US20020022822A1 - Sheath-mounted arterial plug delivery device - Google Patents

Sheath-mounted arterial plug delivery device Download PDF

Info

Publication number
US20020022822A1
US20020022822A1 US09/904,445 US90444501A US2002022822A1 US 20020022822 A1 US20020022822 A1 US 20020022822A1 US 90444501 A US90444501 A US 90444501A US 2002022822 A1 US2002022822 A1 US 2002022822A1
Authority
US
United States
Prior art keywords
delivery cannula
vessel closure
puncture
closure system
proximal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09/904,445
Inventor
Andrew Cragg
Mark Ashby
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sub Q Inc
Original Assignee
Sub Q Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sub Q Inc filed Critical Sub Q Inc
Priority to US09/904,445 priority Critical patent/US20020022822A1/en
Assigned to SUB-Q, INC. reassignment SUB-Q, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ASHBY, MARK, CRAGG, ANDREW H.
Publication of US20020022822A1 publication Critical patent/US20020022822A1/en
Priority to US10/754,824 priority patent/US7621936B2/en
Priority to US12/606,526 priority patent/US8696702B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/0057Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/0057Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
    • A61B2017/00637Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect for sealing trocar wounds through abdominal wall
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/0057Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
    • A61B2017/00646Type of implements
    • A61B2017/00654Type of implements entirely comprised between the two sides of the opening
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/06Measuring instruments not otherwise provided for
    • A61B2090/062Measuring instruments not otherwise provided for penetration depth

Definitions

  • the present invention relates to a method and system for facilitating hemostasis of a blood vessel.
  • the present invention provides an improved method and system for facilitating hemostasis of a blood vessel puncture.
  • a method of facilitating hemostasis of a blood vessel puncture includes the steps of inserting a tubular device into a puncture in a blood vessel to establish access to the blood vessel; providing a vessel closure system around the tubular device; introducing a hemostasis promoting material into a space between the tubular device and vessel closure system; and delivering the hemostatic material adjacent to the puncture to facilitate hemostasis of the puncture.
  • a method of facilitating hemostasis of a blood vessel puncture includes inserting a procedural access sheath through a tissue tract and into a puncture in a blood vessel; providing a vessel closure system around the access sheath and at least partially in the issue tract; and performing a vascular procedure with the vessel closure system in the tissue tract.
  • a system for facilitating hemostasis of a blood vessel puncture including a delivery cannula configured to be received around an access sheath; a hemostasis promoting material within the delivery cannula for facilitating hemostasis of a blood vessel puncture when delivered adjacent to the puncture; a proximal stop for preventing proximal motion of the hemostasis promoting material within the delivery cannula when the access sheath is withdrawn proximally from the delivery cannula; and a pusher for delivering the sponge material from the delivery cannula.
  • FIG. 1 a is a perspective view of a first embodiment of a delivery cannula according to the present invention positioned for delivery of a hemostatic promoting material;
  • FIG. 1 b is a perspective view of the delivery cannula of FIG. 1 a with the access sheath being removed;
  • FIG. 1 c is a perspective view of the delivery cannula of FIGS. 1 a and 1 b with the hemostatic promoting material being ejected;
  • FIG. 1 d is a perspective view of an alternative embodiment of a delivery cannula with a side staging chamber
  • FIG. 1 e is a perspective view of the delivery cannula of FIG. 1 d with the hemostatic promoting material in the delivery cannula;
  • FIG. 2 a is a perspective view of a delivery cannula according to an alternative embodiment
  • FIG. 2 b is a perspective view of a delivery cannula according to an alternative embodiment
  • FIG. 3 a is a perspective view of a delivery cannula according to an alternative embodiment
  • FIG. 3 b is a perspective view of a delivery cannula according to an another embodiment
  • FIG. 4 a is a perspective view of a delivery cannula according to an another embodiment.
  • FIG. 4 b is a perspective view of a delivery cannula according to an alternative embodiment.
  • the present invention provides an access system that enables the user to access a blood vessel with a sheath that also incorporates a means for performing site closure. Upon completion of the interventional procedure, the closure device is deployed to close the puncture and the sheath is removed.
  • an access system for facilitating hemostasis of a blood vessel includes a delivery cannula 10 positioned coaxially around an access sheath 20 , and a hemostatic promoting material 30 within the delivery cannula 10 for facilitating hemostasis of a blood vessel puncture when delivered adjacent to the puncture.
  • the hemostatic material 30 is a hydrated and compressed sponge.
  • the delivery cannula 10 as shown in FIG. 1 a is dimensioned such that its proximal end 12 can attach to the access sheath 20 at or near the access sheath proximal end 22 , and such that the delivery cannula 10 distal end 14 terminates proximal to the distal end 24 of the access sheath 20 .
  • the delivery cannula 10 incorporates an annular proximal stop 40 fitting slideably around the access sheath 20 and removably within the delivery cannula 10 .
  • the proximal stop 40 is positioned within the delivery cannula 10 such that its distal end 44 defines the proximal boundary of a coaxial hemostatic material space 26 .
  • the proximal end 42 of the proximal stop 40 is positioned at or near the proximal end 12 of the delivery cannula 10 .
  • the proximal stop 40 may include a proximal flange 46 to facilitate proper placement within the delivery cannula 10 .
  • hemostatic material space 26 is coaxial, it can be appreciated that many other configurations are possible.
  • the hemostatic material space 26 is defined by the outside of the access sheath 20 and the inside of the delivery cannula 10 and may be continuous, discontinuous, symmetrical, or nonsymmetrical.
  • the access system is prepared by attaching the delivery cannula 10 to the access sheath 20 as described above.
  • the hemostatic material 30 is then introduced into the coaxial space 26 between the delivery cannula 10 and access sheath 20 .
  • the hemostatic material 30 is introduced into the coaxial space 26 by hydrating an absorbable sponge in a staging chamber portion 50 of the delivery cannula 10 and advancing the sponge through a side port 48 of the delivery cannula into a delivery position surrounding the access sheath 20 .
  • the hydrating of the absorbable sponge is performed with a syringe 90 and a syringe plunger 92 .
  • a removable distal stop or vent 52 may be provided to help position the hemostatic material 30 within the system.
  • the distal stop or vent 52 may be soluble and/or absorbable such that it remains in place during advancement of the system into the vascular access site and then dissolves to allow delivery of the hemostatic material.
  • a distal stop or vent 52 of this type may be made of gelatin, polyglycolic acid, or other suitable material known to one skilled in the art.
  • the system can then be placed much like an ordinary access sheath 20 as shown in FIG. 1 a.
  • the removable distal stop or vent 52 is removed (if present) and the system is placed over a guidewire 54 and into the vascular access site such that the portion of the access sheath 20 extending distally beyond the distal end of the delivery cannula 10 extends through a vessel puncture 55 and into a vessel 57 and the distal end of the delivery cannula 10 resides at or near the outer blood vessel wall 58 .
  • a bleed-back hole 60 in the access sheath 20 can be utilized to provide bleed-back as an indication that the distal end 14 of the delivery cannula 10 is within a predetermined proximity with respect to the blood vessel 58 .
  • the lack of bleed-back 62 indicates a more proximal location of the delivery cannula 10 .
  • the delivery cannula 10 may be positioned using only bleed-back 62 as an indicator of position, or may be more precisely located by utilizing tactile feedback as the enlarged distal end of the delivery cannula 10 encounters the outer blood vessel wall 58 .
  • Bleed-back 62 is facilitated by providing a dilator 70 within the access sheath 20 that fits closely over the guidewire 54 at its distal end 74 such that it substantially prevents blood from entering the dilator 70 . Further, the dilator 70 fits closely within the distal access sheath 20 such that it substantially prevents blood from entering the access sheath. In this way, blood is restricted from entering the access sheath 20 until the bleed-back hole 60 enters the blood vessel 58 . Blood entering the bleed-back hole 60 might then exit the patient through a number of paths.
  • the access sheath 20 was provided with a seal at its proximal end 22 , the blood might enter a hole in the dilator 70 and then exit the proximal end 72 of the dilator 70 .
  • blood could flow between the dilator 70 and access sheath 20 to an exit in the introduction port 76 and stop-cock 78 as shown in FIG. 1 a. If the access sheath 20 has no proximal seal, the blood could exit the proximal end 22 of the access sheath 20 .
  • the access systems of the present invention are used as follows.
  • the interventional procedure is conducted as usual with the delivery cannula 10 and hemostatic material 30 in place during the procedure.
  • the access sheath 20 portion of the system is detached from the delivery cannula 10 and fully withdrawn while the delivery cannula 10 and proximal stop 40 remain stationary as shown in FIG. 1 b .
  • the proximal stop 40 prevents the hemostatic material 30 from moving proximally during access sheath 20 removal. This portion of the procedure may take place with or without a guidewire 54 in place.
  • the proximal stop 40 is then removed from the delivery cannula 10 and a pusher 80 having an outside diameter just smaller than the inside diameter of the delivery cannula 10 is placed over the guidewire 54 (if present) and advanced until it contacts the proximal portion of hemostatic material 30 .
  • the hemostatic material 30 is then delivered by moving the delivery cannula 10 proximally with respect to the pusher 80 .
  • the pusher 80 is held stationary while the delivery cannula 10 is withdrawn. It is also understood that the pusher 80 can be advanced while the delivery cannula 10 is held stationary. It is further understood that any combination of these techniques can result in delivery of hemostatic material 30 . After delivering hemostatic material 30 into the desired site, the guidewire 54 (if present) and the pusher 80 and cannula 10 are removed from the puncture tract.
  • a proximal stop 40 is positioned within the delivery cannula 10 such that its distal end 44 defines the proximal boundary of the coaxial hemostatic material space 26 .
  • the proximal end 42 of the proximal stop 40 terminates at the proximal end 12 of the delivery cannula 10 .
  • Detent 86 features such as bumps or ratchets may be included on the inside of the delivery cannula 10 or the outside of the proximal stop 40 to releasibly hold the proximal stop 40 in place.
  • the access sheath 20 portion of the system is withdrawn while the delivery cannula 10 and proximal stop 40 remain stationary as shown in FIG. 2 a .
  • the proximal stop 40 prevents the hemostatic material 30 from moving proximally during access sheath 20 removal. This portion of the procedure may take place with or without a guidewire 54 in place.
  • a pusher 80 shown in FIG. 2 b having a distal portion 83 with an outside diameter similar to the previously removed access sheath 20 and a length similar to the proximal stop 40 is then placed over the guidewire 54 (if present) and advanced into the proximal stop 40 until its distal end 84 is approximately aligned with the distal end 44 of the proximal stop 40 .
  • the pusher 80 may be provided with a proximal shoulder 85 to facilitate this alignment.
  • the hemostatic material 30 is then delivered by moving the delivery cannula 10 proximally with respect to the pusher 80 and proximal stop 40 .
  • the pusher 80 and proximal stop 40 are held stationary while the delivery cannula 10 is withdrawn.
  • the pusher 80 may include a proximal flange 88 to beneficially limit its movement with respect to the delivery cannula 10 .
  • a longer proximal stop 40 is positioned within the delivery cannula 10 such that its distal end 44 defines the proximal boundary of the coaxial hemostatic material space 26 .
  • the proximal end 42 of the proximal stop 40 extends beyond the proximal end 12 of the delivery cannula 10 a distance equal to or greater than the length of the coaxial hemostatic material space 26 .
  • the access sheath 20 portion of the system is detached from the delivery cannula 10 and fully withdrawn while the delivery cannula 10 and proximal stop 40 remain stationary.
  • the proximal stop 40 is held in place manually or with a locking mechanism to prevent the hemostatic material 30 from moving proximally during access sheath 20 removal. This portion of the procedure may take place with or without a guidewire 54 in place.
  • a pusher 80 having an outside diameter similar to the previously removed access sheath 20 and a length similar to the proximal stop 40 is then placed over the guidewire 54 (if present) and advanced into the proximal stop 40 until its distal end 84 is approximately aligned with the distal end 44 of the proximal stop 40 .
  • the pusher 80 may be provided with a proximal flange to facilitate this alignment.
  • the hemostatic material 30 is then delivered by moving the delivery cannula 10 proximally with respect to the pusher 80 and proximal stop 40 as shown in FIG. 3 b .
  • the pusher 80 and proximal stop 40 are held stationary while the delivery cannula 10 is withdrawn.
  • the proximal stop 40 may include a proximal flange to beneficially limit its movement with respect to the delivery cannula.
  • a proximal stop 40 similar to that just described is used to deliver the hemostatic material without the use of a pusher 80 .
  • a system incorporating this type of proximal stop 40 is placed within an access site.
  • the delivery cannula 10 is moved proximally with respect to the proximal stop 40 as shown in FIG. 4 a .
  • the hemostatic material 30 is delivered to the desired site with the access sheath 20 still in place.
  • the access sheath 20 provides hemostasis at the puncture site 98 during hemostatic material 30 delivery and also prevents hemostatic material 30 from entering the puncture site 98 .
  • the delivery cannula 10 and proximal stop 40 are then held stationary to stabilize the hemostatic material 30 while the access sheath 20 is removed.
  • the delivery cannula 10 and proximal stop 40 can then be removed from the site.
  • the guidewire 54 (if present) can be removed before the access sheath 20 is removed, when the access sheath 20 is removed, after the access sheath 20 is removed, or after the delivery cannula 10 and proximal stop 40 are removed.
  • Other means of positioning the hemostatic material within the system include placing the hemostatic material within the distal lumen of the delivery cannula 10 and then passing the access sheath 20 through it.
  • the hemostatic promoting material 30 is placed in the cannula by placing a hydrated sponge within the distal end 14 of the delivery cannula 10 .
  • the distal end 24 of the access sheath 20 with a stylet or obturator placed within it is then advanced into the proximal end 12 of the delivery cannula 10 and through the sponge until the distal access sheath 20 protrudes beyond the distal end 14 of the delivery cannula 10 .
  • the stylet or obturator is then removed to ready the system for placement into an access site.
  • the absorbable sponge material can be absorbed by the body in a period of time between several days and several months depending on the absorbable sponge material used.
  • a pledget formed of commercially available Gelfoam material will be absorbed by the body within 1 to 6 weeks.
  • the pledget material may be engineered to provide different rates of absorption.
  • Gelfoam can be designed to be absorbed at different rates by varying the degree of cross-linking
  • the pledget is designed to be absorbed in less than one month.
  • non-absorbable sponge may also be delivered with the devices, systems, and methods of the present invention.
  • a non-absorbable sponge may be desirable where it will be necessary to locate the blood vessel puncture after the procedure.
  • a continuous structure of the delivered absorbable sponge pledget provides more secure and reliable placement of a plug of material against the blood vessel puncture than a paste or liquid.
  • the continuous sponge structure can even facilitate partial withdrawal, removal, or movement of the ejected pledget.
  • the absorbable sponge material can be hydrated with a clotting agent such as thrombin, a contrast agent, another beneficial agent, a combination of agents, or the like.
  • a clotting agent such as thrombin, a contrast agent, another beneficial agent, a combination of agents, or the like.
  • the pledget material itself may contain an agent such as a clotting agent, a contrast agent, another beneficial agent, a combination of agents, or the like.
  • the absorbable sponge pledget may be presoaked with a beneficial agent such as thrombin for delivery of the beneficial agent to the punctured blood vessel.
  • a beneficial agent such as thrombin
  • the pledget may be hydrated with a beneficial liquid agent used as the hydrating fluid within a syringe.
  • the beneficial agent may be delivered to the pledget after the pledget is ejected at the blood vessel puncture site through the lumen of the pusher 80 , through the delivery cannula 10 , through the access sheath 20 or through the dilator 70 .
  • the system may be provided in different lengths for use in different patients.
  • the pledget size and shape may also be varied for different patients.
  • the absorbable sponge material should form a complete plug over the puncture site without expanding into the blood vessel or exiting the skin of the patient. In some instances where the amount of subcutaneous tissue is great it may be desirable to deliver multiple pledgets in spaced apart positions along the tract leading to the puncture site.
  • a pledget is formed from a rectangular piece of pre-compressed Gelfoam approximately 2 by 3 cm with a thickness of 0.15 cm. The Gelfoam is rolled or folded into a pledget having a length of approximately 3 cm.
  • An introducer for delivery of this pledget to a patient with an average amount of subcutaneous tissue has a staging chamber length of about 2.5 to 6 cm, preferably approximately 3 cm, a staging chamber inner diameter of about 0.12 to 1.5 cm, preferably about 0.3 cm to about 0.6 cm, and a delivery chamber which is typically longer than the staging chamber and has an inner diameter smaller than that of the staging chamber of about 1 cm or less, preferably approximately 0.33 cm or less.
  • the particular length of the delivery chamber depends on both the subcutaneous tissue depth of the patient and the linear expansion of the pledget as it moves from the staging chamber to the delivery chamber.
  • An angle made by a wall of the tapered section 38 with a longitudinal axis of the adaptor may vary from about 5° to 90°, but is preferably between about 30° and 60°, more preferably approximately 45°.
  • the tapered section 38 is illustrated with a substantially planar interior surface, when shown in cross section. However, the tapered section may also have a convex or concave surface in cross-section. This example of pledget and introducer configurations is merely exemplary of the present invention.
  • the hemostatic promoting material 30 may be inserted into the cannula in a dry form and hydrated in the cannula.
  • the hemostatic material may be hydrated prior to staging in the cannula, hydrated after delivery or any combination thereof.

Abstract

A method of facilitating hemostasis of a blood vessel puncture. The method includes the steps of inserting a tubular device into a puncture in a blood vessel to establish access to the blood vessel, providing a vessel closure system around the tubular device, introducing a hemostatic material into a space between the tubular device and vessel closure system, and delivering the hemostatic material adjacent to the puncture to facilitate hemostasis of the puncture.

Description

  • This application claims priority under 35 U.S.C. § 119 to provisional U.S. patent application Ser. No. 60/218,431, filed Jul. 14, 2000, which is incorporated herein by reference in its entirety.[0001]
  • FIELD OF THE INVENTION
  • The present invention relates to a method and system for facilitating hemostasis of a blood vessel. [0002]
  • BRIEF DESCRIPTION OF THE RELATED ART
  • Numerous arterial puncture closure devices are known in the prior art. These include many mechanisms, such as plugs, sutures, intra-vascular structures and more. While these prior art devices vary in size and theory, they all require placement of distinct closure devices through a procedural sheath, sheath exchanges, or sheath removal prior to placement. By their very nature, these devices represent a separate procedure for access site closure after access site establishment/maintenance. The decision to use these devices is often based upon the instant availability of the device and competing demand for the doctor's time at the moment of sheath removal. [0003]
  • An additional challenge of puncture closure devices comes when they are deployed many hours after access has been established. In these cases, time and additional access site manipulation contribute to potential infection. [0004]
  • What is needed is a single device which establishes and maintains access to a puncture site, and closes the access site upon the completion of a procedure. In this way, the closure of the puncture site could become a standard of care, not subject to device availability, competing demand for doctor time, or site infection due to delayed deployment. [0005]
  • Accordingly, it would be desirable to provide a method and system that enable the user to access a blood vessel with a sheath that also incorporates a means for access site closure. Furthermore, upon completion of the interventional procedure, the closure device is deployed to close the puncture and the sheath is removed. [0006]
  • SUMMARY OF THE INVENTION
  • The present invention provides an improved method and system for facilitating hemostasis of a blood vessel puncture. [0007]
  • In accordance with one aspect of the present invention, a method of facilitating hemostasis of a blood vessel puncture includes the steps of inserting a tubular device into a puncture in a blood vessel to establish access to the blood vessel; providing a vessel closure system around the tubular device; introducing a hemostasis promoting material into a space between the tubular device and vessel closure system; and delivering the hemostatic material adjacent to the puncture to facilitate hemostasis of the puncture. [0008]
  • In accordance with a further aspect of the present invention, a method of facilitating hemostasis of a blood vessel puncture, the method includes inserting a procedural access sheath through a tissue tract and into a puncture in a blood vessel; providing a vessel closure system around the access sheath and at least partially in the issue tract; and performing a vascular procedure with the vessel closure system in the tissue tract. [0009]
  • In accordance with another aspect of the present invention, a system for facilitating hemostasis of a blood vessel puncture, the system including a delivery cannula configured to be received around an access sheath; a hemostasis promoting material within the delivery cannula for facilitating hemostasis of a blood vessel puncture when delivered adjacent to the puncture; a proximal stop for preventing proximal motion of the hemostasis promoting material within the delivery cannula when the access sheath is withdrawn proximally from the delivery cannula; and a pusher for delivering the sponge material from the delivery cannula.[0010]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The invention will now be described in greater detail with reference to the preferred embodiments illustrated in the accompanying drawings, in which like elements bear like reference numerals, and wherein: [0011]
  • FIG. 1[0012] a is a perspective view of a first embodiment of a delivery cannula according to the present invention positioned for delivery of a hemostatic promoting material;
  • FIG. 1[0013] b is a perspective view of the delivery cannula of FIG. 1a with the access sheath being removed;
  • FIG. 1[0014] c is a perspective view of the delivery cannula of FIGS. 1a and 1 b with the hemostatic promoting material being ejected;
  • FIG. 1[0015] d is a perspective view of an alternative embodiment of a delivery cannula with a side staging chamber;
  • FIG. 1[0016] e is a perspective view of the delivery cannula of FIG. 1d with the hemostatic promoting material in the delivery cannula;
  • FIG. 2[0017] a is a perspective view of a delivery cannula according to an alternative embodiment;
  • FIG. 2[0018] b is a perspective view of a delivery cannula according to an alternative embodiment;
  • FIG. 3[0019] a is a perspective view of a delivery cannula according to an alternative embodiment;
  • FIG. 3[0020] b is a perspective view of a delivery cannula according to an another embodiment;
  • FIG. 4[0021] a is a perspective view of a delivery cannula according to an another embodiment; and
  • FIG. 4[0022] b is a perspective view of a delivery cannula according to an alternative embodiment.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • The present invention provides an access system that enables the user to access a blood vessel with a sheath that also incorporates a means for performing site closure. Upon completion of the interventional procedure, the closure device is deployed to close the puncture and the sheath is removed. [0023]
  • As shown in FIG. 1[0024] a, an access system for facilitating hemostasis of a blood vessel includes a delivery cannula 10 positioned coaxially around an access sheath 20, and a hemostatic promoting material 30 within the delivery cannula 10 for facilitating hemostasis of a blood vessel puncture when delivered adjacent to the puncture. In one preferred embodiment, the hemostatic material 30 is a hydrated and compressed sponge.
  • The [0025] delivery cannula 10 as shown in FIG. 1a is dimensioned such that its proximal end 12 can attach to the access sheath 20 at or near the access sheath proximal end 22, and such that the delivery cannula 10 distal end 14 terminates proximal to the distal end 24 of the access sheath 20. Further, the delivery cannula 10 incorporates an annular proximal stop 40 fitting slideably around the access sheath 20 and removably within the delivery cannula 10. The proximal stop 40 is positioned within the delivery cannula 10 such that its distal end 44 defines the proximal boundary of a coaxial hemostatic material space 26. The proximal end 42 of the proximal stop 40 is positioned at or near the proximal end 12 of the delivery cannula 10. The proximal stop 40 may include a proximal flange 46 to facilitate proper placement within the delivery cannula 10.
  • While the [0026] hemostatic material space 26 described herein is coaxial, it can be appreciated that many other configurations are possible. The hemostatic material space 26 is defined by the outside of the access sheath 20 and the inside of the delivery cannula 10 and may be continuous, discontinuous, symmetrical, or nonsymmetrical.
  • In one preferred embodiment as shown in FIG. 1[0027] a, the access system is prepared by attaching the delivery cannula 10 to the access sheath 20 as described above. The hemostatic material 30 is then introduced into the coaxial space 26 between the delivery cannula 10 and access sheath 20.
  • In another preferred embodiment, as shown in FIGS. 1[0028] d & 1 e the hemostatic material 30 is introduced into the coaxial space 26 by hydrating an absorbable sponge in a staging chamber portion 50 of the delivery cannula 10 and advancing the sponge through a side port 48 of the delivery cannula into a delivery position surrounding the access sheath 20. The hydrating of the absorbable sponge is performed with a syringe 90 and a syringe plunger 92. A removable distal stop or vent 52 may be provided to help position the hemostatic material 30 within the system. Alternatively, the distal stop or vent 52 may be soluble and/or absorbable such that it remains in place during advancement of the system into the vascular access site and then dissolves to allow delivery of the hemostatic material. A distal stop or vent 52 of this type may be made of gelatin, polyglycolic acid, or other suitable material known to one skilled in the art.
  • The system can then be placed much like an [0029] ordinary access sheath 20 as shown in FIG. 1a. The removable distal stop or vent 52 is removed (if present) and the system is placed over a guidewire 54 and into the vascular access site such that the portion of the access sheath 20 extending distally beyond the distal end of the delivery cannula 10 extends through a vessel puncture 55 and into a vessel 57 and the distal end of the delivery cannula 10 resides at or near the outer blood vessel wall 58. A bleed-back hole 60 in the access sheath 20 can be utilized to provide bleed-back as an indication that the distal end 14 of the delivery cannula 10 is within a predetermined proximity with respect to the blood vessel 58. The lack of bleed-back 62 indicates a more proximal location of the delivery cannula 10. The delivery cannula 10 may be positioned using only bleed-back 62 as an indicator of position, or may be more precisely located by utilizing tactile feedback as the enlarged distal end of the delivery cannula 10 encounters the outer blood vessel wall 58.
  • Bleed-[0030] back 62 is facilitated by providing a dilator 70 within the access sheath 20 that fits closely over the guidewire 54 at its distal end 74 such that it substantially prevents blood from entering the dilator 70. Further, the dilator 70 fits closely within the distal access sheath 20 such that it substantially prevents blood from entering the access sheath. In this way, blood is restricted from entering the access sheath 20 until the bleed-back hole 60 enters the blood vessel 58. Blood entering the bleed-back hole 60 might then exit the patient through a number of paths.
  • If the [0031] access sheath 20 was provided with a seal at its proximal end 22, the blood might enter a hole in the dilator 70 and then exit the proximal end 72 of the dilator 70. Alternatively, blood could flow between the dilator 70 and access sheath 20 to an exit in the introduction port 76 and stop-cock 78 as shown in FIG. 1 a. If the access sheath 20 has no proximal seal, the blood could exit the proximal end 22 of the access sheath 20.
  • In operation, the access systems of the present invention are used as follows. The interventional procedure is conducted as usual with the [0032] delivery cannula 10 and hemostatic material 30 in place during the procedure. At the end of the interventional procedure, the access sheath 20 portion of the system is detached from the delivery cannula 10 and fully withdrawn while the delivery cannula 10 and proximal stop 40 remain stationary as shown in FIG. 1b. The proximal stop 40 prevents the hemostatic material 30 from moving proximally during access sheath 20 removal. This portion of the procedure may take place with or without a guidewire 54 in place.
  • The [0033] proximal stop 40 is then removed from the delivery cannula 10 and a pusher 80 having an outside diameter just smaller than the inside diameter of the delivery cannula 10 is placed over the guidewire 54 (if present) and advanced until it contacts the proximal portion of hemostatic material 30. As shown in FIG. 1c, the hemostatic material 30 is then delivered by moving the delivery cannula 10 proximally with respect to the pusher 80.
  • In one preferred embodiment, the [0034] pusher 80 is held stationary while the delivery cannula 10 is withdrawn. It is also understood that the pusher 80 can be advanced while the delivery cannula 10 is held stationary. It is further understood that any combination of these techniques can result in delivery of hemostatic material 30. After delivering hemostatic material 30 into the desired site, the guidewire 54 (if present) and the pusher 80 and cannula 10 are removed from the puncture tract.
  • In an alternative embodiment, as shown in FIG. 2[0035] a, a proximal stop 40 is positioned within the delivery cannula 10 such that its distal end 44 defines the proximal boundary of the coaxial hemostatic material space 26. The proximal end 42 of the proximal stop 40 terminates at the proximal end 12 of the delivery cannula 10. Detent 86 features such as bumps or ratchets may be included on the inside of the delivery cannula 10 or the outside of the proximal stop 40 to releasibly hold the proximal stop 40 in place. Upon completion of the interventional procedure, the access sheath 20 portion of the system is withdrawn while the delivery cannula 10 and proximal stop 40 remain stationary as shown in FIG. 2a. The proximal stop 40 prevents the hemostatic material 30 from moving proximally during access sheath 20 removal. This portion of the procedure may take place with or without a guidewire 54 in place.
  • A [0036] pusher 80 shown in FIG. 2b, having a distal portion 83 with an outside diameter similar to the previously removed access sheath 20 and a length similar to the proximal stop 40 is then placed over the guidewire 54 (if present) and advanced into the proximal stop 40 until its distal end 84 is approximately aligned with the distal end 44 of the proximal stop 40. The pusher 80 may be provided with a proximal shoulder 85 to facilitate this alignment. As shown in FIG. 2b, the hemostatic material 30 is then delivered by moving the delivery cannula 10 proximally with respect to the pusher 80 and proximal stop 40. In one preferred embodiment, the pusher 80 and proximal stop 40 are held stationary while the delivery cannula 10 is withdrawn. The pusher 80 may include a proximal flange 88 to beneficially limit its movement with respect to the delivery cannula 10. After delivering hemostatic material 30 into a desired site, the guidewire 54 (if present) and system are removed.
  • In an alternative embodiment, as shown in FIG. 3[0037] a, a longer proximal stop 40 is positioned within the delivery cannula 10 such that its distal end 44 defines the proximal boundary of the coaxial hemostatic material space 26. The proximal end 42 of the proximal stop 40 extends beyond the proximal end 12 of the delivery cannula 10 a distance equal to or greater than the length of the coaxial hemostatic material space 26. Upon completion of the interventional procedure, the access sheath 20 portion of the system is detached from the delivery cannula 10 and fully withdrawn while the delivery cannula 10 and proximal stop 40 remain stationary. The proximal stop 40 is held in place manually or with a locking mechanism to prevent the hemostatic material 30 from moving proximally during access sheath 20 removal. This portion of the procedure may take place with or without a guidewire 54 in place.
  • As shown in FIG. 3[0038] b, a pusher 80 having an outside diameter similar to the previously removed access sheath 20 and a length similar to the proximal stop 40 is then placed over the guidewire 54 (if present) and advanced into the proximal stop 40 until its distal end 84 is approximately aligned with the distal end 44 of the proximal stop 40. The pusher 80 may be provided with a proximal flange to facilitate this alignment. The hemostatic material 30 is then delivered by moving the delivery cannula 10 proximally with respect to the pusher 80 and proximal stop 40 as shown in FIG. 3b. In one preferred embodiment, the pusher 80 and proximal stop 40 are held stationary while the delivery cannula 10 is withdrawn. The proximal stop 40 may include a proximal flange to beneficially limit its movement with respect to the delivery cannula. After delivering hemostatic material 30 into desired site, the guidewire 54 (if present) and system are removed.
  • In still another embodiment shown in FIG. 4[0039] a, a proximal stop 40 similar to that just described is used to deliver the hemostatic material without the use of a pusher 80. A system incorporating this type of proximal stop 40 is placed within an access site. At the end of the interventional procedure and prior to access sheath 20 removal, the delivery cannula 10 is moved proximally with respect to the proximal stop 40 as shown in FIG. 4a. In this way the hemostatic material 30 is delivered to the desired site with the access sheath 20 still in place. The access sheath 20 provides hemostasis at the puncture site 98 during hemostatic material 30 delivery and also prevents hemostatic material 30 from entering the puncture site 98.
  • As shown in FIG. 4[0040] b, the delivery cannula 10 and proximal stop 40 are then held stationary to stabilize the hemostatic material 30 while the access sheath 20 is removed. The delivery cannula 10 and proximal stop 40 can then be removed from the site. Note that the guidewire 54 (if present) can be removed before the access sheath 20 is removed, when the access sheath 20 is removed, after the access sheath 20 is removed, or after the delivery cannula 10 and proximal stop 40 are removed.
  • Other means of positioning the hemostatic material within the system include placing the hemostatic material within the distal lumen of the [0041] delivery cannula 10 and then passing the access sheath 20 through it.
  • In another preferred embodiment the [0042] hemostatic promoting material 30 is placed in the cannula by placing a hydrated sponge within the distal end 14 of the delivery cannula 10. The distal end 24 of the access sheath 20 with a stylet or obturator placed within it is then advanced into the proximal end 12 of the delivery cannula 10 and through the sponge until the distal access sheath 20 protrudes beyond the distal end 14 of the delivery cannula 10. The stylet or obturator is then removed to ready the system for placement into an access site.
  • The absorbable sponge material can be absorbed by the body in a period of time between several days and several months depending on the absorbable sponge material used. A pledget formed of commercially available Gelfoam material will be absorbed by the body within 1 to 6 weeks. However, the pledget material may be engineered to provide different rates of absorption. For example, Gelfoam can be designed to be absorbed at different rates by varying the degree of cross-linking Preferably, the pledget is designed to be absorbed in less than one month. [0043]
  • Although the invention is primarily intended for delivery of absorbable sponge, non-absorbable sponge may also be delivered with the devices, systems, and methods of the present invention. A non-absorbable sponge may be desirable where it will be necessary to locate the blood vessel puncture after the procedure. [0044]
  • While an amorphous or discontinuous sponge structure may be used in the present invention, a continuous structure of the delivered absorbable sponge pledget provides more secure and reliable placement of a plug of material against the blood vessel puncture than a paste or liquid. The continuous sponge structure can even facilitate partial withdrawal, removal, or movement of the ejected pledget. [0045]
  • The absorbable sponge material can be hydrated with a clotting agent such as thrombin, a contrast agent, another beneficial agent, a combination of agents, or the like. Alternatively, the pledget material itself may contain an agent such as a clotting agent, a contrast agent, another beneficial agent, a combination of agents, or the like. [0046]
  • The absorbable sponge pledget may be presoaked with a beneficial agent such as thrombin for delivery of the beneficial agent to the punctured blood vessel. Alternatively, the pledget may be hydrated with a beneficial liquid agent used as the hydrating fluid within a syringe. Further, the beneficial agent may be delivered to the pledget after the pledget is ejected at the blood vessel puncture site through the lumen of the [0047] pusher 80, through the delivery cannula 10, through the access sheath 20 or through the dilator 70.
  • Because the amount of subcutaneous fat and tissue between the [0048] skin 64 and the blood vessel wall 58 varies between patients from approximately 0.5 cm to 15 cm or more the system may be provided in different lengths for use in different patients. The pledget size and shape may also be varied for different patients. The absorbable sponge material should form a complete plug over the puncture site without expanding into the blood vessel or exiting the skin of the patient. In some instances where the amount of subcutaneous tissue is great it may be desirable to deliver multiple pledgets in spaced apart positions along the tract leading to the puncture site.
  • The particular size and shape of the access system may vary depending on the size of the access site, amount of subcutaneous tissue, and the size of pledget to be delivered. According to one example of the present invention, a pledget is formed from a rectangular piece of pre-compressed Gelfoam approximately 2 by 3 cm with a thickness of 0.15 cm. The Gelfoam is rolled or folded into a pledget having a length of approximately 3 cm. An introducer for delivery of this pledget to a patient with an average amount of subcutaneous tissue has a staging chamber length of about 2.5 to 6 cm, preferably approximately 3 cm, a staging chamber inner diameter of about 0.12 to 1.5 cm, preferably about 0.3 cm to about 0.6 cm, and a delivery chamber which is typically longer than the staging chamber and has an inner diameter smaller than that of the staging chamber of about 1 cm or less, preferably approximately 0.33 cm or less. The particular length of the delivery chamber depends on both the subcutaneous tissue depth of the patient and the linear expansion of the pledget as it moves from the staging chamber to the delivery chamber. An angle made by a wall of the tapered section [0049] 38 with a longitudinal axis of the adaptor may vary from about 5° to 90°, but is preferably between about 30° and 60°, more preferably approximately 45°. The tapered section 38 is illustrated with a substantially planar interior surface, when shown in cross section. However, the tapered section may also have a convex or concave surface in cross-section. This example of pledget and introducer configurations is merely exemplary of the present invention.
  • In addition, the [0050] hemostatic promoting material 30 may be inserted into the cannula in a dry form and hydrated in the cannula. Alternatively, the hemostatic material may be hydrated prior to staging in the cannula, hydrated after delivery or any combination thereof.
  • While the invention has been described in detail with reference to the preferred embodiments thereof, it will be apparent to one skilled in the art that various changes and modifications can be made and equivalents employed, without departing from the present invention. [0051]

Claims (46)

1. A method of facilitating hemostasis of a blood vessel puncture, the method comprising:
inserting a tubular device into a puncture in a blood vessel to establish access to the blood vessel;
providing a vessel closure system around the tubular device;
introducing a hemostasis promoting material into a space between the tubular device and vessel closure system; and
delivering the hemostatic material adjacent to the puncture to facilitate hemostasis of the puncture.
2. The method of claim 1, further comprising a step of withdrawing the tubular device prior to delivery of the hemostatic material.
3. The method of claim 1, further comprising a step of hydrating an absorbable sponge material in a staging chamber portion of the vessel closure system.
4. The method of claim 3, further comprising a step of advancing the absorbable sponge material into a delivery position.
5. The method of claim 1, further comprising a step of locating the puncture by using a bleed-back hole in the vessel closure system.
6. The method of claim 1, further comprising a step of the locating the puncture by using tactile feedback.
7. The method of claim 1, further comprising a step of hydrating the hemostatic material with a syringe.
8. The method of claim 1, further comprising a step of positioning the hemostatic material within the system using a distal stop or vent.
9. The method of claim 1, further comprising a step of placing the tubular device and vessel closure system over a guidewire.
10. The method of claim 1, further comprising a step of facilitating bleed-back by providing a dilator within the tubular device.
11. The method of claim 1, further comprising a step of removing a proximal stop from the vessel closure system.
12. The method of claim 1, further comprising a step of advancing the hemostatic material with a pusher and delivering the hemostatic material by moving the vessel closure system proximally with respect to the pusher.
13. The method of claim 12, further comprising a step of holding the pusher stationary while the vessel closure system is withdrawn.
14. The method of claim 12, further comprising a step of advancing the pusher while the vessel closure system is held stationary.
15. The method of claim 9, further comprising a step of removing the guidewire after the hemostatic material is delivered.
16. The method of claim 1, further comprising a step of removing the vessel closure system after the hemostatic material is delivered.
17. The method of claim 11, further comprising a step of removing the tubular device while the vessel closure system and proximal stop remain stationary.
18. The method of claim 1, further comprising a step of advancing a pusher into the proximal stop and moving the vessel closure system proximally with respect to the pusher and the proximal stop.
19. The method of claim 1, further comprising a step of withdrawing the vessel closure device while holding the pusher and proximal stop stationary.
20. The method of claim 1, further comprising a step of withdrawing the vessel closure system and moving the vessel closure system proximal with respect to the proximal stop.
21. The method of claim 1, further comprising a step of placing the hemostatic material within the vessel closure system and then passing the tubular device through the vessel closure system.
22. The method of claim 1, further comprising a step of placing a hydrated sponge within the vessel closure system and withdrawing the tubular device prior to delivery of the hydrated sponge.
23. The method of claim 21, further comprising a step of advancing a stylet or obturator into the tubular device.
24. A method of facilitating hemostasis of a blood vessel puncture, the method comprising:
inserting a procedural access sheath through a tissue tract and into a puncture in a blood vessel;
providing a vessel closure system around the access sheath and at least partially in the tissue tract; and
performing a vascular procedure with the vessel closure system in the tissue tract.
25. A system for facilitating hemostasis of a blood vessel puncture, the system comprising:
a delivery cannula configured to be received around an access sheath;
a hemostatic promoting material within the delivery cannula for facilitating hemostasis of a blood vessel puncture when delivered adjacent to the puncture;
a proximal stop for preventing proximal motion of the hemostatic promoting material within the delivery cannula when the access sheath is withdrawn proximally from the delivery cannula; and
a pusher for delivering the sponge material from the delivery cannula.
26. The system of claim 25, wherein the delivery cannula is received coaxially around the access sheath.
27. The system of claim 25, wherein the delivery cannula is received asymmetrically around the access sheath.
28. The system of claim 25, wherein the hemostatic promoting material is an absorbable sponge.
29. The system of claim 25, wherein the hemostatic promoting material is a hydrated and compressed sponge.
30. The system of claim 25, wherein the delivery cannula has a staging chamber.
31. The system of claim 25, further comprising a distal stop or vent.
32. The system of claim 31, wherein the distal stop or vent is soluable.
33. The system of claim 31, wherein the distal stop or vent is absorbable.
34. The system of claim 31, wherein the distal stop or vent is removable.
35. The system of claim 25, wherein the access sheath has a bleed-back hole.
36. The system of claim 25, further comprising a dilator.
37. The system of claim 36, wherein the dilator fits over a guidewire.
38. The system of claim 25, further comprising an introduction port.
39. The system of claim 25, further comprising a stop cock.
40. The system of claim 25, wherein the delivery cannula has detent features.
41. The system of claim 40, wherein the detent is at least one bump.
42. The system of claim 40, wherein the detent is at least one ratchet.
43. The system of claim 40, wherein the detent is on an inside of the delivery cannula.
44. The system of claim 40, wherein the detent is on an outside diameter of the vessel closure system.
45. The system of claim 25, wherein the proximal stop has a proximal flange to facilitate proper placement within the delivery cannula.
46. The system of claim 25, wherein the hydration of the hemostatic material is performed with a syringe.
US09/904,445 2000-07-14 2001-07-11 Sheath-mounted arterial plug delivery device Abandoned US20020022822A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US09/904,445 US20020022822A1 (en) 2000-07-14 2001-07-11 Sheath-mounted arterial plug delivery device
US10/754,824 US7621936B2 (en) 2000-07-14 2004-01-09 Sheath-mounted arterial plug delivery device
US12/606,526 US8696702B2 (en) 2000-07-14 2009-10-27 Sheath-mounted arterial plug delivery device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US21843100P 2000-07-14 2000-07-14
US09/904,445 US20020022822A1 (en) 2000-07-14 2001-07-11 Sheath-mounted arterial plug delivery device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/754,824 Continuation US7621936B2 (en) 2000-07-14 2004-01-09 Sheath-mounted arterial plug delivery device

Publications (1)

Publication Number Publication Date
US20020022822A1 true US20020022822A1 (en) 2002-02-21

Family

ID=22815087

Family Applications (3)

Application Number Title Priority Date Filing Date
US09/904,445 Abandoned US20020022822A1 (en) 2000-07-14 2001-07-11 Sheath-mounted arterial plug delivery device
US10/754,824 Expired - Fee Related US7621936B2 (en) 2000-07-14 2004-01-09 Sheath-mounted arterial plug delivery device
US12/606,526 Expired - Fee Related US8696702B2 (en) 2000-07-14 2009-10-27 Sheath-mounted arterial plug delivery device

Family Applications After (2)

Application Number Title Priority Date Filing Date
US10/754,824 Expired - Fee Related US7621936B2 (en) 2000-07-14 2004-01-09 Sheath-mounted arterial plug delivery device
US12/606,526 Expired - Fee Related US8696702B2 (en) 2000-07-14 2009-10-27 Sheath-mounted arterial plug delivery device

Country Status (3)

Country Link
US (3) US20020022822A1 (en)
AU (1) AU2001273401A1 (en)
WO (1) WO2002005865A2 (en)

Cited By (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040127940A1 (en) * 2000-12-14 2004-07-01 Ginn Richard S. Apparatus and methods for sealing vascular punctures
US20050085854A1 (en) * 2003-10-17 2005-04-21 Ensure Medical, Inc. Locator and closure device and method of use
US20050209637A1 (en) * 2000-08-02 2005-09-22 Zhu Yong H Apparatus for closing vascular puncture
US20050216057A1 (en) * 2000-09-08 2005-09-29 James Coleman Surgical stapler
US20050216018A1 (en) * 2004-03-29 2005-09-29 Sennett Andrew R Orthopedic surgery access devices
US20050267528A1 (en) * 2000-12-14 2005-12-01 Ensure Medical, Inc. Vascular plug having composite construction
EP1615540A2 (en) * 2003-04-22 2006-01-18 Sub-Q, Inc. Puncture closure systeme with pin and pull technique
US20060253037A1 (en) * 2005-05-04 2006-11-09 Ensure Medical, Inc. Locator and closure device and method of use
US20070010853A1 (en) * 2000-10-06 2007-01-11 Integrated Vascular Systems, Inc. Apparatus and methods for positioning a vascular sheath
WO2007025019A2 (en) 2005-08-24 2007-03-01 Avasca Medical, Inc. Vascular closure methods and apparatuses
WO2007025018A2 (en) 2005-08-24 2007-03-01 Avasca Medical, Inc. Vascular opening edge eversion methods and apparatuses
US20070123816A1 (en) * 2005-10-05 2007-05-31 Zhu Yong H Vascular wound closure device and method
US20070213710A1 (en) * 2003-02-04 2007-09-13 Hayim Lindenbaum Methods and apparatus for hemostasis following arterial catheterization
US20070282352A1 (en) * 2000-12-07 2007-12-06 Carley Michael T Closure device and methods for making and using them
US20080167643A1 (en) * 2004-11-22 2008-07-10 Cardiodex Ltd. Techniques for Heating-Treating Varicose Veins
US20080208320A1 (en) * 2006-12-15 2008-08-28 Francisca Tan-Malecki Delivery Apparatus and Methods for Vertebrostenting
US20090125056A1 (en) * 2007-08-15 2009-05-14 Cardiodex Ltd. Systems and methods for puncture closure
US20090326538A1 (en) * 2006-12-15 2009-12-31 Sennett Andrew R Devices and methods for fracture reduction
US7753933B2 (en) 2000-12-14 2010-07-13 Ensure Medical, Inc. Plug with detachable guidewire element and methods for use
US20100179567A1 (en) * 2009-01-09 2010-07-15 Abbott Vascular Inc. Closure devices, systems, and methods
US20100179590A1 (en) * 2009-01-09 2010-07-15 Abbott Vascular Inc. Vessel closure devices and methods
US20100179571A1 (en) * 2009-01-09 2010-07-15 Abbott Vascular Inc. Closure devices, systems, and methods
US20100179589A1 (en) * 2009-01-09 2010-07-15 Abbott Vascular Inc. Rapidly eroding anchor
US7780699B2 (en) 2000-08-02 2010-08-24 Loma Linda University Medical Center Vascular wound closure device and method
US20110054492A1 (en) * 2009-08-26 2011-03-03 Abbott Laboratories Medical device for repairing a fistula
US20110106148A1 (en) * 2000-01-05 2011-05-05 Integrated Vascular Systems, Inc. Closure system and methods of use
US20110137340A1 (en) * 2001-06-07 2011-06-09 Abbott Vascular Inc. Surgical staple
US20110152741A1 (en) * 2009-12-21 2011-06-23 Michael Banchieri Cannula system
US20110166584A1 (en) * 2003-01-30 2011-07-07 Integrated Vascular Systems, Inc. Clip applier and methods of use
US20110213316A1 (en) * 2009-12-21 2011-09-01 Tamer Ibrahim Self-dilating cannula
US8012167B2 (en) 2003-08-14 2011-09-06 Loma Linda University Medical Center Vascular wound closure device and method
US20110218568A1 (en) * 2009-01-09 2011-09-08 Voss Laveille K Vessel closure devices, systems, and methods
US20110238089A1 (en) * 2007-12-17 2011-09-29 Abbott Laboratories Tissue closure system and methods of use
US8057510B2 (en) 2000-12-14 2011-11-15 Ensure Medical, Inc. Plug with collet and apparatus and method for delivering such plugs
US8075587B2 (en) 2000-12-14 2011-12-13 Ensure Medical, Inc. Apparatus and methods for sealing vascular punctures
US20120259273A1 (en) * 2011-04-05 2012-10-11 Mtmm Pty Ltd Bi-Directional Perfusion Cannula
US8556930B2 (en) 2006-06-28 2013-10-15 Abbott Laboratories Vessel closure device
US8579934B2 (en) 2003-10-17 2013-11-12 Ensure Medical, Inc. Locator and delivery device and method of use
US8617184B2 (en) 2011-02-15 2013-12-31 Abbott Cardiovascular Systems, Inc. Vessel closure system
US8657852B2 (en) 2008-10-30 2014-02-25 Abbott Vascular Inc. Closure device
US8758396B2 (en) 2000-01-05 2014-06-24 Integrated Vascular Systems, Inc. Vascular sheath with bioabsorbable puncture site closure apparatus and methods of use
US8758398B2 (en) 2006-09-08 2014-06-24 Integrated Vascular Systems, Inc. Apparatus and method for delivering a closure element
US8758399B2 (en) 2010-08-02 2014-06-24 Abbott Cardiovascular Systems, Inc. Expandable bioabsorbable plug apparatus and method
US8808310B2 (en) 2006-04-20 2014-08-19 Integrated Vascular Systems, Inc. Resettable clip applier and reset tools
US8820602B2 (en) 2007-12-18 2014-09-02 Abbott Laboratories Modular clip applier
US8821534B2 (en) 2010-12-06 2014-09-02 Integrated Vascular Systems, Inc. Clip applier having improved hemostasis and methods of use
US8858594B2 (en) 2008-12-22 2014-10-14 Abbott Laboratories Curved closure device
US8893947B2 (en) 2007-12-17 2014-11-25 Abbott Laboratories Clip applier and methods of use
US8905937B2 (en) 2009-02-26 2014-12-09 Integrated Vascular Systems, Inc. Methods and apparatus for locating a surface of a body lumen
US8926633B2 (en) 2005-06-24 2015-01-06 Abbott Laboratories Apparatus and method for delivering a closure element
US8926654B2 (en) 2005-05-04 2015-01-06 Cordis Corporation Locator and closure device and method of use
US8956388B2 (en) 2000-01-05 2015-02-17 Integrated Vascular Systems, Inc. Integrated vascular device with puncture site closure component and sealant
US9050068B2 (en) 2005-07-01 2015-06-09 Abbott Laboratories Clip applier and methods of use
US9149276B2 (en) 2011-03-21 2015-10-06 Abbott Cardiovascular Systems, Inc. Clip and deployment apparatus for tissue closure
US9271707B2 (en) 2003-01-30 2016-03-01 Integrated Vascular Systems, Inc. Clip applier and methods of use
US9282965B2 (en) 2008-05-16 2016-03-15 Abbott Laboratories Apparatus and methods for engaging tissue
US9295469B2 (en) 2002-06-04 2016-03-29 Abbott Vascular Inc. Blood vessel closure clip and delivery device
US9320522B2 (en) 2000-12-07 2016-04-26 Integrated Vascular Systems, Inc. Closure device and methods for making and using them
US9332976B2 (en) 2011-11-30 2016-05-10 Abbott Cardiovascular Systems, Inc. Tissue closure device
US9364209B2 (en) 2012-12-21 2016-06-14 Abbott Cardiovascular Systems, Inc. Articulating suturing device
US9398914B2 (en) 2003-01-30 2016-07-26 Integrated Vascular Systems, Inc. Methods of use of a clip applier
US9414824B2 (en) 2009-01-16 2016-08-16 Abbott Vascular Inc. Closure devices, systems, and methods
US9414820B2 (en) 2009-01-09 2016-08-16 Abbott Vascular Inc. Closure devices, systems, and methods
US9480485B2 (en) 2006-12-15 2016-11-01 Globus Medical, Inc. Devices and methods for vertebrostenting
US9486191B2 (en) 2009-01-09 2016-11-08 Abbott Vascular, Inc. Closure devices
US9498196B2 (en) 2002-02-21 2016-11-22 Integrated Vascular Systems, Inc. Sheath apparatus and methods for delivering a closure device
US20160374655A1 (en) * 2015-06-26 2016-12-29 Essential Medical, Inc. Vascular closure device with removable guide member
US9579091B2 (en) 2000-01-05 2017-02-28 Integrated Vascular Systems, Inc. Closure system and methods of use
US11364024B2 (en) 2013-12-23 2022-06-21 Teleflex Life Sciences Limited Vascular closure device
US11419592B2 (en) 2013-03-15 2022-08-23 Teleflex Life Sciences Limited Vascular closure devices and methods of use
US11589855B2 (en) 2011-10-25 2023-02-28 Teleflex Life Sciences Limited Instrument and methods for surgically closing percutaneous punctures
US11751859B2 (en) 2016-04-04 2023-09-12 Merit Medical Systems, Inc. Medical plug delivery devices with a rotatable magazine and related components and methods

Families Citing this family (112)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7790192B2 (en) 1998-08-14 2010-09-07 Accessclosure, Inc. Apparatus and methods for sealing a vascular puncture
US7001400B1 (en) 1999-03-04 2006-02-21 Abbott Laboratories Articulating suturing device and method
US8137364B2 (en) 2003-09-11 2012-03-20 Abbott Laboratories Articulating suturing device and method
US6964668B2 (en) 1999-03-04 2005-11-15 Abbott Laboratories Articulating suturing device and method
US7235087B2 (en) 1999-03-04 2007-06-26 Abbott Park Articulating suturing device and method
US7842048B2 (en) 2006-08-18 2010-11-30 Abbott Laboratories Articulating suture device and method
US20040092964A1 (en) 1999-03-04 2004-05-13 Modesitt D. Bruce Articulating suturing device and method
US7341595B2 (en) * 1999-09-13 2008-03-11 Rex Medical, L.P Vascular hole closure device
US7942888B2 (en) 1999-09-13 2011-05-17 Rex Medical, L.P. Vascular hole closure device
EP1211983B1 (en) 1999-09-13 2007-03-07 Rex Medical, LP Vascular closure
US7662161B2 (en) 1999-09-13 2010-02-16 Rex Medical, L.P Vascular hole closure device
US7267679B2 (en) 1999-09-13 2007-09-11 Rex Medical, L.P Vascular hole closure device
US8083766B2 (en) 1999-09-13 2011-12-27 Rex Medical, Lp Septal defect closure device
US7842068B2 (en) 2000-12-07 2010-11-30 Integrated Vascular Systems, Inc. Apparatus and methods for providing tactile feedback while delivering a closure device
AU2001243291A1 (en) 2000-02-24 2001-09-03 Loma Linda University Medical Center Patch and glue delivery system for closing tissue openings during surgery
US7806904B2 (en) 2000-12-07 2010-10-05 Integrated Vascular Systems, Inc. Closure device
US7211101B2 (en) 2000-12-07 2007-05-01 Abbott Vascular Devices Methods for manufacturing a clip and clip
US8187625B2 (en) 2001-03-12 2012-05-29 Boston Scientific Scimed, Inc. Cross-linked gelatin composition comprising a wetting agent
US8992567B1 (en) 2001-04-24 2015-03-31 Cardiovascular Technologies Inc. Compressible, deformable, or deflectable tissue closure devices and method of manufacture
US20110144661A1 (en) * 2001-04-24 2011-06-16 Houser Russell A Tissue closure devices, device and systems for delivery, kits and methods therefor
US20080114394A1 (en) 2001-04-24 2008-05-15 Houser Russell A Arteriotomy Closure Devices and Techniques
US8961541B2 (en) * 2007-12-03 2015-02-24 Cardio Vascular Technologies Inc. Vascular closure devices, systems, and methods of use
US20040116115A1 (en) * 2002-12-06 2004-06-17 Ertel Lawrence R. Systems and methods for providing interactive guest resources
US7160309B2 (en) 2002-12-31 2007-01-09 Laveille Kao Voss Systems for anchoring a medical device in a body lumen
US7857828B2 (en) 2003-01-30 2010-12-28 Integrated Vascular Systems, Inc. Clip applier and methods of use
CN100374083C (en) * 2003-08-14 2008-03-12 洛马林达大学医学中心 Vascular wound closure device
AU2011218678B2 (en) * 2003-08-14 2012-04-12 Loma Linda University Medical Center Vascular Wound Closure Device
US8187627B2 (en) 2003-09-05 2012-05-29 Loma Linda University Medical Center Dressing delivery system for internal wounds
US7462188B2 (en) 2003-09-26 2008-12-09 Abbott Laboratories Device and method for suturing intracardiac defects
US7449024B2 (en) 2003-12-23 2008-11-11 Abbott Laboratories Suturing device with split arm and method of suturing tissue
US9017374B2 (en) * 2004-04-09 2015-04-28 Cardiva Medical, Inc. Device and method for sealing blood vessels
US20050267520A1 (en) 2004-05-12 2005-12-01 Modesitt D B Access and closure device and method
IES20040368A2 (en) 2004-05-25 2005-11-30 James E Coleman Surgical stapler
US7678133B2 (en) * 2004-07-10 2010-03-16 Arstasis, Inc. Biological tissue closure device and method
US20060116635A1 (en) * 2004-11-29 2006-06-01 Med Enclosure L.L.C. Arterial closure device
US20060184199A1 (en) * 2005-02-14 2006-08-17 O'leary Shawn Apparatus and methods for reducing bleeding from a cannulation site
US8740934B2 (en) 2005-04-22 2014-06-03 Rex Medical, L.P. Closure device for left atrial appendage
DE102005035795A1 (en) * 2005-05-03 2006-11-09 Rheinisch-Westfälisch Technische Hochschule Aachen Device for detecting physiological parameters inside the body
US8241325B2 (en) 2005-05-12 2012-08-14 Arstasis, Inc. Access and closure device and method
US7883517B2 (en) 2005-08-08 2011-02-08 Abbott Laboratories Vascular suturing device
US8267947B2 (en) 2005-08-08 2012-09-18 Abbott Laboratories Vascular suturing device
US8083754B2 (en) 2005-08-08 2011-12-27 Abbott Laboratories Vascular suturing device with needle capture
US8758397B2 (en) 2005-08-24 2014-06-24 Abbott Vascular Inc. Vascular closure methods and apparatuses
US9456811B2 (en) 2005-08-24 2016-10-04 Abbott Vascular Inc. Vascular closure methods and apparatuses
US8617204B2 (en) 2006-09-13 2013-12-31 Accessclosure, Inc. Apparatus and methods for sealing a vascular puncture
US7655004B2 (en) 2007-02-15 2010-02-02 Ethicon Endo-Surgery, Inc. Electroporation ablation apparatus, system, and method
US8574244B2 (en) 2007-06-25 2013-11-05 Abbott Laboratories System for closing a puncture in a vessel wall
US8226681B2 (en) 2007-06-25 2012-07-24 Abbott Laboratories Methods, devices, and apparatus for managing access through tissue
WO2009011751A1 (en) 2007-07-13 2009-01-22 Rex Medical, Lp Vascular hole closure device
US8579897B2 (en) 2007-11-21 2013-11-12 Ethicon Endo-Surgery, Inc. Bipolar forceps
US8480657B2 (en) * 2007-10-31 2013-07-09 Ethicon Endo-Surgery, Inc. Detachable distal overtube section and methods for forming a sealable opening in the wall of an organ
US20090112059A1 (en) 2007-10-31 2009-04-30 Nobis Rudolph H Apparatus and methods for closing a gastrotomy
US8491629B2 (en) 2008-02-15 2013-07-23 Rex Medical Vascular hole closure delivery device
US8920462B2 (en) 2008-02-15 2014-12-30 Rex Medical, L.P. Vascular hole closure device
US8070772B2 (en) 2008-02-15 2011-12-06 Rex Medical, L.P. Vascular hole closure device
US20110029013A1 (en) 2008-02-15 2011-02-03 Mcguckin James F Vascular Hole Closure Device
US8920463B2 (en) 2008-02-15 2014-12-30 Rex Medical, L.P. Vascular hole closure device
US9226738B2 (en) 2008-02-15 2016-01-05 Rex Medical, L.P. Vascular hole closure delivery device
US8029533B2 (en) 2008-04-04 2011-10-04 Accessclosure, Inc. Apparatus and methods for sealing a vascular puncture
US9364206B2 (en) 2008-04-04 2016-06-14 Access Closure, Inc. Apparatus and methods for sealing a vascular puncture
US8771260B2 (en) 2008-05-30 2014-07-08 Ethicon Endo-Surgery, Inc. Actuating and articulating surgical device
US8906035B2 (en) 2008-06-04 2014-12-09 Ethicon Endo-Surgery, Inc. Endoscopic drop off bag
US8888792B2 (en) 2008-07-14 2014-11-18 Ethicon Endo-Surgery, Inc. Tissue apposition clip application devices and methods
EP2312993A4 (en) 2008-07-21 2015-03-11 Arstasis Inc Devices, methods, and kits for forming tracts in tissue
EP2430982B1 (en) 2008-08-26 2020-06-24 St. Jude Medical, Inc. System for sealing percutaneous punctures
CA2962054C (en) 2008-11-12 2019-08-06 Accessclosure, Inc. Apparatus and methods for sealing a vascular puncture
US8157834B2 (en) 2008-11-25 2012-04-17 Ethicon Endo-Surgery, Inc. Rotational coupling device for surgical instrument with flexible actuators
US8323312B2 (en) 2008-12-22 2012-12-04 Abbott Laboratories Closure device
US8517979B2 (en) * 2008-12-22 2013-08-27 Abbott Laboratories Carriers for hemostatic tract treatment
US8361066B2 (en) 2009-01-12 2013-01-29 Ethicon Endo-Surgery, Inc. Electrical ablation devices
US8292918B2 (en) 2009-02-20 2012-10-23 Boston Scientific Scimed, Inc. Composite plug for arteriotomy closure and method of use
NZ595417A (en) * 2009-04-09 2013-10-25 Cardivascular Systems Tissue closure devices, device and systems for delivery, kits and methods therefor
US8845682B2 (en) 2009-10-13 2014-09-30 E-Pacing, Inc. Vasculature closure devices and methods
US20110098704A1 (en) 2009-10-28 2011-04-28 Ethicon Endo-Surgery, Inc. Electrical ablation devices
US8608652B2 (en) 2009-11-05 2013-12-17 Ethicon Endo-Surgery, Inc. Vaginal entry surgical devices, kit, system, and method
US20110112434A1 (en) * 2009-11-06 2011-05-12 Ethicon Endo-Surgery, Inc. Kits and procedures for natural orifice translumenal endoscopic surgery
US8496574B2 (en) 2009-12-17 2013-07-30 Ethicon Endo-Surgery, Inc. Selectively positionable camera for surgical guide tube assembly
US9028483B2 (en) 2009-12-18 2015-05-12 Ethicon Endo-Surgery, Inc. Surgical instrument comprising an electrode
US8506564B2 (en) 2009-12-18 2013-08-13 Ethicon Endo-Surgery, Inc. Surgical instrument comprising an electrode
CN102985019A (en) * 2010-01-11 2013-03-20 阿尔斯塔西斯公司 Device for forming tracts in tissue
US9005198B2 (en) 2010-01-29 2015-04-14 Ethicon Endo-Surgery, Inc. Surgical instrument comprising an electrode
US8303624B2 (en) 2010-03-15 2012-11-06 Abbott Cardiovascular Systems, Inc. Bioabsorbable plug
US8603116B2 (en) 2010-08-04 2013-12-10 Abbott Cardiovascular Systems, Inc. Closure device with long tines
US8663252B2 (en) 2010-09-01 2014-03-04 Abbott Cardiovascular Systems, Inc. Suturing devices and methods
US9370353B2 (en) 2010-09-01 2016-06-21 Abbott Cardiovascular Systems, Inc. Suturing devices and methods
US10092291B2 (en) 2011-01-25 2018-10-09 Ethicon Endo-Surgery, Inc. Surgical instrument with selectively rigidizable features
US9314620B2 (en) 2011-02-28 2016-04-19 Ethicon Endo-Surgery, Inc. Electrical ablation devices and methods
US9233241B2 (en) 2011-02-28 2016-01-12 Ethicon Endo-Surgery, Inc. Electrical ablation devices and methods
US9254169B2 (en) 2011-02-28 2016-02-09 Ethicon Endo-Surgery, Inc. Electrical ablation devices and methods
WO2012125785A1 (en) 2011-03-17 2012-09-20 Ethicon Endo-Surgery, Inc. Hand held surgical device for manipulating an internal magnet assembly within a patient
US9386968B2 (en) 2011-05-11 2016-07-12 Access Closure, Inc. Apparatus and methods for sealing a vascular puncture
US9414822B2 (en) 2011-05-19 2016-08-16 Abbott Cardiovascular Systems, Inc. Tissue eversion apparatus and tissue closure device and methods for use thereof
US8721680B2 (en) 2012-03-23 2014-05-13 Accessclosure, Inc. Apparatus and methods for sealing a vascular puncture
US9757105B2 (en) 2012-03-23 2017-09-12 Accessclosure, Inc. Apparatus and methods for sealing a vascular puncture
US8864778B2 (en) 2012-04-10 2014-10-21 Abbott Cardiovascular Systems, Inc. Apparatus and method for suturing body lumens
US8858573B2 (en) 2012-04-10 2014-10-14 Abbott Cardiovascular Systems, Inc. Apparatus and method for suturing body lumens
US9427255B2 (en) 2012-05-14 2016-08-30 Ethicon Endo-Surgery, Inc. Apparatus for introducing a steerable camera assembly into a patient
US20130317481A1 (en) 2012-05-25 2013-11-28 Arstasis, Inc. Vascular access configuration
US20130317438A1 (en) 2012-05-25 2013-11-28 Arstasis, Inc. Vascular access configuration
US9241707B2 (en) 2012-05-31 2016-01-26 Abbott Cardiovascular Systems, Inc. Systems, methods, and devices for closing holes in body lumens
US9078662B2 (en) 2012-07-03 2015-07-14 Ethicon Endo-Surgery, Inc. Endoscopic cap electrode and method for using the same
US9545290B2 (en) 2012-07-30 2017-01-17 Ethicon Endo-Surgery, Inc. Needle probe guide
US9572623B2 (en) 2012-08-02 2017-02-21 Ethicon Endo-Surgery, Inc. Reusable electrode and disposable sheath
US10314649B2 (en) 2012-08-02 2019-06-11 Ethicon Endo-Surgery, Inc. Flexible expandable electrode and method of intraluminal delivery of pulsed power
US9277957B2 (en) 2012-08-15 2016-03-08 Ethicon Endo-Surgery, Inc. Electrosurgical devices and methods
US9131932B2 (en) * 2013-02-01 2015-09-15 St. Jude Medical Puerto Rico Llc Dual lumen carrier tube with retractable sleeve and methods
KR102045030B1 (en) 2013-02-08 2019-11-15 재단법인 아산사회복지재단 Vascular sheath having hemostatic component
US10098527B2 (en) 2013-02-27 2018-10-16 Ethidcon Endo-Surgery, Inc. System for performing a minimally invasive surgical procedure
US10154835B2 (en) 2013-05-09 2018-12-18 Essential Medical, Inc. Vascular closure device with conforming plug member
WO2015009634A2 (en) 2013-07-15 2015-01-22 E-Pacing, Inc. Vasculature closure devices and methods
US10426449B2 (en) 2017-02-16 2019-10-01 Abbott Cardiovascular Systems, Inc. Articulating suturing device with improved actuation and alignment mechanisms
US11504105B2 (en) 2019-01-25 2022-11-22 Rex Medical L.P. Vascular hole closure device

Family Cites Families (85)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US581235A (en) * 1897-04-20 Island
US2899362A (en) * 1959-08-11 Hemostatic sponges and method of
US1578517A (en) * 1924-12-23 1926-03-30 George N Hein Valve piston and barrel construction for hypodermic syringes
US2086580A (en) * 1935-06-24 1937-07-13 Myron C Shirley Applicator
US2465357A (en) * 1944-08-14 1949-03-29 Upjohn Co Therapeutic sponge and method of making
US2492458A (en) * 1944-12-08 1949-12-27 Jr Edgar A Bering Fibrin foam
US2507244A (en) * 1947-04-14 1950-05-09 Upjohn Co Surgical gelatin dusting powder and process for preparing same
CH264752A (en) * 1947-06-03 1949-10-31 Hoffmann La Roche Process for the manufacture of carriers for pharmaceuticals.
US2597011A (en) * 1950-07-28 1952-05-20 Us Agriculture Preparation of starch sponge
US2680442A (en) * 1952-04-04 1954-06-08 Frank L Linzmayer Disposable suppository casing
US2814294A (en) * 1953-04-17 1957-11-26 Becton Dickinson Co Unit for and method of inhibiting and controlling bleeding tendencies
US2824092A (en) * 1955-01-04 1958-02-18 Robert E Thompson Process of preparation of a gelatincarboxymethyl cellulose complex
US2761446A (en) * 1955-03-30 1956-09-04 Chemical Specialties Co Inc Implanter and cartridge
US3157524A (en) * 1960-10-25 1964-11-17 Ethicon Inc Preparation of collagen sponge
US3724465A (en) * 1971-07-22 1973-04-03 Kimberly Clark Co Tampon coated with insertion aid and method for coating
US4000741A (en) * 1975-11-03 1977-01-04 The Kendall Company Syringe assembly
US4900303A (en) * 1978-03-10 1990-02-13 Lemelson Jerome H Dispensing catheter and method
US4588395A (en) * 1978-03-10 1986-05-13 Lemelson Jerome H Catheter and method
US4323072A (en) * 1980-01-18 1982-04-06 Shiley, Incorporated Cannula for a vein distention system
US4340066A (en) * 1980-02-01 1982-07-20 Sherwood Medical Industries Inc. Medical device for collecting a body sample
US4390018A (en) * 1980-09-15 1983-06-28 Zukowski Henry J Method for preventing loss of spinal fluid after spinal tap
US4405314A (en) * 1982-04-19 1983-09-20 Cook Incorporated Apparatus and method for catheterization permitting use of a smaller gage needle
IT1156600B (en) * 1982-05-13 1987-02-04 Gd Spa CIGARETTE INTEGRITY CONTROL DEVICE IN A PACKAGING MACHINE
NZ205033A (en) * 1982-08-12 1986-07-11 Univ Alabama Dispensing syringe with longitudinal slits in barrel
US4515637A (en) * 1983-11-16 1985-05-07 Seton Company Collagen-thrombin compositions
US4619913A (en) * 1984-05-29 1986-10-28 Matrix Pharmaceuticals, Inc. Treatments employing drug-containing matrices for introduction into cellular lesion areas
US4619261A (en) * 1984-08-09 1986-10-28 Frederico Guerriero Hydrostatic pressure device for bleeding control through an inflatable, stitchable and retrievable balloon-net system
US4587969A (en) * 1985-01-28 1986-05-13 Rolando Gillis Support assembly for a blood vessel or like organ
US4744364A (en) * 1987-02-17 1988-05-17 Intravascular Surgical Instruments, Inc. Device for sealing percutaneous puncture in a vessel
US4890612A (en) * 1987-02-17 1990-01-02 Kensey Nash Corporation Device for sealing percutaneous puncture in a vessel
US4852568A (en) * 1987-02-17 1989-08-01 Kensey Nash Corporation Method and apparatus for sealing an opening in tissue of a living being
ES2086291T3 (en) * 1987-05-26 1996-07-01 Sumitomo Pharma DEVICE FOR THE ADMINISTRATION OF SOLID PREPARATIONS.
US4829994A (en) * 1987-05-27 1989-05-16 Kurth Paul A Femoral compression device for post-catheterization hemostasis
US4850960A (en) * 1987-07-08 1989-07-25 Joseph Grayzel Diagonally tapered, bevelled tip introducing catheter and sheath and method for insertion
US4790819A (en) * 1987-08-24 1988-12-13 American Cyanamid Company Fibrin clot delivery device and method
US5195988A (en) * 1988-05-26 1993-03-23 Haaga John R Medical needle with removable sheath
US5080655A (en) * 1988-05-26 1992-01-14 Haaga John R Medical biopsy needle
US4936835A (en) * 1988-05-26 1990-06-26 Haaga John R Medical needle with bioabsorbable tip
US5053046A (en) * 1988-08-22 1991-10-01 Woodrow W. Janese Dural sealing needle and method of use
US4929246A (en) * 1988-10-27 1990-05-29 C. R. Bard, Inc. Method for closing and sealing an artery after removing a catheter
FR2641692A1 (en) * 1989-01-17 1990-07-20 Nippon Zeon Co Plug for closing an opening for a medical application, and device for the closure plug making use thereof
US5007895A (en) * 1989-04-05 1991-04-16 Burnett George S Wound packing instrument
US5061274A (en) * 1989-12-04 1991-10-29 Kensey Nash Corporation Plug device for sealing openings and method of use
US5021059A (en) * 1990-05-07 1991-06-04 Kensey Nash Corporation Plug device with pulley for sealing punctures in tissue and methods of use
US5391183A (en) * 1990-09-21 1995-02-21 Datascope Investment Corp Device and method sealing puncture wounds
US5108421A (en) * 1990-10-01 1992-04-28 Quinton Instrument Company Insertion assembly and method of inserting a vessel plug into the body of a patient
US5192300A (en) * 1990-10-01 1993-03-09 Quinton Instrument Company Insertion assembly and method of inserting a vessel plug into the body of a patient
US5167624A (en) * 1990-11-09 1992-12-01 Catheter Research, Inc. Embolus delivery system and method
US5366480A (en) * 1990-12-24 1994-11-22 American Cyanamid Company Synthetic elastomeric buttressing pledget
US5221259A (en) * 1990-12-27 1993-06-22 Novoste Corporation Wound treating device and method of using same
US5419765A (en) * 1990-12-27 1995-05-30 Novoste Corporation Wound treating device and method for treating wounds
US5206028A (en) * 1991-02-11 1993-04-27 Li Shu Tung Dense collagen membrane matrices for medical uses
US5310407A (en) * 1991-06-17 1994-05-10 Datascope Investment Corp. Laparoscopic hemostat delivery system and method for using said system
US5290310A (en) * 1991-10-30 1994-03-01 Howmedica, Inc. Hemostatic implant introducer
US5676689A (en) * 1991-11-08 1997-10-14 Kensey Nash Corporation Hemostatic puncture closure system including vessel location device and method of use
US5282827A (en) * 1991-11-08 1994-02-01 Kensey Nash Corporation Hemostatic puncture closure system and method of use
US5163904A (en) * 1991-11-12 1992-11-17 Merit Medical Systems, Inc. Syringe apparatus with attached pressure gauge
US5220926A (en) * 1992-07-13 1993-06-22 Jones George T Finger mounted core biopsy guide
US5413571A (en) * 1992-07-16 1995-05-09 Sherwood Medical Company Device for sealing hemostatic incisions
US5334216A (en) * 1992-12-10 1994-08-02 Howmedica Inc. Hemostatic plug
SK281535B6 (en) * 1993-01-25 2001-04-09 Sonus Pharmaceuticals, Inc. Contrast medium for diagnostic ultrasound procedures and process for preparing thereof
CA2095553A1 (en) * 1993-02-12 1994-08-13 Kimberly-Clark Worldwide, Inc. Encapsulated catamenial tampon with and without an applicator
US5320639A (en) * 1993-03-12 1994-06-14 Meadox Medicals, Inc. Vascular plug delivery system
US5388588A (en) * 1993-05-04 1995-02-14 Nabai; Hossein Biopsy wound closure device and method
US5383896A (en) * 1993-05-25 1995-01-24 Gershony; Gary Vascular sealing device
US5325857A (en) * 1993-07-09 1994-07-05 Hossein Nabai Skin biopsy device and method
US5486195A (en) * 1993-07-26 1996-01-23 Myers; Gene Method and apparatus for arteriotomy closure
US5431639A (en) * 1993-08-12 1995-07-11 Boston Scientific Corporation Treating wounds caused by medical procedures
US5383899A (en) * 1993-09-28 1995-01-24 Hammerslag; Julius G. Method of using a surface opening adhesive sealer
US5653730A (en) * 1993-09-28 1997-08-05 Hemodynamics, Inc. Surface opening adhesive sealer
US5728122A (en) * 1994-01-18 1998-03-17 Datascope Investment Corp. Guide wire with releaseable barb anchor
US5526822A (en) * 1994-03-24 1996-06-18 Biopsys Medical, Inc. Method and apparatus for automated biopsy and collection of soft tissue
US5649547A (en) * 1994-03-24 1997-07-22 Biopsys Medical, Inc. Methods and devices for automated biopsy and collection of soft tissue
US5545178A (en) * 1994-04-29 1996-08-13 Kensey Nash Corporation System for closing a percutaneous puncture formed by a trocar to prevent tissue at the puncture from herniating
US5716394A (en) * 1994-04-29 1998-02-10 W. L. Gore & Associates, Inc. Blood contact surfaces using extracellular matrix synthesized in vitro
US5522850A (en) * 1994-06-23 1996-06-04 Incontrol, Inc. Defibrillation and method for cardioverting a heart and storing related activity data
US6071301A (en) * 1998-05-01 2000-06-06 Sub Q., Inc. Device and method for facilitating hemostasis of a biopsy tract
US6162192A (en) * 1998-05-01 2000-12-19 Sub Q, Inc. System and method for facilitating hemostasis of blood vessel punctures with absorbable sponge
US5645566A (en) * 1995-09-15 1997-07-08 Sub Q Inc. Apparatus and method for percutaneous sealing of blood vessel punctures
US5769086A (en) * 1995-12-06 1998-06-23 Biopsys Medical, Inc. Control system and method for automated biopsy device
US5728133A (en) * 1996-07-09 1998-03-17 Cardiologics, L.L.C. Anchoring device and method for sealing percutaneous punctures in vessels
US5902310A (en) 1996-08-12 1999-05-11 Ethicon Endo-Surgery, Inc. Apparatus and method for marking tissue
US5810806A (en) * 1996-08-29 1998-09-22 Ethicon Endo-Surgery Methods and devices for collection of soft tissue
US5681279A (en) * 1996-11-04 1997-10-28 Roper; David H. Pill dispensing syringe
US6033427A (en) * 1998-01-07 2000-03-07 Lee; Benjamin I. Method and device for percutaneous sealing of internal puncture sites

Cited By (147)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10111664B2 (en) 2000-01-05 2018-10-30 Integrated Vascular Systems, Inc. Closure system and methods of use
US20110106148A1 (en) * 2000-01-05 2011-05-05 Integrated Vascular Systems, Inc. Closure system and methods of use
US9579091B2 (en) 2000-01-05 2017-02-28 Integrated Vascular Systems, Inc. Closure system and methods of use
US9050087B2 (en) 2000-01-05 2015-06-09 Integrated Vascular Systems, Inc. Integrated vascular device with puncture site closure component and sealant and methods of use
US8758396B2 (en) 2000-01-05 2014-06-24 Integrated Vascular Systems, Inc. Vascular sheath with bioabsorbable puncture site closure apparatus and methods of use
US8758400B2 (en) 2000-01-05 2014-06-24 Integrated Vascular Systems, Inc. Closure system and methods of use
US8956388B2 (en) 2000-01-05 2015-02-17 Integrated Vascular Systems, Inc. Integrated vascular device with puncture site closure component and sealant
US8491628B2 (en) 2000-08-01 2013-07-23 Loma Linda University Medical Center Vascular wound closure device and method
US20110046664A1 (en) * 2000-08-01 2011-02-24 Loma Linda University Medical Center Vascular wound closure device and method
US8702750B2 (en) 2000-08-02 2014-04-22 Loma Linda University Apparatus for closing vascular puncture
US9320505B2 (en) 2000-08-02 2016-04-26 Loma Linda University Apparatus for closing vascular puncture
US8425552B2 (en) 2000-08-02 2013-04-23 Loma Linda University Medical Center Apparatus for closing vascular puncture
US9101731B2 (en) 2000-08-02 2015-08-11 Loma Linda University Medical Center Vascular wound closure device and method
US7780699B2 (en) 2000-08-02 2010-08-24 Loma Linda University Medical Center Vascular wound closure device and method
US20050209637A1 (en) * 2000-08-02 2005-09-22 Zhu Yong H Apparatus for closing vascular puncture
US20050216057A1 (en) * 2000-09-08 2005-09-29 James Coleman Surgical stapler
US9402625B2 (en) 2000-09-08 2016-08-02 Abbott Vascular Inc. Surgical stapler
US20080269801A1 (en) * 2000-09-08 2008-10-30 Abbott Vascular Inc. Surgical stapler
US20080272173A1 (en) * 2000-09-08 2008-11-06 Abbott Vascular Inc. Surgical stapler
US9060769B2 (en) 2000-09-08 2015-06-23 Abbott Vascular Inc. Surgical stapler
US20090230168A1 (en) * 2000-09-08 2009-09-17 Abbott Vascular Inc. Surgical stapler
US8784447B2 (en) 2000-09-08 2014-07-22 Abbott Vascular Inc. Surgical stapler
US9089674B2 (en) * 2000-10-06 2015-07-28 Integrated Vascular Systems, Inc. Apparatus and methods for positioning a vascular sheath
US20070010853A1 (en) * 2000-10-06 2007-01-11 Integrated Vascular Systems, Inc. Apparatus and methods for positioning a vascular sheath
US9554786B2 (en) 2000-12-07 2017-01-31 Integrated Vascular Systems, Inc. Closure device and methods for making and using them
US9585646B2 (en) 2000-12-07 2017-03-07 Integrated Vascular Systems, Inc. Closure device and methods for making and using them
US8690910B2 (en) 2000-12-07 2014-04-08 Integrated Vascular Systems, Inc. Closure device and methods for making and using them
US9320522B2 (en) 2000-12-07 2016-04-26 Integrated Vascular Systems, Inc. Closure device and methods for making and using them
US20070282352A1 (en) * 2000-12-07 2007-12-06 Carley Michael T Closure device and methods for making and using them
US10245013B2 (en) 2000-12-07 2019-04-02 Integrated Vascular Systems, Inc. Closure device and methods for making and using them
US9655602B2 (en) 2000-12-14 2017-05-23 CARDINAL HEALTH SWITZERLAND 515 GmbH Vascular plug having composite construction
US8888812B2 (en) 2000-12-14 2014-11-18 Cordis Corporation Plug with collet and apparatus and methods for delivering such plugs
US8083768B2 (en) 2000-12-14 2011-12-27 Ensure Medical, Inc. Vascular plug having composite construction
US20050267528A1 (en) * 2000-12-14 2005-12-01 Ensure Medical, Inc. Vascular plug having composite construction
US8075587B2 (en) 2000-12-14 2011-12-13 Ensure Medical, Inc. Apparatus and methods for sealing vascular punctures
US20040127940A1 (en) * 2000-12-14 2004-07-01 Ginn Richard S. Apparatus and methods for sealing vascular punctures
US8057510B2 (en) 2000-12-14 2011-11-15 Ensure Medical, Inc. Plug with collet and apparatus and method for delivering such plugs
US7753933B2 (en) 2000-12-14 2010-07-13 Ensure Medical, Inc. Plug with detachable guidewire element and methods for use
US20100274281A1 (en) * 2000-12-14 2010-10-28 Ensure Medical, Inc. Plug with detachable guidewire element and methods for use
US9492148B2 (en) 2000-12-14 2016-11-15 CARDINAL HEALTH SWITZERLAND 515 GmbH Apparatus and methods for sealing vascular punctures
US8409248B2 (en) 2000-12-14 2013-04-02 Core Medical, Inc. Plug with detachable guidewire element and methods for use
US20110144691A1 (en) * 2001-06-07 2011-06-16 Abbott Vascular Inc. Surgical staple
US20110137340A1 (en) * 2001-06-07 2011-06-09 Abbott Vascular Inc. Surgical staple
US8728119B2 (en) 2001-06-07 2014-05-20 Abbott Vascular Inc. Surgical staple
US10201340B2 (en) 2002-02-21 2019-02-12 Integrated Vascular Systems, Inc. Sheath apparatus and methods for delivering a closure device
US9498196B2 (en) 2002-02-21 2016-11-22 Integrated Vascular Systems, Inc. Sheath apparatus and methods for delivering a closure device
US9980728B2 (en) 2002-06-04 2018-05-29 Abbott Vascular Inc Blood vessel closure clip and delivery device
US9295469B2 (en) 2002-06-04 2016-03-29 Abbott Vascular Inc. Blood vessel closure clip and delivery device
US10398418B2 (en) 2003-01-30 2019-09-03 Integrated Vascular Systems, Inc. Clip applier and methods of use
US8926656B2 (en) 2003-01-30 2015-01-06 Integated Vascular Systems, Inc. Clip applier and methods of use
US11589856B2 (en) 2003-01-30 2023-02-28 Integrated Vascular Systems, Inc. Clip applier and methods of use
US9271707B2 (en) 2003-01-30 2016-03-01 Integrated Vascular Systems, Inc. Clip applier and methods of use
US9398914B2 (en) 2003-01-30 2016-07-26 Integrated Vascular Systems, Inc. Methods of use of a clip applier
US20110166584A1 (en) * 2003-01-30 2011-07-07 Integrated Vascular Systems, Inc. Clip applier and methods of use
US20070213710A1 (en) * 2003-02-04 2007-09-13 Hayim Lindenbaum Methods and apparatus for hemostasis following arterial catheterization
US8372072B2 (en) 2003-02-04 2013-02-12 Cardiodex Ltd. Methods and apparatus for hemostasis following arterial catheterization
EP1615540A2 (en) * 2003-04-22 2006-01-18 Sub-Q, Inc. Puncture closure systeme with pin and pull technique
EP1615540A4 (en) * 2003-04-22 2011-07-20 Sub Q Inc Puncture closure systeme with pin and pull technique
US8012167B2 (en) 2003-08-14 2011-09-06 Loma Linda University Medical Center Vascular wound closure device and method
US9364205B2 (en) 2003-08-14 2016-06-14 Loma Linda University Medical Center Wound closure device and method
US8579934B2 (en) 2003-10-17 2013-11-12 Ensure Medical, Inc. Locator and delivery device and method of use
US8852229B2 (en) * 2003-10-17 2014-10-07 Cordis Corporation Locator and closure device and method of use
US20050085854A1 (en) * 2003-10-17 2005-04-21 Ensure Medical, Inc. Locator and closure device and method of use
US7959634B2 (en) 2004-03-29 2011-06-14 Soteira Inc. Orthopedic surgery access devices
US20050216018A1 (en) * 2004-03-29 2005-09-29 Sennett Andrew R Orthopedic surgery access devices
US20080167643A1 (en) * 2004-11-22 2008-07-10 Cardiodex Ltd. Techniques for Heating-Treating Varicose Veins
US8435236B2 (en) 2004-11-22 2013-05-07 Cardiodex, Ltd. Techniques for heat-treating varicose veins
US8088144B2 (en) * 2005-05-04 2012-01-03 Ensure Medical, Inc. Locator and closure device and method of use
US20060253037A1 (en) * 2005-05-04 2006-11-09 Ensure Medical, Inc. Locator and closure device and method of use
US9289198B2 (en) 2005-05-04 2016-03-22 Cordis Corporation Locator and closure device and method of use
US8926654B2 (en) 2005-05-04 2015-01-06 Cordis Corporation Locator and closure device and method of use
US8926633B2 (en) 2005-06-24 2015-01-06 Abbott Laboratories Apparatus and method for delivering a closure element
US10085753B2 (en) 2005-07-01 2018-10-02 Abbott Laboratories Clip applier and methods of use
US11344304B2 (en) 2005-07-01 2022-05-31 Abbott Laboratories Clip applier and methods of use
US9050068B2 (en) 2005-07-01 2015-06-09 Abbott Laboratories Clip applier and methods of use
WO2007025019A2 (en) 2005-08-24 2007-03-01 Avasca Medical, Inc. Vascular closure methods and apparatuses
WO2007025018A2 (en) 2005-08-24 2007-03-01 Avasca Medical, Inc. Vascular opening edge eversion methods and apparatuses
US8088145B2 (en) * 2005-10-05 2012-01-03 Loma Linda University Medical Center Vascular wound closure device and method
US8617253B2 (en) 2005-10-05 2013-12-31 Loma Linda University Medical Center Vascular wound closure device and method
US9179902B2 (en) 2005-10-05 2015-11-10 Loma Linda University Medical Center Vascular wound closure device and method
US20070123816A1 (en) * 2005-10-05 2007-05-31 Zhu Yong H Vascular wound closure device and method
US8808310B2 (en) 2006-04-20 2014-08-19 Integrated Vascular Systems, Inc. Resettable clip applier and reset tools
US9962144B2 (en) 2006-06-28 2018-05-08 Abbott Laboratories Vessel closure device
US8556930B2 (en) 2006-06-28 2013-10-15 Abbott Laboratories Vessel closure device
US8758398B2 (en) 2006-09-08 2014-06-24 Integrated Vascular Systems, Inc. Apparatus and method for delivering a closure element
US8623025B2 (en) 2006-12-15 2014-01-07 Gmedelaware 2 Llc Delivery apparatus and methods for vertebrostenting
US9237916B2 (en) 2006-12-15 2016-01-19 Gmedeleware 2 Llc Devices and methods for vertebrostenting
US20100114111A1 (en) * 2006-12-15 2010-05-06 Francisca Tan-Malecki Delivery apparatus and methods for vertebrostenting
US20090326538A1 (en) * 2006-12-15 2009-12-31 Sennett Andrew R Devices and methods for fracture reduction
US7909873B2 (en) 2006-12-15 2011-03-22 Soteira, Inc. Delivery apparatus and methods for vertebrostenting
US9480485B2 (en) 2006-12-15 2016-11-01 Globus Medical, Inc. Devices and methods for vertebrostenting
US20080249481A1 (en) * 2006-12-15 2008-10-09 Lawrence Crainich Devices and Methods for Vertebrostenting
US20080208320A1 (en) * 2006-12-15 2008-08-28 Francisca Tan-Malecki Delivery Apparatus and Methods for Vertebrostenting
US9192397B2 (en) 2006-12-15 2015-11-24 Gmedelaware 2 Llc Devices and methods for fracture reduction
US20090125056A1 (en) * 2007-08-15 2009-05-14 Cardiodex Ltd. Systems and methods for puncture closure
US8366706B2 (en) 2007-08-15 2013-02-05 Cardiodex, Ltd. Systems and methods for puncture closure
US8893947B2 (en) 2007-12-17 2014-11-25 Abbott Laboratories Clip applier and methods of use
US20110238089A1 (en) * 2007-12-17 2011-09-29 Abbott Laboratories Tissue closure system and methods of use
US8672953B2 (en) 2007-12-17 2014-03-18 Abbott Laboratories Tissue closure system and methods of use
US8820602B2 (en) 2007-12-18 2014-09-02 Abbott Laboratories Modular clip applier
US9282965B2 (en) 2008-05-16 2016-03-15 Abbott Laboratories Apparatus and methods for engaging tissue
US10413295B2 (en) 2008-05-16 2019-09-17 Abbott Laboratories Engaging element for engaging tissue
US10588646B2 (en) 2008-06-17 2020-03-17 Globus Medical, Inc. Devices and methods for fracture reduction
US9687255B2 (en) 2008-06-17 2017-06-27 Globus Medical, Inc. Device and methods for fracture reduction
US9241696B2 (en) 2008-10-30 2016-01-26 Abbott Vascular Inc. Closure device
US8657852B2 (en) 2008-10-30 2014-02-25 Abbott Vascular Inc. Closure device
US8858594B2 (en) 2008-12-22 2014-10-14 Abbott Laboratories Curved closure device
US20110218568A1 (en) * 2009-01-09 2011-09-08 Voss Laveille K Vessel closure devices, systems, and methods
US20100179571A1 (en) * 2009-01-09 2010-07-15 Abbott Vascular Inc. Closure devices, systems, and methods
US20100179589A1 (en) * 2009-01-09 2010-07-15 Abbott Vascular Inc. Rapidly eroding anchor
US9414820B2 (en) 2009-01-09 2016-08-16 Abbott Vascular Inc. Closure devices, systems, and methods
US11439378B2 (en) 2009-01-09 2022-09-13 Abbott Cardiovascular Systems, Inc. Closure devices and methods
US9486191B2 (en) 2009-01-09 2016-11-08 Abbott Vascular, Inc. Closure devices
US20100179590A1 (en) * 2009-01-09 2010-07-15 Abbott Vascular Inc. Vessel closure devices and methods
US10537313B2 (en) 2009-01-09 2020-01-21 Abbott Vascular, Inc. Closure devices and methods
US9089311B2 (en) 2009-01-09 2015-07-28 Abbott Vascular Inc. Vessel closure devices and methods
US20100179567A1 (en) * 2009-01-09 2010-07-15 Abbott Vascular Inc. Closure devices, systems, and methods
US9314230B2 (en) 2009-01-09 2016-04-19 Abbott Vascular Inc. Closure device with rapidly eroding anchor
US9173644B2 (en) 2009-01-09 2015-11-03 Abbott Vascular Inc. Closure devices, systems, and methods
US9414824B2 (en) 2009-01-16 2016-08-16 Abbott Vascular Inc. Closure devices, systems, and methods
US8905937B2 (en) 2009-02-26 2014-12-09 Integrated Vascular Systems, Inc. Methods and apparatus for locating a surface of a body lumen
US9585647B2 (en) 2009-08-26 2017-03-07 Abbott Laboratories Medical device for repairing a fistula
US20110054492A1 (en) * 2009-08-26 2011-03-03 Abbott Laboratories Medical device for repairing a fistula
US10426514B2 (en) 2009-12-21 2019-10-01 Livanova Usa, Inc. Self-dilating cannula
US20110152741A1 (en) * 2009-12-21 2011-06-23 Michael Banchieri Cannula system
US9339599B2 (en) 2009-12-21 2016-05-17 Sorin Group Usa, Inc. Self-dilating cannula
US20110213316A1 (en) * 2009-12-21 2011-09-01 Tamer Ibrahim Self-dilating cannula
US8758399B2 (en) 2010-08-02 2014-06-24 Abbott Cardiovascular Systems, Inc. Expandable bioabsorbable plug apparatus and method
US8821534B2 (en) 2010-12-06 2014-09-02 Integrated Vascular Systems, Inc. Clip applier having improved hemostasis and methods of use
US8617184B2 (en) 2011-02-15 2013-12-31 Abbott Cardiovascular Systems, Inc. Vessel closure system
US9149276B2 (en) 2011-03-21 2015-10-06 Abbott Cardiovascular Systems, Inc. Clip and deployment apparatus for tissue closure
US11464942B2 (en) 2011-04-05 2022-10-11 Sorin Group Italia S.R.L. Bi-directional perfusion cannula
US8795253B2 (en) * 2011-04-05 2014-08-05 Sorin Group Italia S.R.L. Bi-directional perfusion cannula
US10183148B2 (en) 2011-04-05 2019-01-22 Sorin Group Italia S.R.L. Bi-directional perfusion cannula
US20120259273A1 (en) * 2011-04-05 2012-10-11 Mtmm Pty Ltd Bi-Directional Perfusion Cannula
US11589855B2 (en) 2011-10-25 2023-02-28 Teleflex Life Sciences Limited Instrument and methods for surgically closing percutaneous punctures
US9332976B2 (en) 2011-11-30 2016-05-10 Abbott Cardiovascular Systems, Inc. Tissue closure device
US9364209B2 (en) 2012-12-21 2016-06-14 Abbott Cardiovascular Systems, Inc. Articulating suturing device
US10537312B2 (en) 2012-12-21 2020-01-21 Abbott Cardiovascular Systems, Inc. Articulating suturing device
US11672518B2 (en) 2012-12-21 2023-06-13 Abbott Cardiovascular Systems, Inc. Articulating suturing device
US11419592B2 (en) 2013-03-15 2022-08-23 Teleflex Life Sciences Limited Vascular closure devices and methods of use
US11364024B2 (en) 2013-12-23 2022-06-21 Teleflex Life Sciences Limited Vascular closure device
US11779320B2 (en) 2013-12-23 2023-10-10 Teleflex Life Sciences Limited Vascular closure device
US11576663B2 (en) 2015-06-26 2023-02-14 Teleflex Life Sciences Limited Vascular closure device with removable guide member
US20160374655A1 (en) * 2015-06-26 2016-12-29 Essential Medical, Inc. Vascular closure device with removable guide member
US10555727B2 (en) * 2015-06-26 2020-02-11 Essential Medical, Inc. Vascular closure device with removable guide member
US11751859B2 (en) 2016-04-04 2023-09-12 Merit Medical Systems, Inc. Medical plug delivery devices with a rotatable magazine and related components and methods

Also Published As

Publication number Publication date
WO2002005865A2 (en) 2002-01-24
AU2001273401A1 (en) 2002-01-30
US7621936B2 (en) 2009-11-24
WO2002005865A3 (en) 2002-07-18
US20040158287A1 (en) 2004-08-12
US8696702B2 (en) 2014-04-15
US20100049245A1 (en) 2010-02-25

Similar Documents

Publication Publication Date Title
US7621936B2 (en) Sheath-mounted arterial plug delivery device
US6527734B2 (en) System and method for facilitating hemostasis of blood vessel punctures with absorbable sponge
US6964658B2 (en) System and method for facilitating hemostasis of blood vessel punctures with absorbable sponge
US11534150B2 (en) Apparatus and methods for sealing a vascular puncture
US8382798B2 (en) Apparatus for sealing a vascular puncture
US7201725B1 (en) Device and method for determining a depth of an incision
US6610026B2 (en) Method of hydrating a sponge material for delivery to a body
US7144411B2 (en) Apparatus and methods for positioning a vascular sheath
JP4564964B2 (en) Locator and closure device and method of use
CA2492702C (en) Apparatus for sealing punctures in blood vessels
WO2001021058A2 (en) Device and method for determining a depth of an incision
EP1526812B1 (en) Apparatus for sealing a puncture by causing a reduction in the circumference of the puncture
US20040102730A1 (en) System and method for facilitating hemostasis of blood vessel punctures with absorbable sponge

Legal Events

Date Code Title Description
AS Assignment

Owner name: SUB-Q, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CRAGG, ANDREW H.;ASHBY, MARK;REEL/FRAME:012246/0732;SIGNING DATES FROM 20010927 TO 20011003

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION