain-terminating moiety, most preferably dideoxynucleoside triphosphates (ddNTPs), such as ddATP, ddCTP, ddGTP, and ddTTP; however other terminators known to those skilled in the art, such as nucleotide analogs or arabinoside triphosphates, are also within the scope of the present invention. These ddNTPs differ from conventional deoxynucleoside triphosphates (dNTPs) in that they lack a hydroxyl group at the 3′ position of the sugar component. This prevents chain extension of incorporated ddNTPs, and thus terminates the chain. Unlike conventional detection moieties that have been either fluorescent dyes or radioactive labels, the present invention provides primer extension units labeled with an electrochemical reporter group that are detected electrochemically, most preferably by redox reactions. Any electrochemically-distinctive redox label which does not interfere with the incorporation of the ddNTP into a nucleotide chain is preferred. [0047]
  • Optionally, the target DNA in the sample to be investigated can be amplified by means of in vitro amplification reactions, such as the polymerase chain reaction (PCR) technique well known to those skilled in the art. Enriching the target DNA in a biological sample to be used in the methods of the invention provides more rapid and more accurate template-directed synthesis by the polymerase. The use of such in vitro amplification methods, such as PCR, is optional in the methods of the invention, which feature advantageously distinguishes the instantly-disclosed methods from prior art detection techniques, which typically required such amplification in order to generate sufficient signal to be detected. Because of the increased sensitivity of the instantly-claimed methods, the extensive purification steps required after PCR and other in vitro amplification methods are unnecessary; this simplifies performance of the inventive methods. [0048]
  • Single base extension is performed using a polymerase in the presence of at least one primer extension unit in a buffer solution appropriate for the biochemical activity of the polymerase. A general formula of a preferred embodiment of the primer extension unit is:[0049]
  • ddNTP-L-R
  • where ddNTP represents a dideoxyribonucleotide triphosphate including ddATP, ddGTP, ddCTP, ddTTP, L represents an optional linker moiety, and R represents an electrochemical reporter group, preferably an electrochemically-active moiety and most preferably a redox moiety. [0050]
  • In preferred embodiments, each chain-terminating nucleotide species (for example, dideoxy(dd)ATP, ddGTP, ddCTP and ddTTP) is labeled with a different electrochemical reporter group, most preferably wherein each different reporter group has a different and electrochemically-distinguishable reduction/oxidation (redox) potential. In this regard, it will be appreciated that nucleotides comprising a DNA molecule are themselves electrically active; for example, guanine and adenine can be electrochemically oxidized around 0.75 V and 1.05 V, respectively. Thus, it is generally preferable for the redox potential of the electrochemical reporter group comprising the primer extension units of the invention to be distinguishable from the intrinsic redox potential of the incorporated nucleotides themselves. The following electrochemical species are non-limiting examples of electrochemically-active moieties provided as electrochemical reporter groups of the present invention, the oxidation (+) potential or reduction (−) potential being listed in the parenthesis (in volt units): [0051]
  • Redox moieties useful against an aqueous saturated calomel reference electrode include 1,4-benzoquinone (−0.54V), ferrocene (+0.307), tetracyanoquinodimethane (+0.127, −0.291), N,N,N′,N′-tetramethyl-p-phenylenediamine (+0.21), tetrathiafulvalene (+0.30). [0052]
  • Redox moieties useful against a Ag/AgCl reference electrode include 9-aminoacridine (+0.85V), acridine orange (+0.830), aclarubicin (+0.774), daunomycin (+0.446), doxorubicin (+0.440), pirarubicin (+0.446), ethidium bromide (+0.678), ethidium monoazide (+0.563), chlortetracycline (+0.650), tetracycline (+0.674), minocycline (+0.385), Hoechst 33258 (+0.586), Hoechst 33342 (+0.571), 7-aminoactinomycin D (+0.651), Chromomycin A[0053] 3 (+0.550), mithramycin A (+0.510), Vinblastine (+0.522), Rifampicin (+0.103), Os(bipyridine)2(dipyridophenazine)2+(+0.72), Co(bipyridine)3 3+(+0.11), Fe-bleomycin (−0.08)
  • (The redox data are from Bard & Faulkner, 1980, ELECTROCHEMICAL METHODS, John Wiley & Sons, Inc. and Hshimoto et al., 1994, [0054] Analytica Chimica Acta. 286: 219-224).
  • The choice of the electrochemically-active moiety comprising the electrochemical reporter groups of the invention is optimized for detection of the moiety to the exclusion of other redox moieties present in the solution, as well as to prevent interference of the label with hybridization between an oligonucleotide contained in an array and a nucleic acid comprising a biological sample. [0055]
  • The electrochemically-active moiety comprising the chain-terminating nucleotides of the invention is optionally linked to the extension nucleotide through a linker (L), preferably having a length of from about 10 to about 20 Angstroms. The linker can be an organic moiety such as a hydrocarbon chain (CH[0056] 2)n, or can comprise an ether, ester, carboxyamide, or thioether moiety, or a combination thereof. The linker can also be an inorganic moiety such as siloxane (O—Si—O). The length of the linker is selected so that R, the electrochemically-active moiety, does not interfere with either nucleic acid hybridization between the bound oligonucleotide primer and target nucleic acid, or with polymerase-mediated chain extension.
  • In preferred embodiments, single base extension is detected by standard electrochemical means such as cyclic voltammetry (CV) or stripping voltammetry. In a non-limiting example, electric current is recorded as a function of sweeping voltage to the first electrode specific for each particular labeled primer extension unit. The incorporation and extension of a specific base is identified by the unique oxidation or reduction peak of the primer extension unit detected as current flow in the electrode at the appropriate redox potential. [0057]
  • In additional embodiments, other electric or/and electrochemical methods useful in the practice of the methods and apparatus of the invention include, but are not limited to, AC impedance, pulse voltammetry, square wave voltammetry, AC voltammetry (ACV), hydrodynamic modulation voltammetry, potential step method, potentiometric measurements, amperometric measurements, current step method, and combinations thereof. In all these methods, electric current is recorded as a function of sweeping voltage to the first electrode specific for each particular labeled primer extension unit. The difference is the type of input/probe signal and/or shape of input/probe signal used to sweep the voltage range. For example, in cyclic voltammetry, a DC voltage sweep is done. In ACV, an AC signal is superimposed on to the voltage sweep. In square wave voltammetry, a square wave is superimposed on to the voltage sweep. Most preferably, the signal is recorded from each position (“address”) in the oligonucleotide array, so that the identity of the extended species can be determined. The identity of the nucleotide comprising the extension unit is determined from the redox potential at which current flow is detected. [0058]
  • In the use of the apparatus of the invention to perform a single base extension reaction, a reaction mixture is prepared containing at least one chain-terminating nucleotide labeled with an electrochemical label (such as a redox-labeled ddNTP), a hybridization buffer compatible with the polymerase and having a salt concentration sufficient to permit hybridization between the target nucleic acid and primer oligonucleotides under the conditions of the assay, and a DNA polymerase such as Taq DNA polymerase or ThermoSequenase. Single stranded target nucleic acid, for example, having been denatured by incubation at a temperature >90° C., is diluted to a concentration appropriate for hybridization in deionized water and added to the reaction mixture. The resulting hybridization mixture is sealed in a reaction chamber of the apparatus of the invention containing a first electrode, wherein the electrode comprises a multiplicity of primers having known sequence linked thereto. At least one of the primers has a nucleotide sequence capable of hybridizing with a portion of the nucleotide sequence of the target immediately adjacent the nucleotide base to be interrogated under the hybridization conditions employed in the assay. [0059]
  • A duplex between the primer and the target is formed wherein the nucleotide base to be interrogated is the first unpaired base in the target immediately 5′ of the nucleotide base that is annealed with the 3′-end of the primer in the duplex. Single base extension of the 3′ end of the annealed primer is achieved by incorporation of the chain-terminating nucleotide, labeled with an electrochemically active moiety, into the primer. The primer sequence and labeled chain-terminating nucleotide are chosen so that incorporation of the nucleotide is informative of the identity (i.e., mutant, wildtype or polymorphism) of the interrogated nucleotide in the target. [0060]
  • Alternatively, the probe comprises a 3′ terminal residue that corresponds to and hybridizes with the interrogated base. In these embodiments, oligonucleotides having a “mismatch” at the 3′ terminal residue will hybridize but will not be extended by the polymerase. Detection of incorporation of the primer extension unit by interrogating the redox label is then informative of the identity of the interrogated nucleotide base, provided that the sequence of the oligonucleotide probe is known at each position in the array. [0061]
  • After the SBE reaction is performed, the electrode is washed at high stringency (i.e., in a low-salt and low dielectric constant solution (such as 0.1×SSC: 0.015M NaCl, 15 mM sodium citrate, pH 7.0), optionally including a detergent such as sodium dodecyl sulfate at temperature of between about 10-65° C.) for a time and at a temperature wherein the target nucleic acid is removed. Wash conditions vary depending on factors such as probe length and probe complexity. Electrochemical detection is carried out in an electrolyte solution by conventional cyclic voltammetry. [0062]
  • EXAMPLE 1
  • An apparatus of the invention is produced as follows. A glass substrate layer is prepared comprising an ordered array of a plurality of gold microelectrodes connected to a voltage source. The substrate has a surface area of 100 μm[0063] 2 and contains 104 microelectrodes, each microelectrode in contact with a polyacrylamide gel pad that is about 0.5 μm thick to which an oligonucleotide having a particular sequence has been immobilized thereto. The microelectrodes are arranged on the substrate so as to be separated by a distance of about 0.1 μm, and are regularly spaced on the solid substrate with a uniform spacing there between.
  • To each of the gold electrodes is affixed an oligonucleotide probe having a length of 25 nucleotides. The resulting ordered array of probes are arranged in groups of four, whereby the probes are identical except for the last (most 3′) residue. Each group contains an oligonucleotide ending in an adenosine (A), guanine (G), cytosine (C) or thymidine (T) or uracil (U) residue. The oligonucleotides are attached to each of the gold electrodes through the polyacrylamide gel pad using a modification of the oligonucleotide at the 5′ residue. This residue comprises a thioester linkage that covalently attaches the oligonucleotide to the polyacrylamide polymer. [0064]
  • This ordered microelectrode array is placed in a reaction chamber, having dimensions sufficient to contain the array and a volume of from about 10 to 100 μL of hybridization/extension buffer. The reaction chamber also comprises a second counter electrode comprising platinum wire and a third, reference electrode that is a silver/silver chloride electrode, each electrode being electrically connected to a voltage source. [0065]
  • In the use of the apparatus of the invention, a volume of from about 10 to 100 μL of hybridization buffer is added to the reaction chamber. This solution also contains a target molecule, typically at concentrations in the micromolar (10[0066] −6 M; μM) to attomolar (10−18 M; αM) range. Hybridization of probe and target molecules is performed in 1×SSC buffer (0.15 M NaCl, 0.015 M sodium citrate, pH 7.0) at 37° C. for 24 to 48 hours. Following hybridization, microelectrodes were thoroughly rinsed in an excess volume of 1×SSC at room temperature.
  • A volume of from about 10 to 100 μL of extension buffer containing a polymerase and a plurality of each of 4 chain-terminating nucleotide species is then added to the reaction chamber. Each of the four chain-terminating nucleotide species is labeled with a chemical species capable of participating in a reduction/oxidation (redox) reaction at the surface of the microelectrode. An example of such a collection of species is: ddATP labeled with cobalt (bipyridine)[0067] 3 3+; ddGTP labeled with minocycline; ddCTP labeled with acridine orange; and ddTTP labeled with ethidium monoazide. The redox labels are covalently linked to the chain-terminating nucleotides by a hydrocarbon linker (CH2)2-8. The extension buffer is chosen to accommodate the polymerase, such as Thermosequenase (obtained from U.S. Biochemicals, Cleveland, Ohio). The extension reaction is performed at a temperature appropriate for the polymerase, such as about 65° C., that does not denature the hybridized duplex between the target and the oligonucleotide probes, and for a time sufficient for the extension reaction to go to completion. After the extension reaction is complete, the array is washed at high stringency in 0.1×SSC/1% SDS at a temperature that does not denature the hybridized duplex.
  • After washing, a volume of about 10 to 100 μL of an electrolyte solution is added to the reaction chamber, and each microelectrode is interrogated by conventional cyclic voltammetry to detect a redox signal. The identity of oligonucleotides containing single base extended species is determined by the redox potential of the signal obtained thereby. [0068]
  • Equivalently, hybridization and single base extension can be performed in the same buffer solution, provided the polymerase is compatible with the hybridization buffer conditions. [0069]
  • It should be understood that the foregoing disclosure emphasizes certain specific embodiments of the invention and that all modifications or alternatives equivalent thereto are within the spirit and scope of the invention as set forth in the appended claims. [0070]

Claims (31)

What we claim is:
1. An apparatus for detecting single base extension of an oligonucleotide comprising an oligonucleotide array, wherein extension is effected by a polymerase and directed by a nucleotide sequence of a nucleic acid in a biological sample, the apparatus comprising
a first electrode comprising an array of oligonucleotides on a substrate, wherein the electrode comprises a conducting or semiconducting surface,
a second, counter electrode comprising a conducting metal in contact with an aqueous electrolyte solution, and
a third reference electrode in contact with the aqueous electrolyte solution,
wherein each of the electrodes is electrically connected to a voltage source, and wherein the apparatus further comprises
a reaction chamber containing a polymerase and a hybridization solution comprising an electrolyte, wherein each of the electrodes is in electrochemical contact therewith, the solution further containing
a plurality of primer extension units comprising chain-terminating nucleotide species, wherein each different chain-terminating nucleotide species is labeled with a distinguishable electrochemical label capable of participating in a reduction/oxidation reaction at the surface of the first electrode under conditions whereby an electrical potential is applied to the electrodes, wherein each of the labeled chain-terminating nucleotide species has a specific reduction/oxidation potential, wherein a current is produced in the apparatus when a biological sample comprising a nucleic acid that hybridizes to an oligonucleotide contained in the oligonucleotide array is incubated in the reaction chamber under moderate to high stringency hybridization conditions and the nucleotide sequence of said hybridized oligonucleotide is extended by the incorporation of at least one of the chain-terminating nucleotide and a voltage is applied to the electrodes at a potential specific for the reduction/oxidation potential of the electrochemical label.
2. The apparatus of claim 1 wherein the oligonucleotide array is an addressable array, and wherein the first electrode comprises a plurality of electrodes corresponding to each address of said addressable array, wherein a current is produced at a particular address of said addressable array after single base extension of an oligonucleotide at said address of the array with a chain terminating nucleotide species labeled with an electrochemical reporter when a voltage is applied to the electrodes at a potential specific for the reduction/oxidation potential of the electrochemical label.
3. The apparatus of claim 1 wherein the chain-terminating nucleotide species are labeled with a transition metal complex.
4. An apparatus according to claim 3, wherein the transition metal complex contains a transition metal ion that is ruthenium, cobalt, iron or osmium.
5. An apparatus according to claim 4, wherein the reference electrode is an aqueous saturated calomel reference electrode and the transition metal complex is selected from the group consisting of 1,4-benzoquinone, ferrocene, tetracyanoquinodimethane, N,N,N′,N′-tetramethyl-p-phenylenediamine and tetrathiafulvalene.
6. An apparatus according to claim 4, wherein the reference electrode is a silver/silver chloride reference electrode and the transition metal complex is selected from the group consisting of 9-aminoacridine, acridine orange, aclarubicin, daunomycin, doxorubicin, pirarubicin, ethidium bromide, ethidium monoazide, chlortetracycline, tetracycline, minocycline, Hoechst 33258, Hoechst 33342, 7-aminoactinomycin D, Chromomycin A3, mithramycin A, vinblastine, rifampicin, Os(bipyridine)2(dipyridophenazine)2+, Co(bipyridine)3 3+ and Fe-bleomycin.
7. An apparatus according to claim 1, wherein the chain-terminating nucleotide species are dideoxyribonucleotide species.
8. An apparatus according to claim 7 wherein the chain terminating nucleotide species is dideoxyadenosine, dideoxyguanine, dideoxyinosine, dideoxyxanthine, dideoxycytosine, dideocythymidine or dideoxyuracil.
9. An apparatus according to claim 1, wherein the chain-terminating nucleotide species are acyclonucleotide species.
10. An apparatus according to claim 9, wherein the chain-terminating species is acycloguanosine, acycloadenosine, acycloinosine, acycloxanthine, acyclocytosine, acyclothymidine or acyclouracil.
11. An apparatus according to claim 1, wherein the chain-terminating nucleotide species are covalently linked to the electrochemical labels using a linker moiety.
12. An apparatus according to claim 11, wherein the linker species has length of from about 10 to about 20 Angstroms.
13. An apparatus according to claim 11 selected from the group consisting of a hydrocarbon chain (CH2)n, wherein n is 1 to 20, and a hydrocarbon chain further comprising an ether moiety, an ester moiety, a carboxyamide, or thioether moiety or a combination thereof.
14. An apparatus according to claim 11 wherein the linker is a siloxane.
15. An apparatus according to claim 1 wherein the polymerase is a thermostable polymerase.
16. A method for detecting single base extension of an oligonucleotide comprising an oligonucleotide array, wherein extension is effected by a polymerase and directed by a nucleotide sequence of a nucleic acid in a biological sample, using an apparatus according to claim 1, the method comprising the steps of:
a) adding a biological sample containing a nucleic acid that hybridizes to an oligonucleotide contained in the oligonucleotide array comprising the first electrode to the reaction chamber that contains a hybridization buffer, a polymerase and a plurality of chain-terminating nucleotide species labeled with electrochemical reporters, wherein the reaction chamber is in electrochemical contact with each of the electrodes of the apparatus and each of the electrodes is electrically connected to a voltage source;
b) incubating the reaction chamber at a time and a temperature sufficient to permit single base extension of an oligonucleotide comprising the oligonucleotide array with at least one of the labeled chain-terminating nucleotide species; and
c) producing a current in the first electrode by applying a potential equal to the reduction/oxidation potential of the labeled chain-terminating nucleotide species incorporated into the oligonucleotide.
17. A method according to claim 16, wherein the oligonucleotide array is an addressable array, and wherein the first electrode comprises a plurality of electrodes corresponding to each address of said addressable array, wherein a current is produced at a particular address of said addressable array after single base extension of an oligonucleotide at said address of the array by applying a potential equal to the reduction/oxidation potential of the chain-terminating nucleotide species labeled with electrochemical reporters incorporated into the oligonucleotide.
18. The method of claim 16 wherein the chain-terminating nucleotide species are labeled with a transition metal complex.
19. An apparatus according to claim 18, wherein the transition metal complex contains a transition metal ion that is ruthenium, cobalt, iron or osmium.
20. An apparatus according to claim 19, wherein the reference electrode is an aqueous saturated calomel reference electrode and the transition metal complex is selected from the group consisting of 1,4-benzoquinone, ferrocene, tetracyanoquinodimethane, N,N,N′,N′-tetramethyl-p-phenylenediamine and tetrathiafulvalene.
21. An apparatus according to claim 19, wherein the reference electrode is a silver/silver chloride reference electrode and the transition metal complex is selected from the group consisting of 9-amino acridine, acridine orange, aclarubicin, daunomycin, doxorubicin, pirarubicin, ethidium bromide, ethidium monoazide, chlortetracycline, tetracycline, minocycline, Hoechst 33258, Hoechst 33342, 7-aminoactinomycin D, Chromomycin A3, mithramycin A, vinblastine, rifampicin, Os(bipyridine)2(dipyridophenazine)2+, Co(bipyridine)3 3+ and Fe-bleomycin.
22. An apparatus according to claim 16, wherein the chain-terminating nucleotide species are dideoxyribonucleotide species.
23. An apparatus according to claim 22 wherein the chain terminating nucleotide species is dideoxyadenosine, dideoxyguanine, dideoxyinosine, dideoxyxanthine, dideoxycytosine, dideocythymidine or dideoxyuracil.
24. An apparatus according to claim 16, wherein the chain-terminating nucleotide species are acyclonucleotide species.
25. An apparatus according to claim 24, wherein the chain-terminating species is acycloguanosine, acycloadenosine, acycloinosone, acyclocytosine, acyclothymidine or acyclouracil.
26. An apparatus according to claim 16, wherein the chain-terminating nucleotide species are covalently linked to the electrochemical labels using a linker moiety.
27. An apparatus according to claim 26, wherein the linker species has length of from about 10 to about 20 Angstroms.
28. An apparatus according to claim 26 selected from the group consisting of a hydrocarbon chain (CH2)n, wherein n is 1 to 20, and a hydrocarbon chain further comprising an ether moiety, an ester moiety, a carboxyamide, or thioether moiety or a combination thereof.
29. An apparatus according to claim 26 wherein the linker is a siloxane.
30. An apparatus according to claim 16 wherein the polymerase is a thermostable polymerase.
31. A kit for detecting single base extension of an oligonucleotide contained in an oligonucleotide array, wherein the kit comprises a first electrode comprising an oligonucleotide array, a mixture of primer extension units, and a polymerase, wherein each different chain-terminating nucleotide species is labeled with a distinguishable electrochemical label capable of participating in a reduction/oxidation reaction at the surface of the first electrode under conditions whereby an electrical potential is applied to the electrode.
US10/259,532 1999-12-13 2002-09-27 Electrochemical detection of single base extension Abandoned US20030096283A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/259,532 US20030096283A1 (en) 1999-12-13 2002-09-27 Electrochemical detection of single base extension

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/459,685 US6518024B2 (en) 1999-12-13 1999-12-13 Electrochemical detection of single base extension
US10/259,532 US20030096283A1 (en) 1999-12-13 2002-09-27 Electrochemical detection of single base extension

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/459,685 Division US6518024B2 (en) 1999-12-09 1999-12-13 Electrochemical detection of single base extension

Publications (1)

Publication Number Publication Date
US20030096283A1 true US20030096283A1 (en) 2003-05-22

Family

ID=23825772

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/459,685 Expired - Lifetime US6518024B2 (en) 1999-12-09 1999-12-13 Electrochemical detection of single base extension
US10/259,532 Abandoned US20030096283A1 (en) 1999-12-13 2002-09-27 Electrochemical detection of single base extension

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/459,685 Expired - Lifetime US6518024B2 (en) 1999-12-09 1999-12-13 Electrochemical detection of single base extension

Country Status (1)

Country Link
US (2) US6518024B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6824669B1 (en) 2000-02-17 2004-11-30 Motorola, Inc. Protein and peptide sensors using electrical detection methods
US7851146B2 (en) 1993-12-10 2010-12-14 California Institute Of Technology Nucleic acid mediated electron transfer

Families Citing this family (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6518024B2 (en) * 1999-12-13 2003-02-11 Motorola, Inc. Electrochemical detection of single base extension
AU6114501A (en) * 2000-05-03 2001-11-12 Jen Gau Jr Biological identification system with integrated sensor chip
AU2002241803A1 (en) * 2000-10-20 2002-06-18 The Board Of Trustees Of The Leland Stanford Junior University Transient electrical signal based methods and devices for characterizing molecular interaction and/or motion in a sample
AU2002365115A1 (en) * 2001-07-20 2003-09-02 North Carolina State University Light addressable electrochemical detection of duplex structures
US20030022150A1 (en) * 2001-07-24 2003-01-30 Sampson Jeffrey R. Methods for detecting a target molecule
US10539561B1 (en) * 2001-08-30 2020-01-21 Customarray, Inc. Enzyme-amplified redox microarray detection process
US20050106587A1 (en) * 2001-12-21 2005-05-19 Micronas Gmbh Method for determining of nucleic acid analytes
US20030224387A1 (en) * 2002-05-22 2003-12-04 Sandeep Kunwar Association of molecules with electrodes of an array of electrodes
US20040180369A1 (en) * 2003-01-16 2004-09-16 North Carolina State University Photothermal detection of nucleic acid hybridization
US20100000881A1 (en) * 2003-10-30 2010-01-07 North Carolina State University Electrochemical detection of nucleic acid hybridization
US7692219B1 (en) 2004-06-25 2010-04-06 University Of Hawaii Ultrasensitive biosensors
US7785785B2 (en) 2004-11-12 2010-08-31 The Board Of Trustees Of The Leland Stanford Junior University Charge perturbation detection system for DNA and other molecules
US20060102471A1 (en) 2004-11-18 2006-05-18 Karl Maurer Electrode array device having an adsorbed porous reaction layer
US20070034513A1 (en) 2005-03-25 2007-02-15 Combimatrix Corporation Electrochemical deblocking solution for electrochemical oligomer synthesis on an electrode array
US9394167B2 (en) 2005-04-15 2016-07-19 Customarray, Inc. Neutralization and containment of redox species produced by circumferential electrodes
US20070065877A1 (en) 2005-09-19 2007-03-22 Combimatrix Corporation Microarray having a base cleavable succinate linker
US8855955B2 (en) * 2005-09-29 2014-10-07 Custom Array, Inc. Process and apparatus for measuring binding events on a microarray of electrodes
US20090233280A1 (en) * 2005-12-28 2009-09-17 Canon Kabushiki Kaisha Method of acquiring information regarding base sequence and information reading device for the same
US8262900B2 (en) 2006-12-14 2012-09-11 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
EP4134667A1 (en) 2006-12-14 2023-02-15 Life Technologies Corporation Apparatus for measuring analytes using fet arrays
US11339430B2 (en) 2007-07-10 2022-05-24 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US8349167B2 (en) 2006-12-14 2013-01-08 Life Technologies Corporation Methods and apparatus for detecting molecular interactions using FET arrays
CN101896624A (en) * 2007-12-13 2010-11-24 Nxp股份有限公司 A biosensor device and a method of sequencing biological particles
US8470164B2 (en) 2008-06-25 2013-06-25 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US20100137143A1 (en) 2008-10-22 2010-06-03 Ion Torrent Systems Incorporated Methods and apparatus for measuring analytes
US20100301398A1 (en) 2009-05-29 2010-12-02 Ion Torrent Systems Incorporated Methods and apparatus for measuring analytes
US8673627B2 (en) 2009-05-29 2014-03-18 Life Technologies Corporation Apparatus and methods for performing electrochemical reactions
US20120261274A1 (en) 2009-05-29 2012-10-18 Life Technologies Corporation Methods and apparatus for measuring analytes
US8776573B2 (en) 2009-05-29 2014-07-15 Life Technologies Corporation Methods and apparatus for measuring analytes
US9927434B2 (en) 2010-01-20 2018-03-27 Customarray, Inc. Multiplex microarray of serially deposited biomolecules on a microarray
EP2388337B1 (en) * 2010-04-30 2014-07-02 Nxp B.V. Sensing device and manufacturing method thereof
CN109449171A (en) 2010-06-30 2019-03-08 生命科技公司 For detecting and measuring the transistor circuit of chemical reaction and compound
JP5952813B2 (en) 2010-06-30 2016-07-13 ライフ テクノロジーズ コーポレーション Method and apparatus for testing ISFET arrays
EP2588851B1 (en) 2010-06-30 2016-12-21 Life Technologies Corporation Ion-sensing charge-accumulation circuit and method
US11307166B2 (en) 2010-07-01 2022-04-19 Life Technologies Corporation Column ADC
WO2012006222A1 (en) 2010-07-03 2012-01-12 Life Technologies Corporation Chemically sensitive sensor with lightly doped drains
EP2617061B1 (en) 2010-09-15 2021-06-30 Life Technologies Corporation Methods and apparatus for measuring analytes
EP2619564B1 (en) 2010-09-24 2016-03-16 Life Technologies Corporation Matched pair transistor circuits
US9970984B2 (en) 2011-12-01 2018-05-15 Life Technologies Corporation Method and apparatus for identifying defects in a chemical sensor array
US8747748B2 (en) 2012-01-19 2014-06-10 Life Technologies Corporation Chemical sensor with conductive cup-shaped sensor surface
US8821798B2 (en) 2012-01-19 2014-09-02 Life Technologies Corporation Titanium nitride as sensing layer for microwell structure
US8786331B2 (en) 2012-05-29 2014-07-22 Life Technologies Corporation System for reducing noise in a chemical sensor array
US20140322706A1 (en) 2012-10-24 2014-10-30 Jon Faiz Kayyem Integrated multipelx target analysis
CA2889415C (en) 2012-10-24 2020-06-02 Genmark Diagnostics, Inc. Integrated multiplex target analysis
US9080968B2 (en) 2013-01-04 2015-07-14 Life Technologies Corporation Methods and systems for point of use removal of sacrificial material
US9841398B2 (en) 2013-01-08 2017-12-12 Life Technologies Corporation Methods for manufacturing well structures for low-noise chemical sensors
US8962366B2 (en) 2013-01-28 2015-02-24 Life Technologies Corporation Self-aligned well structures for low-noise chemical sensors
US8963216B2 (en) 2013-03-13 2015-02-24 Life Technologies Corporation Chemical sensor with sidewall spacer sensor surface
US8841217B1 (en) 2013-03-13 2014-09-23 Life Technologies Corporation Chemical sensor with protruded sensor surface
US20140264472A1 (en) 2013-03-15 2014-09-18 Life Technologies Corporation Chemical sensor with consistent sensor surface areas
CN105051525B (en) 2013-03-15 2019-07-26 生命科技公司 Chemical device with thin conducting element
EP2969217A2 (en) 2013-03-15 2016-01-20 Genmark Diagnostics Inc. Systems, methods, and apparatus for manipulating deformable fluid vessels
US9116117B2 (en) 2013-03-15 2015-08-25 Life Technologies Corporation Chemical sensor with sidewall sensor surface
WO2014149778A1 (en) 2013-03-15 2014-09-25 Life Technologies Corporation Chemical sensors with consistent sensor surface areas
US9835585B2 (en) 2013-03-15 2017-12-05 Life Technologies Corporation Chemical sensor with protruded sensor surface
US20140336063A1 (en) 2013-05-09 2014-11-13 Life Technologies Corporation Windowed Sequencing
US10458942B2 (en) 2013-06-10 2019-10-29 Life Technologies Corporation Chemical sensor array having multiple sensors per well
US9498778B2 (en) 2014-11-11 2016-11-22 Genmark Diagnostics, Inc. Instrument for processing cartridge for performing assays in a closed sample preparation and reaction system
USD881409S1 (en) 2013-10-24 2020-04-14 Genmark Diagnostics, Inc. Biochip cartridge
WO2016077364A2 (en) 2014-11-11 2016-05-19 Genmark Diagnostics, Inc. Instrument and cartridge for performing assays in a closed sample preparation and reaction system
US10005080B2 (en) 2014-11-11 2018-06-26 Genmark Diagnostics, Inc. Instrument and cartridge for performing assays in a closed sample preparation and reaction system employing electrowetting fluid manipulation
US9598722B2 (en) 2014-11-11 2017-03-21 Genmark Diagnostics, Inc. Cartridge for performing assays in a closed sample preparation and reaction system
KR20170097712A (en) 2014-12-18 2017-08-28 라이프 테크놀로지스 코포레이션 Methods and apparatus for measuring analytes using large scale fet arrays
TWI794007B (en) 2014-12-18 2023-02-21 美商生命技術公司 Integrated circuit device, sensor device and integrated circuit
US10077472B2 (en) 2014-12-18 2018-09-18 Life Technologies Corporation High data rate integrated circuit with power management
WO2018053501A1 (en) 2016-09-19 2018-03-22 Genmark Diagnostics, Inc. Instrument for processing cartridge for performing assays in a closed sample preparation and reaction system
EP3673086A1 (en) 2017-08-24 2020-07-01 Clinical Micro Sensors, Inc. (DBA GenMark Diagnostics, Inc.) Electrochemical detection of bacterial and/or fungal infections
US20190062809A1 (en) 2017-08-24 2019-02-28 Clinical Micro Sensors, Inc. (dba GenMark Diagnostics, Inc.) Electrochemical detection of bacterial and/or fungal infections

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6518024B2 (en) * 1999-12-13 2003-02-11 Motorola, Inc. Electrochemical detection of single base extension
US20030190627A1 (en) * 2002-04-09 2003-10-09 Xiaodong Zhao Primer extension using modified nucleotides
US20030209432A1 (en) * 2000-12-11 2003-11-13 Choong Vi-En Methods and compositions relating to electrical detection of nucleic acid reactions

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8311018D0 (en) 1983-04-22 1983-05-25 Amersham Int Plc Detecting mutations in dna
GB8530715D0 (en) 1985-12-13 1986-01-22 Unilever Plc Microchemical testing
US4684195A (en) 1985-12-19 1987-08-04 American Telephone And Telegraph Company, At&T Bell Laboratories Solderless electrical connector
US5001048A (en) 1987-06-05 1991-03-19 Aurthur D. Little, Inc. Electrical biosensor containing a biological receptor immobilized and stabilized in a protein film
FI80476C (en) 1987-10-09 1990-06-11 Orion Yhtymae Oy Improved hybridization process, used in the process and reagent packaging
US4988617A (en) 1988-03-25 1991-01-29 California Institute Of Technology Method of detecting a nucleotide change in nucleic acids
DK175170B1 (en) 1988-11-29 2004-06-21 Sangtec Molecular Diagnostics Method and Reagent Combination to Determine Nucleotide Sequences
CS274231B1 (en) 1988-12-05 1991-04-11 Jan Rndr Krejci Regenerable enzyme sensor with exchangeable membrane system
US5547839A (en) 1989-06-07 1996-08-20 Affymax Technologies N.V. Sequencing of surface immobilized polymers utilizing microflourescence detection
IL97222A (en) 1990-02-16 1995-08-31 Orion Yhtymae Oy Method and reagent for determining specific nucleotide variations
US5776672A (en) 1990-09-28 1998-07-07 Kabushiki Kaisha Toshiba Gene detection method
US6004744A (en) 1991-03-05 1999-12-21 Molecular Tool, Inc. Method for determining nucleotide identity through extension of immobilized primer
RU1794088C (en) 1991-03-18 1993-02-07 Институт Молекулярной Биологии Ан@ Ссср Method of dna nucleotide sequence determination and a device for its realization
US5849486A (en) 1993-11-01 1998-12-15 Nanogen, Inc. Methods for hybridization analysis utilizing electrically controlled hybridization
IL103674A0 (en) 1991-11-19 1993-04-04 Houston Advanced Res Center Method and apparatus for molecule detection
GB9210176D0 (en) 1992-05-12 1992-06-24 Cemu Bioteknik Ab Chemical method
US5710028A (en) 1992-07-02 1998-01-20 Eyal; Nurit Method of quick screening and identification of specific DNA sequences by single nucleotide primer extension and kits therefor
RU2041262C1 (en) 1993-08-11 1995-08-09 Институт молекулярной биологии им.В.А.Энгельгардта РАН Method for immobilization of water soluble bioorganic compounds on capillary-porous carrier
RU2041261C1 (en) 1993-08-11 1995-08-09 Институт молекулярной биологии им.В.А.Энгельгардта РАН Method for manufacturing of matrix for detecting of mismatches
US5952172A (en) 1993-12-10 1999-09-14 California Institute Of Technology Nucleic acid mediated electron transfer
US5591578A (en) 1993-12-10 1997-01-07 California Institute Of Technology Nucleic acid mediated electron transfer
US5824473A (en) 1993-12-10 1998-10-20 California Institute Of Technology Nucleic acid mediated electron transfer
US6071699A (en) 1996-06-07 2000-06-06 California Institute Of Technology Nucleic acid mediated electron transfer
GB9417211D0 (en) * 1994-08-25 1994-10-12 Solicitor For The Affairs Of H Nucleotide sequencing method
CA2198489A1 (en) 1994-08-26 1996-03-07 Igen International, Inc. Biosensor for and method of electrogenerated chemiluminescent detection of nucleic acid adsorbed to a solid surface
US6207369B1 (en) 1995-03-10 2001-03-27 Meso Scale Technologies, Llc Multi-array, multi-specific electrochemiluminescence testing
US5624711A (en) 1995-04-27 1997-04-29 Affymax Technologies, N.V. Derivatization of solid supports and methods for oligomer synthesis
AU739375B2 (en) 1996-11-05 2001-10-11 Clinical Micro Sensors, Inc. Electrodes linked via conductive oligomers to nucleic acids
US5981734A (en) 1997-07-17 1999-11-09 University Of Chicago Methods for immobilizing nucleic acids on a gel substrate
AU8903998A (en) 1997-08-12 1999-03-01 Fraunhofer Institut Siliziumtechnologie Electrochemical reporter system for detecting analytical immunoassay and mol ecular biology procedures
DE19741716A1 (en) 1997-09-22 1999-03-25 Hoechst Ag Recognition system
US6048692A (en) 1997-10-07 2000-04-11 Motorola, Inc. Sensors for electrically sensing binding events for supported molecular receptors
JP2002500897A (en) 1998-01-27 2002-01-15 クリニカル・マイクロ・センサーズ・インコーポレイテッド Amplification of electronic nucleic acid detection
EP1075541A1 (en) 1998-05-06 2001-02-14 Clinical Micro Sensors Electronic detection of nucleic acids using monolayers
WO2001006016A2 (en) 1999-07-20 2001-01-25 Clinical Micro Sensors, Inc. Amplification of nucleic acids with electronic detection
WO2001007665A2 (en) 1999-07-26 2001-02-01 Clinical Micro Sensors, Inc. Sequence determination of nucleic acids using electronic detection

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6518024B2 (en) * 1999-12-13 2003-02-11 Motorola, Inc. Electrochemical detection of single base extension
US20030209432A1 (en) * 2000-12-11 2003-11-13 Choong Vi-En Methods and compositions relating to electrical detection of nucleic acid reactions
US20030190627A1 (en) * 2002-04-09 2003-10-09 Xiaodong Zhao Primer extension using modified nucleotides

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7851146B2 (en) 1993-12-10 2010-12-14 California Institute Of Technology Nucleic acid mediated electron transfer
US6824669B1 (en) 2000-02-17 2004-11-30 Motorola, Inc. Protein and peptide sensors using electrical detection methods
US20050023155A1 (en) * 2000-02-17 2005-02-03 Sawyer Jaymie Robin Protein and peptide sensors using electrical detection methods

Also Published As

Publication number Publication date
US6518024B2 (en) 2003-02-11
US20020064775A1 (en) 2002-05-30

Similar Documents

Publication Publication Date Title
US6518024B2 (en) Electrochemical detection of single base extension
US5312527A (en) Voltammetric sequence-selective sensor for target polynucleotide sequences
EP1068359B1 (en) Electrochemical sensor using intercalative, redox-active moieties
AU2004284367B2 (en) Method for detecting analytes by means of an analyte/polymeric activator bilayer arrangement
EP2163653B1 (en) Nucleic acid detection method having increased sensitivity
WO1999067628A9 (en) Multi-sensor array for electrochemical recognition of nucleotide sequences and methods
US7202037B2 (en) Electrochemical sensor using intercalative, redox-active moieties
Pedrero et al. Electrochemical genosensors based on PCR strategies for microorganisms detection and quantification
Fojta et al. Osmium tetroxide complexes as versatile tools for structure probing and electrochemical analysis of biopolymers
US20050208503A1 (en) Chemical ligation of nucleic acids
Fojta et al. Redox labels and indicators based on transition metals and organic electroactive moieties for electrochemical nucleic acids sensing
WO2004099433A2 (en) Electrochemical method to measure dna attachment to an electrode surface in the presence of molecular oxygen
US20100133118A1 (en) Electrochemical methods of detecting nucleic acid hybridization
CA2385851A1 (en) Three-dimensional microarray system for parallel genotyping of single nucleotide polymorphisms
KR100482718B1 (en) Nucleic Acid Probe-Immobilized Substrate and Method of Detecting the Presence of Target Nucleic Acid by Using the Same
EP2168949A1 (en) Method for electrochemical detection of sequences of nucleic acids
AU2004236714B2 (en) Electrochemical method to measure DNA attachment to an electrode surface in the presence of molecular oxygen
WO2005100599A2 (en) Cyclic voltammetry (cv) for identifying genomic sequence variations and detecting mismatch base pairs, such as single nucleotide polymorphisms
Marrazza et al. Carbon electrodes in dna hybridisation research
Diakowski et al. Electrochemical Detection of Basepair Mismatches in DNA Films
Takenaka Genosensors Based on Metal Complexes
US20050214764A1 (en) Method for identifying, quantifying and/or characterizing an analyte

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION