US20020062945A1 - Wall part acted upon by an impingement flow - Google Patents

Wall part acted upon by an impingement flow Download PDF

Info

Publication number
US20020062945A1
US20020062945A1 US10/002,633 US263301A US2002062945A1 US 20020062945 A1 US20020062945 A1 US 20020062945A1 US 263301 A US263301 A US 263301A US 2002062945 A1 US2002062945 A1 US 2002062945A1
Authority
US
United States
Prior art keywords
impingement
wall part
troughs
flow
trough
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/002,633
Inventor
Rainer Hocker
Josef Hausladen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/002,633 priority Critical patent/US20020062945A1/en
Publication of US20020062945A1 publication Critical patent/US20020062945A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • F01D5/188Convection cooling with an insert in the blade cavity to guide the cooling fluid, e.g. forming a separation wall
    • F01D5/189Convection cooling with an insert in the blade cavity to guide the cooling fluid, e.g. forming a separation wall the insert having a tubular cross-section, e.g. airfoil shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/201Heat transfer, e.g. cooling by impingement of a fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/221Improvement of heat transfer
    • F05D2260/2212Improvement of heat transfer by creating turbulence
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the invention relates to an impingement flow for wall parts according to the preamble of patent claim 1.
  • the highest heat transmission coefficients can be achieved with impingement cooling and impingement heating respectively.
  • the impingement flow is realized by virtue of the fact that a cooling or heating fluid (e.g. air, water, steam, hydrogen, liquid sodium, etc) flows through one or more orifices in a wall and strikes an opposite surface more or less perpendicularly.
  • a cooling or heating fluid e.g. air, water, steam, hydrogen, liquid sodium, etc
  • DE-A1 44 30 302 discloses impingement cooling of the type mentioned at the beginning.
  • the method shown in said document is distinguished by a plurality of impingement tubes which are arranged areally with their inlet on a plane or curved carrier and are directed with their mouth toward the wall part to be cooled, the carrier being arranged at a distance from the wall part.
  • the impingement area of the wall part to be cooled is designed as a relief, in which case the jets directly strike projecting humps.
  • the inhomogeneous heat transmission in the impingement jets is to be compensated for and a homogeneous temperature distribution on the hot side of the wall part is to be achieved.
  • the humps are designed essentially as cylinders having rounded-off edges, which are brought about during manufacture.
  • the relief is present in the form of ribs.
  • Both geometrical forms have no advantageous thermal boundary conditions in relation to the heat transmission.
  • the heat which can be dissipated via the surface of an element projecting from the wall to be cooled, must first of all be directed through the base area and the material to the surface. As a result, a thermal stratification occurs in the material of the element. Depending on material and geometrical form, this thermal stratification may result in the temperature difference between fluid and element becoming so small at the points furthest away from the base of the element that virtually no more heat transmission takes place.
  • one object of the invention is to provide a novel impingement arrangement in which the roughness elements are optimized with regard to the manufacturing process and the thermal efficiency.
  • both the geometrical form and its size and arragement relative to the free jets are to be taken into account for this purpose.
  • the webs between the troughs may be provided with spacers to the jet-producing plate or, depending on the design of this plate, may even be used directly as spacers if the plate rests on the webs.
  • FIG. 1 shows a longitudinal section through an impingement-flow arrangement
  • FIGS. 2 a - c show various geometrical forms of troughs
  • FIG. 3 shows a quadruple arrangement of troughs
  • FIG. 4 shows a nested sextuple arrangement of troughs
  • FIG. 5 shows a variant of the quadruple arrangement according to FIG. 3;
  • FIG. 6 shows a variant of the sextuple arrangement according to FIG. 4;
  • FIG. 7 shows an impingement-cooled gas-turbine blade
  • FIG. 8 shows an exemplary embodiment with impingement tubes instead of impingement orifices
  • FIG. 9 shows an exemplary embodiment with structured carrier.
  • impingement cooling As can be used, for example, for cooling hot turbomachine components around which a flow occurs, such as gas-turbine blades or combustion-chamber walls.
  • the wall part to be cooled, for example, by means of cooling air 5 is designated by 3 in FIG. 1.
  • This wall 3 is a plane wall around which a hot medium, designated by the arrows 6 , flows on the outside.
  • the cooling-air-side carrier 1 is also of corresponding plane design. In the case shown, it is fastened to the wall 3 at a uniform distance 20 by suitable means (not shown).
  • the carrier has a plurality of impingement orifices 2 and may be conceived as a simple perforated plate.
  • the wall 3 to be cooled is provided with a number of troughs 4 arranged next to one another.
  • these troughs are in the form of spherical cups.
  • the distance between the troughs is selected in such a way that a narrow web 7 is obtained between the adjacent trough walls.
  • the wall part to be cooled is preferably cast in one piece together with the troughs. Irrespective of the manufacturing process, a structure of high strength is obtained.
  • An impingement jet is provided for each trough, this impingement jet, which discharges from the impingement orifice 2 , normally striking the trough base at least approximately perpendicularly. When it strikes, the impingement jet is deflected onto the remaining impingement area, i.e. the walls of the trough.
  • the cooling medium which is heated when flowing around the spherical cup, then flows off into the free space between carrier and wall part, the cross flow which occurs also helping to cool the webs 7 .
  • FIG. 2 Various further possible geometrical forms of troughs are explained in FIG. 2. Since the elements are of symmetrical construction, only one trough half is shown in each case.
  • FIG. 2 a shows an ellipse shape. As in the case of the spherical cup, this shape is also generated by rotation of the corresponding segment about the axis U.
  • FIG. 2 b shows a shape which is approximated to a shortened cycloid and has been generated by rotation of the corresponding segment about an axis U offset in parallel from the impingement-jet axis. It goes without saying that, in the case of this shape, the impingement jet must strike the inflection point exactly for full effectiveness.
  • FIG. 2 c shows a trapezoidal trough which has a plane base and whose walls may be made straight or curved (as shown).
  • a honeycombed structure is obtained in combination, to the individual elements of which a free jet is assigned in each case.
  • the latter is positioned in such a way that its core, under the given boundary conditions—inter alia the cross flow of the outflowing cooling medium of adjacent elements—produces a stagnation point in the lower base region of the troughs.
  • the axial position of the free jet can deviate from the rotation axis of the solid of rotation.
  • the geometry to be selected in each case is to influence the heat flow in such a way that the surface temperature decreases only marginally with increasing distance from the base and thus a virtually constant heat flow can flow through the entire surface.
  • the impingement orifices 2 and the troughs 4 may either be arranged in a row according to FIG. 3 or they may staggered relative to one another, for example by half a spacing according to FIG. 4. This results in arrangements which are either square or hexagonal, as the broken lines in FIGS. 3 and 4 respectively show.
  • the troughs 4 are preferably arranged at the intersections of these broken lines. As FIG. 3 shows, in the arrangement in a row, troughs which are directly adjacent are arranged without intermediate spaces, i.e. without webs. Nonetheless, relatively large webs 7 are formed in this embodiment in the center of in each case four troughs. Spacers to the carrier may be provided on these webs, in which case these spacers may also be cast integrally with the wall 3 .
  • FIG. 5 corresponds in its geometry to that of FIG. 3.
  • the size of and the mutual distance between the impingement orifices 2 are selected to be the same.
  • the diameter D of the troughs has been increased, which leads to the intersecting of adjacent troughs and to smaller webs 7 .
  • This solution can have production-related advantages and, depending on the choice of diameter, can lead to shallower troughs.
  • FIG. 6 corresponds in its geometry to that of FIG. 4.
  • the size of and the mutual distance between the impingement orifices 2 are again selected to be the same.
  • the diameter D of the troughs has been increased, which leads to the intersecting of adjacent troughs and to extremely small webs. It will be seen here that, from a certain trough diameter, no more webs at all are formed.
  • a gas-turbine blade 16 is shown as an example of a component to be cooled.
  • the carriers with the impingement orifices 2 are conceived as more or less tubular inserts 17 A, 17 B and 17 C and are arranged in the hollow interior of the blade.
  • These inserts as well as the blade wall provided with the troughs 4 may be designed as a casting. They may likewise be designed as a pressure-bearing structure for internal pressures, which may be up to twice the pressure prevailing in the actual impingement zone.
  • the inflow of the cooling medium into the inserts takes place as a rule from the blade root toward the blade tip.
  • the impingement orifices 2 and the troughs 4 are staggered over the blade height and the blade circumference at the requisite distance apart. Flow may occur through the inserts 17 A-C individually or in series.
  • the gaseous or vaporous cooling medium may be circulated in closed circuit in the plurality of inserts, i.e. it is drawn off again via the blade root after cooling has been carried out.
  • the cooling medium flowing off from the cooled wall parts may discharge from the blade into the flow duct. This preferably takes place at that point of the blade at which the lowest external pressure prevails. As a rule, therefore, the cooling medium will be made to discharge at the trailing edge 18 of the blade.
  • FIG. 8 shows an exemplary embodiment in which the carrier is likewise sheetlike and is provided with a multiplicity of impingement tubes 21 , which are equidistant here and are arranged in rows.
  • Their inlet 22 corresponds to an impingement orifice and is flush with the carrier surface.
  • the impingement tubes have a conical internal passage narrowing constantly in the direction of flow. The narrowest cross section of the impingement tubes thus lies at the mouth 23 .
  • the impingement tubes are directed with their mouth 23 perpendicularly toward the wall part to be cooled. The mouth is located at the impingement distance 25 from the wall. In the example, the ratio of this impingement distance to the narrowest diameter of the impingement tubes is about 1.
  • the troughs have hitherto always been considered to be rotationally symmetrical bodies which have been generated by rotation of the corresponding section through 360°.
  • the corresponding section is not rotated about an axis U but is displaced along a preferably straight axis U. In this way, longitudinal channels having a circular, elliptical or trapezoidal shape are obtained at the area to be cooled. In this configuration, the stabilizing effect of the surface-enlarging structure occurs in a defined direction.
  • the impingement jets are likewise to strike the base of the channel.
  • a certain number of impingement jets in the longitudinal extent of the channel will be provided here, in which case, according to the requisite cooling capacity, attention is to be paid to the impingement-jet spacing to be selected.
  • a defective arrangement, for example related to production, of the impingement jets has only a marginal effect on the effectiveness of the entire system.
  • the carrier 1 is a plane perforated plate. According to FIG. 9, however, a perforated plate having spherical-cup-like depressions 26 may also be used.
  • the depressions in each case contain the impingement orifices 2 , and it can be seen that this solution provides a simple means of influencing the impingement distance 25 .
  • the troughs being designed in a channel shape, it is advisable to also configure the depressions 26 as channels.
  • the latter need not necessarily run in the same direction as the troughs. They may run at any angle between 0° and 90° to the trough direction or to the direction of the cooling flow 5 .
  • the intermediate spaces 27 present between the depressions may thereby be utilized for the specific discharge of the cooling medium.
  • the different direction offers the possibility of supporting the channel-shaped depression 26 directly on the webs 7 of the trough (not shown).
  • the invention is of course not restricted to the examples shown and described. It goes without saying that, depending on requirements, the number and spacing of the impingement orifices 2 or impingement tubes 21 as well as the length and shape of the latter can be optimized from case to case.
  • the invention also sets no limits to the selection of the cooling medium, to its pressure and to its further use after the cooling activity.
  • the person skilled in the art will recognize that the invention can be used not only for the purpose of cooling wall parts of machines, apparatus or plants in general but can just as easily be used for heating them. Examples for such a use of the heating of surface areas are the drying of paper, the melting and bonding of plastics, the deicing of aircraft wings, etc.

