US20020067561A1 - Method for detecting mechanical damage in a parking zone of a hard disk drive - Google Patents

Method for detecting mechanical damage in a parking zone of a hard disk drive Download PDF

Info

Publication number
US20020067561A1
US20020067561A1 US09/732,410 US73241000A US2002067561A1 US 20020067561 A1 US20020067561 A1 US 20020067561A1 US 73241000 A US73241000 A US 73241000A US 2002067561 A1 US2002067561 A1 US 2002067561A1
Authority
US
United States
Prior art keywords
asperity
head
disk drive
parking zone
disk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/732,410
Other versions
US6445520B1 (en
Inventor
Wonchoul Yang
Kangseok Lee
Haesung Kwon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Priority to US09/732,410 priority Critical patent/US6445520B1/en
Assigned to SAMSUNG ELECTRONICS COMPANY reassignment SAMSUNG ELECTRONICS COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: YANG, WONCHOUL, LEE, KANGSEOK, KWON, HAESUNG
Priority to KR10-2001-0076496A priority patent/KR100403636B1/en
Publication of US20020067561A1 publication Critical patent/US20020067561A1/en
Application granted granted Critical
Publication of US6445520B1 publication Critical patent/US6445520B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/012Recording on, or reproducing or erasing from, magnetic disks
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B21/00Head arrangements not specific to the method of recording or reproducing
    • G11B21/16Supporting the heads; Supporting the sockets for plug-in heads
    • G11B21/22Supporting the heads; Supporting the sockets for plug-in heads while the head is out of operative position

Definitions

  • the present invention relates to a method for detecting an asperity on a parking zone of a disk.
  • Hard disk drives contain a plurality of heads that are coupled to a number of magnetic disks.
  • the heads can read information by sensing the magnetic fields of the disks, and write information by varying the magnetic fields of the disks.
  • Information is typically stored within data sectors that are located on annular tracks of the disks.
  • the heads are typically attached to an actuator arm and a voice coil motor.
  • the voice coil motor can be energized to move the heads to different tracks of the disks.
  • Each read/write head has an air bearing surface that cooperates with an airflow generated by the rotating disk to create an air bearing between the head and the disks surface.
  • the air bearing reduces mechanical wear between the head and the adjacent disk surface. It is desirable to design an optimum air bearing that will minimize mechanical wear while maximizing the magnetic coupling between the disk and the head.
  • Some heads contain a magneto-resistive (MR) material that is used to sense the magnetic field of the disks.
  • the resistance of the magneto-resistive material will vary linearly with variations in the magnetic field.
  • the magneto-resistive material is coupled to a current source. Variations in the magnetic field of the disk will cause a corresponding change in the magneto-resistive resistance and the voltage sensed across the magneto-resistive element.
  • MR heads typically have a higher bit density than other types of disk drive heads.
  • the disks may have one or more asperities that make physical contact with the heads.
  • the asperity may be a particle that resides on the disk, or an irregularity in the disk surface.
  • the contact between the asperity and the head may cause a momentary increase in temperature of the magneto-resistive material.
  • the increase in temperature will increase the resistance and corresponding voltage sensed across the magneto-resistive element.
  • thermal asperity detection circuits that will detect and compensate for the variation in the read signal caused by contact between the head and an asperity.
  • the heads are located adjacent to the data fields of the disks.
  • the heads When the disk drive is powered down the heads may be moved to parking zones of the disks.
  • the parking zones are typically areas of the disks that have no data.
  • the disk drive may be subject to shock and/or vibration loads that cause the heads to slap the disks. Head slapping may cause damage to the disks and/or heads. Placing the heads in non-data parking zones of the disks insure that data is not corrupted from a head slapping event.
  • the surfaces of the disks are typically inspected with a disk certifier before being assembled into a hard disk drive.
  • the disk certifier may include optical elements that are used to detect the surfaces of the disks.
  • the certifiers are used to detect and possibly correct defective disks.
  • an asperity is formed after the disks have been inspected and assembled into a drive.
  • an asperity may be formed in the parking zone of a disk during the assembly process. The asperity may decrease the life and reliability of the disk drive. It would be desirable to detect an asperity in the parking zone of a disk after the disk drive has been assembled to screen for defective products before the drive is shipped to a customer.
  • One embodiment of the present invention is a hard disk drive which has a controller that can move a head to a parking zone of a disk.
  • the disk drive may include a thermal asperity detection circuit that is coupled to the head and can detect an asperity in the parking zone of the disk.
  • FIG. 1 is a top view of an embodiment of a hard disk drive of the present invention
  • FIG. 2 is a schematic of an electrical system of the hard disk drive
  • FIG. 3 is a schematic of a thermal asperity detection circuit of the electrical system.
  • the present invention provides a method for detecting an asperity in a non-data parking zone of a disk in a hard disk drive.
  • the method includes the steps of moving the heads of the disk drive adjacent to the parking zones of the disks, and then detecting asperities in the parking zones with a thermal asperity detection circuit.
  • FIG. 1 shows an embodiment of a hard disk drive 10 of the present invention.
  • the disk drive 10 may include one or more magnetic disks 12 that are rotated by a spindle motor 14 .
  • the spindle motor 14 may be mounted to a base plate 16 .
  • the disk drive 10 may further have a cover 18 that encloses the disks 12 .
  • the disk drive 10 may include a plurality of heads 20 located adjacent to the disks 12 .
  • the heads 20 may have separate write and read elements (not shown) that magnetize and sense the magnetic fields of the disks 12 .
  • the heads 20 may include magneto-resistive read elements.
  • Each head 20 may be gimbal mounted to a flexure arm 22 as part of a head gimbal assembly (HGA).
  • the flexure arms 22 are attached to an actuator arm 24 that is pivotally mounted to the base plate 16 by a bearing assembly 26 .
  • a voice coil 28 is attached to the actuator arm 24 .
  • the voice coil 28 is coupled to a magnet assembly 30 to create a voice coil motor (VCM) 32 . Providing a current to the voice coil 28 will create a torque that swings the actuator arm 24 and moves the heads 20 across the disks 12 .
  • VCM voice coil motor
  • the voice coil motor 32 can move the heads 20 to a parking zone 34 of each disk 12 .
  • the parking zone 34 is an area that does not contain any data.
  • the heads 20 are typically moved to the parking zones 20 when the disk drive 10 is powered down.
  • the hard disk drive 10 may include a printed circuit board assembly 36 that includes a plurality of integrated circuits 38 coupled to a printed circuit board 40 .
  • the printed circuit board 38 is coupled to the voice coil 28 , heads 20 and spindle motor 14 by wires (not shown).
  • FIG. 2 shows a schematic of an electrical system 50 that can control the disk drive 10 .
  • the system 50 includes a controller 52 that is connected to an input/output (I/O) buffer 54 , voice coil motor control circuit 56 , spindle motor control circuit 58 , read/write channel circuit 60 , memory 62 and a thermal asperity detection circuit 64 .
  • the I/O buffer 54 provides an interface with an external source such as a personal computer.
  • the voice coil control circuit 56 and spindle motor control circuit 58 contain drivers, etc. to control the voice coil motor and spindle motor, respectively.
  • the voice coil motor circuit 56 and spindle motor control circuit 58 operate in accordance with signals, commands, etc. from the controller 52 .
  • the controller 52 may be a processor that can perform software routines in accordance with instructions and data.
  • Memory 62 may include both volatile and non-volatile memory.
  • the thermal asperity circuit 64 can detect an asperity on the disks 12 .
  • the thermal asperity circuit 64 can provide an output signal, command, etc. to the controller 52 when an asperity is detected. Additionally, the thermal asperity circuit 64 may provide the output signal, command, etc. to the I/O buffer 54 for transmission to an external device such as a test station.
  • FIG. 3 shows an embodiment of a thermal asperity circuit 64 of the present invention.
  • the thermal asperity compensation circuit 64 includes a preamplifier 66 that is coupled to one of the heads 20 .
  • the read signal is first amplified by the preamplifier 66 , and then provided to a variable gain amplifier (VGA) 68 .
  • VGA variable gain amplifier
  • the amplified read signal is also provided as one input to the noninverting terminal of a threshold detector 70 .
  • the inverting terminal of the threshold detector 70 is coupled to a threshold signal which is representative of a typical level of a thermal asperity.
  • the threshold signal may be provided by the controller 52 .
  • the output of the threshold detector 70 is used to control a multiplexor 72 , a feedforward filter 74 and a feedback filter 76 , as described in detail in the following sections.
  • the VGA 68 amplifies the read signal that is then provided to a continuous time filter 78 .
  • the output of the VGA 68 is a function of a gain correction signal S G of a gain tracking loop 80 and a gain loop acquisition loop 82 .
  • the continuous time filter 78 is a 7-pole, 2-zero equi-ripple filter for standard signal conditioning, as is known in the art.
  • the continuous time filter 78 limits the received signal's bandwidth to prevent aliasing.
  • the continuous time filter 78 is a low pass filter with a cut-off frequency that is less than half the sampling rate of sampler 84 .
  • Continuous time filter 78 may also provide some equalization of the analog signal.
  • the output of the continuous time filter 78 is provided to a sampler 84 , which samples the amplified read signal to provide a sequence of analog samples RSAM of the amplified read signal.
  • Samples r SAM of the amplified read signal are also provided to the gain loop acquisition circuit 82 and a timing loop acquisition circuit 86 .
  • the output of the summing circuit 88 is provided to the gain loop tracking circuit 80 and a timing loop tracking circuit 90 .
  • a gain correction signal S G generated by the gain loop tracking circuit 80 and the gain loop acquisition circuit 82 is provided as a variable gain set point for the VGA 68 .
  • the timing correction signal S T generated by the timing loop tracking circuit 90 and the timing loop acquisition circuit 86 which provides timing corrections to the sampling rate, is provided to a phase/frequency detector 92 . Phase and frequency errors are provided to a charge pump 94 which accumulates a charge proportional to the timing correction signal S T .
  • the charge pump 94 outputs the accumulated charge due to timing error as a voltage to a voltage controlled oscillator (VCO) 96 .
  • VCO voltage controlled oscillator
  • the VCO 96 generates a signal with a corrected frequency which is used to control the sampling frequency of the sampler 84 , and which is simultaneously fed back to the phase/frequency detector 92 for comparison with the timing correction signal S T generated by the timing loop tracking circuit 90 .
  • the output of the sampler 84 is directly provided to a FDTS detector 98 via multiplexor 72 .
  • the feedforward filter 74 and the feedback filter 76 in the FDTS detector 98 will also utilize a first set of predetermined parameters (such as taps) for normal operation.
  • the threshold detector 70 when a thermal asperity is detected by threshold detector 70 , the threshold detector 70 generates a signal to select the multiplexor 72 to multiplex the samples r TA (t) SAM from a 1-D sample filter 100 , to the FDTS detector 98 .
  • the 1-D sample filter 100 first differentiates the sample stream and then removes the level shift from the resulting sample stream.
  • the multiplexor 72 also provides a signal to the feedforward filter 74 and the feedback filter 76 in the FDTS detector 98 , to utilize a second set of predetermined parameters (such as taps) for processing the read signal. Samples from the FDTS detector 98 are then generated as output signal r OUT (t).
  • the threshold detector 100 also provides an output that is provided to the controller 52 .
  • the circuit shown in FIG. 3 is also disclosed in Application No. 049,494, which is assigned to the same assignee, and is hereby incorporated by reference.
  • the disks 12 are rotated by the spindle motor 14 and the controller 52 may establish a threshold parameter for the threshold detector 70 .
  • the controller 52 may then generate signals, commands, etc. to move the heads 20 to the parking zones 34 of the disks 12 .
  • the heads 20 may fly for a predetermined time interval to insure that the system is stable. For example, the heads may fly in the parking zone for 5 minutes.
  • An asperity on the disks 20 may cause a variation in the sensing voltage of the head 20 to exceed the threshold value provided to the threshold detector 70 .
  • the threshold detector 70 then provides an output to the controller 52 .
  • the controller 52 may have the detection stored in memory 62 and/or provided to the I/O buffer 54 for transmission to an external source such as a test station.
  • the controller 52 can further generate signals, commands, etc. to incrementally move the heads 20 across the parking zones in accordance with a seek routine.
  • the thermal asperity circuit 64 can detect asperities as the heads 20 are incrementally moved across the parking zones. Both the presence of an asperity and the location of the asperity may be stored in memory 62 and/or provided to the I/O buffer 54 .
  • the present invention thus provides a technique to detect asperities in the parking zones of the disks 20 assembled within a disk drive without significantly changing the disk drive 10 .

Abstract

A method for detecting an asperity in a non-data parking zone of a disk in a hard disk drive. The method includes the steps of moving the heads of the disk drive adjacent to the parking zones of the disks, and then detecting asperities in the parking zones with a thermal asperity detection circuit.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0001]
  • The present invention relates to a method for detecting an asperity on a parking zone of a disk. [0002]
  • 2. Background Information [0003]
  • Hard disk drives contain a plurality of heads that are coupled to a number of magnetic disks. The heads can read information by sensing the magnetic fields of the disks, and write information by varying the magnetic fields of the disks. Information is typically stored within data sectors that are located on annular tracks of the disks. [0004]
  • The heads are typically attached to an actuator arm and a voice coil motor. The voice coil motor can be energized to move the heads to different tracks of the disks. [0005]
  • Each read/write head has an air bearing surface that cooperates with an airflow generated by the rotating disk to create an air bearing between the head and the disks surface. The air bearing reduces mechanical wear between the head and the adjacent disk surface. It is desirable to design an optimum air bearing that will minimize mechanical wear while maximizing the magnetic coupling between the disk and the head. [0006]
  • Some heads contain a magneto-resistive (MR) material that is used to sense the magnetic field of the disks. The resistance of the magneto-resistive material will vary linearly with variations in the magnetic field. The magneto-resistive material is coupled to a current source. Variations in the magnetic field of the disk will cause a corresponding change in the magneto-resistive resistance and the voltage sensed across the magneto-resistive element. MR heads typically have a higher bit density than other types of disk drive heads. [0007]
  • The disks may have one or more asperities that make physical contact with the heads. The asperity may be a particle that resides on the disk, or an irregularity in the disk surface. The contact between the asperity and the head may cause a momentary increase in temperature of the magneto-resistive material. The increase in temperature will increase the resistance and corresponding voltage sensed across the magneto-resistive element. There have been developed thermal asperity detection circuits that will detect and compensate for the variation in the read signal caused by contact between the head and an asperity. [0008]
  • During operation of the disk drive the heads are located adjacent to the data fields of the disks. When the disk drive is powered down the heads may be moved to parking zones of the disks. The parking zones are typically areas of the disks that have no data. The disk drive may be subject to shock and/or vibration loads that cause the heads to slap the disks. Head slapping may cause damage to the disks and/or heads. Placing the heads in non-data parking zones of the disks insure that data is not corrupted from a head slapping event. [0009]
  • The surfaces of the disks are typically inspected with a disk certifier before being assembled into a hard disk drive. The disk certifier may include optical elements that are used to detect the surfaces of the disks. The certifiers are used to detect and possibly correct defective disks. [0010]
  • Sometimes an asperity is formed after the disks have been inspected and assembled into a drive. For example, an asperity may be formed in the parking zone of a disk during the assembly process. The asperity may decrease the life and reliability of the disk drive. It would be desirable to detect an asperity in the parking zone of a disk after the disk drive has been assembled to screen for defective products before the drive is shipped to a customer. [0011]
  • BRIEF SUMMARY OF THE INVENTION
  • One embodiment of the present invention is a hard disk drive which has a controller that can move a head to a parking zone of a disk. The disk drive may include a thermal asperity detection circuit that is coupled to the head and can detect an asperity in the parking zone of the disk. [0012]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a top view of an embodiment of a hard disk drive of the present invention; [0013]
  • FIG. 2 is a schematic of an electrical system of the hard disk drive; [0014]
  • FIG. 3 is a schematic of a thermal asperity detection circuit of the electrical system. [0015]
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
  • In general the present invention provides a method for detecting an asperity in a non-data parking zone of a disk in a hard disk drive. The method includes the steps of moving the heads of the disk drive adjacent to the parking zones of the disks, and then detecting asperities in the parking zones with a thermal asperity detection circuit. [0016]
  • Referring to the drawings more particularly by reference numbers, FIG. 1 shows an embodiment of a [0017] hard disk drive 10 of the present invention. The disk drive 10 may include one or more magnetic disks 12 that are rotated by a spindle motor 14. The spindle motor 14 may be mounted to a base plate 16. The disk drive 10 may further have a cover 18 that encloses the disks 12.
  • The [0018] disk drive 10 may include a plurality of heads 20 located adjacent to the disks 12. The heads 20 may have separate write and read elements (not shown) that magnetize and sense the magnetic fields of the disks 12. By way of example, the heads 20 may include magneto-resistive read elements.
  • Each [0019] head 20 may be gimbal mounted to a flexure arm 22 as part of a head gimbal assembly (HGA). The flexure arms 22 are attached to an actuator arm 24 that is pivotally mounted to the base plate 16 by a bearing assembly 26. A voice coil 28 is attached to the actuator arm 24. The voice coil 28 is coupled to a magnet assembly 30 to create a voice coil motor (VCM) 32. Providing a current to the voice coil 28 will create a torque that swings the actuator arm 24 and moves the heads 20 across the disks 12.
  • The [0020] voice coil motor 32 can move the heads 20 to a parking zone 34 of each disk 12. The parking zone 34 is an area that does not contain any data. The heads 20 are typically moved to the parking zones 20 when the disk drive 10 is powered down.
  • The [0021] hard disk drive 10 may include a printed circuit board assembly 36 that includes a plurality of integrated circuits 38 coupled to a printed circuit board 40. The printed circuit board 38 is coupled to the voice coil 28, heads 20 and spindle motor 14 by wires (not shown).
  • FIG. 2 shows a schematic of an [0022] electrical system 50 that can control the disk drive 10. The system 50 includes a controller 52 that is connected to an input/output (I/O) buffer 54, voice coil motor control circuit 56, spindle motor control circuit 58, read/write channel circuit 60, memory 62 and a thermal asperity detection circuit 64. The I/O buffer 54 provides an interface with an external source such as a personal computer. The voice coil control circuit 56 and spindle motor control circuit 58 contain drivers, etc. to control the voice coil motor and spindle motor, respectively. The voice coil motor circuit 56 and spindle motor control circuit 58 operate in accordance with signals, commands, etc. from the controller 52.
  • The [0023] controller 52 may be a processor that can perform software routines in accordance with instructions and data. Memory 62 may include both volatile and non-volatile memory. The thermal asperity circuit 64 can detect an asperity on the disks 12. The thermal asperity circuit 64 can provide an output signal, command, etc. to the controller 52 when an asperity is detected. Additionally, the thermal asperity circuit 64 may provide the output signal, command, etc. to the I/O buffer 54 for transmission to an external device such as a test station.
  • FIG. 3 shows an embodiment of a [0024] thermal asperity circuit 64 of the present invention. The thermal asperity compensation circuit 64 includes a preamplifier 66 that is coupled to one of the heads 20. When reading data the head 20 generates a read signal that corresponds to the magnetic field of the disk 12. The read signal is first amplified by the preamplifier 66, and then provided to a variable gain amplifier (VGA) 68. The amplified read signal is also provided as one input to the noninverting terminal of a threshold detector 70. The inverting terminal of the threshold detector 70 is coupled to a threshold signal which is representative of a typical level of a thermal asperity. The threshold signal may be provided by the controller 52. The output of the threshold detector 70 is used to control a multiplexor 72, a feedforward filter 74 and a feedback filter 76, as described in detail in the following sections.
  • The [0025] VGA 68 amplifies the read signal that is then provided to a continuous time filter 78. The output of the VGA 68 is a function of a gain correction signal SG of a gain tracking loop 80 and a gain loop acquisition loop 82. In one embodiment, the continuous time filter 78 is a 7-pole, 2-zero equi-ripple filter for standard signal conditioning, as is known in the art. In particular, the continuous time filter 78 limits the received signal's bandwidth to prevent aliasing. As such, the continuous time filter 78 is a low pass filter with a cut-off frequency that is less than half the sampling rate of sampler 84. Continuous time filter 78 may also provide some equalization of the analog signal. The output of the continuous time filter 78 is provided to a sampler 84, which samples the amplified read signal to provide a sequence of analog samples RSAM of the amplified read signal.
  • Samples r[0026] SAM of the amplified read signal are also provided to the gain loop acquisition circuit 82 and a timing loop acquisition circuit 86. The output of the summing circuit 88 is provided to the gain loop tracking circuit 80 and a timing loop tracking circuit 90. A gain correction signal SG generated by the gain loop tracking circuit 80 and the gain loop acquisition circuit 82, is provided as a variable gain set point for the VGA 68. The timing correction signal ST generated by the timing loop tracking circuit 90 and the timing loop acquisition circuit 86, which provides timing corrections to the sampling rate, is provided to a phase/frequency detector 92. Phase and frequency errors are provided to a charge pump 94 which accumulates a charge proportional to the timing correction signal ST. In response, the charge pump 94 outputs the accumulated charge due to timing error as a voltage to a voltage controlled oscillator (VCO) 96. The VCO 96 generates a signal with a corrected frequency which is used to control the sampling frequency of the sampler 84, and which is simultaneously fed back to the phase/frequency detector 92 for comparison with the timing correction signal ST generated by the timing loop tracking circuit 90.
  • During normal operation, the output of the [0027] sampler 84 is directly provided to a FDTS detector 98 via multiplexor 72. The feedforward filter 74 and the feedback filter 76 in the FDTS detector 98 will also utilize a first set of predetermined parameters (such as taps) for normal operation. However, when a thermal asperity is detected by threshold detector 70, the threshold detector 70 generates a signal to select the multiplexor 72 to multiplex the samples rTA(t)SAM from a 1-D sample filter 100, to the FDTS detector 98. The 1-D sample filter 100 first differentiates the sample stream and then removes the level shift from the resulting sample stream. In one embodiment, the sample filter 100 is a discrete time filter having a transfer function of T(D)=1-D, where D is a delay factor. Depending upon system partial response parameters, D may be vary from D2 to DN, where N is an integer. When a thermal asperity is encountered, the multiplexor 72 also provides a signal to the feedforward filter 74 and the feedback filter 76 in the FDTS detector 98, to utilize a second set of predetermined parameters (such as taps) for processing the read signal. Samples from the FDTS detector 98 are then generated as output signal rOUT(t). The threshold detector 100 also provides an output that is provided to the controller 52. The circuit shown in FIG. 3 is also disclosed in Application No. 049,494, which is assigned to the same assignee, and is hereby incorporated by reference.
  • Referring to FIGS. [0028] 1-3, in operation, the disks 12 are rotated by the spindle motor 14 and the controller 52 may establish a threshold parameter for the threshold detector 70. The controller 52 may then generate signals, commands, etc. to move the heads 20 to the parking zones 34 of the disks 12. The heads 20 may fly for a predetermined time interval to insure that the system is stable. For example, the heads may fly in the parking zone for 5 minutes. An asperity on the disks 20 may cause a variation in the sensing voltage of the head 20 to exceed the threshold value provided to the threshold detector 70. The threshold detector 70 then provides an output to the controller 52. The controller 52 may have the detection stored in memory 62 and/or provided to the I/O buffer 54 for transmission to an external source such as a test station.
  • The [0029] controller 52 can further generate signals, commands, etc. to incrementally move the heads 20 across the parking zones in accordance with a seek routine. The thermal asperity circuit 64 can detect asperities as the heads 20 are incrementally moved across the parking zones. Both the presence of an asperity and the location of the asperity may be stored in memory 62 and/or provided to the I/O buffer 54.
  • The present invention thus provides a technique to detect asperities in the parking zones of the [0030] disks 20 assembled within a disk drive without significantly changing the disk drive 10.
  • While certain exemplary embodiments have been described and shown in the accompanying drawings, it is to be understood that such embodiments are merely illustrative of and not restrictive on the broad invention, and that this invention not be limited to the specific constructions and arrangements shown and described, since various other modifications may occur to those ordinarily skilled in the art. [0031]

Claims (18)

What is claimed is:
1. A hard disk drive, comprising:
a disk that has a parking zone;
a spindle motor that rotates said disk;
a head that is coupled to said disk;
an actuator arm that is coupled to said head;
a voice coil motor that is coupled to said actuator arm and can be activated to move said head relative to said disk;
a thermal asperity detection circuit that is coupled to said head and can detect an asperity on said disk;
a controller that is coupled to said voice coil motor and said thermal asperity detection circuit, said controller causes said voice coil motor to move said head into said parking zone so that said thermal asperity detection circuit can detect an asperity in the parking zone.
2. The disk drive of claim 1, wherein said controller causes said voice coil motor to move said head across said parking zone in accordance with a seek routine.
3. The disk drive of claim 1, wherein a detection of an asperity is stored in memory.
4. The disk drive of claim 3, wherein a location of an asperity is stored in memory.
5. The disk drive of claim 1, wherein said thermal asperity detection circuit includes a threshold detector.
6. The disk drive of claim 5, wherein said thermal asperity detection circuit includes a compensation circuit.
7. The disk drive of claim 1, wherein said head includes a magneto-resistive read element.
8. A method for detecting an asperity in a parking zone of a disk located within a hard disk drive, comprising:
rotating a disk that has a parking zone;
moving a head to the parking zone, said head providing a signal; and
detecting an asperity in the parking zone from the signal provided by the head.
9. The method of claim 8, wherein the signal is compared with a threshold value to determine the asperity.
10. The method of claim 8, wherein the head is moved across the parking zone in accordance with a seek routine.
11. The method of claim 10, wherein the detection of the asperity is stored in memory.
12. The disk drive of claim 11, wherein a location of the asperity is stored in memory.
13. A circuit for a hard disk drive that has a head which is coupled to a disk, the disk has a parking zone, the head provides a signal, comprising:
a controller that can move the head to the parking zone of the disk; and,
a thermal asperity detection circuit that receives the signal from the head and can detect an asperity in the parking zone.
14. The circuit of claim 13, wherein said controller causes the head to move across the parking zone in accordance with a seek routine.
15. The circuit of claim 13, wherein the detection of the asperity is stored in memory.
16. The circuit of claim 15, wherein a location of the asperity is stored in memory.
17. The circuit of claim 13, wherein said thermal asperity detection circuit includes a threshold detector.
18. The circuit of claim 17, wherein said thermal asperity detection circuit includes a compensation circuit.
US09/732,410 2000-12-06 2000-12-06 Method for detecting mechanical damage in a parking zone of a hard disk drive Expired - Fee Related US6445520B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US09/732,410 US6445520B1 (en) 2000-12-06 2000-12-06 Method for detecting mechanical damage in a parking zone of a hard disk drive
KR10-2001-0076496A KR100403636B1 (en) 2000-12-06 2001-12-05 Hard disk drive, method and circuit for driving thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/732,410 US6445520B1 (en) 2000-12-06 2000-12-06 Method for detecting mechanical damage in a parking zone of a hard disk drive

Publications (2)

Publication Number Publication Date
US20020067561A1 true US20020067561A1 (en) 2002-06-06
US6445520B1 US6445520B1 (en) 2002-09-03

Family

ID=24943418

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/732,410 Expired - Fee Related US6445520B1 (en) 2000-12-06 2000-12-06 Method for detecting mechanical damage in a parking zone of a hard disk drive

Country Status (2)

Country Link
US (1) US6445520B1 (en)
KR (1) KR100403636B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140047497A1 (en) * 2008-03-12 2014-02-13 Iberium Communications, Inc. Method and system for symbol-rate-independent adaptive equalizer initialization

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030206358A1 (en) * 2002-05-03 2003-11-06 Loh David Kok Leong Head instability detection for a data storage device
US7773324B2 (en) * 2005-04-12 2010-08-10 Stmicroelectronics, Inc. Phase acquisition loop for a read channel and related read channel, system, and method
US7768732B2 (en) * 2005-04-12 2010-08-03 Stmicroelectronics, Inc. Gain controller for a gain loop of a read channel and related gain loops, read channels, systems, and methods
JP2007335016A (en) * 2006-06-15 2007-12-27 Fujitsu Ltd Head slap detection device, storage device, head slap detection method, and head slap detection program
US8369190B2 (en) * 2010-06-15 2013-02-05 Texas Instruments Incorporated Proximity sensing system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5838514A (en) * 1996-08-21 1998-11-17 International Business Machines Corporation Method and apparatus for calibrating a thermal response of a magnetoresistive transducer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5838514A (en) * 1996-08-21 1998-11-17 International Business Machines Corporation Method and apparatus for calibrating a thermal response of a magnetoresistive transducer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140047497A1 (en) * 2008-03-12 2014-02-13 Iberium Communications, Inc. Method and system for symbol-rate-independent adaptive equalizer initialization

Also Published As

Publication number Publication date
KR20020045544A (en) 2002-06-19
KR100403636B1 (en) 2003-10-30
US6445520B1 (en) 2002-09-03

Similar Documents

Publication Publication Date Title
US7097110B2 (en) Temperature compensation systems and methods for use with read/write heads in magnetic storage devices
US5872676A (en) Method and apparatus for positioning a dual element magnetoresistive head using thermal signals
US7542227B2 (en) Flying height measurement and control with user data signal
US6249890B1 (en) Detecting head readback response degradation in a disc drive
US6266203B1 (en) Integrated temperature sense circuit in a disc drive
CN1260898A (en) Temperature dependent disc device parametric configuration
US20060171059A1 (en) Window timing adjustment for spiral bursts
JP4909878B2 (en) Disk drive device and clearance adjustment method thereof
US20040100255A1 (en) Monitoring of phenomena indicative of PTP in a magnetic disk drive
KR100555502B1 (en) Method for optimizing a hard disc drive, apparatus therefor and recording media therefor
US20030210488A1 (en) Apparatus for look-ahead thermal sensing in a data storage device
US6304406B1 (en) Rotational vibration compensation using a fixed head and a constant frequency pattern
US6956707B2 (en) Method for look-ahead thermal sensing in a data storage device
US6898034B2 (en) Fly height measurement for a disc drive
US7773336B2 (en) Harmonic measurement for head-disk spacing control using user data
US20050174672A1 (en) Compensation for jitter in servo signal within data storage device
KR20020007300A (en) Variable gain amplifier with temperature compensation for use in a disk drive system
US6285522B1 (en) Rotational vibration compensation using a dedicated surface with a constant frequency pattern
US6757120B2 (en) Dynamic method and apparatus for controlling head fly characteristics in a disk drive
US6445520B1 (en) Method for detecting mechanical damage in a parking zone of a hard disk drive
US20080291564A1 (en) Detecting head-disk contact during off-track operations
US20020135915A1 (en) Method and apparatus for generating the optimum read timing for read and write offset of a magneto resistive head
US7317590B2 (en) Fly on demand in situ clearance measurement concept in hard disk drive
EP1585126A2 (en) Data read retry with read timing adjustment for eccentricity of a disc in a data storage device
US6489762B2 (en) Method to detect junction induced signal instability from GMR/MR heads

Legal Events

Date Code Title Description
AS Assignment

Owner name: SAMSUNG ELECTRONICS COMPANY, KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LEE, KANGSEOK;KWON, HAESUNG;YANG, WONCHOUL;REEL/FRAME:011348/0942;SIGNING DATES FROM 20001025 TO 20001129

FPAY Fee payment

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 8

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20140903