Abstract

An impingement flow for wall parts (3) is distinguished by a plurality of impingement orifices (2) which are arranged areally in a plane or curved carrier (1), the carrier being arranged at a distance from the wall part, and the impingement surface, to be cooled, of the wall part (3) being designed as a relief. That side of the wall part (3) which faces the impingement jet is provided with a number of troughs (4) arranged next to one another, at least one impingement jet per trough (4) being provided. That side of the wall part (3) which is remote from the impingement jet is of at least roughly plane design. The troughs (4) have the shape of a circle segment or of a base area related thereto.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0001]
  • The invention relates to an impingement flow for wall parts according to the preamble of patent claim 1. [0002]
  • Among the convective cooling and heating methods, the highest heat transmission coefficients can be achieved with impingement cooling and impingement heating respectively. The impingement flow is realized by virtue of the fact that a cooling or heating fluid (e.g. air, water, steam, hydrogen, liquid sodium, etc) flows through one or more orifices in a wall and strikes an opposite surface more or less perpendicularly. When striking the impingement area, the free jets are deflected and a flow forms parallel to the impingement area, as a result of which high heat transmission is achieved between flow and wall. To enlarge the heat-transmitting area, it is known to provide this area with roughness elements, mostly in the form of ribs. [0003]
  • 2. Discussion of Background [0004]
  • DE-A1 44 30 302 discloses impingement cooling of the type mentioned at the beginning. The method shown in said document is distinguished by a plurality of impingement tubes which are arranged areally with their inlet on a plane or curved carrier and are directed with their mouth toward the wall part to be cooled, the carrier being arranged at a distance from the wall part. In one exemplary embodiment (FIG. 3), the impingement area of the wall part to be cooled is designed as a relief, in which case the jets directly strike projecting humps. Thus, the inhomogeneous heat transmission in the impingement jets is to be compensated for and a homogeneous temperature distribution on the hot side of the wall part is to be achieved. In this arrangement, the humps are designed essentially as cylinders having rounded-off edges, which are brought about during manufacture. In a further exemplary embodiment (FIG. 4), the relief is present in the form of ribs. Both geometrical forms have no advantageous thermal boundary conditions in relation to the heat transmission. The heat, which can be dissipated via the surface of an element projecting from the wall to be cooled, must first of all be directed through the base area and the material to the surface. As a result, a thermal stratification occurs in the material of the element. Depending on material and geometrical form, this thermal stratification may result in the temperature difference between fluid and element becoming so small at the points furthest away from the base of the element that virtually no more heat transmission takes place. [0005]
  • Furthermore, extensive investigations relating to local heat transmission coefficients of individual impingement jets and zones of impingement jets on plane surfaces as well as on surfaces having simple curvature are known. [0006]
  • SUMMARY OF THE INVENTION
  • Accordingly, one object of the invention is to provide a novel impingement arrangement in which the roughness elements are optimized with regard to the manufacturing process and the thermal efficiency. Based on the above-mentioned known relief structures, both the geometrical form and its size and arragement relative to the free jets are to be taken into account for this purpose. [0007]
  • According to the invention, this is achieved in an impingement arrangement of the type mentioned at the beginning by the defining features of patent claim 1. Favorable developments of the invention follow from the subclaims. [0008]
  • In the field of turbomachines, from investigations relating to the cooling of curved blade leading edges, it is certainly known per se to design that side of the wall part which faces the impingement jet as a trough, an impingement jet striking the trough base perpendicularly. However, these known wall parts have a uniform wall thickness, so that ultimately the same principle is involved as the impingement cooling of a wall having plane surfaces on both sides. [0009]
  • The advantages of the novel measure may be seen, inter alia, in the fact that, as a result of the virtually isothermal surface, a high pin effectiveness is achieved and that there is also a high heat transmission at the areas which are not directed parallel to the wall to be acted upon by the impingement jets. In addition, simple and inexpensive production can be expected on account of the lack of sharp edges and small radii. The geometrical form is easy to produce and thus can readily be cast; it is tolerant of defects and permits large dimensional tolerances. As a result of the symmetry of the troughs, their arrangement does not depend on the incident flow by the deflected impingement medium. Finally, the novel troughs also result in low pressure losses. [0010]
  • In addition, the webs between the troughs may be provided with spacers to the jet-producing plate or, depending on the design of this plate, may even be used directly as spacers if the plate rests on the webs. [0011]
  • Finally, in addition to optimization of the thermal properties, the mechanical properties of the wall to be cooled are also improved by the novel measure.[0012]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • A more complete appreciation of the invention and many of the attendant advantages thereof will be readily obtained as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings, wherein: [0013]
  • FIG. 1 shows a longitudinal section through an impingement-flow arrangement; [0014]
  • FIGS. 2[0015] a-c show various geometrical forms of troughs;
  • FIG. 3 shows a quadruple arrangement of troughs; [0016]
  • FIG. 4 shows a nested sextuple arrangement of troughs; [0017]
  • FIG. 5 shows a variant of the quadruple arrangement according to FIG. 3; [0018]
  • FIG. 6 shows a variant of the sextuple arrangement according to FIG. 4; [0019]
  • FIG. 7 shows an impingement-cooled gas-turbine blade; [0020]
  • FIG. 8 shows an exemplary embodiment with impingement tubes instead of impingement orifices; [0021]
  • FIG. 9 shows an exemplary embodiment with structured carrier.[0022]
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Referring now to the drawings, wherein like reference numerals designate identical or corresponding parts throughout the several views, only the elements essential for the understanding of the invention are shown, and the direction of flow of the media is designated by arrows, the impingement flow is designated below as impingement cooling, as can be used, for example, for cooling hot turbomachine components around which a flow occurs, such as gas-turbine blades or combustion-chamber walls. [0023]
  • The wall part to be cooled, for example, by means of cooling [0024] air 5 is designated by 3 in FIG. 1. This wall 3 is a plane wall around which a hot medium, designated by the arrows 6, flows on the outside. The cooling-air-side carrier 1 is also of corresponding plane design. In the case shown, it is fastened to the wall 3 at a uniform distance 20 by suitable means (not shown). The carrier has a plurality of impingement orifices 2 and may be conceived as a simple perforated plate.
  • On the inside, the [0025] wall 3 to be cooled is provided with a number of troughs 4 arranged next to one another. In the example, these troughs are in the form of spherical cups. The distance between the troughs is selected in such a way that a narrow web 7 is obtained between the adjacent trough walls. Compared with a plane design, the spherical-cup-shaped configuration of the wall to be cooled results in a considerable increase in the heat-transmitting area and thus in the heat flow.
  • In the example, that side of the [0026] wall part 3 which is remote from the impingement jet is of plane design. It goes without saying that this side remote from the impingement jet may just as easily be provided with a curvature, although the radius of curvature should then be very much larger than that of the spherical cup.
  • The wall part to be cooled is preferably cast in one piece together with the troughs. Irrespective of the manufacturing process, a structure of high strength is obtained. The structured area acted upon by the impingement jets—in relation to the basic thickness a of the [0027] wall 3—contributes considerably to the rigity of the entire system. On the one hand, this may lead to an advantageous reduction in the basic wall thickness a, if as low a mass of the system as possible is required. Or else, on the other hand, the fluid temperature on the hot side may be increased accordingly while maintaining the basic thickness a and a constant mechanical stress. Finally, while the basic thickness a and the temperature of the hot fluid are maintained, prolongation of the durability of the system can be expected due to the novel measure.
  • An impingement jet is provided for each trough, this impingement jet, which discharges from the [0028] impingement orifice 2, normally striking the trough base at least approximately perpendicularly. When it strikes, the impingement jet is deflected onto the remaining impingement area, i.e. the walls of the trough. The cooling medium, which is heated when flowing around the spherical cup, then flows off into the free space between carrier and wall part, the cross flow which occurs also helping to cool the webs 7.
  • Various further possible geometrical forms of troughs are explained in FIG. 2. Since the elements are of symmetrical construction, only one trough half is shown in each case. [0029]
  • Instead of the spherical cup according to FIG. 1, for the generation of which a circle is rotated about its diameter, FIG. 2[0030] a shows an ellipse shape. As in the case of the spherical cup, this shape is also generated by rotation of the corresponding segment about the axis U.
  • FIG. 2[0031] b shows a shape which is approximated to a shortened cycloid and has been generated by rotation of the corresponding segment about an axis U offset in parallel from the impingement-jet axis. It goes without saying that, in the case of this shape, the impingement jet must strike the inflection point exactly for full effectiveness.
  • Finally, FIG. 2[0032] c shows a trapezoidal trough which has a plane base and whose walls may be made straight or curved (as shown).
  • Irrespective of the trough geometry selected, a honeycombed structure is obtained in combination, to the individual elements of which a free jet is assigned in each case. The latter is positioned in such a way that its core, under the given boundary conditions—inter alia the cross flow of the outflowing cooling medium of adjacent elements—produces a stagnation point in the lower base region of the troughs. In this case, the axial position of the free jet can deviate from the rotation axis of the solid of rotation. [0033]
  • The geometry to be selected in each case is to influence the heat flow in such a way that the surface temperature decreases only marginally with increasing distance from the base and thus a virtually constant heat flow can flow through the entire surface. [0034]
  • Since an adequate temperature difference is ensured everywhere as a result of this geometry, the entire surface can transmit heat. In addition, the heat transmission coefficient on the surface is roughly equal to that which would prevail on the base area without the trough. This in turn is in contrast to the known elements having areas running perpendicularly to the wall, in which elements a considerably reduced heat transmission coefficient is to be expected. [0035]
  • On account of the novel geometry of the troughs, a plurality of different arrangements are now possible and are to be selected with a view to the desired heat transmission and/or the tolerable pressure losses. [0036]
  • In relation to the cross flow in the region of the base, two arrangements can be differentiated in principle. [0037]
  • The [0038] impingement orifices 2 and the troughs 4, in combination, may either be arranged in a row according to FIG. 3 or they may staggered relative to one another, for example by half a spacing according to FIG. 4. This results in arrangements which are either square or hexagonal, as the broken lines in FIGS. 3 and 4 respectively show.
  • The [0039] troughs 4 are preferably arranged at the intersections of these broken lines. As FIG. 3 shows, in the arrangement in a row, troughs which are directly adjacent are arranged without intermediate spaces, i.e. without webs. Nonetheless, relatively large webs 7 are formed in this embodiment in the center of in each case four troughs. Spacers to the carrier may be provided on these webs, in which case these spacers may also be cast integrally with the wall 3.
  • In the staggered arrangement according to FIG. 4, six symmetrical elements are nested one inside the other with a juxtaposed sextuple arrangement. Here, it can be seen that, given the same trough size, the surface is enlarged compared with the arrangement according to FIG. 3 in so far as the webs, now formed between three troughs each, assume considerably smaller dimensions. [0040]
  • The arrangement according to FIG. 5 corresponds in its geometry to that of FIG. 3. The size of and the mutual distance between the [0041] impingement orifices 2 are selected to be the same. On the other hand, the diameter D of the troughs has been increased, which leads to the intersecting of adjacent troughs and to smaller webs 7. This solution can have production-related advantages and, depending on the choice of diameter, can lead to shallower troughs.
  • The arrangement according to FIG. 6 corresponds in its geometry to that of FIG. 4. The size of and the mutual distance between the [0042] impingement orifices 2 are again selected to be the same. On the other hand, the diameter D of the troughs has been increased, which leads to the intersecting of adjacent troughs and to extremely small webs. It will be seen here that, from a certain trough diameter, no more webs at all are formed.
  • In FIG. 7, a gas-[0043] turbine blade 16 is shown as an example of a component to be cooled. The carriers with the impingement orifices 2 are conceived as more or less tubular inserts 17A, 17B and 17C and are arranged in the hollow interior of the blade. These inserts as well as the blade wall provided with the troughs 4 may be designed as a casting. They may likewise be designed as a pressure-bearing structure for internal pressures, which may be up to twice the pressure prevailing in the actual impingement zone.
  • In the case of a guide blade, the inflow of the cooling medium into the inserts takes place as a rule from the blade root toward the blade tip. The [0044] impingement orifices 2 and the troughs 4 are staggered over the blade height and the blade circumference at the requisite distance apart. Flow may occur through the inserts 17A-C individually or in series.
  • The gaseous or vaporous cooling medium may be circulated in closed circuit in the plurality of inserts, i.e. it is drawn off again via the blade root after cooling has been carried out. However, the cooling medium flowing off from the cooled wall parts may discharge from the blade into the flow duct. This preferably takes place at that point of the blade at which the lowest external pressure prevails. As a rule, therefore, the cooling medium will be made to discharge at the trailing [0045] edge 18 of the blade.
  • FIG. 8 shows an exemplary embodiment in which the carrier is likewise sheetlike and is provided with a multiplicity of [0046] impingement tubes 21, which are equidistant here and are arranged in rows. Their inlet 22 corresponds to an impingement orifice and is flush with the carrier surface. The impingement tubes have a conical internal passage narrowing constantly in the direction of flow. The narrowest cross section of the impingement tubes thus lies at the mouth 23. The impingement tubes are directed with their mouth 23 perpendicularly toward the wall part to be cooled. The mouth is located at the impingement distance 25 from the wall. In the example, the ratio of this impingement distance to the narrowest diameter of the impingement tubes is about 1. It can be seen that the cooling air, deflected after the impingement, can flow off into the free intermediate spaces 27 between the impingement tubes without disturbing adjacent impingement jets in the process. The closed dimension of the intermediate space is given by the length of the impingement tubes when the latter are oriented perpendicularly. In contrast to the cooling-air jets which are produced via a perforated plate, this solution offers the advantage that the ratio of jet distance to jet diameter may be formed freely, and this ratio may quite easily extend over a range of 0.1 to 4.
  • The troughs have hitherto always been considered to be rotationally symmetrical bodies which have been generated by rotation of the corresponding section through 360°. In contrast, it is of course also possible to design the troughs in a channel shape, although the surface enlargement turns out to be somewhat smaller than with rotationally symmetrical troughs. To produce a channel, the corresponding section is not rotated about an axis U but is displaced along a preferably straight axis U. In this way, longitudinal channels having a circular, elliptical or trapezoidal shape are obtained at the area to be cooled. In this configuration, the stabilizing effect of the surface-enlarging structure occurs in a defined direction. In this solution, the impingement jets are likewise to strike the base of the channel. A certain number of impingement jets in the longitudinal extent of the channel will be provided here, in which case, according to the requisite cooling capacity, attention is to be paid to the impingement-jet spacing to be selected. In this case, it has been found that a defective arrangement, for example related to production, of the impingement jets has only a marginal effect on the effectiveness of the entire system. [0047]
  • As already mentioned above, the simplest case for the carrier [0048] 1 is a plane perforated plate. According to FIG. 9, however, a perforated plate having spherical-cup-like depressions 26 may also be used. The depressions in each case contain the impingement orifices 2, and it can be seen that this solution provides a simple means of influencing the impingement distance 25. In the event of the troughs being designed in a channel shape, it is advisable to also configure the depressions 26 as channels. The latter need not necessarily run in the same direction as the troughs. They may run at any angle between 0° and 90° to the trough direction or to the direction of the cooling flow 5. The intermediate spaces 27 present between the depressions may thereby be utilized for the specific discharge of the cooling medium. In addition, the different direction offers the possibility of supporting the channel-shaped depression 26 directly on the webs 7 of the trough (not shown).
  • The invention is of course not restricted to the examples shown and described. It goes without saying that, depending on requirements, the number and spacing of the [0049] impingement orifices 2 or impingement tubes 21 as well as the length and shape of the latter can be optimized from case to case. The invention also sets no limits to the selection of the cooling medium, to its pressure and to its further use after the cooling activity.
  • Finally, the person skilled in the art will recognize that the invention can be used not only for the purpose of cooling wall parts of machines, apparatus or plants in general but can just as easily be used for heating them. Examples for such a use of the heating of surface areas are the drying of paper, the melting and bonding of plastics, the deicing of aircraft wings, etc. [0050]
  • Obviously, numerous modifications and variations of the present invention are possible in light of the above teachings. It is therefore to be understood that, within the scope of the appended claims, the invention may be practiced otherwise than as specifically described herein. [0051]

Claims (6)

What is claimed as new and desired to be secured by Letters Patent of the United States is:
1. An impingement flow for a wall part (3), in which a plurality of impingement orifices (2) are arranged areally in a plane or curved carrier (1), the carrier being arranged at a distance from the wall part, and the impingement area, to be cooled or heated, of the wall part (3) being designed as a relief, wherein
that side of the wall part (3) which faces the impingement jet is provided with a number of troughs (4) arranged next to one another, at least one impingement jet per trough (4) being provided, which impingement jet strikes the trough base at least approximately perpendicularly, and
that side of the wall part (3) which is remote from the impingement jet is of at least roughly plane design.
2. The impingement flow as claimed in claim 1, wherein the trough (4) has the shape of a circle segment or of a base area related thereto.
3. The impingement flow as claimed in claim 2, wherein the trough is of rotationally symmetrical or longitudially extended design.
4. The impingement flow as claimed in claim 1, wherein the wall part (3) is connected indirectly or directly to the carrier (1) via webs (7) formed between the troughs (4).
5. The impingement flow as claimed in claim 1, wherein the wall part (3) to be cooled or heated is made together with the troughs (4) as a casting.
6. The impingement flow as claimed in claim 1, wherein the impingement orifices (2) form the inlet (2) of impingement tubes (21), the mouth (23) of which is directed toward the wall part (3) to be cooled or heated.
US10/002,633 1997-09-30 2001-12-05 Wall part acted upon by an impingement flow Abandoned US20020062945A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/002,633 US20020062945A1 (en) 1997-09-30 2001-12-05 Wall part acted upon by an impingement flow

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP97810718.3 1997-09-30
EP97810718A EP0905353B1 (en) 1997-09-30 1997-09-30 Impingement arrangement for a convective cooling or heating process
US15676098A 1998-09-18 1998-09-18
US10/002,633 US20020062945A1 (en) 1997-09-30 2001-12-05 Wall part acted upon by an impingement flow

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US15676098A Continuation 1997-09-30 1998-09-18

Publications (1)

Publication Number Publication Date
US20020062945A1 true US20020062945A1 (en) 2002-05-30

Family

ID=8230407

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/002,633 Abandoned US20020062945A1 (en) 1997-09-30 2001-12-05 Wall part acted upon by an impingement flow

Country Status (4)

Country Link
US (1) US20020062945A1 (en)
EP (1) EP0905353B1 (en)
JP (1) JPH11159301A (en)
DE (1) DE59709158D1 (en)

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020061045A1 (en) * 2000-11-21 2002-05-23 Access Laser Company Portable low-power gas discharge laser
US20030049125A1 (en) * 2000-03-22 2003-03-13 Hans-Thomas Bolms Reinforcement and cooling structure of a turbine blade
US20080037221A1 (en) * 2006-08-07 2008-02-14 International Business Machines Corporation Jet orifice plate with projecting jet orifice structures for direct impingement cooling apparatus
EP2143883A1 (en) * 2008-07-10 2010-01-13 Siemens Aktiengesellschaft Turbine blade and corresponding casting core
US20100103614A1 (en) * 2008-10-23 2010-04-29 International Business Machines Corporation Apparatus and method for immersion-cooling of an electronic system utilizing coolant jet impingement and coolant wash flow
US20100103620A1 (en) * 2008-10-23 2010-04-29 International Business Machines Corporation Open Flow Cold Plate For Liquid Cooled Electronic Packages
US20100103618A1 (en) * 2008-10-23 2010-04-29 International Business Machines Corporation Apparatus and method for facilitating pumped immersion-cooling of an electronic subsystem
CH700319A1 (en) * 2009-01-30 2010-07-30 Alstom Technology Ltd Chilled component for a gas turbine.
US20100328890A1 (en) * 2009-06-25 2010-12-30 International Business Machines Corporation Condenser structures with fin cavities facilitating vapor condensation cooling of coolant
US20100328889A1 (en) * 2009-06-25 2010-12-30 International Business Machines Corporation Cooled electronic module with pump-enhanced, dielectric fluid immersion-cooling
US20100328891A1 (en) * 2009-06-25 2010-12-30 International Business Machines Corporation Condenser block structures with cavities facilitating vapor condensation cooling of coolant
US20100326628A1 (en) * 2009-06-25 2010-12-30 International Business Machines Corporation Condenser fin structures facilitating vapor condensation cooling of coolant
US20100328882A1 (en) * 2009-06-25 2010-12-30 International Business Machines Corporation Direct jet impingement-assisted thermosyphon cooling apparatus and method
US7944694B2 (en) 2008-10-23 2011-05-17 International Business Machines Corporation Liquid cooling apparatus and method for cooling blades of an electronic system chassis
US7961475B2 (en) 2008-10-23 2011-06-14 International Business Machines Corporation Apparatus and method for facilitating immersion-cooling of an electronic subsystem
US20110216502A1 (en) * 2010-03-04 2011-09-08 Toyota Motor Engineering & Manufacturing North America, Inc. Power modules, cooling devices and methods thereof
US8179677B2 (en) 2010-06-29 2012-05-15 International Business Machines Corporation Immersion-cooling apparatus and method for an electronic subsystem of an electronics rack
US8184436B2 (en) 2010-06-29 2012-05-22 International Business Machines Corporation Liquid-cooled electronics rack with immersion-cooled electronic subsystems
US8345423B2 (en) 2010-06-29 2013-01-01 International Business Machines Corporation Interleaved, immersion-cooling apparatuses and methods for cooling electronic subsystems
GB2492374A (en) * 2011-06-30 2013-01-02 Rolls Royce Plc Gas turbine engine impingement cooling
US8351206B2 (en) 2010-06-29 2013-01-08 International Business Machines Corporation Liquid-cooled electronics rack with immersion-cooled electronic subsystems and vertically-mounted, vapor-condensing unit
US8369091B2 (en) 2010-06-29 2013-02-05 International Business Machines Corporation Interleaved, immersion-cooling apparatus and method for an electronic subsystem of an electronics rack
US20130177396A1 (en) * 2012-01-09 2013-07-11 General Electric Company Impingement Cooling System for Use with Contoured Surfaces
US8951004B2 (en) * 2012-10-23 2015-02-10 Siemens Aktiengesellschaft Cooling arrangement for a gas turbine component
US20160365301A1 (en) * 2013-12-11 2016-12-15 Toyota Jidosha Kabushiki Kaisha Cooler
US20170175577A1 (en) * 2015-12-18 2017-06-22 General Electric Company Systems and methods for increasing heat transfer using at least one baffle in an impingement chamber of a nozzle in a turbine
US20170204734A1 (en) * 2016-01-20 2017-07-20 General Electric Company Cooled CMC Wall Contouring
US20170234146A1 (en) * 2016-02-16 2017-08-17 General Electric Company Airfoil having impingement openings
CN107449308A (en) * 2017-07-13 2017-12-08 西北工业大学 A kind of impinging cooling system with arc-shaped surface boss
US20180045057A1 (en) * 2016-08-09 2018-02-15 General Electric Company Components having outer wall recesses for impingement cooling
US20180163545A1 (en) * 2016-12-08 2018-06-14 Doosan Heavy Industries & Construction Co., Ltd Cooling structure for vane
US20180195411A1 (en) * 2015-07-06 2018-07-12 Safran Aircraft Engines Assembly for turbine
US20180328224A1 (en) * 2017-05-09 2018-11-15 General Electric Company Impingement insert
US10270220B1 (en) * 2013-03-13 2019-04-23 Science Research Laboratory, Inc. Methods and systems for heat flux heat removal
US10508808B2 (en) * 2013-06-14 2019-12-17 United Technologies Corporation Gas turbine engine wave geometry combustor liner panel
US20200011199A1 (en) * 2018-07-06 2020-01-09 Rolls-Royce Corporation Hot section dual wall component anti-blockage system
US20210131290A1 (en) * 2019-11-04 2021-05-06 United Technologies Corporation Impingement cooling with impingement cells on impinged surface
CN112780353A (en) * 2019-11-06 2021-05-11 曼恩能源方案有限公司 Device for cooling components of a gas turbine/turbomachine by means of impingement cooling
US11101194B2 (en) * 2016-12-19 2021-08-24 Agency For Science, Technology And Research Heat sinks and methods for fabricating a heat sink
CN113374546A (en) * 2021-06-27 2021-09-10 西北工业大学 Array impact structure based on circular truncated cone and cylindrical bulge
US11220916B2 (en) 2020-01-22 2022-01-11 General Electric Company Turbine rotor blade with platform with non-linear cooling passages by additive manufacture
US11242760B2 (en) 2020-01-22 2022-02-08 General Electric Company Turbine rotor blade with integral impingement sleeve by additive manufacture
US11248471B2 (en) 2020-01-22 2022-02-15 General Electric Company Turbine rotor blade with angel wing with coolant transfer passage between adjacent wheel space portions by additive manufacture
US11248790B2 (en) * 2019-04-18 2022-02-15 Rolls-Royce Corporation Impingement cooling dust pocket
US11492908B2 (en) 2020-01-22 2022-11-08 General Electric Company Turbine rotor blade root with hollow mount with lattice support structure by additive manufacture
US11624284B2 (en) * 2020-10-23 2023-04-11 Doosan Enerbility Co., Ltd. Impingement jet cooling structure with wavy channel

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6589600B1 (en) * 1999-06-30 2003-07-08 General Electric Company Turbine engine component having enhanced heat transfer characteristics and method for forming same
DE50008555D1 (en) * 1999-08-03 2004-12-09 Siemens Ag IMPACT COOLER
US6164914A (en) * 1999-08-23 2000-12-26 General Electric Company Cool tip blade
US6302185B1 (en) * 2000-01-10 2001-10-16 General Electric Company Casting having an enhanced heat transfer surface, and mold and pattern for forming same
EP1136651A1 (en) 2000-03-22 2001-09-26 Siemens Aktiengesellschaft Cooling system for an airfoil
GB2420156B (en) 2004-11-16 2007-01-24 Rolls Royce Plc A heat transfer arrangement
FR2893080B1 (en) * 2005-11-07 2012-12-28 Snecma COOLING ARRANGEMENT OF A DAWN OF A TURBINE, A TURBINE BLADE COMPRISING IT, TURBINE AND AIRCRAFT ENGINE WHICH ARE EQUIPPED
GB0601413D0 (en) * 2006-01-25 2006-03-08 Rolls Royce Plc Wall elements for gas turbine engine combustors
JP5029960B2 (en) * 2008-01-15 2012-09-19 株式会社Ihi Internal cooling structure for high temperature parts
JP5222057B2 (en) * 2008-08-08 2013-06-26 三菱重工業株式会社 Gas turbine hot section cooling system
US8348613B2 (en) 2009-03-30 2013-01-08 United Technologies Corporation Airflow influencing airfoil feature array
JP5791406B2 (en) * 2011-07-12 2015-10-07 三菱重工業株式会社 Wing body of rotating machine
JP5791405B2 (en) * 2011-07-12 2015-10-07 三菱重工業株式会社 Wing body of rotating machine
ITTO20120519A1 (en) * 2012-06-14 2013-12-15 Avio Spa GAS TURBINE FOR AERONAUTICAL MOTORS
US9528381B2 (en) * 2013-12-30 2016-12-27 General Electric Company Structural configurations and cooling circuits in turbine blades
CN106593541B (en) * 2016-11-17 2018-12-25 西北工业大学 A kind of intensifying impact heat transfer unit (HTU)
CN107503801A (en) * 2017-08-18 2017-12-22 沈阳航空航天大学 A kind of efficiently array jetting cooling structure
DE102018128102A1 (en) * 2018-11-09 2020-05-14 Lauda Dr. R. Wobser Gmbh & Co. Kg. Device for extracorporeal temperature control of patients with a separable secondary body
DE102018131426A1 (en) * 2018-12-07 2020-06-10 Lauda Dr. R. Wobser Gmbh & Co. Kg. Device and method for temperature control
CN117091161A (en) 2022-05-13 2023-11-21 通用电气公司 Combustor liner hollow plate design and construction
CN117091162A (en) 2022-05-13 2023-11-21 通用电气公司 Burner with dilution hole structure
CN117091158A (en) 2022-05-13 2023-11-21 通用电气公司 Combustor chamber mesh structure

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5016090A (en) * 1990-03-21 1991-05-14 International Business Machines Corporation Cross-hatch flow distribution and applications thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB849255A (en) * 1956-11-01 1960-09-21 Josef Cermak Method of and arrangements for cooling the walls of combustion spaces and other spaces subject to high thermal stresses
US5321951A (en) * 1992-03-30 1994-06-21 General Electric Company Integral combustor splash plate and sleeve
FR2723177B1 (en) * 1994-07-27 1996-09-06 Snecma COMBUSTION CHAMBER COMPRISING A DOUBLE WALL
DE4430302A1 (en) * 1994-08-26 1996-02-29 Abb Management Ag Impact-cooled wall part

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5016090A (en) * 1990-03-21 1991-05-14 International Business Machines Corporation Cross-hatch flow distribution and applications thereof

Cited By (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030049125A1 (en) * 2000-03-22 2003-03-13 Hans-Thomas Bolms Reinforcement and cooling structure of a turbine blade
US20020061045A1 (en) * 2000-11-21 2002-05-23 Access Laser Company Portable low-power gas discharge laser
US20080037221A1 (en) * 2006-08-07 2008-02-14 International Business Machines Corporation Jet orifice plate with projecting jet orifice structures for direct impingement cooling apparatus
US20080062639A1 (en) * 2006-08-07 2008-03-13 International Business Machines Corporation Jet orifice plate with projecting jet orifice structures for direct impingement cooling apparatus
US7362574B2 (en) * 2006-08-07 2008-04-22 International Business Machines Corporation Jet orifice plate with projecting jet orifice structures for direct impingement cooling apparatus
US7375962B2 (en) 2006-08-07 2008-05-20 International Business Machines Corporation Jet orifice plate with projecting jet orifice structures for direct impingement cooling apparatus
EP2143883A1 (en) * 2008-07-10 2010-01-13 Siemens Aktiengesellschaft Turbine blade and corresponding casting core
US20100103620A1 (en) * 2008-10-23 2010-04-29 International Business Machines Corporation Open Flow Cold Plate For Liquid Cooled Electronic Packages
US7983040B2 (en) 2008-10-23 2011-07-19 International Business Machines Corporation Apparatus and method for facilitating pumped immersion-cooling of an electronic subsystem
US20100103618A1 (en) * 2008-10-23 2010-04-29 International Business Machines Corporation Apparatus and method for facilitating pumped immersion-cooling of an electronic subsystem
US7961475B2 (en) 2008-10-23 2011-06-14 International Business Machines Corporation Apparatus and method for facilitating immersion-cooling of an electronic subsystem
US7944694B2 (en) 2008-10-23 2011-05-17 International Business Machines Corporation Liquid cooling apparatus and method for cooling blades of an electronic system chassis
US20110103019A1 (en) * 2008-10-23 2011-05-05 International Business Machines Corporation Open flow cold plate for immersion-cooled electronic packages
US8203842B2 (en) 2008-10-23 2012-06-19 International Business Machines Corporation Open flow cold plate for immersion-cooled electronic packages
US7916483B2 (en) 2008-10-23 2011-03-29 International Business Machines Corporation Open flow cold plate for liquid cooled electronic packages
US7885070B2 (en) 2008-10-23 2011-02-08 International Business Machines Corporation Apparatus and method for immersion-cooling of an electronic system utilizing coolant jet impingement and coolant wash flow
US20100103614A1 (en) * 2008-10-23 2010-04-29 International Business Machines Corporation Apparatus and method for immersion-cooling of an electronic system utilizing coolant jet impingement and coolant wash flow
CH700319A1 (en) * 2009-01-30 2010-07-30 Alstom Technology Ltd Chilled component for a gas turbine.
US20120020768A1 (en) * 2009-01-30 2012-01-26 Alstom Technology Ltd Cooled constructional element for a gas turbine
EP2384392B1 (en) 2009-01-30 2017-05-31 Ansaldo Energia IP UK Limited Cooled component for a gas turbine
US8444376B2 (en) * 2009-01-30 2013-05-21 Alstom Technology Ltd Cooled constructional element for a gas turbine
WO2010086381A1 (en) * 2009-01-30 2010-08-05 Alstom Technology Ltd. Cooled component for a gas turbine
US20100328882A1 (en) * 2009-06-25 2010-12-30 International Business Machines Corporation Direct jet impingement-assisted thermosyphon cooling apparatus and method
US7885074B2 (en) 2009-06-25 2011-02-08 International Business Machines Corporation Direct jet impingement-assisted thermosyphon cooling apparatus and method
US8014150B2 (en) 2009-06-25 2011-09-06 International Business Machines Corporation Cooled electronic module with pump-enhanced, dielectric fluid immersion-cooling
US8018720B2 (en) 2009-06-25 2011-09-13 International Business Machines Corporation Condenser structures with fin cavities facilitating vapor condensation cooling of coolant
US8059405B2 (en) 2009-06-25 2011-11-15 International Business Machines Corporation Condenser block structures with cavities facilitating vapor condensation cooling of coolant
US20100326628A1 (en) * 2009-06-25 2010-12-30 International Business Machines Corporation Condenser fin structures facilitating vapor condensation cooling of coolant
US20100328891A1 (en) * 2009-06-25 2010-12-30 International Business Machines Corporation Condenser block structures with cavities facilitating vapor condensation cooling of coolant
US9303926B2 (en) 2009-06-25 2016-04-05 International Business Machines Corporation Condenser fin structures facilitating vapor condensation cooling of coolant
US20100328889A1 (en) * 2009-06-25 2010-12-30 International Business Machines Corporation Cooled electronic module with pump-enhanced, dielectric fluid immersion-cooling
US8490679B2 (en) 2009-06-25 2013-07-23 International Business Machines Corporation Condenser fin structures facilitating vapor condensation cooling of coolant
US20100328890A1 (en) * 2009-06-25 2010-12-30 International Business Machines Corporation Condenser structures with fin cavities facilitating vapor condensation cooling of coolant
US20110216502A1 (en) * 2010-03-04 2011-09-08 Toyota Motor Engineering & Manufacturing North America, Inc. Power modules, cooling devices and methods thereof
US8305755B2 (en) * 2010-03-04 2012-11-06 Toyota Motor Engineering & Manufacturing North America, Inc. Power modules, cooling devices and methods thereof
US8351206B2 (en) 2010-06-29 2013-01-08 International Business Machines Corporation Liquid-cooled electronics rack with immersion-cooled electronic subsystems and vertically-mounted, vapor-condensing unit
US8184436B2 (en) 2010-06-29 2012-05-22 International Business Machines Corporation Liquid-cooled electronics rack with immersion-cooled electronic subsystems
US8369091B2 (en) 2010-06-29 2013-02-05 International Business Machines Corporation Interleaved, immersion-cooling apparatus and method for an electronic subsystem of an electronics rack
US8179677B2 (en) 2010-06-29 2012-05-15 International Business Machines Corporation Immersion-cooling apparatus and method for an electronic subsystem of an electronics rack
US8345423B2 (en) 2010-06-29 2013-01-01 International Business Machines Corporation Interleaved, immersion-cooling apparatuses and methods for cooling electronic subsystems
GB2492374A (en) * 2011-06-30 2013-01-02 Rolls Royce Plc Gas turbine engine impingement cooling
US9039350B2 (en) * 2012-01-09 2015-05-26 General Electric Company Impingement cooling system for use with contoured surfaces
US20130177396A1 (en) * 2012-01-09 2013-07-11 General Electric Company Impingement Cooling System for Use with Contoured Surfaces
US8951004B2 (en) * 2012-10-23 2015-02-10 Siemens Aktiengesellschaft Cooling arrangement for a gas turbine component
US10270220B1 (en) * 2013-03-13 2019-04-23 Science Research Laboratory, Inc. Methods and systems for heat flux heat removal
US10508808B2 (en) * 2013-06-14 2019-12-17 United Technologies Corporation Gas turbine engine wave geometry combustor liner panel
US20160365301A1 (en) * 2013-12-11 2016-12-15 Toyota Jidosha Kabushiki Kaisha Cooler
US10147669B2 (en) * 2013-12-11 2018-12-04 Toyota Jidosha Kabushiki Kaisha Cooler
US20180195411A1 (en) * 2015-07-06 2018-07-12 Safran Aircraft Engines Assembly for turbine
US11686215B2 (en) * 2015-07-06 2023-06-27 Safran Aircraft Engines Assembly for turbine
US20170175577A1 (en) * 2015-12-18 2017-06-22 General Electric Company Systems and methods for increasing heat transfer using at least one baffle in an impingement chamber of a nozzle in a turbine
US20170204734A1 (en) * 2016-01-20 2017-07-20 General Electric Company Cooled CMC Wall Contouring
US10408073B2 (en) * 2016-01-20 2019-09-10 General Electric Company Cooled CMC wall contouring
US10352177B2 (en) * 2016-02-16 2019-07-16 General Electric Company Airfoil having impingement openings
US20170234146A1 (en) * 2016-02-16 2017-08-17 General Electric Company Airfoil having impingement openings
US10738622B2 (en) * 2016-08-09 2020-08-11 General Electric Company Components having outer wall recesses for impingement cooling
US20180045057A1 (en) * 2016-08-09 2018-02-15 General Electric Company Components having outer wall recesses for impingement cooling
US20180163545A1 (en) * 2016-12-08 2018-06-14 Doosan Heavy Industries & Construction Co., Ltd Cooling structure for vane
US10968755B2 (en) * 2016-12-08 2021-04-06 DOOSAN Heavy Industries Construction Co., LTD Cooling structure for vane
US11101194B2 (en) * 2016-12-19 2021-08-24 Agency For Science, Technology And Research Heat sinks and methods for fabricating a heat sink
US10494948B2 (en) * 2017-05-09 2019-12-03 General Electric Company Impingement insert
US20180328224A1 (en) * 2017-05-09 2018-11-15 General Electric Company Impingement insert
CN107449308A (en) * 2017-07-13 2017-12-08 西北工业大学 A kind of impinging cooling system with arc-shaped surface boss
US10837314B2 (en) * 2018-07-06 2020-11-17 Rolls-Royce Corporation Hot section dual wall component anti-blockage system
US20200011199A1 (en) * 2018-07-06 2020-01-09 Rolls-Royce Corporation Hot section dual wall component anti-blockage system
US11248790B2 (en) * 2019-04-18 2022-02-15 Rolls-Royce Corporation Impingement cooling dust pocket
US20210131290A1 (en) * 2019-11-04 2021-05-06 United Technologies Corporation Impingement cooling with impingement cells on impinged surface
US11131199B2 (en) * 2019-11-04 2021-09-28 Raytheon Technologies Corporation Impingement cooling with impingement cells on impinged surface
CN112780353A (en) * 2019-11-06 2021-05-11 曼恩能源方案有限公司 Device for cooling components of a gas turbine/turbomachine by means of impingement cooling
US11220916B2 (en) 2020-01-22 2022-01-11 General Electric Company Turbine rotor blade with platform with non-linear cooling passages by additive manufacture
US11242760B2 (en) 2020-01-22 2022-02-08 General Electric Company Turbine rotor blade with integral impingement sleeve by additive manufacture
US11248471B2 (en) 2020-01-22 2022-02-15 General Electric Company Turbine rotor blade with angel wing with coolant transfer passage between adjacent wheel space portions by additive manufacture
US11492908B2 (en) 2020-01-22 2022-11-08 General Electric Company Turbine rotor blade root with hollow mount with lattice support structure by additive manufacture
US11624284B2 (en) * 2020-10-23 2023-04-11 Doosan Enerbility Co., Ltd. Impingement jet cooling structure with wavy channel
CN113374546A (en) * 2021-06-27 2021-09-10 西北工业大学 Array impact structure based on circular truncated cone and cylindrical bulge

Also Published As

Publication number Publication date
DE59709158D1 (en) 2003-02-20
EP0905353A1 (en) 1999-03-31
EP0905353B1 (en) 2003-01-15
JPH11159301A (en) 1999-06-15

Similar Documents

Publication Publication Date Title
US20020062945A1 (en) Wall part acted upon by an impingement flow
US6439846B1 (en) Turbine blade wall section cooled by an impact flow
EP2616641B1 (en) Turbine component cooling channel mesh with intersection chambers
US10655474B2 (en) Turbo-engine component having outer wall discharge openings
US9133717B2 (en) Cooling structure of turbine airfoil
EP1503144B1 (en) Combustor heat shield panel
US20020005274A1 (en) Arrangement for cooling a flow-passage wall surrounding a flow passage, having at least one rib element
US8024933B2 (en) Wall elements for gas turbine engine combustors
US9347324B2 (en) Turbine airfoil vane with an impingement insert having a plurality of impingement nozzles
EP2317270B1 (en) Combustor with heat exchange bulkhead
US8794961B2 (en) Cooling arrangement for a combustion chamber
EP2886797B1 (en) A hollow cooled gas turbine rotor blade or guide vane, wherein the cooling cavities comprise pins interconnected with ribs
US10364684B2 (en) Fastback vorticor pin
US20180179905A1 (en) Component having impingement cooled pockets formed by raised ribs and a cover sheet diffusion bonded to the raised ribs
US11852335B2 (en) Swirl stabilized high capacity duct burner
CN113374536A (en) Gas turbine guide vane
CN111485957B (en) Turbine guide cooling blade
CN108386234A (en) It is a kind of to arrange the combustion engine blade interior cooling structure that fin is basic cooling unit with column
US20220042417A1 (en) Cooling passage configuration
CN115419469A (en) Double-wall blade cooling structure, blade, aircraft engine and gas turbine
CN116241335A (en) Aeroengine hot end part cooling structure with internal thread cylindrical air film holes
CN115126548A (en) Turbine blade with airflow channel turbulent flow structure and gas turbine
CA2891867C (en) Fastback vorticor pin
CN114776484A (en) Device for strengthening impact heat exchange and weakening transverse flow and application

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION