US20010027271A1 - Instrument guidance for stereotactic surgery - Google Patents

Instrument guidance for stereotactic surgery Download PDF

Info

Publication number
US20010027271A1
US20010027271A1 US09/846,640 US84664001A US2001027271A1 US 20010027271 A1 US20010027271 A1 US 20010027271A1 US 84664001 A US84664001 A US 84664001A US 2001027271 A1 US2001027271 A1 US 2001027271A1
Authority
US
United States
Prior art keywords
upper portion
tracking
orientation
guidance fixture
mounting base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/846,640
Other versions
US6298262B1 (en
Inventor
Joel Franck
Frederick Haer
Ronald Franklin
Kevin Frank
John Clayton
Jaimie Henderson
Richard Bucholz
Kurt Smith
Catalina Carroll
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Neutar LLC
Original Assignee
Neutar LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=22050645&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20010027271(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Neutar LLC filed Critical Neutar LLC
Priority to US09/846,640 priority Critical patent/US6298262B1/en
Application granted granted Critical
Publication of US6298262B1 publication Critical patent/US6298262B1/en
Publication of US20010027271A1 publication Critical patent/US20010027271A1/en
Assigned to NEUTAR L.L.C. reassignment NEUTAR L.L.C. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BUCHOLZ, RICHARD D., HENDERSON, JAIMIE, SMITH, KURT R., CARROLL, CATALINA J., CLAYTON, JOHN MARK, FRANK, KEVIN J.
Assigned to NEUTAR L.L.C. reassignment NEUTAR L.L.C. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FRANCK, JOEL I., FRANKLIN, RONALD J., HAER, FREDERICK C.
Assigned to NEUTAR L.L.C. reassignment NEUTAR L.L.C. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CARROLL, CATALINA J., BUCHOLZ, RICHARD D., HENDERSON, JAIMIE, SMITH, KURT R., CLAYTON, JOHN MARK, FRANK, KEVIN J.
Assigned to NEUTAR L.L.C. reassignment NEUTAR L.L.C. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FRANCK, JOEL I., FRANKLIN, RONALD J., HAER, FREDERICK C.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/10Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges for stereotaxic surgery, e.g. frame-based stereotaxis
    • A61B90/11Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges for stereotaxic surgery, e.g. frame-based stereotaxis with guides for needles or instruments, e.g. arcuate slides or ball joints
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/107Visualisation of planned trajectories or target regions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2055Optical tracking systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2068Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis using pointers, e.g. pointers having reference marks for determining coordinates of body points
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2072Reference field transducer attached to an instrument or patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B2090/363Use of fiducial points

Definitions

  • This invention relates to guidance of surgical instruments using stereotactic localization.
  • Stereotactic localization is a method for locating a target within a three-dimensional object. This method is used in the medical arts and sciences to locate a target in the human body, in particular in the brain or spine, for medical and surgical treatment.
  • Stereotactic surgery has a history dating back to the turn of the century, when the Horsely-Clark Apparatus was described as a mechanical frame system in which an animal was immobilized. This frame system permitted reproducible targeting within the animal's brain for physiological experiments.
  • This and similar technology found application in 1948 in the work of Wycis and Speigel. In their work, a frame was attached to a human skull. The frame permitted targeting of sites within the human brain for neurosurgical treatment.
  • Fiducial scanning markers are attached to the body in one of a variety of manners, including using an attachable frame or attaching the markers to the skin with an adhesive. A scan is then taken of a body, for example of the head, to produce a three-dimensional image of the body.
  • Scanning can be done using a variety of techniques including CT, MRI, PET, and SPECT. Images of the fiducial scanning markers that are located around the body are then located in the three-dimensional image at fiducial image points. Points of interest, such as the location of a tumor, are located in the three-dimensional image with reference to these fiducial image points. The body and the image are registered by matching the locations of the scanning markers and the coordinates of the fiducial image points.
  • a three-dimensional frame is screwed to the patient's skull prior to scanning the head. This frame serves as a mechanical reference mechanism that supports scanning fiducial markers at fiducial points around the body.
  • the frame remains attached to the patient's skull from before scanning until after surgery is complete.
  • a mechanical guide assembly is attached to the frame.
  • the relative location in the image of the point of interest with respect to the fiducial image points is determined, and this relationship is used to adjust the mechanical guide assembly with respect to the fiducial points on the frame.
  • a surgical instrument is then guided to a location in the body that corresponds to the point of interest in the image.
  • stereotactic surgery In another form of stereotactic surgery, known generally as “image-guided” stereotactic surgery, rather than relying on mechanical adjustment of a guide assembly, visual feedback is provided to a surgeon by displaying a composite image formed from the scanned three-dimensional image and a synthesized image of a hand-held surgical instrument. The surgeon guides the hand-held instrument into the body using the visual feedback.
  • a frame is attached to the patient and a scan is taken as described above. After scanning, the head and frame are secured in a fixed position, for example, fixed to an operating table.
  • the locations of the LED images in the camera images are used to determine the three-dimensional physical locations of the LEDs relative to the camera array.
  • the locations of multiple LEDs attached to the instrument are then used to determine the location and orientation of the instrument.
  • Another example of remote sensing uses sound generators and a microphone array and relies on the relative time of arrival of acoustical signals to determine the three-dimensional locations of the sound generators.
  • the tip of the surgical instrument can be placed at each of several fiducial markers for which corresponding images have been located in the three-dimensional scanned image. Registration of the synthesized image of the instrument and the scanned image can thereby be established.
  • the head and frame are secured in a fixed position, as in the image-guided approach.
  • the sensors e.g., cameras
  • energy emitters are fixed to the frame as well as to the instrument.
  • the location and orientation of the frame relative to the sensors as well as the location and orientation of the instrument relative to the sensors are both determined, and the differences in their locations and orientations are used to compute the location and orientation of the instrument relative to the frame. This computed location of the instrument is then used to display the synthesized image of the surgical instrument in an appropriate relationship to the scanned image.
  • a surgeon can rely on a variety of views of a three dimensional scanned image. These views can include a three-dimensional surface view with an adjustable point of view (e.g., a perspective view with surface shading).
  • planar (i.e., two-dimensional) views of the image can be displayed.
  • three two-dimension “slices” through orthogonal planes of the image are typically displayed, with the orientations of the planes being sagittal (dividing a head into a left and a right part), coronal (dividing a head into a front and a back part), and axial (dividing a head into an upper and lower part).
  • Image-guided frameless stereotaxy has also been applied to spine surgery.
  • a reference frame is attached to an exposed spinous process during open spine surgery, and a probe is used to register the patient's spine with scanned image of the spine.
  • Anatomical landmarks are used as fiducial points which are located in the scanned image.
  • Visual feedback is provided to manually guide placement of instruments, such as insertion of pedicle screws into the spinal structures.
  • the invention is a method for positioning a surgical instrument during stereotactic surgery by providing a guidance fixture that includes an upper portion, including an instrument guide for moving the surgical instrument along a constrained trajectory relative to the upper portion, and also includes an adjustable base supporting the upper portion, including a mounting base and an adjustment mechanism.
  • the method includes attaching the guidance fixture to a body, including attaching the mounting base to the body.
  • the method also includes determining, using a remote sensing device, the orientation of the upper portion of the guidance assembly in relation to the body, and displaying a representation of a relationship of the constrained trajectory and a target point in the body.
  • the method also includes aligning the guidance fixture, including aligning the orientation of the upper portion to achieve a desired relation between the constrained trajectory and the target point.
  • Aligning the orientation of the upper portion includes rotating the upper portion about a central axis of the mounting base and pivoting the upper portion to adjust an angle between the upper portion and the central axis.
  • Determining the orientation of the upper portion includes determining the locations of a first set of tracking markers affixed to the upper portion, determining the locations of a second set of tracking markers affixed to the body, and computing the orientation using the locations of the first and the second sets of tracking markers.
  • the method can include locking the adjustment mechanism to fix the orientation of the upper portion in relation to the body, and then determining a displacement of the surgical instrument along the constrained trajectory.
  • a remote sensing device can be used to locate a tracking marker affixed in a fixed relationship to the surgical instrument, and used to locate a set of tracking markers affixed to the guidance assembly.
  • the displacement can then be computed using the location of the marker affixed in a fixed relationship to the surgical instrument and the locations of the set of tracking markers affixed to the guidance assembly.
  • the method can also include displaying a representation of a location of the surgical instrument in relation to the body, and guiding the surgical instrument into the body along the constrained trajectory.
  • the invention is a guidance fixture for guiding a surgical instrument into a body during stereotactic surgery.
  • the fixture includes an upper portion including an instrument guide for moving the surgical instrument along a constrained trajectory relative to the upper portion, and an adjustable base supporting the upper portion, including a mounting base for attaching the guidance fixture to a body, the mounting base having central opening and a central axis passing through the central opening, and an orientation adjustment mechanism coupled between the mounting base and the upper portion, configuration of the adjustment mechanism determine the orientation of the upper portion relative to the mounting base.
  • the guidance fixture can include a set of tracking markers, such as light emitting diodes, that can be located by a remote sensing device, such as an array of camera.
  • the orientation adjustment mechanism of the guidance fixture can include a rotation adjustment mechanism and a pivoting adjustment mechanism, wherein adjustment of the rotation adjustment mechanism rotates the upper portion about the central axis, and adjustment of the pivoting adjustment mechanism adjusts an angle between the upper portion and the central axis.
  • the rotation adjustment mechanism can include a rotating collar attached to the mounting base and the pivoting adjustment mechanism includes a pivoting collar coupling the rotating collar to the upper portion.
  • the adjustable base can further include a rotation locking screw for preventing rotation of the rotating collar and a pivoting locking screw for preventing pivoting of the pivoting collar.
  • the upper portion of the guidance fixture can include an x-y table adjustment of which displaces the constrained trajectory.
  • the instrument guide of the guidance fixture can include a driving mechanism for positioning the instrument along the constrained trajectory, such as a linear trajectory.
  • the invention is a system for stereotactic surgery on a body, which includes a remote sensing device, a tracking frame, including a plurality of tracking markers for tracking a location and an orientation of the body by the remote sensing device, and a guidance fixture.
  • the system also includes a tracking system for accepting the locations of the tracking markers on the tracking frame and the locations of the tracking markers on the guidance fixture, and computing a relationship between the constrained trajectory and the body, and a display system for presenting an image of the body and the relationship between the constrained trajectory and the body.
  • the invention provides several advantages.
  • a highly accurate and reproducible way of guiding a surgical instrument deep into a body is provided without requiring a frame to be fixed to the body for the entire interval from scanning through subsequent surgery. Not requiring the frame to be fixed for this time avoids the inconvenience, discomfort, and inefficiency of placement of a fiducial frame on a patient.
  • Inaccuracy imparted to an MRI scan by electromagnetic interaction with a reference frame or to a CT scan by x-ray interaction with the frame is also improved.
  • the patient is not required to the be immobilized during surgery and therefore may not require general anesthesia or heavy sedation. This can allow immediate determination of the response to a surgical intervention in behavioral or physiological terms without interference of general anesthesia or heavy sedation.
  • both the patient and the sensors used to locate a patient and a surgical instrument can be mobile providing further flexibility in operating procedures.
  • An additional advantage is that the invention does not require immobilizing (i.e., clamping in a fixed position) the patient. This contributes to patient comfort which can extend the time a surgical procedure can be carried out. Furthermore, since a guidance fixture is not attached until a scan has been made, surgical time is further extended as discomfort generally relates to having a guidance fixture attached. Also, alignment of the guidance fixture is made easier with this invention, and therefore, less time can be spent on alignment, thereby leaving more time for the actual surgical procedure.
  • Another advantage of the invention is that alignment of the guidance fixture is performed using motions, each of which is constrained to one degree of freedom (e.g., rotation or pivoting).
  • this arrangement provides a relatively stable alignment compared to alternative arrangements in which a two degree of freedom motion (such as alignment of a ball and socket arrangement) is clamped.
  • Yet another advantage of the invention is that the constrained motions of the guidance fixture, that is, the rotation and pivoting motions, are directly reflected in the computer displayed navigational view, thereby greatly simplifying targeting.
  • FIG. 1 is a flowchart of a stereotactic brain surgery procedure
  • FIG. 2 is a head with threaded inserts implanted including a cross-sectional view of the skull and a threaded insert;
  • FIG. 3 is a head with a scanning MIRRF attached including a detailed exploded view of the attachment of the MIRRF to the implanted threaded inserts;
  • FIG. 4 illustrates scanning of a head on which a scanning MIRRF is attached
  • FIG. 6 is a dataflow diagram for computation of a composite image including a synthesized image of a probe
  • FIG. 7 illustrates locating a planned entry point using the tracked cranial probe and a computer display
  • FIG. 8 is a display of a virtual burr hole and accessible cone of orientations
  • FIG. 9 is a head with a tracking MIRRF and a guidance fixture attached being tracked using a camera array;
  • FIG. 10 is a view of a base platter and an adjustable base of a guidance fixture
  • FIG. 11 is an exploded view of the adjustable base of a guidance fixture
  • FIG. 12 is a dataflow diagram for computation of a composite image including a synthesized image of a surgical instrument
  • FIG. 13 is a detailed flowchart of trajectory replanning and fixture alignment
  • FIGS. 14 a - c illustrate a navigational view display and corresponding planar segments through a body
  • FIGS. 15 a - f illustrate a “field of view” display and corresponding conical section through a body
  • FIG. 16 is a guidance fixture including an adjustable base and an instrument drive attached to a base platter;
  • FIG. 17 is a retractor in a guidance fixture
  • FIG. 18 is a calibration jig
  • FIG. 19 is a phantom jig and a guidance fixture and a tracking MIRRF attached to the jig;
  • FIG. 20 is an arc shaped MIRRF attached to a head including a view of a threaded insert and mounting bolt;
  • FIG. 21 is a scanning marker and a tracking marker attached to a threaded insert
  • FIG. 22 is a guidance fixture and a tracking MIRRF attached to a conventional stereotactic frame
  • FIG. 23 is a tracking MIRRF attached directly to a guidance fixture.
  • an aspect of the invention relates to stereotactic brain surgery.
  • This approach to brain surgery involves a series of steps, shown in FIG. 1, from start 100 prior to scanning through finish 199 after the surgical phase of a procedure is completed.
  • the first phase involves creating a three-dimensional image of the head (steps 105 , 110 , 115 , 120 ), planning a surgical trajectory based on the image (step 125 ), and validating the guidance fixture (step 130 ) that will be used during the surgical procedure.
  • the second phase involves the remaining steps (steps 135 through 195 ) that are used to carry out the actual surgical procedure.
  • the steps of the first phase can be carried out quite some time before those of the second phase.
  • creating the three-dimensional image of the head can be done on one day, and the steps used to carry out the actual surgery can be done on a subsequent day.
  • the steps of the second phase may be repeated, for example on several different days, illustrated by transition 192 between steps 195 and 135 .
  • the first step of the procedure is to attach anchors to which scanning, registration, and tracking markers will be subsequently attached (step 105 ).
  • the anchors include two threaded inserts 220 that are surgically implanted into the patient's skull 210 using a template (described below).
  • the template precisely determines the separation and parallel orientation of inserts 220 .
  • the chosen material can be polycarbonate, which results in scanning MIRRF 310 being almost invisible in the scanned image.
  • Fiducial scanning markers 340 are mounted in spherical cavities in scanning MIRRF 310 .
  • the design of the cavities is such that the “press-in” marker inserts can be removed for cleaning.
  • the star-shaped design of scanning MIRRF 310 is such that, when attached, the elongated part of the star extends behind or in front of the ear so that mounting screws 320 are located toward the top of the skull where soft tissue thickness is minimal and skull thickness is maximal. This minimal tissue thickness allows threaded inserts 220 to be implanted easily under local anesthetic by making a small incision.
  • multiple MIRRFs can be attached in a similar manner to increase the number or separation of the scanning markers.
  • MRI or CT scanner 400 is used to obtain a three-dimensional digitized image 410 of the head, for example, as a series of two-dimensional “slices” (step 115 in FIG. 1).
  • a model or map of the surface of the skull can be made allowing, for instance, subsequent three-dimensional surface display of the skull.
  • the fiducial scanning markers 340 produce fiducial images 420 at in image 410 .
  • Fiducial coordinates 421 of fiducial images 420 in the coordinate system of image 410 are determined, for example, by manually positioning a cursor at fiducial images 420 on a computer display.
  • Image 410 along with the fiducial coordinates 421 , are stored on a computer readable storage medium 430 for use during the subsequent surgical phase of the approach.
  • image is stored as a series of two-dimensional images, each corresponding to a horizontal “slice” of the head.
  • scanning MIRRF 310 is removed (FIG. 1, step 120 ), and threaded inserts 220 are left in place.
  • Antibiotic ointment can be applied and the patient is either discharged or sent to the operating room.
  • a surgeon determines the location of a target point within the brain and an entry point through the skull (FIG. 1, step 125 ).
  • a planned surgical trajectory is then determined as the line joining the entry point and the target point.
  • the surgeon plans the trajectory using a computer display of image 410 which provides, for example, a three-dimensional surface view, and sagittal, coronal, and axial planar views. This allows the surgeon, for example, to plan a trajectory that avoids critical structures in the brain.
  • the target and entry points, and the trajectory are stored along with the image on storage medium 430 .
  • the surgical phase of the procedure begins by attaching a tracking MIRRF 510 to threaded inserts 220 (not shown) that remained implanted in the patient's skull after scanning MIRRF 310 was previously removed.
  • Tracking MIRRF 510 has a very similar structure to scanning MIRRF 310 .
  • Tracking MIRRF 510 includes fiducial divots 540 at the centers of locations corresponding to fiducial markers 340 (shown in FIGS. 3 and 4).
  • Four tracking LEDs 550 are also attached to tracking MIRRF 510 .
  • tracking MIRRF 510 is rigid, the geometric relationship between tracking LEDs 550 and fiducial divots 540 is fixed and can be determined beforehand and verified in a subsequent verification step, or can be unknown and determined in a subsequent registration step.
  • tracking MIRRF 510 is made of a material that is lightweight and can be autoclaved, such as Radel.
  • the patient After attaching tracking MIRRF 510 to the patient's skull, the patient can be comfortably placed in an awake, possibly lightly sedated, state in an operating room chair, which is similar to a dental chair. The patient is allowed to recline in an essentially unrestrained manner in the operating room chair in a semi-sitting position. Alternatively, at the surgeon's prerogative and if appropriate, general anesthesia can be administered to the patient.
  • a camera array 560 provides time-varying digitized images 586 to a localization application 588 executing on a computer workstation 580 .
  • the patient can be free to move relative to camera array 560 and relative to the operating room chair, and camera array 560 can be free to move relative to the patient and relative to the operating room chair.
  • Camera array 560 includes three CCD cameras 562 positioned in a fixed configuration relative to one another. Alternatively, two cameras, which are sufficient for three dimensional localization, or more than three cameras, which may provide greater accuracy, can be used. Each camera 562 in camera array 560 produces one time-varying image.
  • Each tracking LED 550 on tracking MIRRF 510 is powered and emits infra-red illumination which is seen as a bright point in each of time-varying digitized images 586 .
  • localization application 588 Based on the relative coordinates of the bright points in images 586 from each camera 562 of camera array 560 localization application 588 computes the position (i.e., the coordinates) of tracking LEDs 550 in the coordinate system of camera array 560 .
  • the location and orientation of tracking MIRRF 510 can be computed by localization application 588 . Tracking of MIRRF coordinates 510 is illustrated schematically by line 564 .
  • a cranial probe 570 including three probe LEDs 572 attached along its length, is also tracked using camera array 560 and localization application 588 . Based on the coordinates of the images of probe LEDs 572 in images 586 and probe geometry 584 , localization application 588 computes the position and orientation of probe 570 in the coordinate system of camera array 560 .
  • cranial probe 570 the surgeon then carries out a registration step (FIG. 1, step 140 ).
  • this registration step the surgeon first locates the fiducial points in the image. Then he touches the tip of probe 570 to each of fiducial divots 540 in tracking MIRRF 510 in turn, indicating to localization application 588 when he is touching each of the divots. Localization application 588 then computes a three-dimensional conformal registration (map) between image 410 and the coordinate system of tracking MIRRF 510 .
  • the coordinates of the fiducial divots can be computed from the coordinates of the tracking LEDs, which in turn can be computed from the locations of the fiducial images in the camera images.
  • the step of touching the divots can be omitted in this case, or used to verify the computed coordinates of fiducial divots.
  • localization application 588 continuously combines image 410 and a synthesized image of probe 570 to form a composite image 599 that combines the scanned image with the synthesized image of the probe.
  • Composite image 599 is shown on a computer display 610 which includes a three-dimensional surface display.
  • the registration and image composition functions performed by localization application 588 involves a series of data processing stages. As shown in FIG. 5, time-varying digitized images 586 are provided to localization application 588 from camera array 560 . Referring to FIG. 6, time-varying digitized images 586 are input to MIRRF tracking 591 , a processing stage of localization application 588 , which tracks tracking LEDs 550 on tracking MIRRF 510 and produces “MIRRF/cam” 593 , an orientation and location of tracking MIRRF 510 in the coordinate system of camera array 560 .
  • probe tracking 590 tracks probe 570 and produces “probe/cam” 592 , an orientation and location of probe 570 in the coordinate system of camera array 560 .
  • Probe tracking 590 makes use of probe geometry 584 which specifies the geometric relationship between the tip of the probe 570 and probe LEDs 572 .
  • the next stage of localization application 588 , relative positioning 594 inputs MIRRF/cam 593 and probe/cam 592 and produces “probe/MIRRF” 595 , the position and orientation of probe 570 in the coordinate system of tracking MIRRF 510 .
  • registration 581 takes the location information from probe/MIRRF 595 and records it in “fids/MIRRF” 582 , the coordinates of fiducial divots 540 in the coordinate system of tracking MIRRF 510 .
  • Fiducial coordinates 421 the coordinates of fiducial images 420 in the coordinate system of image 410 , are provided to localization application 588 , along with image 410 , from storage medium 430 .
  • Mapping 587 includes matching of corresponding coordinates in fids/MIRRF 582 and fiducial coordinates 421 and forming a conformal map 589 between the coordinate system of image 410 and the coordinate system of tracking MIRRF 510 .
  • Conformal map 589 includes the quantities required to transform any three-dimensional coordinate in the coordinate system of tracking MIRRF 510 into a three-dimensional coordinate in the coordinate system of image 410 . These quantities correspond, in general, to a rotation, scaling, and translation of points in the coordinate system of tracking MIRRF 510 to determine the corresponding points in the coordinate system of image 410 .
  • probe mapping 596 takes the continually updated probe coordinates, probe/MIRRF 595 , and conformal map 589 , and computes probe/image 597 , the coordinates of probe 570 in the coordinate system of image 410 . Then, image composition 598 combines image 410 and a synthesized image of probe 570 to form composite image 599 .
  • Composite image 599 typically includes a three-dimensional surface view and three orthogonal planar views.
  • the orthogonal planar views can correspond to the three standard orientations, sagittal, coronal, and axial planes, for instance passing through the planned target point. More typically, three planar views of a navigational view that is determined by the planned entry and target points are included in composite image 599 .
  • the tip of the probe is displayed as an orthogonal projection onto the planes of the planar views, and as a point in an appropriate geometric relationship in the three-dimensional surface view.
  • the orientation of the probe can be displayed using a line passing through the tip of the probe and displayed as a orthogonal projection onto navigational planes 1 and 2 of the navigational view, and as a point of intersection on the bird's eye view of the navigational view.
  • fiducial divots 540 If the geometric relationships of the fiducial points, fids/MIRRF 582 , the coordinates of fiducial divots 540 does not match the geometric relationships of fiducial coordinates 421 , then an error in placing probe 570 during the registration procedure may have occurred. If such an error is detected, conformal mapping 589 is not computed, a warning is provided to the surgeon, and the surgeon must perform the registration procedure again. Furthermore, if the geometric relationships between fiducial divots 540 is known through prior measurement or calibration, registration errors and errors locating fiducial points 420 in image 410 can also be detected.
  • a cranial probe 570 is used to determine an actual entry point.
  • a computer display 610 shows composite image 599 , which includes a three-dimensional surface view and three planar views of a navigational view determined by the planned entry and target points.
  • a virtual burr hole 640 is displayed in the planar views of navigational view at the probe location 642 of cranial probe 570 .
  • the range of adjustable orientations of a guidance fixture that would be attached at probe location 642 is displayed as a cone 644
  • the extent of effects of x-y adjustment of the guidance fixture is displayed as a second cone 646 . Display of cones 644 and 646 allows the surgeon to verify that planned target point 650 is accessible in the range of adjustments of a guidance fixture attached at probe location 642 .
  • the patient then has a small area of the head shaved and draped off.
  • a 2 to 4 cm linear incision is made over entry point 620 after local anesthesia is administered.
  • the location of entry point 620 is then reconfirmed using cranial probe 570 after the incision is made.
  • An approximately 1 cm burr hole (not shown in FIG. 7) is then drilled through the skull at entry point 620 (FIG. 1, step 150 ).
  • the surgeon opens the dura under the burr hole and visually inspects the area to determine that no critical structures, such as a blood vessel, are located directly under the burr hole. If the location of the burr hole is found to be unacceptable, a new entry point can be planned and return to the step of locating the entry point (FIG. 1, step 145 ).
  • guidance fixture 710 includes a base platter 720 on which platter LEDs 730 are attached.
  • Base platter 720 is attached to an adjustable base 715 , which is in turn attached to the skull.
  • the orientation of a line normal to base platter 720 is adjustable within a cone forming a solid angle of approximately 45 degrees.
  • a surgical instrument 740 including an instrument LED 742 fixed relative to the instrument, passes through guidance fixture 710 .
  • Surgical instrument 740 is constrained to follow a fixed trajectory perpendicular to and through a central opening through adjusted base platter 720 .
  • Workstation 580 tracks the location and orientation of base platter 720 , and the displacement of surgical instrument 740 , indicated schematically by lines 564 and 750 respectively, and computes the position of surgical instrument 740 in the coordinate system of image 410 .
  • Workstation 580 continually displays on display 610 a composite image 750 including a navigational view of image 410 showing the position and orientation of surgical instrument 740 .
  • the surgeon uses the visual feedback on display 610 to position surgical instrument 740 along the constrained trajectory.
  • both the patient and camera array 560 can move and, as long as platter LEDs 730 and instrument LED 742 are visible to camera array 560 at an appropriate distance and orientation, workstation 580 can maintain a continuously updated display.
  • guidance fixture 710 includes base platter 720 and adjustable base 715 .
  • base platter 720 is attached to an entry column 850 (through an x-y positioning table 1150 , described fully below) which is held in adjustable base 715 .
  • the orientation of entry column 850 can be adjusted relative to skull 210 using separate rotation and pivoting motions, as described below.
  • guidance base 715 includes a mounting base 820 , which is rigidly attached to the skull during an operation using screws through mounting holes 822 .
  • Mounting holes 822 pass through mounting tabs 723 as well as through the inside of the mounting base 820 .
  • Mounting tabs 823 are pliable to allow them to conform to the skull.
  • mounting base 820 may be distorted in being mounted to the skull, it can be designed to be disposable.
  • Mounting base 820 has a cylindrical opening which accepts a rotating collar 830 .
  • a rotation locking screw 824 in mounting base 820 when tightened, locks rotating collar 830 in place and prevents its movement within the mounting base.
  • Entry column 850 is held within rotating collar 830 by a pivoting collar 840 .
  • Pivoting collar 840 slides in an arc-shaped pivoting guide 841 within rotating collar 830 .
  • a pivoting locking knob 846 prevents pivoting collar 840 from sliding by drawing a collar clamp 842 against pivoting collar 840 using a threaded rod 920 .
  • a pivoting adjustment knob 844 slides pivoting collar 840 along pivoting guide 841 .
  • mounting base 820 includes mounting holes 822 drilled through mounting tabs 723 (one tab is not visible on the side opposite the visible one), as well as through the inside of mounting base 820 .
  • Mounting base 820 includes a threaded hole 922 within which rotation locking screw 824 turns. Rotation locking screw 824 mates with a recessed channel 923 in rotating collar 830 , thereby preventing rotation of rotating collar 830 and also preventing rotating collar 830 from lifting off mounting base 820 .
  • Entry column 850 includes a cylindrical portion 913 and a spherical portion 914 at one end. Spherical portion 914 mates with a spherical socket 916 in the bottom of rotating collar 830 . When mated, entry column 850 can pivot within rotating collar 830 . Entry column 850 also has opposing groves 910 which mate with protrusions 912 on the inside of the circular opening in pivoting collar 840 . Entry column 850 passes through the circular opening, and protrusions 912 mate with groves 910 . When assembled, the mated groves and protrusions hold the spherical portion 914 of entry column 850 against spherical socket 916 in the bottom of rotating collar 830 .
  • pivoting collar 840 within pivoting guide 841 is adjusted by turning pivoting adjustment knob 844 and tightened in place by rotating pivoting tightening knob 846 .
  • Pivoting adjustment knob 844 attaches to a pivoting adjustment rod 930 which passes through collar clamp 842 and the main portion of pivoting collar 840 to a rack and pinion mechanism.
  • a pinion 931 is attached to the end pivoting adjustment rod 930 .
  • Pinion 931 mates with an arc-shaped rack 932 which attaches to rotating collar 830 using three screws 934 .
  • Rotation of pivoting adjustment knob 844 rotates pivoting adjustment rod 930 and pinion 931 , which then slides pivoting collar 840 in pivoting guide 841 .
  • Rotating pivoting locking knob 846 locks pivoting collar 840 rigidly to rotating collar 830 . Tightening both rotation locking screw 824 and pivoting locking knob 846 fixes the orientation of entry column 850 relative to mounting base 820 .
  • guidance base 715 is attached to skull 210 , the remainder of guidance fixture 710 is attached to guidance base 715 .
  • the drive assembly which is already attached to base platter 720 at the time base platter 720 is attached to guidance base 715 is not shown.
  • Base platter 720 is attached to entry column 850 via an x-y positioning table 1150 (described below). During the alignment phase in which the orientation of guidance base 715 is adjusted, x-y positioning table 1150 remains centered.
  • surgical instrument 740 is passed through a central opening 721 of base platter 720 and through entry column 850 into the brain.
  • a line along the trajectory surgical instrument 740 would follow passes along the central axis of entry column 850 .
  • Adjusting the orientation of guidance base 715 adjusts this trajectory. In all orientations, the trajectory passes through a single point on the central axis of guidance base 715 near the surface of the skull. If the guidance base is exactly mounted over the planned entry point, this single point is the planned entry point. More typically, the point is slightly displaced from the planned entry point due to mounting inaccuracies.
  • localization application 588 computes composite image 750 (FIG. 9) in a series of data transformations.
  • Time-varying digitized images 586 are passed to MIRRF tracking 591 as well as platter tracking 7010 and instrument tracking 7012 .
  • MIRRF tracking 591 produces “MIRRF/cam” 592 , the position and orientation of tracking MIRRF 510 in the coordinate system of camera array 560 .
  • Platter tracking 7010 produces “platter/cam” 7020 , the position and orientation of base platter 720 .
  • the instrument trajectory is at a known location and orientation relative to platter LEDs 730 on base platter 720 , therefore the location and orientation of the instrument trajectory in the coordinate system of camera array 560 is also known.
  • Instrument tracking 7012 produces instrument/cam 7022 , the location of instrument LED 742 in the coordinate system of camera array 560 .
  • Platter localization 7030 uses conformal map 589 , MIRRF/cam 593 , and platter/cam 7020 to compute platter/image 7040 , the location and orientation of base platter 720 in the coordinate system of image 410 . Note that once guidance fixture 710 is attached and aligned, then base platter 720 no longer moves relative to the skull (other than due to adjustment of x-y table 1150 ) and therefore, platter/image 7040 can be fixed rather than continuously recomputed.
  • Instrument depth measurement 7032 combines platter/cam 7020 and instrument/cam 7022 to compute instrument/platter 7042 , the depth of penetration of the surgical instrument relative to the plane of base platter 720 .
  • Instrument depth measurement 7032 makes use of the known displacement of the tip of the instrument from instrument LED 742 .
  • Instrument localization 7050 takes platter/image 7040 and instrument/platter 7042 and computes instrument/image 7060 , the location and orientation of the surgical instrument in the coordinate system of image 410 .
  • image composition 7070 combines image 410 with a synthesized image of the surgical instrument to generate a composite image 750 .
  • the surgical trajectory is optionally replanned to go through the center of the actual mounted position of the guidance fixture, rather than the planned entry point (FIG. 1, step 165 ).
  • FIGS. 14 a - c a navigational view indicating the trajectory of the surgical instrument is used.
  • navigational planes 1020 and 1022 correspond to navigational planar views 1030 and 1032 respectively.
  • Navigational planes 1020 and 1022 are orthogonal and their intersection forms a line passing through an entry point 1010 and a target point 1012 .
  • Bird's eye plane 1024 the third plane of the navigational view, is orthogonal to planes 1020 and 1024 and passes through target point 1012 .
  • rotating collar 830 is rotated within mounting base 820 (FIGS. 10 and 11). Referring to FIG. 14 b, this rotation causes line 1040 to sweep out a portion of a cone, indicated diagrammatically by dashed arrow 1050 . After rotation through an angle ö 1 , orientation line 1040 is in the direction of line 1043 , which is coincident with plane 1022 .
  • the orthogonal projection line 1041 of line 1040 in plane 1020 forms a smaller and smaller angle è 1 with the desired orientation in plane 1020
  • the angle è 2 between the orthogonal projection line 1042 in plane 1022 and the desired orientation in plane 1022 increases, ultimately to ö 2 when line 1040 is coincident with plane 1022 .
  • the second alignment motion reduces the angle ö 2 while maintaining the coincidence of the orientation line and plane 1022 .
  • This motion corresponds to sliding pivoting collar 840 within rotating collar 830 (FIGS. 8 and 9). Alignment is achieved when angle ö 2 is zero, that is, the orientation line 1040 is coincident with the intersection of planes 1020 and 1022 .
  • base platter 720 is firmly fixed to the skull, in an orientation and location that constrains a surgical instrument passing through it to pass along the replanned trajectory to the planned target point in the head.
  • a “field of view” display can be provided.
  • the field of view display uses a representation of a cross-section of a cone extending below the entry point.
  • the central axis of a cone 1061 is coincident with the central axis of the mounting base of a guidance fixture mounted at an entry point 1010 . That is, the central axis of the cone is generally perpendicular to the surface of the skull at the entry point. The angle of the cone corresponds to the range of possible alignments of a guidance fixture mounted at the entry point.
  • this is a 45 degree angle.
  • the cross-section is normal to the central axis of the cone, and passes through a target point 1012 .
  • the corresponding display shows a circular section 1070 of the scanned image.
  • the center 1011 and the target point 1012 are indicated.
  • Also indicated are two orthogonal axes.
  • An axis 1072 corresponds to the achievable orientations of the guidance fixture as its pivoting collar is moved in the rotating collar.
  • Another axis 1074 is orthogonal to axis 1072 . Motion of the rotating collar rotates the orientation of axes 1072 and 1074 .
  • FIG. 15 c shows the display after this rotation.
  • Motion of the pivoting collar is indicated by a line 1076 , parallel to axis 1074 . If the pivoting collar is centered, then line 1076 is aligned with axis 1074 , as is shown in FIG. 15 d.
  • FIG. 15 f shows the display after alignment is achieved.
  • This circular field of view display provides intuitive visual feedback to the surgeon who is aligning the guidance fixture.
  • displacement of the x-y table can also be shown in such a field of view display, by indicating the intersection of the resulting instrument trajectory on the circular display.
  • an instrument drive 1110 is attached to base platter 720 prior to attaching the combination of instrument drive 1110 , base platter 720 , and x-y table 1150 to guidance base 715 .
  • instrument drive 1110 is shown partially mounted onto a drive post 1120 .
  • drive post 1120 Prior to attachment to guidance base 715 , drive post 1120 is fully inserted into instrument drive 1110 so that instrument drive 1110 is in contact with base platter 720 .
  • Base platter 720 can be displaced relative to guidance base 715 in a plane orthogonal to entry column 850 using two perpendicular adjustment screws 1060 , and 1062 turned by x-y table adjustment knobs 1061 , and 1063 . Note that prior to alignment (FIG. 1, step 170 ) the x-y table is adjusted so that central opening 721 in base platter 720 is centered over entry column 850 .
  • Instrument drive 1110 includes a drive platform 1130 that moves within a drive mechanism 1125 along a threaded rod 1132 .
  • Threaded rod 1132 is oriented parallel to drive post 1120 and perpendicular to base platter 720 .
  • rotation of threaded rod 1132 which causes displacement of drive platform 1130 , is manual using a mechanism that is not shown.
  • Alternative embodiments can use an electronic stepper motor or a manual hydraulic drive to rotate threaded rod 1132 and thereby displace drive platform 1130 .
  • a surgical instrument such as a micro-electrode
  • a guidance tube After alignment of guidance fixture 710 , the guidance tube is manually inserted into the brain through central opening 721 in base platter 720 . The guidance tube is then secured in clamp 1135 that is fixed relative to drive mechanism 1125 . The instrument is passed into the guidance tube and is secured in a clamp 1133 , which is fixed relative to drive platform 1130 .
  • Instrument LED 742 is attached to drive platform 1130 .
  • the displacement of the end of the surgical instrument from instrument LED 742 is known to localization application 588 which executes on workstation 580 .
  • localization application 588 executes on workstation 580 .
  • the position of instrument LED 742 , as well as platter LEDs 730 the position of the end of a surgical instrument on workstation 580 and displayed on display 610 (FIG. 9) to the surgeon. The surgeon then uses this visual feedback in adjusting the depth of the instrument.
  • Various types of surgical probes or instruments can be attached to drive mechanism 1110 shown in FIG. 16.
  • One type of instrument is an electrode, such as a recording micro-electrode or a stimulating electrode or lesioning electrode. The electrode is introduced into a rigid insertion (guidance) tube that is attached to drive mechanism 1110 .
  • Another type of instrument is a hypothermia cold probe.
  • a chronically implanted stimulating electrode can be placed utilizing an insertion tube.
  • the lead being of a smaller diameter than the insertion tube, can be slipped through the insertion tube upon removal of the drive and guide assembly, to allow fixation of the chronically implanted electrode into the brain.
  • the electrode is secured to the skull using a compression-fitting.
  • a chronically implanted recording electrode can similarly be placed during epilepsy surgery to monitor abnormal activity within the deep brain utilizing similar techniques.
  • a shunt tube such as a ventricular shunt
  • the shunt tube will have a stylet and be slipped into the insertion tube.
  • the insertion tube structure and its retention ring will have varying diameters, depending on the diameters of the various objects that can be placed in the insertion tube, such as the shunt tube, in this application, or micro-electrodes, in the prior application.
  • the insertion tube therefore, will be connected to the drive mechanism using varying sized retention rings.
  • the shunt will be directed towards the target established by the software mechanism alluded to above.
  • the shunt tube will then be secured to the skull via mechanisms described in prior art, or via a compression fitting described above.
  • a biopsy probe can be inserted into the insertion tube by first placing a biopsy tube with a trocar/obturator through the insertion tube. The mechanism would then be directed down towards the appropriate target using the drive mechanism. The obturator would be removed, and a cutting blade will then be inserted into the biopsy tube.
  • An example of a procedure using penetration of an instrument along parallel tracks involves mapping the electrical activity of a region of the brain.
  • the surgical instrument in this case is a thin electrode that is repeatedly inserted to points on a two- or three-dimensional grid. At each point, electrical activity is monitored.
  • the drive mechanism has a localizing surgical retractor 1210 mounted in place of the insertion tube, and base platter 1220 has a large central opening through which the retractor passes.
  • Retractor 1210 includes three or more spatulas 1212 inserted through base platter 1220 and the entry column. Each spatula 1212 includes a tracking LED 1214 attached to it.
  • the relationship of the spatulas is controlled by a screw assembly 1216 that allows the relative distance between the spatulas to be modified. Relatively small movement at the screw assembly results in a larger movement at the other ends of the spatulas due to the pivoting of the spatulas within the retractor.
  • Tracking LEDs 1214 are tracked by the camera array and the localization application computes the depth of spatulas 1212 and their displacement from the central axis.
  • surgical localizing retractor 1210 is directed towards the brain target.
  • screw assembly 1216 is adjusted to expand localizing retractor 1210 to allow visualization of the underlying brain.
  • a variety of surgical instruments can be attached to retractor 1210 in addition to using the retractor with more conventional manual techniques. These instruments can include an endoscope, an ultrasonic aspirator, an electronic coagulation/evaporator/ablator, or a laser.
  • An optional fixture validation step (FIG. 1, step 130 ) can be used to confirm that the position of the tip of the surgical instrument is accurately tracked.
  • Two types of validation can be performed. Referring to FIG. 18, guidance fixture 710 is attached to an upper mounting plate 1334 of a calibration jig 1330 . Prior to attaching guidance fixture 710 to calibration jig 1330 , pivoting locking knob 846 (FIG. 10) is loosened allowing pivoting collar 840 to pivot. After guidance fixture 710 is attached, pivoting collar 840 is centered and pivoting locking knob 846 is tightened.
  • a guidance tube 1340 is clamped into the guidance fixture, and a surgical instrument 1342 is passed through the guidance tube.
  • Guidance tube 1340 protrudes below upper mounting plate 1334 .
  • a ruler 1335 can then be used to measure the depth of penetration of the guidance tube. Similarly, ruler 1335 can be used to measure the penetration of surgical instrument 1342 .
  • a validation (or “phantom”) jig 1312 can also be used.
  • Tracking MIRRF 510 is attached to validation jig 1312 .
  • Guidance fixture 710 is be mounted on validation jig 1312 .
  • a phantom target point 1320 at a known position relative to validation jig 1312 , and therefore at a known position relative to the fiducial points on tracking MIRRF 510 is chosen.
  • the localization application 588 is programmed with the phantom target position. Using the procedure that will be used during the surgical phase, the surgeon performs the registration and alignment steps and then drives the instrument through guidance fixture 710 .
  • guidance fixture 710 is validated. If for some reason the instrument is not coincident with the phantom target point, for example, due to improper attachment of the instrument to the drive assembly resulting in an incorrect depth calibration, the surgeon readjusts the instrument and attempts the validation step again.
  • scanning MIRRF 310 and tracking MIRRF 510 are star-shaped. Other alternative shapes of MIRRFs can be used.
  • an arc-shaped MIRRF 1410 is attached to threaded inserts 1420 using bolts 1430 , and marking and locking nuts 1432 .
  • Arc-shaped MIRRF 1410 includes scanning fiducial markers 1412 . The fiducial markers are more widely spaced than in star-shaped MIRRFs 310 , and 510 , resulting in a more accurate tracing of the MIRRF.
  • arc-shaped MIRRF 1410 acts as a template for accurate positioning of the threaded inserts.
  • threaded inserts are inserted into the skull to provide the fixed points of attachment for MIRRFs.
  • Alternative embodiments use other types of anchors or forms of mechanical attachment.
  • Protruding posts can be attached to the skull.
  • a MIRRF is then attached to the posts.
  • inserts can be implanted in the skull which provide precisely positioned “divots.” These divots are used to mate clamping posts on a MIRRF, which hold the MIRRF in place. Such implanted divots can be covered by the skin and remain in place for an extended period of time.
  • each such anchor shown as threaded insert 1440 , can support a single scanning marker 1444 on a post 1442 , subsequently support a single registration divot 1450 on a second post 1451 , and then support a single tracking marker, LED 1448 , on a third post 1446 .
  • the geometric relationship of the anchor to the scanning marker is the same as the geometric relationship of the anchor to the tracking marker thereby allowing a localization application to directly track the fiducial points by tracking the location of the tracking marker.
  • multiple MIRRFs can be used to provide increased accuracy in registration and tracking.
  • two star-shaped MIRRFs can be used, one on each side of the head.
  • the mounting base can be relatively small and have extended “legs” extending radically and secured to the skin or skull with sharp points. These legs provide stabilization that may not be achievable using mounting screws through the smaller mounting base.
  • the mounting base can alternatively include an insert that fits into the burr hole. This insert can also be threaded to allow direct attachment of the mounting base to the burr hole.
  • threaded inserts are used to attach, and subsequently accurately reattach, conventional stereotactic frames. This allows the conventional stereotactic frame to be removed and then accurately reattached to the skull. Procedures, such as fractionated multi-day stereotactic radiation treatments could then be performed with the stereotactic frame being reattached for each treatment.
  • a modified guidance fixture 1510 is used in combination with a conventional stereotactic frame 1520 .
  • Guidance fixture 1510 includes an x-y positioning table with LEDs 1512 and an instrument drive with an LED 1514 for tracking the depth of the surgical instrument.
  • the guidance assembly is positioned on frame 1520 to align with the planned surgical trajectory.
  • a tracking MIRRF 1530 is attached to frame 1520 to allow dynamic tracking.
  • alternative embodiments can use other features for registration.
  • paste-on scanning markers are attached to the skin.
  • the cranial probe is positioned at each of the paste-on markers in turn, rather than at the fiducial points on a MIRRF.
  • Tracking LEDs are attached in a fixed position relative to the skull in some other way than using a MIRRF, for example, using an elastic headband.
  • another alternative embodiment uses accessible anatomical features. These features are located in the scanned image, and the probe is positioned at these features during the registration phase.
  • Still another alternative does not use discrete fiducial points, but rather makes use of the surface shape of the skull in a “surface merge” approach.
  • the surface of the skull is located in the three-dimensional image.
  • the cranial probe touches a large number of points on the skull. The locations of these points is matched to the shape of the skull to determine the conformal mapping from the physical coordinate system to the image coordinate system.
  • a tracking MIRRF 1610 can be attached directly to the base of a guidance fixture 710 . Tracking MIRRF 1610 is only useful for tracking after guidance fixture 710 has been attached to the skull. In this approach, registration is based on fiducial points elsewhere on the skull than tracking MIRRF 1610 .
  • Locating the entry point, over which guidance fixture 710 is attached can be accomplished using one of a variety of alternative techniques.
  • the entry point may be known-for some standardized procedures.
  • the entry point may be determined by registration of the skull and the three-dimensional image based on fiducial markers attached to the head, for example using adhesive pads, anatomical markers, or a “surface merge” technique as described above.
  • LEDs 1620 on tracking MIRRF 1610 are used to track the location of the skull, and thereby track the location of the surgical instrument.
  • a reregistration step (FIG. 1, step 160 ) can be performed to determine the relative position of the fiducial points to LEDs 1620 .
  • the guidance fixture 710 optionally includes a feature that the various locking knobs and x-y adjustment knobs are rotated using a removable knob (or key). When not in use, this knob is stowed on the drive assembly. Whenever the removable knob is removed from its stowed position, the signal from an electrical sensor on the drive assembly that is connected to the workstation causes a warning, for example on the computer display, to be provided to the surgeon.
  • the relationship between the tip of a probe and the location of tracking LEDs can be calibrated and used by a localization application to compute the location of tip using the computed location the LEDs.
  • the relationship between the location of fiducial points on a MIRRF and tracking LEDs can be calibrated, thereby allowing a localization application to compute the coordinates of fiducial points from the coordinates of the tracking LEDs without using the registration procedure described above.
  • tracking LEDs are tracked using a camera.
  • Other alternative embodiments can use other three-dimensional sensing and tracking approaches. Rather than LEDs, other tracking markers that are active emitters of electromagnetic-or mechanical energy such as electronic sparks, heat, magnetic energy, or sound can be used. Appropriate three-dimensional tracking approaches, for example, using imaging or triangulation techniques determine the three-dimensional coordinates of the emitters.
  • tracking markers that are passive reflectors or transducers of externally applied localizing energy, such as infrared light, sound, magnetism, can be used.
  • the devices described above can be made of a variety of materials.
  • One alternative is to use a material, such as carbon fiber, which does not interfere with MRI scanning. This allows use of the devices during intraoperative MRI scanning. Also, use of hydraulic drive mechanisms rather than electrical motors avoids interference with MRI scanning.
  • the patient is not necessary immobilized. It may be desirable, however, to immobilize the patient, for example by clamping the guidance fixture to an operating table, at some times during the surgery.

Abstract

A method and apparatus for positioning a surgical instrument during stereotactic surgery using a guidance fixture. The guidance fixture includes an upper portion, which includes an instrument guide for moving the surgical instrument along a constrained trajectory relative to the upper portion, and includes an adjustable base supporting the upper portion, which includes a mounting base and an adjustment mechanism. The adjustable base can include a rotating collar attached to the mounting base and a pivoting collar coupling the rotating collar to the upper portion. A remote sensing device, such as a camera array sensing LEDs on the fixture, is used to determine the orientation of the upper portion of the guidance assembly in relation to the body.

Description

    RELATED APPLICATION
  • This application is a continuation and claims the benefit of priority under 35 USC 120 of U.S. application Ser. No. 09/063,658, filed Apr. 21, 1998. The disclosure of the prior application is considered part of (and is incorporated by reference in) the disclosure of this application.[0001]
  • BACKGROUND
  • This invention relates to guidance of surgical instruments using stereotactic localization. [0002]
  • Stereotactic localization is a method for locating a target within a three-dimensional object. This method is used in the medical arts and sciences to locate a target in the human body, in particular in the brain or spine, for medical and surgical treatment. Stereotactic surgery has a history dating back to the turn of the century, when the Horsely-Clark Apparatus was described as a mechanical frame system in which an animal was immobilized. This frame system permitted reproducible targeting within the animal's brain for physiological experiments. This and similar technology found application in 1948 in the work of Wycis and Speigel. In their work, a frame was attached to a human skull. The frame permitted targeting of sites within the human brain for neurosurgical treatment. A detailed survey of the field of stereotactic surgery can be found in [0003] Textbook of Stereotactic and Functional Neurosurgery, P. L. Gildenberg and R. R. Tasker (eds.), McGraw-Hill, June 1997 (ISBN: 0070236046).
  • One approach to stereotactic surgery involves the following steps. Fiducial scanning markers are attached to the body in one of a variety of manners, including using an attachable frame or attaching the markers to the skin with an adhesive. A scan is then taken of a body, for example of the head, to produce a three-dimensional image of the body. [0004]
  • Scanning can be done using a variety of techniques including CT, MRI, PET, and SPECT. Images of the fiducial scanning markers that are located around the body are then located in the three-dimensional image at fiducial image points. Points of interest, such as the location of a tumor, are located in the three-dimensional image with reference to these fiducial image points. The body and the image are registered by matching the locations of the scanning markers and the coordinates of the fiducial image points. In an approach to stereotactic brain surgery, a three-dimensional frame is screwed to the patient's skull prior to scanning the head. This frame serves as a mechanical reference mechanism that supports scanning fiducial markers at fiducial points around the body. The frame remains attached to the patient's skull from before scanning until after surgery is complete. Prior to surgery, a mechanical guide assembly is attached to the frame. The relative location in the image of the point of interest with respect to the fiducial image points is determined, and this relationship is used to adjust the mechanical guide assembly with respect to the fiducial points on the frame. Using the adjusted mechanical guide assembly, a surgical instrument is then guided to a location in the body that corresponds to the point of interest in the image. [0005]
  • In another form of stereotactic surgery, known generally as “image-guided” stereotactic surgery, rather than relying on mechanical adjustment of a guide assembly, visual feedback is provided to a surgeon by displaying a composite image formed from the scanned three-dimensional image and a synthesized image of a hand-held surgical instrument. The surgeon guides the hand-held instrument into the body using the visual feedback. In this form of surgery, a frame is attached to the patient and a scan is taken as described above. After scanning, the head and frame are secured in a fixed position, for example, fixed to an operating table. In order to display the image of the surgical instrument in a proper relationship to the scanned image, the position and orientation of the instrument is sensed using a localization apparatus that remains in a fixed position relative to the body. The localization apparatus can be coupled to the surgical instrument using an articulated mechanical arm on which the surgical instrument is attached. Sensors in the joints of the arm provide signals that are used to determine the location and orientation of the instrument relative to a fixed base of the mechanical arm. Some more recent systems do not use mechanical coupling between the surgical instrument and the localization apparatus and instead rely on remote sensing of small localized energy emitters (e.g., sources or transducers of energy) fixed to the instrument. For example, a camera array is used to locate light-emitting diodes (LEDs) that are attached to the instrument. The locations of the LED images in the camera images are used to determine the three-dimensional physical locations of the LEDs relative to the camera array. The locations of multiple LEDs attached to the instrument are then used to determine the location and orientation of the instrument. Another example of remote sensing uses sound generators and a microphone array and relies on the relative time of arrival of acoustical signals to determine the three-dimensional locations of the sound generators. [0006]
  • Before a synthesized image of the instrument can be combined with the scanned image in a proper relationship, some form of registration is required. For example, the tip of the surgical instrument can be placed at each of several fiducial markers for which corresponding images have been located in the three-dimensional scanned image. Registration of the synthesized image of the instrument and the scanned image can thereby be established. [0007]
  • In a variant of image-guided stereotactic surgery, generally known as “dynamic referencing,” the head and frame are secured in a fixed position, as in the image-guided approach. However, unlike other image-guided techniques, the sensors (e.g., cameras) of the localization apparatus are not at a fixed location. In order to compensate for the motion of the sensors, energy emitters are fixed to the frame as well as to the instrument. At any point in time, the location and orientation of the frame relative to the sensors as well as the location and orientation of the instrument relative to the sensors are both determined, and the differences in their locations and orientations are used to compute the location and orientation of the instrument relative to the frame. This computed location of the instrument is then used to display the synthesized image of the surgical instrument in an appropriate relationship to the scanned image. [0008]
  • Still another approach to stereotactic surgery, generally known as “frameless image-guided” stereotactic surgery, does not rely on attaching a frame to the body before scanning. Instead, adhesive fiducial scanning markers are applied to the scalp, or small screws are inserted into the skull, and the patient is scanned as in the techniques described above. During surgery, the patient is immobilized and locked in place using a head clamp or a frame. The image-guided stereotactic approach described above is then followed, including the registration procedure described above to establish the locations of the fiducial scanning markers relative to the instrument. [0009]
  • In image-guided techniques, a surgeon can rely on a variety of views of a three dimensional scanned image. These views can include a three-dimensional surface view with an adjustable point of view (e.g., a perspective view with surface shading). In addition, planar (i.e., two-dimensional) views of the image can be displayed. In particular, three two-dimension “slices” through orthogonal planes of the image are typically displayed, with the orientations of the planes being sagittal (dividing a head into a left and a right part), coronal (dividing a head into a front and a back part), and axial (dividing a head into an upper and lower part). As the orientations of the planes are predetermined, the particular planes that are displayed can be determined by the point of intersection of the three planes. A point, such as the tip of a probe, can be displayed in a three-dimensional surface view as a point in a appropriate geometric relationship. The point can be displayed in a planer view by orthogonally projecting the point onto the associated plane. A line can be displayed in a planar view as an orthogonal projection onto the associated plane, or as the point of intersection of the line and the associated plane. Note that if a first point, such as a surgical entry point is used to determine which planes are displayed, a second point, such as a surgical target point, does not in general fall in any of the displayed planes. [0010]
  • Planar views of a three-dimensional scan can also use alternative orientations than the standard sagittal, coronal, and axial orientations described above, allowing two points to lie in two orthogonal planes, and one of the two points to additionally lie in a third orthogonal plane. [0011]
  • In particular, a “navigational” view can be determined according to two points in an image, such as an entry point at the surface of a body and a target point within the body. [0012]
  • The line joining the entry point and the target point is chosen as the intersection of two orthogonal planes, [0013] navigation planes 1 and 2. The orientation of navigational planes 1 and 2 is arbitrary (that is, the two planes can be rotated together around their intersecting line). A third plane, orthogonal to navigation planes 1 and 2, provides a “bird's eye” view looking from the entry point to the target point. This bird's eye plane is typically chosen to pass through the target point. (Such a navigational view is shown in FIG. 14a). Using a navigational view, the orientation of a surgical instrument is typically shown as a line projected orthogonally onto the two navigational planes, and as the point of intersection of the line and the bird's eye plane. Manipulating an instrument using such a navigational view for feedback requires considerable practice and is not intuitive for many people.
  • Image-guided frameless stereotaxy has also been applied to spine surgery. A reference frame is attached to an exposed spinous process during open spine surgery, and a probe is used to register the patient's spine with scanned image of the spine. Anatomical landmarks are used as fiducial points which are located in the scanned image. Visual feedback is provided to manually guide placement of instruments, such as insertion of pedicle screws into the spinal structures. [0014]
  • SUMMARY
  • In one aspect, in general, the invention is a method for positioning a surgical instrument during stereotactic surgery by providing a guidance fixture that includes an upper portion, including an instrument guide for moving the surgical instrument along a constrained trajectory relative to the upper portion, and also includes an adjustable base supporting the upper portion, including a mounting base and an adjustment mechanism. The method includes attaching the guidance fixture to a body, including attaching the mounting base to the body. The method also includes determining, using a remote sensing device, the orientation of the upper portion of the guidance assembly in relation to the body, and displaying a representation of a relationship of the constrained trajectory and a target point in the body. The method also includes aligning the guidance fixture, including aligning the orientation of the upper portion to achieve a desired relation between the constrained trajectory and the target point. [0015]
  • The invention can include one or more of the following features. [0016]
  • Aligning the orientation of the upper portion includes rotating the upper portion about a central axis of the mounting base and pivoting the upper portion to adjust an angle between the upper portion and the central axis. [0017]
  • Determining the orientation of the upper portion includes determining the locations of a first set of tracking markers affixed to the upper portion, determining the locations of a second set of tracking markers affixed to the body, and computing the orientation using the locations of the first and the second sets of tracking markers. [0018]
  • The method can include locking the adjustment mechanism to fix the orientation of the upper portion in relation to the body, and then determining a displacement of the surgical instrument along the constrained trajectory. For example, a remote sensing device can be used to locate a tracking marker affixed in a fixed relationship to the surgical instrument, and used to locate a set of tracking markers affixed to the guidance assembly. The displacement can then be computed using the location of the marker affixed in a fixed relationship to the surgical instrument and the locations of the set of tracking markers affixed to the guidance assembly. The method can also include displaying a representation of a location of the surgical instrument in relation to the body, and guiding the surgical instrument into the body along the constrained trajectory. [0019]
  • The method can also include attaching to the body a scanning frame that includes a set of scanning markers and then scanning a three-dimensional image of the body, including locating images of the scanning markers in the three-dimensional image. The method then includes attaching to the body a tracking frame that includes a set of tracking markers, and registering the body and the three-dimensional image, including tracking the tracking markers in the tracking frame and locating points on the body corresponding to the scanning markers. The tracking frame can be attached in a predetermined location in relation to the attachment location of the scanning frame. Locating points on the body can be done by tracking the location of a point on a probe using the remote sensing device, and positioning the point on the probe at each of the points on the body corresponding to the scanning markers. [0020]
  • Aligning the orientation of the upper portion can include rotating the upper portion about a central axis of the mounting base, and pivoting the upper portion to adjust an angle between the upper portion and the central axis. Displaying the representation of the relationship of the constrained trajectory and the target point then includes displaying a representation of the target point, displaying a representation of the range of possible orientations of the guidance fixture, displaying a first line segment corresponding to possible orientations of the guidance fixture that could result from pivoting the upper portion at a current degree of rotation of the upper portion, and displaying an indication of a current degree of pivoting of the upper portion. [0021]
  • In another aspect, in general, the invention is a guidance fixture for guiding a surgical instrument into a body during stereotactic surgery. The fixture includes an upper portion including an instrument guide for moving the surgical instrument along a constrained trajectory relative to the upper portion, and an adjustable base supporting the upper portion, including a mounting base for attaching the guidance fixture to a body, the mounting base having central opening and a central axis passing through the central opening, and an orientation adjustment mechanism coupled between the mounting base and the upper portion, configuration of the adjustment mechanism determine the orientation of the upper portion relative to the mounting base. The guidance fixture can include a set of tracking markers, such as light emitting diodes, that can be located by a remote sensing device, such as an array of camera. [0022]
  • The orientation adjustment mechanism of the guidance fixture can include a rotation adjustment mechanism and a pivoting adjustment mechanism, wherein adjustment of the rotation adjustment mechanism rotates the upper portion about the central axis, and adjustment of the pivoting adjustment mechanism adjusts an angle between the upper portion and the central axis. The rotation adjustment mechanism can include a rotating collar attached to the mounting base and the pivoting adjustment mechanism includes a pivoting collar coupling the rotating collar to the upper portion. The adjustable base can further include a rotation locking screw for preventing rotation of the rotating collar and a pivoting locking screw for preventing pivoting of the pivoting collar. [0023]
  • The upper portion of the guidance fixture can include an x-y table adjustment of which displaces the constrained trajectory. [0024]
  • The instrument guide of the guidance fixture can include a driving mechanism for positioning the instrument along the constrained trajectory, such as a linear trajectory. [0025]
  • In another aspect, in general, the invention is a system for stereotactic surgery on a body, which includes a remote sensing device, a tracking frame, including a plurality of tracking markers for tracking a location and an orientation of the body by the remote sensing device, and a guidance fixture. The system also includes a tracking system for accepting the locations of the tracking markers on the tracking frame and the locations of the tracking markers on the guidance fixture, and computing a relationship between the constrained trajectory and the body, and a display system for presenting an image of the body and the relationship between the constrained trajectory and the body. [0026]
  • The invention provides several advantages. A highly accurate and reproducible way of guiding a surgical instrument deep into a body is provided without requiring a frame to be fixed to the body for the entire interval from scanning through subsequent surgery. Not requiring the frame to be fixed for this time avoids the inconvenience, discomfort, and inefficiency of placement of a fiducial frame on a patient. Inaccuracy imparted to an MRI scan by electromagnetic interaction with a reference frame or to a CT scan by x-ray interaction with the frame is also improved. Furthermore, by providing a compact and relatively lightweight guidance fixture, the patient is not required to the be immobilized during surgery and therefore may not require general anesthesia or heavy sedation. This can allow immediate determination of the response to a surgical intervention in behavioral or physiological terms without interference of general anesthesia or heavy sedation. In addition, both the patient and the sensors used to locate a patient and a surgical instrument can be mobile providing further flexibility in operating procedures. [0027]
  • An additional advantage is that the invention does not require immobilizing (i.e., clamping in a fixed position) the patient. This contributes to patient comfort which can extend the time a surgical procedure can be carried out. Furthermore, since a guidance fixture is not attached until a scan has been made, surgical time is further extended as discomfort generally relates to having a guidance fixture attached. Also, alignment of the guidance fixture is made easier with this invention, and therefore, less time can be spent on alignment, thereby leaving more time for the actual surgical procedure. [0028]
  • Another advantage of the invention is that alignment of the guidance fixture is performed using motions, each of which is constrained to one degree of freedom (e.g., rotation or pivoting). When the two motions are clamped in position, this arrangement provides a relatively stable alignment compared to alternative arrangements in which a two degree of freedom motion (such as alignment of a ball and socket arrangement) is clamped. [0029]
  • Yet another advantage of the invention is that the constrained motions of the guidance fixture, that is, the rotation and pivoting motions, are directly reflected in the computer displayed navigational view, thereby greatly simplifying targeting. [0030]
  • Other features and advantages of the invention will be apparent from the following description, and from the claims. [0031]
  • DESCRIPTION OF THE DRAWING
  • FIG. 1 is a flowchart of a stereotactic brain surgery procedure; [0032]
  • FIG. 2 is a head with threaded inserts implanted including a cross-sectional view of the skull and a threaded insert; [0033]
  • FIG. 3 is a head with a scanning MIRRF attached including a detailed exploded view of the attachment of the MIRRF to the implanted threaded inserts; [0034]
  • FIG. 4 illustrates scanning of a head on which a scanning MIRRF is attached; [0035]
  • FIG. 5 is a head with a tracking MIRRF attached and a cranial probe being tracked using a camera array; [0036]
  • FIG. 6 is a dataflow diagram for computation of a composite image including a synthesized image of a probe; [0037]
  • FIG. 7 illustrates locating a planned entry point using the tracked cranial probe and a computer display; [0038]
  • FIG. 8 is a display of a virtual burr hole and accessible cone of orientations; [0039]
  • FIG. 9 is a head with a tracking MIRRF and a guidance fixture attached being tracked using a camera array; [0040]
  • FIG. 10 is a view of a base platter and an adjustable base of a guidance fixture; [0041]
  • FIG. 11 is an exploded view of the adjustable base of a guidance fixture; [0042]
  • FIG. 12 is a dataflow diagram for computation of a composite image including a synthesized image of a surgical instrument; [0043]
  • FIG. 13 is a detailed flowchart of trajectory replanning and fixture alignment; [0044]
  • FIGS. 14[0045] a-c illustrate a navigational view display and corresponding planar segments through a body;
  • FIGS. 15[0046] a-f illustrate a “field of view” display and corresponding conical section through a body;
  • FIG. 16 is a guidance fixture including an adjustable base and an instrument drive attached to a base platter; [0047]
  • FIG. 17 is a retractor in a guidance fixture; [0048]
  • FIG. 18 is a calibration jig; [0049]
  • FIG. 19 is a phantom jig and a guidance fixture and a tracking MIRRF attached to the jig; [0050]
  • FIG. 20 is an arc shaped MIRRF attached to a head including a view of a threaded insert and mounting bolt; [0051]
  • FIG. 21 is a scanning marker and a tracking marker attached to a threaded insert; [0052]
  • FIG. 22 is a guidance fixture and a tracking MIRRF attached to a conventional stereotactic frame; and [0053]
  • FIG. 23 is a tracking MIRRF attached directly to a guidance fixture.[0054]
  • DESCRIPTION
  • Referring to FIG. 1, an aspect of the invention relates to stereotactic brain surgery. This approach to brain surgery involves a series of steps, shown in FIG. 1, from [0055] start 100 prior to scanning through finish 199 after the surgical phase of a procedure is completed. There are generally two phases to the approach. The first phase involves creating a three-dimensional image of the head ( steps 105, 110, 115, 120), planning a surgical trajectory based on the image (step 125), and validating the guidance fixture (step 130) that will be used during the surgical procedure. The second phase involves the remaining steps (steps 135 through 195) that are used to carry out the actual surgical procedure. The steps of the first phase can be carried out quite some time before those of the second phase. For example, creating the three-dimensional image of the head can be done on one day, and the steps used to carry out the actual surgery can be done on a subsequent day. Also, the steps of the second phase may be repeated, for example on several different days, illustrated by transition 192 between steps 195 and 135.
  • One to three days prior to surgery, the patient is seen in a post anesthesia care unit (PACU) or other suitable location. Referring to FIG. 1, the first step of the procedure is to attach anchors to which scanning, registration, and tracking markers will be subsequently attached (step [0056] 105). Referring to FIG. 2, the anchors include two threaded inserts 220 that are surgically implanted into the patient's skull 210 using a template (described below). The template precisely determines the separation and parallel orientation of inserts 220.
  • Referring to FIG. 3, a rigid cross-shaped device, a scanning “miniature removable reference frame” (scanning MIRRF) [0057] 310, is next attached to threaded inserts 220 using screws 320 (FIG. 1, step 110). A retention plate 330 is used to aid precise reattachment of scanning MIRRF 310 to the skull. Retention plate 330 is also used as the template during insertion of threaded inserts 220. Scanning MIRRF 310 includes four fiducial scanning markers 340 that will be visible in the scanned image. Scanning MIRRF 310 is made from a material that is chosen to interfere as little as possible with the type of scan that will be performed. For example, for MRI and CT scans, the chosen material can be polycarbonate, which results in scanning MIRRF 310 being almost invisible in the scanned image. Fiducial scanning markers 340 are mounted in spherical cavities in scanning MIRRF 310. The design of the cavities is such that the “press-in” marker inserts can be removed for cleaning. The star-shaped design of scanning MIRRF 310 is such that, when attached, the elongated part of the star extends behind or in front of the ear so that mounting screws 320 are located toward the top of the skull where soft tissue thickness is minimal and skull thickness is maximal. This minimal tissue thickness allows threaded inserts 220 to be implanted easily under local anesthetic by making a small incision. As an alternative to attaching a single MIRRF as shown in FIG. 3, multiple MIRRFs can be attached in a similar manner to increase the number or separation of the scanning markers.
  • Referring to FIG. 4, MRI or [0058] CT scanner 400 is used to obtain a three-dimensional digitized image 410 of the head, for example, as a series of two-dimensional “slices” (step 115 in FIG. 1). In addition, a model or map of the surface of the skull can be made allowing, for instance, subsequent three-dimensional surface display of the skull. The fiducial scanning markers 340 produce fiducial images 420 at in image 410. Fiducial coordinates 421 of fiducial images 420 in the coordinate system of image 410 are determined, for example, by manually positioning a cursor at fiducial images 420 on a computer display. Image 410, along with the fiducial coordinates 421, are stored on a computer readable storage medium 430 for use during the subsequent surgical phase of the approach. Typically the image is stored as a series of two-dimensional images, each corresponding to a horizontal “slice” of the head.
  • After scanning, scanning [0059] MIRRF 310 is removed (FIG. 1, step 120), and threaded inserts 220 are left in place. Antibiotic ointment can be applied and the patient is either discharged or sent to the operating room.
  • Also after scanning, a surgeon determines the location of a target point within the brain and an entry point through the skull (FIG. 1, step [0060] 125). A planned surgical trajectory is then determined as the line joining the entry point and the target point. The surgeon plans the trajectory using a computer display of image 410 which provides, for example, a three-dimensional surface view, and sagittal, coronal, and axial planar views. This allows the surgeon, for example, to plan a trajectory that avoids critical structures in the brain. The target and entry points, and the trajectory are stored along with the image on storage medium 430.
  • Other than an optional fixture validation (FIG. 1, step [0061] 130), all the preoperative steps are complete at this point.
  • Referring to FIG. 5, the surgical phase of the procedure begins by attaching a tracking [0062] MIRRF 510 to threaded inserts 220 (not shown) that remained implanted in the patient's skull after scanning MIRRF 310 was previously removed. Tracking MIRRF 510 has a very similar structure to scanning MIRRF 310. Tracking MIRRF 510 includes fiducial divots 540 at the centers of locations corresponding to fiducial markers 340 (shown in FIGS. 3 and 4). Four tracking LEDs 550 are also attached to tracking MIRRF 510. Since tracking MIRRF 510 is rigid, the geometric relationship between tracking LEDs 550 and fiducial divots 540 is fixed and can be determined beforehand and verified in a subsequent verification step, or can be unknown and determined in a subsequent registration step. Preferably, tracking MIRRF 510 is made of a material that is lightweight and can be autoclaved, such as Radel.
  • After attaching tracking [0063] MIRRF 510 to the patient's skull, the patient can be comfortably placed in an awake, possibly lightly sedated, state in an operating room chair, which is similar to a dental chair. The patient is allowed to recline in an essentially unrestrained manner in the operating room chair in a semi-sitting position. Alternatively, at the surgeon's prerogative and if appropriate, general anesthesia can be administered to the patient.
  • Referring still to FIG. 5, a [0064] camera array 560 provides time-varying digitized images 586 to a localization application 588 executing on a computer workstation 580. The patient can be free to move relative to camera array 560 and relative to the operating room chair, and camera array 560 can be free to move relative to the patient and relative to the operating room chair. Camera array 560 includes three CCD cameras 562 positioned in a fixed configuration relative to one another. Alternatively, two cameras, which are sufficient for three dimensional localization, or more than three cameras, which may provide greater accuracy, can be used. Each camera 562 in camera array 560 produces one time-varying image. Each tracking LED 550 on tracking MIRRF 510 is powered and emits infra-red illumination which is seen as a bright point in each of time-varying digitized images 586. Based on the relative coordinates of the bright points in images 586 from each camera 562 of camera array 560 localization application 588 computes the position (i.e., the coordinates) of tracking LEDs 550 in the coordinate system of camera array 560. Using the positions of multiple tracking LEDs 550, the location and orientation of tracking MIRRF 510 can be computed by localization application 588. Tracking of MIRRF coordinates 510 is illustrated schematically by line 564.
  • A [0065] cranial probe 570, including three probe LEDs 572 attached along its length, is also tracked using camera array 560 and localization application 588. Based on the coordinates of the images of probe LEDs 572 in images 586 and probe geometry 584, localization application 588 computes the position and orientation of probe 570 in the coordinate system of camera array 560.
  • Using [0066] cranial probe 570, the surgeon then carries out a registration step (FIG. 1, step 140). In this registration step, the surgeon first locates the fiducial points in the image. Then he touches the tip of probe 570 to each of fiducial divots 540 in tracking MIRRF 510 in turn, indicating to localization application 588 when he is touching each of the divots. Localization application 588 then computes a three-dimensional conformal registration (map) between image 410 and the coordinate system of tracking MIRRF 510.
  • Note that if the geometric relationship of tracking [0067] LEDs 550 and fiducial divots 540 is known to localization application 588, for example using a previously calibrated MIRRF, the coordinates of the fiducial divots can be computed from the coordinates of the tracking LEDs, which in turn can be computed from the locations of the fiducial images in the camera images. The step of touching the divots can be omitted in this case, or used to verify the computed coordinates of fiducial divots.
  • Having computed the conformal mapping, [0068] localization application 588 continuously combines image 410 and a synthesized image of probe 570 to form a composite image 599 that combines the scanned image with the synthesized image of the probe. Composite image 599 is shown on a computer display 610 which includes a three-dimensional surface display.
  • Referring to FIG. 6, the registration and image composition functions performed by [0069] localization application 588 involves a series of data processing stages. As shown in FIG. 5, time-varying digitized images 586 are provided to localization application 588 from camera array 560. Referring to FIG. 6, time-varying digitized images 586 are input to MIRRF tracking 591, a processing stage of localization application 588, which tracks tracking LEDs 550 on tracking MIRRF 510 and produces “MIRRF/cam” 593, an orientation and location of tracking MIRRF 510 in the coordinate system of camera array 560. At the same time, probe tracking 590 tracks probe 570 and produces “probe/cam” 592, an orientation and location of probe 570 in the coordinate system of camera array 560. Probe tracking 590 makes use of probe geometry 584 which specifies the geometric relationship between the tip of the probe 570 and probe LEDs 572. The next stage of localization application 588, relative positioning 594 inputs MIRRF/cam 593 and probe/cam 592 and produces “probe/MIRRF” 595, the position and orientation of probe 570 in the coordinate system of tracking MIRRF 510. When the surgeon touches fiducial divots 540, registration 581 takes the location information from probe/MIRRF 595 and records it in “fids/MIRRF” 582, the coordinates of fiducial divots 540 in the coordinate system of tracking MIRRF 510. Fiducial coordinates 421, the coordinates of fiducial images 420 in the coordinate system of image 410, are provided to localization application 588, along with image 410, from storage medium 430. Mapping 587 includes matching of corresponding coordinates in fids/MIRRF 582 and fiducial coordinates 421 and forming a conformal map 589 between the coordinate system of image 410 and the coordinate system of tracking MIRRF 510. Conformal map 589 includes the quantities required to transform any three-dimensional coordinate in the coordinate system of tracking MIRRF 510 into a three-dimensional coordinate in the coordinate system of image 410. These quantities correspond, in general, to a rotation, scaling, and translation of points in the coordinate system of tracking MIRRF 510 to determine the corresponding points in the coordinate system of image 410.
  • Referring still to FIG. 6, the next stage of [0070] localization application 588, probe mapping 596, takes the continually updated probe coordinates, probe/MIRRF 595, and conformal map 589, and computes probe/image 597, the coordinates of probe 570 in the coordinate system of image 410. Then, image composition 598 combines image 410 and a synthesized image of probe 570 to form composite image 599.
  • [0071] Composite image 599 typically includes a three-dimensional surface view and three orthogonal planar views.
  • The orthogonal planar views can correspond to the three standard orientations, sagittal, coronal, and axial planes, for instance passing through the planned target point. More typically, three planar views of a navigational view that is determined by the planned entry and target points are included in [0072] composite image 599. The tip of the probe is displayed as an orthogonal projection onto the planes of the planar views, and as a point in an appropriate geometric relationship in the three-dimensional surface view. The orientation of the probe can be displayed using a line passing through the tip of the probe and displayed as a orthogonal projection onto navigational planes 1 and 2 of the navigational view, and as a point of intersection on the bird's eye view of the navigational view.
  • If the geometric relationships of the fiducial points, fids/[0073] MIRRF 582, the coordinates of fiducial divots 540 does not match the geometric relationships of fiducial coordinates 421, then an error in placing probe 570 during the registration procedure may have occurred. If such an error is detected, conformal mapping 589 is not computed, a warning is provided to the surgeon, and the surgeon must perform the registration procedure again. Furthermore, if the geometric relationships between fiducial divots 540 is known through prior measurement or calibration, registration errors and errors locating fiducial points 420 in image 410 can also be detected.
  • Referring to FIG. 7, a [0074] cranial probe 570 is used to determine an actual entry point. A computer display 610 shows composite image 599, which includes a three-dimensional surface view and three planar views of a navigational view determined by the planned entry and target points.
  • Referring to FIG. 8, a [0075] virtual burr hole 640 is displayed in the planar views of navigational view at the probe location 642 of cranial probe 570. In addition, the range of adjustable orientations of a guidance fixture that would be attached at probe location 642 is displayed as a cone 644, and the extent of effects of x-y adjustment of the guidance fixture is displayed as a second cone 646. Display of cones 644 and 646 allows the surgeon to verify that planned target point 650 is accessible in the range of adjustments of a guidance fixture attached at probe location 642.
  • When the surgeon has located an [0076] entry point 620 on the skull, he marks the entry point as the desired center point of attachment of a guidance fixture that will be used during the surgical phase of the procedure.
  • The patient then has a small area of the head shaved and draped off. A 2 to 4 cm linear incision is made over [0077] entry point 620 after local anesthesia is administered. The location of entry point 620 is then reconfirmed using cranial probe 570 after the incision is made. An approximately 1 cm burr hole (not shown in FIG. 7) is then drilled through the skull at entry point 620 (FIG. 1, step 150). The surgeon opens the dura under the burr hole and visually inspects the area to determine that no critical structures, such as a blood vessel, are located directly under the burr hole. If the location of the burr hole is found to be unacceptable, a new entry point can be planned and return to the step of locating the entry point (FIG. 1, step 145).
  • Referring to FIG. 9, having drilled the burr hole, the surgeon next attaches a [0078] guidance fixture 710 to the skull (FIG. 1, step 155). (Note that an optional instrument drive can also included in the guidance fixture but is not shown in FIG. 9.) As is described more fully below, guidance fixture 710 includes a base platter 720 on which platter LEDs 730 are attached. Base platter 720 is attached to an adjustable base 715, which is in turn attached to the skull. The orientation of a line normal to base platter 720 is adjustable within a cone forming a solid angle of approximately 45 degrees. After attaching guidance fixture 710 the surgeon adjusts the orientation of base platter 720 (FIG. 1, step 170; note that optional steps 160 and 165 are described below). A surgical instrument 740, including an instrument LED 742 fixed relative to the instrument, passes through guidance fixture 710. Surgical instrument 740 is constrained to follow a fixed trajectory perpendicular to and through a central opening through adjusted base platter 720. Workstation 580 tracks the location and orientation of base platter 720, and the displacement of surgical instrument 740, indicated schematically by lines 564 and 750 respectively, and computes the position of surgical instrument 740 in the coordinate system of image 410. Workstation 580 continually displays on display 610 a composite image 750 including a navigational view of image 410 showing the position and orientation of surgical instrument 740. The surgeon uses the visual feedback on display 610 to position surgical instrument 740 along the constrained trajectory. Note that during this time, the patient is not necessarily immobilized. Both the patient and camera array 560 can move and, as long as platter LEDs 730 and instrument LED 742 are visible to camera array 560 at an appropriate distance and orientation, workstation 580 can maintain a continuously updated display.
  • Referring to FIG. 10, [0079] guidance fixture 710 includes base platter 720 and adjustable base 715. In use, base platter 720 is attached to an entry column 850 (through an x-y positioning table 1150, described fully below) which is held in adjustable base 715. The orientation of entry column 850 can be adjusted relative to skull 210 using separate rotation and pivoting motions, as described below.
  • Referring also to the exploded view of [0080] adjustable base 715 shown in FIG. 11, guidance base 715 includes a mounting base 820, which is rigidly attached to the skull during an operation using screws through mounting holes 822. Mounting holes 822 pass through mounting tabs 723 as well as through the inside of the mounting base 820. Mounting tabs 823 are pliable to allow them to conform to the skull. As mounting base 820 may be distorted in being mounted to the skull, it can be designed to be disposable. Mounting base 820 has a cylindrical opening which accepts a rotating collar 830. A rotation locking screw 824 in mounting base 820, when tightened, locks rotating collar 830 in place and prevents its movement within the mounting base. Entry column 850 is held within rotating collar 830 by a pivoting collar 840. Pivoting collar 840 slides in an arc-shaped pivoting guide 841 within rotating collar 830. When rotated, a pivoting locking knob 846 prevents pivoting collar 840 from sliding by drawing a collar clamp 842 against pivoting collar 840 using a threaded rod 920. When rotated, a pivoting adjustment knob 844 slides pivoting collar 840 along pivoting guide 841.
  • Referring again to FIG. 11, mounting [0081] base 820 includes mounting holes 822 drilled through mounting tabs 723 (one tab is not visible on the side opposite the visible one), as well as through the inside of mounting base 820. Mounting base 820 includes a threaded hole 922 within which rotation locking screw 824 turns. Rotation locking screw 824 mates with a recessed channel 923 in rotating collar 830, thereby preventing rotation of rotating collar 830 and also preventing rotating collar 830 from lifting off mounting base 820.
  • [0082] Entry column 850 includes a cylindrical portion 913 and a spherical portion 914 at one end. Spherical portion 914 mates with a spherical socket 916 in the bottom of rotating collar 830. When mated, entry column 850 can pivot within rotating collar 830. Entry column 850 also has opposing groves 910 which mate with protrusions 912 on the inside of the circular opening in pivoting collar 840. Entry column 850 passes through the circular opening, and protrusions 912 mate with groves 910. When assembled, the mated groves and protrusions hold the spherical portion 914 of entry column 850 against spherical socket 916 in the bottom of rotating collar 830.
  • The position of pivoting [0083] collar 840 within pivoting guide 841 is adjusted by turning pivoting adjustment knob 844 and tightened in place by rotating pivoting tightening knob 846. Pivoting adjustment knob 844 attaches to a pivoting adjustment rod 930 which passes through collar clamp 842 and the main portion of pivoting collar 840 to a rack and pinion mechanism. A pinion 931 is attached to the end pivoting adjustment rod 930. Pinion 931 mates with an arc-shaped rack 932 which attaches to rotating collar 830 using three screws 934. Rotation of pivoting adjustment knob 844 rotates pivoting adjustment rod 930 and pinion 931, which then slides pivoting collar 840 in pivoting guide 841.
  • Rotating [0084] pivoting locking knob 846 locks pivoting collar 840 rigidly to rotating collar 830. Tightening both rotation locking screw 824 and pivoting locking knob 846 fixes the orientation of entry column 850 relative to mounting base 820.
  • Referring to FIG. 10, the procedure for attaching and adjusting guidance fixture [0085] 710 (FIG. 1, steps 155 through 170) is carried out as follows. Mounting base 820 is attached in a temporary fashion over burr hole 625. While attaching the base, mounting tabs 723 are conformed to the shape of the skull 210 and secured to the skull an orientation generally directed towards the target using three or more titanium bone screws 724 passing through mounting holes 822 through mounting tabs 723 and through the interior of the mounting base.
  • After mounting [0086] base 820 is attached to skull 210, the remainder of guidance base 715 is attached to mounting base 820. In particular, rotating collar 830, with entry column 850 already attached, and adjusted to be centered (oriented along the central axis of guidance base 715) is inserted in mounting base 820 and rotation locking screw 824 is tightened to mate with recessed channel 923.
  • After [0087] guidance base 715 is attached to skull 210, the remainder of guidance fixture 710 is attached to guidance base 715. In FIG. 10, the drive assembly, which is already attached to base platter 720 at the time base platter 720 is attached to guidance base 715 is not shown. Base platter 720 is attached to entry column 850 via an x-y positioning table 1150 (described below). During the alignment phase in which the orientation of guidance base 715 is adjusted, x-y positioning table 1150 remains centered.
  • During a surgical procedure, [0088] surgical instrument 740 is passed through a central opening 721 of base platter 720 and through entry column 850 into the brain. During the alignment phase in which x-y table 1150 is centered, a line along the trajectory surgical instrument 740 would follow passes along the central axis of entry column 850. Adjusting the orientation of guidance base 715 adjusts this trajectory. In all orientations, the trajectory passes through a single point on the central axis of guidance base 715 near the surface of the skull. If the guidance base is exactly mounted over the planned entry point, this single point is the planned entry point. More typically, the point is slightly displaced from the planned entry point due to mounting inaccuracies.
  • Referring again to FIG. 9, [0089] platter LEDs 730 on base platter 720 are sensed by camera array 560, and the location and orientation of base platter 720 in the coordinate system of image 410 is computed by localization application 588 executing on computer workstation 580. Localization application 588 computes the location and orientation of base platter 720 using the known geometry of the base platter relative to platter LEDs 730.
  • Referring to FIG. 12, [0090] localization application 588 computes composite image 750 (FIG. 9) in a series of data transformations. Time-varying digitized images 586 are passed to MIRRF tracking 591 as well as platter tracking 7010 and instrument tracking 7012. MIRRF tracking 591 produces “MIRRF/cam” 592, the position and orientation of tracking MIRRF 510 in the coordinate system of camera array 560. Platter tracking 7010 produces “platter/cam” 7020, the position and orientation of base platter 720. The instrument trajectory is at a known location and orientation relative to platter LEDs 730 on base platter 720, therefore the location and orientation of the instrument trajectory in the coordinate system of camera array 560 is also known. Instrument tracking 7012 produces instrument/cam 7022, the location of instrument LED 742 in the coordinate system of camera array 560. Platter localization 7030 uses conformal map 589, MIRRF/cam 593, and platter/cam 7020 to compute platter/image 7040, the location and orientation of base platter 720 in the coordinate system of image 410. Note that once guidance fixture 710 is attached and aligned, then base platter 720 no longer moves relative to the skull (other than due to adjustment of x-y table 1150) and therefore, platter/image 7040 can be fixed rather than continuously recomputed. Instrument depth measurement 7032 combines platter/cam 7020 and instrument/cam 7022 to compute instrument/platter 7042, the depth of penetration of the surgical instrument relative to the plane of base platter 720. Instrument depth measurement 7032 makes use of the known displacement of the tip of the instrument from instrument LED 742. Instrument localization 7050 takes platter/image 7040 and instrument/platter 7042 and computes instrument/image 7060, the location and orientation of the surgical instrument in the coordinate system of image 410. Finally, image composition 7070 combines image 410 with a synthesized image of the surgical instrument to generate a composite image 750.
  • Referring to FIG. 13, before aligning [0091] guidance fixture 710, the surgical trajectory is optionally replanned to go through the center of the actual mounted position of the guidance fixture, rather than the planned entry point (FIG. 1, step 165).
  • The surgeon aligns [0092] guidance fixture 710 using visual feedback. Referring to FIGS. 14a-c, a navigational view indicating the trajectory of the surgical instrument is used. Referring to FIG. 14a, navigational planes 1020 and 1022 correspond to navigational planar views 1030 and 1032 respectively. Navigational planes 1020 and 1022 are orthogonal and their intersection forms a line passing through an entry point 1010 and a target point 1012. Bird's eye plane 1024, the third plane of the navigational view, is orthogonal to planes 1020 and 1024 and passes through target point 1012.
  • Referring to FIG. 14[0093] b-c, navigational planes 1020 and 1024 are shown schematically, along with a line 1040 corresponding to the orientation of guidance fixture 710. The goal of the alignment procedure is to make line 1040 coincident with the intersection of planes 1020 and 1022. The alignment procedure is carried out in a series of two motions each of which is constrained to one degree of freedom. Initially, line 1040 is not generally coincident with either navigational plane. Prior to beginning the alignment procedure, the orientation of line 1040 is displayed as orthogonal projections, lines 1041 and 1042, on planes 1020 and 1022, respectively.
  • In the first alignment motion, rotating [0094] collar 830 is rotated within mounting base 820 (FIGS. 10 and 11). Referring to FIG. 14b, this rotation causes line 1040 to sweep out a portion of a cone, indicated diagrammatically by dashed arrow 1050. After rotation through an angle ö1, orientation line 1040 is in the direction of line 1043, which is coincident with plane 1022. During the rotation, the orthogonal projection line 1041 of line 1040 in plane 1020 forms a smaller and smaller angle è1 with the desired orientation in plane 1020, while the angle è2 between the orthogonal projection line 1042 in plane 1022 and the desired orientation in plane 1022 increases, ultimately to ö2 when line 1040 is coincident with plane 1022.
  • Referring to FIG. 14[0095] c, the second alignment motion reduces the angle ö2 while maintaining the coincidence of the orientation line and plane 1022. This motion corresponds to sliding pivoting collar 840 within rotating collar 830 (FIGS. 8 and 9). Alignment is achieved when angle ö2 is zero, that is, the orientation line 1040 is coincident with the intersection of planes 1020 and 1022.
  • At this point, after tightening the locking knobs on [0096] guidance fixture 710, base platter 720 is firmly fixed to the skull, in an orientation and location that constrains a surgical instrument passing through it to pass along the replanned trajectory to the planned target point in the head.
  • In addition to, or as an alternative to, using a navigational view to provide visual feedback during the alignment procedure, a “field of view” display can be provided. Referring to FIGS. 15[0097] a-f, the field of view display uses a representation of a cross-section of a cone extending below the entry point. Referring to FIG. 15a, the central axis of a cone 1061 is coincident with the central axis of the mounting base of a guidance fixture mounted at an entry point 1010. That is, the central axis of the cone is generally perpendicular to the surface of the skull at the entry point. The angle of the cone corresponds to the range of possible alignments of a guidance fixture mounted at the entry point. In this embodiment, this is a 45 degree angle. The cross-section is normal to the central axis of the cone, and passes through a target point 1012. Referring to FIG. 15b, the corresponding display shows a circular section 1070 of the scanned image. The center 1011 and the target point 1012 are indicated. Also indicated are two orthogonal axes. An axis 1072 corresponds to the achievable orientations of the guidance fixture as its pivoting collar is moved in the rotating collar. Another axis 1074 is orthogonal to axis 1072. Motion of the rotating collar rotates the orientation of axes 1072 and 1074. These axes can be thought of as intersections of the navigational planes with the bird's eye plane of a navigational view, although here, the intersecting lines rotate with the rotation of the guidance fixture while in the navigational view, the navigation planes remain fixed as the guidance fixture is rotated. Referring to FIG. 15c, after an appropriate rotation, axis 1072 passes through target point 1012. FIG. 15d shows the display after this rotation. Motion of the pivoting collar is indicated by a line 1076, parallel to axis 1074. If the pivoting collar is centered, then line 1076 is aligned with axis 1074, as is shown in FIG. 15d. When the guidance fixture is aligned with the target point, line 1076 passes through target point 1064, as does axis 1072. FIG. 15f, corresponding to FIG. 15e, shows the display after alignment is achieved. This circular field of view display provides intuitive visual feedback to the surgeon who is aligning the guidance fixture. Furthermore, displacement of the x-y table can also be shown in such a field of view display, by indicating the intersection of the resulting instrument trajectory on the circular display.
  • Referring to FIG. 16, an [0098] instrument drive 1110 is attached to base platter 720 prior to attaching the combination of instrument drive 1110, base platter 720, and x-y table 1150 to guidance base 715. In FIG. 16, instrument drive 1110 is shown partially mounted onto a drive post 1120. Prior to attachment to guidance base 715, drive post 1120 is fully inserted into instrument drive 1110 so that instrument drive 1110 is in contact with base platter 720. Base platter 720 can be displaced relative to guidance base 715 in a plane orthogonal to entry column 850 using two perpendicular adjustment screws 1060, and 1062 turned by x-y table adjustment knobs 1061, and 1063. Note that prior to alignment (FIG. 1, step 170) the x-y table is adjusted so that central opening 721 in base platter 720 is centered over entry column 850.
  • [0099] Instrument drive 1110 includes a drive platform 1130 that moves within a drive mechanism 1125 along a threaded rod 1132. Threaded rod 1132 is oriented parallel to drive post 1120 and perpendicular to base platter 720. In this embodiment, rotation of threaded rod 1132, which causes displacement of drive platform 1130, is manual using a mechanism that is not shown. Alternative embodiments can use an electronic stepper motor or a manual hydraulic drive to rotate threaded rod 1132 and thereby displace drive platform 1130.
  • In operation, a surgical instrument, such as a micro-electrode, is passed into the brain through a guidance tube. After alignment of [0100] guidance fixture 710, the guidance tube is manually inserted into the brain through central opening 721 in base platter 720. The guidance tube is then secured in clamp 1135 that is fixed relative to drive mechanism 1125. The instrument is passed into the guidance tube and is secured in a clamp 1133, which is fixed relative to drive platform 1130.
  • [0101] Instrument LED 742 is attached to drive platform 1130. The displacement of the end of the surgical instrument from instrument LED 742 is known to localization application 588 which executes on workstation 580. By tracking the position of instrument LED 742, as well as platter LEDs 730, the position of the end of a surgical instrument on workstation 580 and displayed on display 610 (FIG. 9) to the surgeon. The surgeon then uses this visual feedback in adjusting the depth of the instrument.
  • Various types of surgical probes or instruments can be attached to drive [0102] mechanism 1110 shown in FIG. 16. One type of instrument is an electrode, such as a recording micro-electrode or a stimulating electrode or lesioning electrode. The electrode is introduced into a rigid insertion (guidance) tube that is attached to drive mechanism 1110. Another type of instrument is a hypothermia cold probe.
  • In cases of movement disorder or pain surgery, a chronically implanted stimulating electrode can be placed utilizing an insertion tube. The lead, being of a smaller diameter than the insertion tube, can be slipped through the insertion tube upon removal of the drive and guide assembly, to allow fixation of the chronically implanted electrode into the brain. The electrode is secured to the skull using a compression-fitting. A chronically implanted recording electrode can similarly be placed during epilepsy surgery to monitor abnormal activity within the deep brain utilizing similar techniques. [0103]
  • In cases of hydrocephalus or other situations where chronic drainage of intracranial cavities is necessary, a shunt tube, such as a ventricular shunt, can be applied through the insertion tube into the target such as the ventricles of the brain. The shunt tube will have a stylet and be slipped into the insertion tube. [0104]
  • The insertion tube structure and its retention ring will have varying diameters, depending on the diameters of the various objects that can be placed in the insertion tube, such as the shunt tube, in this application, or micro-electrodes, in the prior application. The insertion tube, therefore, will be connected to the drive mechanism using varying sized retention rings. The shunt will be directed towards the target established by the software mechanism alluded to above. The shunt tube will then be secured to the skull via mechanisms described in prior art, or via a compression fitting described above. [0105]
  • Alternatively, a biopsy probe can be inserted into the insertion tube by first placing a biopsy tube with a trocar/obturator through the insertion tube. The mechanism would then be directed down towards the appropriate target using the drive mechanism. The obturator would be removed, and a cutting blade will then be inserted into the biopsy tube. [0106]
  • In applications in which a radioactive seed for brachytherapy, a targeting nodule with a radio sensitizing, chemotherapeutic agent for external beam radiation, or a sustained release polymer drug or microdialysis capsule for local drug administration, are required for placement in a deep brain target, a different insertion tube can be connected to the [0107] drive mechanism 1110. A delivery catheter can be placed through the insertion tube. The whole mechanism can be directed towards the deep target using the software system as alluded to above. An insertion plunger can be used to insert the object of delivery and the system is then be removed after insertion of the object. A micro-endoscope can also be inserted through the insertion tube mechanism described above and deep brain structures can be visualized prior to excision or lesioning.
  • In certain surgical procedures, it is desirable to drive a surgical instrument along several parallel tracks. This is facilitated using x-y table [0108] 1150. Before an instrument is driven toward the target, an offset is adjusted using adjustment knobs 1061, and 1063. These knobs include markings that allow precise adjustment.
  • An example of a procedure using penetration of an instrument along parallel tracks involves mapping the electrical activity of a region of the brain. The surgical instrument in this case is a thin electrode that is repeatedly inserted to points on a two- or three-dimensional grid. At each point, electrical activity is monitored. [0109]
  • Referring to FIG. 17, when larger masses within the brain, such as brain tumors, have to be removed with precision, the drive mechanism has a localizing [0110] surgical retractor 1210 mounted in place of the insertion tube, and base platter 1220 has a large central opening through which the retractor passes. Retractor 1210 includes three or more spatulas 1212 inserted through base platter 1220 and the entry column. Each spatula 1212 includes a tracking LED 1214 attached to it. The relationship of the spatulas is controlled by a screw assembly 1216 that allows the relative distance between the spatulas to be modified. Relatively small movement at the screw assembly results in a larger movement at the other ends of the spatulas due to the pivoting of the spatulas within the retractor. Tracking LEDs 1214 are tracked by the camera array and the localization application computes the depth of spatulas 1212 and their displacement from the central axis. Using the tracking approach described above, surgical localizing retractor 1210 is directed towards the brain target. Upon acquiring the target, screw assembly 1216 is adjusted to expand localizing retractor 1210 to allow visualization of the underlying brain. A variety of surgical instruments can be attached to retractor 1210 in addition to using the retractor with more conventional manual techniques. These instruments can include an endoscope, an ultrasonic aspirator, an electronic coagulation/evaporator/ablator, or a laser.
  • An optional fixture validation step (FIG. 1, step [0111] 130) can be used to confirm that the position of the tip of the surgical instrument is accurately tracked. Two types of validation can be performed. Referring to FIG. 18, guidance fixture 710 is attached to an upper mounting plate 1334 of a calibration jig 1330. Prior to attaching guidance fixture 710 to calibration jig 1330, pivoting locking knob 846 (FIG. 10) is loosened allowing pivoting collar 840 to pivot. After guidance fixture 710 is attached, pivoting collar 840 is centered and pivoting locking knob 846 is tightened. A guidance tube 1340 is clamped into the guidance fixture, and a surgical instrument 1342 is passed through the guidance tube. Guidance tube 1340 protrudes below upper mounting plate 1334. A ruler 1335 can then be used to measure the depth of penetration of the guidance tube. Similarly, ruler 1335 can be used to measure the penetration of surgical instrument 1342.
  • Referring to FIG. 19, a validation (or “phantom”) [0112] jig 1312 can also be used. Tracking MIRRF 510 is attached to validation jig 1312. Guidance fixture 710 is be mounted on validation jig 1312. A phantom target point 1320 at a known position relative to validation jig 1312, and therefore at a known position relative to the fiducial points on tracking MIRRF 510, is chosen. The localization application 588 is programmed with the phantom target position. Using the procedure that will be used during the surgical phase, the surgeon performs the registration and alignment steps and then drives the instrument through guidance fixture 710. If the tip of the instrument is coincident with the phantom target point, then guidance fixture 710 is validated. If for some reason the instrument is not coincident with the phantom target point, for example, due to improper attachment of the instrument to the drive assembly resulting in an incorrect depth calibration, the surgeon readjusts the instrument and attempts the validation step again.
  • Other embodiments of the invention use alternative scanning, registration, and tracking markers, and methods of scanning and registration. [0113]
  • In the first embodiment, scanning [0114] MIRRF 310 and tracking MIRRF 510 are star-shaped. Other alternative shapes of MIRRFs can be used. Referring to FIG. 20, an arc-shaped MIRRF 1410 is attached to threaded inserts 1420 using bolts 1430, and marking and locking nuts 1432. Arc-shaped MIRRF 1410 includes scanning fiducial markers 1412. The fiducial markers are more widely spaced than in star-shaped MIRRFs 310, and 510, resulting in a more accurate tracing of the MIRRF. During insertion of threaded inserts 1420, arc-shaped MIRRF 1410 acts as a template for accurate positioning of the threaded inserts.
  • In embodiments described above, threaded inserts are inserted into the skull to provide the fixed points of attachment for MIRRFs. Alternative embodiments use other types of anchors or forms of mechanical attachment. Protruding posts can be attached to the skull. A MIRRF is then attached to the posts. Also, inserts can be implanted in the skull which provide precisely positioned “divots.” These divots are used to mate clamping posts on a MIRRF, which hold the MIRRF in place. Such implanted divots can be covered by the skin and remain in place for an extended period of time. [0115]
  • An alternative to use of a MIRRF is to attach markers directly to anchors in the skull. Referring to FIG. 21, each such anchor, shown as threaded [0116] insert 1440, can support a single scanning marker 1444 on a post 1442, subsequently support a single registration divot 1450 on a second post 1451, and then support a single tracking marker, LED 1448, on a third post 1446. The geometric relationship of the anchor to the scanning marker is the same as the geometric relationship of the anchor to the tracking marker thereby allowing a localization application to directly track the fiducial points by tracking the location of the tracking marker.
  • Using any of the MIRRF structures described, multiple MIRRFs can be used to provide increased accuracy in registration and tracking. For example, two star-shaped MIRRFs can be used, one on each side of the head. [0117]
  • In other embodiments, alternative attachment methods can be used to secure a guidance fixture to the skull. For instance, the mounting base can be relatively small and have extended “legs” extending radically and secured to the skin or skull with sharp points. These legs provide stabilization that may not be achievable using mounting screws through the smaller mounting base. The mounting base can alternatively include an insert that fits into the burr hole. This insert can also be threaded to allow direct attachment of the mounting base to the burr hole. [0118]
  • In other embodiments, threaded inserts are used to attach, and subsequently accurately reattach, conventional stereotactic frames. This allows the conventional stereotactic frame to be removed and then accurately reattached to the skull. Procedures, such as fractionated multi-day stereotactic radiation treatments could then be performed with the stereotactic frame being reattached for each treatment. [0119]
  • Referring to FIG. 22, a modified [0120] guidance fixture 1510 is used in combination with a conventional stereotactic frame 1520. Guidance fixture 1510 includes an x-y positioning table with LEDs 1512 and an instrument drive with an LED 1514 for tracking the depth of the surgical instrument. The guidance assembly is positioned on frame 1520 to align with the planned surgical trajectory. A tracking MIRRF 1530 is attached to frame 1520 to allow dynamic tracking.
  • Rather than using a scanning MIRRF with scanning fiducial markers, or scanning fiducial markers attached directly to anchors embedded in the skull, alternative embodiments can use other features for registration. In one alternative embodiment, paste-on scanning markers are attached to the skin. During the registration phase, the cranial probe is positioned at each of the paste-on markers in turn, rather than at the fiducial points on a MIRRF. Tracking LEDs are attached in a fixed position relative to the skull in some other way than using a MIRRF, for example, using an elastic headband. Rather than using pasted on fiducial markers, another alternative embodiment uses accessible anatomical features. These features are located in the scanned image, and the probe is positioned at these features during the registration phase. Still another alternative does not use discrete fiducial points, but rather makes use of the surface shape of the skull in a “surface merge” approach. The surface of the skull is located in the three-dimensional image. During registration, the cranial probe touches a large number of points on the skull. The locations of these points is matched to the shape of the skull to determine the conformal mapping from the physical coordinate system to the image coordinate system. [0121]
  • In yet another embodiment, referring to FIG. 23, a tracking [0122] MIRRF 1610 can be attached directly to the base of a guidance fixture 710. Tracking MIRRF 1610 is only useful for tracking after guidance fixture 710 has been attached to the skull. In this approach, registration is based on fiducial points elsewhere on the skull than tracking MIRRF 1610.
  • Locating the entry point, over which [0123] guidance fixture 710 is attached can be accomplished using one of a variety of alternative techniques. For example, the entry point may be known-for some standardized procedures. Alternatively, the entry point may be determined by registration of the skull and the three-dimensional image based on fiducial markers attached to the head, for example using adhesive pads, anatomical markers, or a “surface merge” technique as described above.
  • Once the guidance fixture and tracking [0124] MIRRF 1610 are attached to the skull, LEDs 1620 on tracking MIRRF 1610 are used to track the location of the skull, and thereby track the location of the surgical instrument. A reregistration step (FIG. 1, step 160) can be performed to determine the relative position of the fiducial points to LEDs 1620.
  • Various mechanical adjustments of [0125] guidance fixture 710, if performed when an guidance tube is inserted in the brain, would potentially damage the brain tissue. The guidance fixture optionally includes a feature that the various locking knobs and x-y adjustment knobs are rotated using a removable knob (or key). When not in use, this knob is stowed on the drive assembly. Whenever the removable knob is removed from its stowed position, the signal from an electrical sensor on the drive assembly that is connected to the workstation causes a warning, for example on the computer display, to be provided to the surgeon.
  • Alternative related embodiments can make use of known geometric relationships of points on various devices. [0126]
  • For instance, the relationship between the tip of a probe and the location of tracking LEDs can be calibrated and used by a localization application to compute the location of tip using the computed location the LEDs. Similarly, the relationship between the location of fiducial points on a MIRRF and tracking LEDs can be calibrated, thereby allowing a localization application to compute the coordinates of fiducial points from the coordinates of the tracking LEDs without using the registration procedure described above. [0127]
  • In the above embodiments, tracking LEDs are tracked using a camera. Other alternative embodiments can use other three-dimensional sensing and tracking approaches. Rather than LEDs, other tracking markers that are active emitters of electromagnetic-or mechanical energy such as electronic sparks, heat, magnetic energy, or sound can be used. Appropriate three-dimensional tracking approaches, for example, using imaging or triangulation techniques determine the three-dimensional coordinates of the emitters. Alternatively, tracking markers that are passive reflectors or transducers of externally applied localizing energy, such as infrared light, sound, magnetism, can be used. [0128]
  • The devices described above can be made of a variety of materials. One alternative is to use a material, such as carbon fiber, which does not interfere with MRI scanning. This allows use of the devices during intraoperative MRI scanning. Also, use of hydraulic drive mechanisms rather than electrical motors avoids interference with MRI scanning. [0129]
  • In the surgical procedures described above, the patient is not necessary immobilized. It may be desirable, however, to immobilize the patient, for example by clamping the guidance fixture to an operating table, at some times during the surgery. [0130]
  • It is to be understood that the foregoing description is intended to illustrate and not limit the scope of the invention, which is defined by the scope of the appended claims. Other aspects, advantages, and modifications are within the scope of the following claims.[0131]

Claims (32)

What is claimed is:
1. A method for positioning a surgical instrument during stereotactic surgery, comprising:
providing a guidance fixture that includes an upper portion, including an instrument guide for moving the surgical instrument along a constrained trajectory relative to the upper portion, and includes an adjustable base supporting the upper portion, including a mounting base and an adjustment mechanism;
attaching the guidance fixture to a body, including attaching the mounting base to the body;
determining using a remote sensing device the orientation of the upper portion of the guidance fixture in relation to the body;
displaying a representation of a relationship of the constrained trajectory and a target point in the body; and
aligning the guidance fixture, including aligning the orientation of the upper portion to achieve a desired relation between the constrained trajectory and the target point, including rotating the upper portion about a central axis of the mounting base and pivoting the upper portion to adjust an angle between the upper portion and the central axis.
2. The method of
claim 1
wherein determining the orientation of the upper portion includes:
determining the locations of a first plurality of tracking markers affixed to the upper portion;
determining the locations of a second plurality of tracking markers affixed to the body; and
computing the orientation using the locations of the first and the second pluralities of tracking markers.
3. The method of
claim 1
further comprising:
locking the adjustment mechanism to fix the orientation of the upper portion in relation to the body;
determining a displacement of the surgical instrument along the constrained trajectory;
displaying a representation of a location of the surgical instrument in relation to the body;
guiding the surgical instrument into the body along the constrained trajectory.
4. The method of
claim 3
wherein determining the displacement of the surgical instrument includes:
determining using a remote sensing device a location of a tracking marker affixed in a fixed relationship to the surgical instrument;
determining the locations of a plurality of tracking markers affixed to the guidance assembly; and
computing the displacement using the location of the marker affixed in a fixed relationship to the surgical instrument and the locations of the plurality of tracking markers affixed to the guidance assembly.
5. A method for positioning a surgical instrument during stereotactic surgery comprising:
providing a guidance fixture that includes an upper portion, including an instrument guide for moving the surgical instrument along a constrained trajectory relative to the upper portion, and includes an adjustable base supporting the upper portion, including a mounting base and an adjustment mechanism;
attaching the guidance fixture to a body, including attaching the mounting base to the body;
determining using a remote sensing device the orientation of the upper portion of the guidance assembly in relation to the body;
displaying a representation of a relationship of the constrained trajectory and a target point in the body; and aligning the guidance fixture, including aligning the orientation of the upper portion to achieve a desired relation between the constrained trajectory and the target point;
attaching at an attachment location on the body a scanning frame that includes a plurality of scanning markers;
scanning a three-dimensional image of the body, including locating images of the scanning markers in the three-dimensional image;
attaching to the body a tracking frame that includes a plurality of tracking markers; and
registering the body and the three-dimensional image, including tracking the tracking markers in the tracking frame, and locating points relative to the body which correspond to the locations of the scanning markers.
6. The method of
claim 5
wherein attaching the tracking frame includes attaching the tracking frame in a predetermined location in relation to the attachment location of the scanning frame.
7. The method of
claim 5
wherein locating points relative to the body which correspond to the locations of the scanning markers includes:
tracking the location of a point on a probe using the remote sensing device;
positioning the point on the probe at each of the points on the body corresponding to the scanning markers.
8. The method of
claim 5
wherein locating points on the body includes computing the locations of points relative to the body which correspond to the locations of the scanning markers using a known geometry relationship of the locations of the scanning markers on the attached scanning frame and the locations of the tracking markers on the attached tracking frame.
9. The method of
claim 1
wherein displaying the representation of the relationship of the constrained trajectory and the target point includes
displaying a representation of the target point,
displaying a representation of the range of possible orientations of the guidance fixture,
displaying a first line segment corresponding to possible orientations of the guidance fixture that could result from pivoting the upper portion at a current degree of rotation of the upper portion, and
displaying an indication of a current degree of pivoting of the upper portion.
10. A guidance fixture for guiding a surgical instrument into a body during stereotactic surgery, comprising:
an upper portion including an instrument guide for moving the surgical instrument along a constrained trajectory relative to the upper portion;
an adjustable base supporting the upper portion, including a mounting base for attaching the guidance fixture to a body, the mounting base having central opening and a central axis passing through the central opening, and an orientation adjustment mechanism coupled between the mounting base and the upper portion, a configuration of the adjustment mechanism determining the orientation of the upper portion relative to the mounting base; and
a plurality of tracking markers for tracking with a remote sensing device.
11. The guidance fixture of
claim 10
wherein the plurality of tracking markers includes a plurality of light emitting diodes and the remote sensing device includes a plurality of cameras.
12. A guidance fixture for guiding a surgical instrument into a body during stereotactic surgery, comprising:
an upper portion including an instrument guide for moving the surgical instrument along a constrained trajectory relative to the upper portion;
an adjustable base supporting the upper portion, including a mounting base for attaching the guidance fixture to a body, the mounting base having central opening and a central axis passing through the central opening, and an orientation adjustment mechanism coupled between the mounting base and the upper portion, a configuration of the adjustment mechanism determining the orientation of the upper portion relative to the mounting base;
wherein the orientation adjustment mechanism includes a rotation adjustment mechanism and a pivoting adjustment mechanism, wherein adjustment of the rotation adjustment mechanism rotates the upper portion about the central axis, and adjustment of the pivoting adjustment mechanism adjusts an angle between the upper portion and the central axis.
13. The guidance fixture of
claim 12
wherein the rotation adjustment mechanism includes a rotating collar attached to the mounting base and the pivoting adjustment mechanism includes a pivoting collar coupling the rotating collar to the upper portion.
14. The guidance fixture of
claim 13
wherein the adjustable base further includes a rotation locking screw for preventing rotation of the rotating collar and a pivoting locking screw for preventing pivoting of the pivoting collar.
15. The guidance fixture of
claim 14
wherein the upper portion includes an x-y table adjustment of which displaces the constrained trajectory.
16. A guidance fixture for guiding a surgical instrument into a body during stereotactic surgery, comprising:
an upper portion including an instrument guide for moving the surgical instrument along a constrained trajectory relative to the upper portion wherein the instrument guide includes a driving mechanism for positioning the instrument along the constrained trajectory; and
an adjustable base supporting the upper portion, including a mounting base for attaching the guidance fixture to a body, the mounting base having central opening and a central axis passing through the central opening, and an orientation adjustment mechanism coupled between the mounting base and the upper portion, a configuration of the adjustment mechanism determining the orientation of the upper portion relative to the mounting base.
17. The guidance fixture of
claim 16
wherein the constrained trajectory is a linear trajectory.
18. The guidance fixture of
claim 16
wherein the upper portion includes a plurality of tracking markers and the driving mechanism includes an instrument tracking marker for tracking a location of the instrument using a remote sensing device.
19. A system for stereotactic surgery on a body, comprising:
a remote sensing device;
a tracking frame for attachment to the body, including a plurality of tracking markers for tracking a location and an orientation of the body by using the remote sensing device;
a guidance fixture including
an upper portion including an instrument guide for moving the a surgical instrument along a constrained trajectory relative to the upper portion,
an adjustable base supporting the upper portion, including a mounting base for attaching the guidance fixture to a body, the mounting base having central opening and a central axis passing through the central opening, and an orientation adjustment mechanism coupled between the mounting base and the upper portion, configuration of the adjustment mechanism determine the orientation of the upper portion relative to the mounting base, and
a plurality of tracking markers for tracking a location of the upper portion of the guidance fixture; a tracking system for accepting the locations of the tracking markers on the tracking frame and the locations of the tracking markers on the guidance fixture, and computing a geometric relationship between the constrained trajectory and the body; and
a display system for presenting an image of the body and the geometric relationship between the constrained trajectory and the body.
20. The system of
claim 19
wherein the remote sensing device includes a plurality of cameras, and the tracking markers are light emitting diodes.
21. A method for positioning a surgical instrument during stereotactic surgery, comprising:
providing a guidance fixture that includes an upper portion, including an instrument guide for moving the surgical instrument along a constrained trajectory relative to the upper portion, and includes an adjustable base supporting the upper portion, including a mounting base and an adjustment mechanism;
attaching the guidance fixture to a body, including attaching the mounting base to the body;
sensing using a remote sensing device locations of a plurality of tracking markers affixed to the upper portion of the guidance fixture;
determining a location and an orientation of the upper portion using the plurality of sensed locations of the tracking markers;
sensing using the remote sensing device a location of a tracking marker affixed to the instrument guide; determining a location of the instrument using the determined location and orientation of the upper portion and the sensed location of the tracking marker affixed to the instrument guide.
22. An adjustable guidance fixture for stereotactic surgery comprising:
an upper portion including an instrument guide for moving a surgical instrument along a constrained trajectory relative to the upper portion;
an adjustable base, including a mounting base for attaching the guidance fixture to a body, and an orientation adjustment mechanism coupled between the mounting base and the upper portion;
a plurality of tracking markers affixed to the upper portion for tracking a location and an orientation of the upper portion using a remote sensing device; and
a tracking marker affixed to the instrument guide for tracking a motion of the surgical instrument using the remote sensing device.
23. A method for adjusting a guidance fixture for stereotactic surgery, comprising:
attaching the guidance fixture to the body at an entry point to the body, the guidance fixture having an adjustable orientation;
displaying a planar section of a three-dimensional image of the body, including displaying a representation of the orientation of the guidance fixture, the planar section containing a target point within the body;
adjusting the orientation of the guidance fixture using a first constrained motion of the guidance fixture until the orientation lies in a plane corresponding to the displayed planar section;
adjusting the orientation of the guidance fixture using a second constrained motion of the guidance fixture, such that the orientation continues to lie in the plane corresponding to the displayed planar section, until the orientation passes through the target point.
24. A guidance fixture for stereotactic surgery on a body, comprising:
an instrument guide for moving a surgical instrument along a constrained trajectory relative to the instrument guide;
an adjustable base supporting the instrument guide, including a mounting base having a central axis and an adjustment mechanism coupled between the mounting base and the instrument guide, wherein a configuration of the adjustment mechanism determines an orientation of the instrument guide relative to the central axis of the mounting base; and
a signaling device for providing a signal representation of the configuration of the adjustment mechanism;
wherein the adjustment mechanism includes a rotation adjustment mechanism and a pivoting adjustment mechanism, adjustment of the rotation adjustment mechanism rotates the instrument guide about the central axis, and adjustment of the pivoting adjustment mechanism adjusts an angle between the instrument guide and the central axis.
25. The guidance fixture of
claim 24
wherein the mounting base includes a portion for mating directly with the body.
26. A guidance fixture for stereotactic surgery on a body, comprising:
an instrument guide for moving a surgical instrument along a constrained trajectory relative to the instrument guide;
an adjustable base supporting the instrument guide, including a mounting base having a central axis and an adjustment mechanism coupled between the mounting base and the instrument guide, wherein a configuration of the adjustment mechanism determines an orientation of the instrument guide relative to the central axis of the mounting base; and
a signaling device for providing a signal representation of the configuration of the adjustment mechanism wherein the signaling device includes a plurality of tracking markers and the signal representation of the configuration includes a plurality of signals propagating from corresponding tracking markers.
27. The guidance fixture of
claim 26
wherein at least some of the plurality of tracking markers are in fixed locations relative to the instrument guide.
28. The guidance fixture of
claim 26
wherein the signals propagating from the tracking markers are electromagnetic signals.
29. The guidance fixture of
claim 26
wherein the tracking markers are light emitting diodes and the signals propagating from the tracking markers are optical signals.
30. The guidance fixture of
claim 26
wherein the signals propagating from the tracking markers are acoustic signals.
31. The guidance fixture of
claim 10
wherein the tracking markers emit signals to the remote sensing device.
32. The guidance fixture of
claim 10
wherein the tracking markers reflect signals to the remote sensing device.
US09/846,640 1998-04-21 2001-05-01 Instrument guidance for stereotactic surgery Expired - Lifetime US6298262B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/846,640 US6298262B1 (en) 1998-04-21 2001-05-01 Instrument guidance for stereotactic surgery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US6365898A 1998-04-21 1998-04-21
US09/846,640 US6298262B1 (en) 1998-04-21 2001-05-01 Instrument guidance for stereotactic surgery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US6365898A Continuation 1998-04-21 1998-04-21

Publications (2)

Publication Number Publication Date
US6298262B1 US6298262B1 (en) 2001-10-02
US20010027271A1 true US20010027271A1 (en) 2001-10-04

Family

ID=22050645

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/846,640 Expired - Lifetime US6298262B1 (en) 1998-04-21 2001-05-01 Instrument guidance for stereotactic surgery

Country Status (1)

Country Link
US (1) US6298262B1 (en)

Cited By (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020052610A1 (en) * 2000-04-07 2002-05-02 Skakoon James G. Deep organ access device and method
US20020176612A1 (en) * 2001-05-25 2002-11-28 Tuncay Orhan C. System and method of digitally modelling craniofacial features for the purposes of diagnosis and treatment predictions
US6585651B2 (en) 1999-04-20 2003-07-01 Synthes Ag Chur Method and device for percutaneous determination of points associated with the surface of an organ
US20030229279A1 (en) * 2000-11-03 2003-12-11 Christoph Amstutz Determination of deformations of surgical tools
US20040030236A1 (en) * 2002-07-29 2004-02-12 Mazzocchi Rudy A. Fiducial marker devices, tools, and methods
US20040030237A1 (en) * 2002-07-29 2004-02-12 Lee David M. Fiducial marker devices and methods
US6694168B2 (en) 1998-06-22 2004-02-17 Synthes (U.S.A.) Fiducial matching using fiducial implants
WO2004026161A2 (en) * 2002-09-17 2004-04-01 Image-Guided Neurologics, Inc. Low profile instrument immobilizer
US6725082B2 (en) 1999-03-17 2004-04-20 Synthes U.S.A. System and method for ligament graft placement
US20040097948A1 (en) * 2002-09-26 2004-05-20 Heldreth Mark Alan Method and apparatus for controlling a surgical burr in the performance of an orthopaedic procedure
US20040147839A1 (en) * 2002-10-25 2004-07-29 Moctezuma De La Barrera Jose Luis Flexible tracking article and method of using the same
US20050020909A1 (en) * 2003-07-10 2005-01-27 Moctezuma De La Barrera Jose Luis Display device for surgery and method for using the same
EP1569576A2 (en) * 2002-08-09 2005-09-07 Kinamed, Inc. Non-imaging tracking tools and method for hip replacement surgery
US20050256541A1 (en) * 2004-04-30 2005-11-17 Medtronic, Inc. Catheter with temporary stimulation electrode
US20050288575A1 (en) * 2003-12-10 2005-12-29 De La Barrera Jose Luis M Surgical navigation tracker, system and method
US20060036264A1 (en) * 2004-08-06 2006-02-16 Sean Selover Rigidly guided implant placement
US20060135957A1 (en) * 2004-12-21 2006-06-22 Dorin Panescu Method and apparatus to align a probe with a cornea
US20060184014A1 (en) * 2004-12-02 2006-08-17 Manfred Pfeiler Registration aid for medical images
US7136696B2 (en) 2002-04-05 2006-11-14 The Cleveland Clinic Foundation Neuron signal analysis system and method
US7166114B2 (en) 2002-09-18 2007-01-23 Stryker Leibinger Gmbh & Co Kg Method and system for calibrating a surgical tool and adapter thereof
US20070055291A1 (en) * 2004-08-06 2007-03-08 Depuy Spine, Inc. Rigidly guided implant placement with control assist
US7313430B2 (en) * 2003-08-28 2007-12-25 Medtronic Navigation, Inc. Method and apparatus for performing stereotactic surgery
WO2008053165A1 (en) * 2006-10-31 2008-05-08 Prosurgics Limited Fiducial marker placement
US20080183074A1 (en) * 2007-01-25 2008-07-31 Warsaw Orthopedic, Inc. Method and apparatus for coordinated display of anatomical and neuromonitoring information
US20080275339A1 (en) * 2007-05-03 2008-11-06 Ingmar Thiemann Determination of sound propagation speed in navigated surgeries
US20080306375A1 (en) * 2007-06-07 2008-12-11 Surgi-Vision, Inc. Mri-guided medical interventional systems and methods
US20090118743A1 (en) * 2004-12-04 2009-05-07 Medtronic, Inc. Instrument For Guiding Stage Apparatus And Method For Using Same
US20090136099A1 (en) * 2007-11-26 2009-05-28 Boyden Edward S Image guided surgery with dynamic image reconstruction
US7658879B2 (en) 2003-02-20 2010-02-09 Medtronic, Inc. Trajectory guide with angled or patterned guide lumens or height adjustment
US20100063388A1 (en) * 2003-02-25 2010-03-11 Medtronic, Inc. Fiducial Marker Devices, Tools, and Methods
US7702380B1 (en) * 1999-11-03 2010-04-20 Case Western Reserve University System and method for producing a three-dimensional model
US7704260B2 (en) 2002-09-17 2010-04-27 Medtronic, Inc. Low profile instrument immobilizer
US7744606B2 (en) 2004-12-04 2010-06-29 Medtronic, Inc. Multi-lumen instrument guide
US7840256B2 (en) 2005-06-27 2010-11-23 Biomet Manufacturing Corporation Image guided tracking array and method
US7873400B2 (en) 2003-12-10 2011-01-18 Stryker Leibinger Gmbh & Co. Kg. Adapter for surgical navigation trackers
US20110144476A1 (en) * 2008-08-18 2011-06-16 The Brigham And Women's Hospital, Inc. Integrated Surgical Sampling Probe
US7987001B2 (en) 2007-01-25 2011-07-26 Warsaw Orthopedic, Inc. Surgical navigational and neuromonitoring instrument
US20110218550A1 (en) * 2010-03-08 2011-09-08 Tyco Healthcare Group Lp System and method for determining and adjusting positioning and orientation of a surgical device
US8116850B2 (en) 2002-12-20 2012-02-14 Medtronic, Inc. Organ access device and method
US8192445B2 (en) 2000-08-17 2012-06-05 Medtronic, Inc. Trajectory guide with instrument immobilizer
US20120179026A1 (en) * 2007-03-29 2012-07-12 Medtronic Navigation, Inc. Method for Registering a Physical Space to Image Space
US8374673B2 (en) 2007-01-25 2013-02-12 Warsaw Orthopedic, Inc. Integrated surgical navigational and neuromonitoring system having automated surgical assistance and control
US8374677B2 (en) 2007-06-07 2013-02-12 MRI Interventions, Inc. MRI-guided medical interventional systems and methods
US8571637B2 (en) 2008-01-21 2013-10-29 Biomet Manufacturing, Llc Patella tracking method and apparatus for use in surgical navigation
EP2676627A3 (en) * 2012-04-18 2014-05-21 Medtronic Navigation, Inc. System and method for automatic registration between an image and a subject
US8781557B2 (en) 1999-08-11 2014-07-15 Osteoplastics, Llc Producing a three dimensional model of an implant
US8845655B2 (en) 1999-04-20 2014-09-30 Medtronic Navigation, Inc. Instrument guide system
AU2011305508B2 (en) * 2010-09-21 2015-07-09 The Johns Hopkins University Method and apparatus for cochlear implant surgery
US9192446B2 (en) 2012-09-05 2015-11-24 MRI Interventions, Inc. Trajectory guide frame for MRI-guided surgeries
US9208558B2 (en) 1999-08-11 2015-12-08 Osteoplastics Llc Methods and systems for producing an implant
US9216015B2 (en) 2004-10-28 2015-12-22 Vycor Medical, Inc. Apparatus and methods for performing brain surgery
US9275191B2 (en) 1999-08-11 2016-03-01 Osteoplastics Llc Methods and systems for producing an implant
US9307969B2 (en) 2005-06-17 2016-04-12 Vycor Medical, Inc. Tissue retractor apparatus and methods
US20160199146A1 (en) * 2015-01-14 2016-07-14 Reference Technology Limited Company Stereotactic stabilizer
US20170105802A1 (en) * 2014-03-27 2017-04-20 Bresmedical Pty Limited Computer aided surgical navigation and planning in implantology
US9688023B2 (en) 2010-08-20 2017-06-27 H. David Dean Continuous digital light processing additive manufacturing of implants
US9737287B2 (en) 2014-05-13 2017-08-22 Vycor Medical, Inc. Guidance system mounts for surgical introducers
US9854991B2 (en) 2013-03-15 2018-01-02 Medtronic Navigation, Inc. Integrated navigation array
EP3212269A4 (en) * 2014-10-28 2018-04-18 Cogentix Medical, Inc. Method and device for controlled delivery of medical devices
WO2018085827A1 (en) 2016-11-07 2018-05-11 Vycor Medical, Inc. Surgical introducer with guidance system receptacle
US10086193B2 (en) 2004-02-13 2018-10-02 Medtronic, Inc. Apparatus for securing a therapy delivery device within a burr hole and method for making same
US20180280106A1 (en) * 2017-03-31 2018-10-04 DePuy Synthes Products, Inc. Cranial fixation device
EP3569145A1 (en) 2018-05-15 2019-11-20 Biosense Webster (Israel) Ltd. A calibration jig for a catheter comprising a position sensor
US10543016B2 (en) 2016-11-07 2020-01-28 Vycor Medical, Inc. Surgical introducer with guidance system receptacle
US20210236042A1 (en) * 2018-05-01 2021-08-05 Mayo Foundation For Medical Education And Research Intracranial electrode and delivery system
US20220257383A1 (en) * 2015-02-18 2022-08-18 The Johns Hopkins University Computer-assisted cranioplasty
WO2023039271A1 (en) 2016-11-07 2023-03-16 Vycor Medical, Inc. Surgical introducer with guidance system receptacle
US11865785B2 (en) 2010-08-20 2024-01-09 H. David Dean Continuous digital light processing additive manufacturing of implants

Families Citing this family (141)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2652928B1 (en) 1989-10-05 1994-07-29 Diadix Sa INTERACTIVE LOCAL INTERVENTION SYSTEM WITHIN A AREA OF A NON-HOMOGENEOUS STRUCTURE.
JP3432825B2 (en) 1992-08-14 2003-08-04 ブリテイッシュ・テレコミュニケーションズ・パブリック・リミテッド・カンパニー Positioning system
US5592939A (en) 1995-06-14 1997-01-14 Martinelli; Michael A. Method and system for navigating a catheter probe
US6752812B1 (en) 1997-05-15 2004-06-22 Regent Of The University Of Minnesota Remote actuation of trajectory guide
US6226548B1 (en) 1997-09-24 2001-05-01 Surgical Navigation Technologies, Inc. Percutaneous registration apparatus and method for use in computer-assisted surgical navigation
US6021343A (en) 1997-11-20 2000-02-01 Surgical Navigation Technologies Image guided awl/tap/screwdriver
US6348058B1 (en) 1997-12-12 2002-02-19 Surgical Navigation Technologies, Inc. Image guided spinal surgery guide, system, and method for use thereof
US6529765B1 (en) * 1998-04-21 2003-03-04 Neutar L.L.C. Instrumented and actuated guidance fixture for sterotactic surgery
US6327491B1 (en) * 1998-07-06 2001-12-04 Neutar, Llc Customized surgical fixture
US6477400B1 (en) 1998-08-20 2002-11-05 Sofamor Danek Holdings, Inc. Fluoroscopic image guided orthopaedic surgery system with intraoperative registration
US6195577B1 (en) 1998-10-08 2001-02-27 Regents Of The University Of Minnesota Method and apparatus for positioning a device in a body
US6470207B1 (en) 1999-03-23 2002-10-22 Surgical Navigation Technologies, Inc. Navigational guidance via computer-assisted fluoroscopic imaging
US6499488B1 (en) 1999-10-28 2002-12-31 Winchester Development Associates Surgical sensor
US6493573B1 (en) 1999-10-28 2002-12-10 Winchester Development Associates Method and system for navigating a catheter probe in the presence of field-influencing objects
US7366562B2 (en) 2003-10-17 2008-04-29 Medtronic Navigation, Inc. Method and apparatus for surgical navigation
US8239001B2 (en) 2003-10-17 2012-08-07 Medtronic Navigation, Inc. Method and apparatus for surgical navigation
US8644907B2 (en) 1999-10-28 2014-02-04 Medtronic Navigaton, Inc. Method and apparatus for surgical navigation
US11331150B2 (en) 1999-10-28 2022-05-17 Medtronic Navigation, Inc. Method and apparatus for surgical navigation
US6381485B1 (en) 1999-10-28 2002-04-30 Surgical Navigation Technologies, Inc. Registration of human anatomy integrated for electromagnetic localization
US6474341B1 (en) 1999-10-28 2002-11-05 Surgical Navigation Technologies, Inc. Surgical communication and power system
DE19956814B4 (en) * 1999-11-25 2004-07-15 Brainlab Ag Shape detection of treatment devices
WO2001064124A1 (en) 2000-03-01 2001-09-07 Surgical Navigation Technologies, Inc. Multiple cannula image guided tool for image guided procedures
US6497134B1 (en) * 2000-03-15 2002-12-24 Image Guided Technologies, Inc. Calibration of an instrument
US6535756B1 (en) 2000-04-07 2003-03-18 Surgical Navigation Technologies, Inc. Trajectory storage apparatus and method for surgical navigation system
US7366561B2 (en) 2000-04-07 2008-04-29 Medtronic, Inc. Robotic trajectory guide
US6572624B2 (en) * 2000-04-13 2003-06-03 Hoi Sang U Stereotaxic detachable needle extension
US7085400B1 (en) 2000-06-14 2006-08-01 Surgical Navigation Technologies, Inc. System and method for image based sensor calibration
US6837892B2 (en) 2000-07-24 2005-01-04 Mazor Surgical Technologies Ltd. Miniature bone-mounted surgical robot
US7198795B2 (en) * 2000-09-21 2007-04-03 Elan Pharma International Ltd. In vitro methods for evaluating the in vivo effectiveness of dosage forms of microparticulate of nanoparticulate active agent compositions
JP2002306509A (en) * 2001-04-10 2002-10-22 Olympus Optical Co Ltd Remote operation supporting system
US6636757B1 (en) 2001-06-04 2003-10-21 Surgical Navigation Technologies, Inc. Method and apparatus for electromagnetic navigation of a surgical probe near a metal object
US20030055436A1 (en) * 2001-09-14 2003-03-20 Wolfgang Daum Navigation of a medical instrument
DE20120221U1 (en) * 2001-12-13 2002-04-18 Trw Automotive Safety Sys Gmbh Steering device for a motor vehicle
EP1330992A1 (en) * 2002-01-23 2003-07-30 Stiftung für Plastische und Aesthetische Wundheilung im Sondervermögen der DT Deutschen Stiftungstreuhend AG Device and method for establishing the spatial position of an instrument relative to an object
US6947786B2 (en) 2002-02-28 2005-09-20 Surgical Navigation Technologies, Inc. Method and apparatus for perspective inversion
US6990368B2 (en) 2002-04-04 2006-01-24 Surgical Navigation Technologies, Inc. Method and apparatus for virtual digital subtraction angiography
US7998062B2 (en) 2004-03-29 2011-08-16 Superdimension, Ltd. Endoscope structures and techniques for navigating to a target in branched structure
US20040019265A1 (en) * 2002-07-29 2004-01-29 Mazzocchi Rudy A. Fiducial marker devices, tools, and methods
WO2004014244A2 (en) 2002-08-13 2004-02-19 Microbotics Corporation Microsurgical robot system
US7599730B2 (en) 2002-11-19 2009-10-06 Medtronic Navigation, Inc. Navigation system for cardiac therapies
US7697972B2 (en) 2002-11-19 2010-04-13 Medtronic Navigation, Inc. Navigation system for cardiac therapies
US7542791B2 (en) 2003-01-30 2009-06-02 Medtronic Navigation, Inc. Method and apparatus for preplanning a surgical procedure
US7660623B2 (en) 2003-01-30 2010-02-09 Medtronic Navigation, Inc. Six degree of freedom alignment display for medical procedures
US7328057B2 (en) * 2003-02-06 2008-02-05 Medtronic, Inc. Shunt passer or like surgical instrument configured for receiving different-sized positioning locators of image-guided surgical system
US7129360B2 (en) * 2003-04-07 2006-10-31 Fmc Corporation Using alkylmetal reagents for directed metalation of azaaromatics
US7662157B2 (en) * 2003-08-21 2010-02-16 Osteomed L.P. Bone anchor system
JP2007519425A (en) 2003-09-15 2007-07-19 スーパー ディメンション リミテッド Bronchoscope accessories and systems
EP2316328B1 (en) 2003-09-15 2012-05-09 Super Dimension Ltd. Wrap-around holding device for use with bronchoscopes
US7835778B2 (en) 2003-10-16 2010-11-16 Medtronic Navigation, Inc. Method and apparatus for surgical navigation of a multiple piece construct for implantation
US7840253B2 (en) 2003-10-17 2010-11-23 Medtronic Navigation, Inc. Method and apparatus for surgical navigation
US20050182317A1 (en) * 2004-01-29 2005-08-18 Haddad Souheil F. Method and apparatus for locating medical devices in tissue
US8764725B2 (en) 2004-02-09 2014-07-01 Covidien Lp Directional anchoring mechanism, method and applications thereof
US9373166B2 (en) * 2004-04-23 2016-06-21 Siemens Medical Solutions Usa, Inc. Registered video endoscopy and virtual endoscopy
US7567834B2 (en) 2004-05-03 2009-07-28 Medtronic Navigation, Inc. Method and apparatus for implantation between two vertebral bodies
US7835784B2 (en) 2005-09-21 2010-11-16 Medtronic Navigation, Inc. Method and apparatus for positioning a reference frame
EP2062530A3 (en) 2005-11-29 2009-08-12 Surgi-Vision, Inc. MRI-guided localization and/or lead placement systems, related methods, devices and computer program
US9168102B2 (en) 2006-01-18 2015-10-27 Medtronic Navigation, Inc. Method and apparatus for providing a container to a sterile environment
EP1820465B1 (en) * 2006-02-21 2010-04-07 BrainLAB AG Universal image registration interface
US8112292B2 (en) 2006-04-21 2012-02-07 Medtronic Navigation, Inc. Method and apparatus for optimizing a therapy
US8121361B2 (en) 2006-05-19 2012-02-21 The Queen's Medical Center Motion tracking system for real time adaptive imaging and spectroscopy
EP1862115B1 (en) * 2006-05-31 2009-03-18 BrainLAB AG Registration with emitting marking elements
US8560047B2 (en) 2006-06-16 2013-10-15 Board Of Regents Of The University Of Nebraska Method and apparatus for computer aided surgery
WO2008014261A2 (en) * 2006-07-24 2008-01-31 Vanderbilt University Adjustable surgical platform and surgical instrument using same
US8771290B2 (en) * 2006-07-24 2014-07-08 Vanderbilt University Microstereotactic table
US8660635B2 (en) 2006-09-29 2014-02-25 Medtronic, Inc. Method and apparatus for optimizing a computer assisted surgical procedure
US8357165B2 (en) * 2006-12-22 2013-01-22 Depuy Products, Inc. Reference array mounting bracket for use with a computer assisted orthopaedic surgery system
US9351744B2 (en) 2007-05-14 2016-05-31 Queen's University At Kingston Patient-specific surgical guidance tool and method of use
CN101742972B (en) * 2007-05-14 2015-01-07 金斯顿女王大学 Patient-specific surgical guidance tool and method of use
US9532848B2 (en) * 2007-06-15 2017-01-03 Othosoft, Inc. Computer-assisted surgery system and method
US8548569B2 (en) * 2007-09-24 2013-10-01 MRI Interventions, Inc. Head fixation assemblies for medical procedures
US8315689B2 (en) 2007-09-24 2012-11-20 MRI Interventions, Inc. MRI surgical systems for real-time visualizations using MRI image data and predefined data of surgical tools
EP2192871B8 (en) 2007-09-24 2015-01-28 MRI Interventions, Inc. Mri-compatible patch and method for identifying a position
US8905920B2 (en) 2007-09-27 2014-12-09 Covidien Lp Bronchoscope adapter and method
US8340743B2 (en) * 2007-11-21 2012-12-25 MRI Interventions, Inc. Methods, systems and computer program products for positioning a guidance apparatus relative to a patient
US9575140B2 (en) 2008-04-03 2017-02-21 Covidien Lp Magnetic interference detection system and method
EP2297673B1 (en) 2008-06-03 2020-04-22 Covidien LP Feature-based registration method
US8218847B2 (en) 2008-06-06 2012-07-10 Superdimension, Ltd. Hybrid registration method
US8932207B2 (en) 2008-07-10 2015-01-13 Covidien Lp Integrated multi-functional endoscopic tool
US8165658B2 (en) * 2008-09-26 2012-04-24 Medtronic, Inc. Method and apparatus for positioning a guide relative to a base
US8175681B2 (en) 2008-12-16 2012-05-08 Medtronic Navigation Inc. Combination of electromagnetic and electropotential localization
US8611984B2 (en) 2009-04-08 2013-12-17 Covidien Lp Locatable catheter
US20100298845A1 (en) * 2009-05-25 2010-11-25 Kidd Brian L Remote manipulator device
US20110009739A1 (en) * 2009-07-13 2011-01-13 Phillips Scott B Transcranial ultrasound transducer with stereotactic conduit for placement of ventricular catheter
US8494613B2 (en) 2009-08-31 2013-07-23 Medtronic, Inc. Combination localization system
US8494614B2 (en) 2009-08-31 2013-07-23 Regents Of The University Of Minnesota Combination localization system
JP2013510692A (en) 2009-11-17 2013-03-28 クィーンズ ユニバーシティー アット キングストン Patient-specific guide for acetabular cup placement
US8483802B2 (en) * 2010-03-25 2013-07-09 Medtronic, Inc. Method and apparatus for guiding an external needle to an implantable device
US9339601B2 (en) * 2010-03-25 2016-05-17 Medtronic, Inc. Method and apparatus for guiding an external needle to an implantable device
US8475407B2 (en) 2010-03-25 2013-07-02 Medtronic, Inc. Method and apparatus for guiding an external needle to an implantable device
US9216257B2 (en) * 2010-03-25 2015-12-22 Medtronic, Inc. Method and apparatus for guiding an external needle to an implantable device
US10582834B2 (en) 2010-06-15 2020-03-10 Covidien Lp Locatable expandable working channel and method
FR2963693B1 (en) 2010-08-04 2013-05-03 Medtech PROCESS FOR AUTOMATED ACQUISITION AND ASSISTED ANATOMICAL SURFACES
WO2012092511A2 (en) * 2010-12-29 2012-07-05 The Ohio State University Automated trajectory planning for stereotactic procedures
EP2723270B1 (en) 2011-06-27 2019-01-23 Board of Regents of the University of Nebraska On-board tool tracking system of computer assisted surgery
US9498231B2 (en) 2011-06-27 2016-11-22 Board Of Regents Of The University Of Nebraska On-board tool tracking system and methods of computer assisted surgery
US11911117B2 (en) 2011-06-27 2024-02-27 Board Of Regents Of The University Of Nebraska On-board tool tracking system and methods of computer assisted surgery
US9606209B2 (en) 2011-08-26 2017-03-28 Kineticor, Inc. Methods, systems, and devices for intra-scan motion correction
FR2983059B1 (en) 2011-11-30 2014-11-28 Medtech ROBOTIC-ASSISTED METHOD OF POSITIONING A SURGICAL INSTRUMENT IN RELATION TO THE BODY OF A PATIENT AND DEVICE FOR CARRYING OUT SAID METHOD
US9439627B2 (en) 2012-05-22 2016-09-13 Covidien Lp Planning system and navigation system for an ablation procedure
US9498182B2 (en) 2012-05-22 2016-11-22 Covidien Lp Systems and methods for planning and navigation
US8750568B2 (en) * 2012-05-22 2014-06-10 Covidien Lp System and method for conformal ablation planning
US9439622B2 (en) 2012-05-22 2016-09-13 Covidien Lp Surgical navigation system
US9439623B2 (en) 2012-05-22 2016-09-13 Covidien Lp Surgical planning system and navigation system
US9717461B2 (en) 2013-01-24 2017-08-01 Kineticor, Inc. Systems, devices, and methods for tracking and compensating for patient motion during a medical imaging scan
US9305365B2 (en) 2013-01-24 2016-04-05 Kineticor, Inc. Systems, devices, and methods for tracking moving targets
US10327708B2 (en) 2013-01-24 2019-06-25 Kineticor, Inc. Systems, devices, and methods for tracking and compensating for patient motion during a medical imaging scan
CN105392423B (en) 2013-02-01 2018-08-17 凯内蒂科尔股份有限公司 The motion tracking system of real-time adaptive motion compensation in biomedical imaging
US10105149B2 (en) 2013-03-15 2018-10-23 Board Of Regents Of The University Of Nebraska On-board tool tracking system and methods of computer assisted surgery
EP3054858A4 (en) * 2013-10-11 2017-08-09 Sonacare Medical, LLC System for and method of performing sonasurgery
US10004462B2 (en) 2014-03-24 2018-06-26 Kineticor, Inc. Systems, methods, and devices for removing prospective motion correction from medical imaging scans
US10952593B2 (en) 2014-06-10 2021-03-23 Covidien Lp Bronchoscope adapter
WO2016014718A1 (en) 2014-07-23 2016-01-28 Kineticor, Inc. Systems, devices, and methods for tracking and compensating for patient motion during a medical imaging scan
US10426555B2 (en) 2015-06-03 2019-10-01 Covidien Lp Medical instrument with sensor for use in a system and method for electromagnetic navigation
US9943247B2 (en) 2015-07-28 2018-04-17 The University Of Hawai'i Systems, devices, and methods for detecting false movements for motion correction during a medical imaging scan
US9962134B2 (en) 2015-10-28 2018-05-08 Medtronic Navigation, Inc. Apparatus and method for maintaining image quality while minimizing X-ray dosage of a patient
CN108697367A (en) 2015-11-23 2018-10-23 凯内蒂科尓股份有限公司 Systems, devices and methods for patient motion to be tracked and compensated during medical image scan
FR3048872B1 (en) 2016-03-21 2018-04-13 Medtech Sa AUTOMATED TRACING METHOD AND DEVICE FOR A SURGICAL ROBOT
US10478254B2 (en) 2016-05-16 2019-11-19 Covidien Lp System and method to access lung tissue
CA3034314C (en) 2016-08-17 2021-04-20 Synaptive Medical (Barbados) Inc. Methods and systems for registration of virtual space with real space in an augmented reality system
US10722311B2 (en) 2016-10-28 2020-07-28 Covidien Lp System and method for identifying a location and/or an orientation of an electromagnetic sensor based on a map
US10615500B2 (en) 2016-10-28 2020-04-07 Covidien Lp System and method for designing electromagnetic navigation antenna assemblies
US10418705B2 (en) 2016-10-28 2019-09-17 Covidien Lp Electromagnetic navigation antenna assembly and electromagnetic navigation system including the same
US10751126B2 (en) 2016-10-28 2020-08-25 Covidien Lp System and method for generating a map for electromagnetic navigation
US10517505B2 (en) 2016-10-28 2019-12-31 Covidien Lp Systems, methods, and computer-readable media for optimizing an electromagnetic navigation system
US10792106B2 (en) 2016-10-28 2020-10-06 Covidien Lp System for calibrating an electromagnetic navigation system
US10638952B2 (en) 2016-10-28 2020-05-05 Covidien Lp Methods, systems, and computer-readable media for calibrating an electromagnetic navigation system
US10446931B2 (en) 2016-10-28 2019-10-15 Covidien Lp Electromagnetic navigation antenna assembly and electromagnetic navigation system including the same
US10905497B2 (en) 2017-04-21 2021-02-02 Clearpoint Neuro, Inc. Surgical navigation systems
US11219489B2 (en) 2017-10-31 2022-01-11 Covidien Lp Devices and systems for providing sensors in parallel with medical tools
US11707329B2 (en) 2018-08-10 2023-07-25 Covidien Lp Systems and methods for ablation visualization
US10653432B2 (en) 2018-08-10 2020-05-19 Wright Medical Technology, Inc. Osteotomy guide
US11744655B2 (en) 2018-12-04 2023-09-05 Globus Medical, Inc. Drill guide fixtures, cranial insertion fixtures, and related methods and robotic systems
US11602402B2 (en) 2018-12-04 2023-03-14 Globus Medical, Inc. Drill guide fixtures, cranial insertion fixtures, and related methods and robotic systems
US11564761B2 (en) 2019-03-08 2023-01-31 Mako Surgical Corp. Systems and methods for controlling movement of a surgical tool along a predefined path
US11317978B2 (en) 2019-03-22 2022-05-03 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices
US20200297426A1 (en) * 2019-03-22 2020-09-24 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, and related methods and devices
US11419616B2 (en) 2019-03-22 2022-08-23 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices
US11806084B2 (en) 2019-03-22 2023-11-07 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, and related methods and devices
US11382549B2 (en) 2019-03-22 2022-07-12 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, and related methods and devices
US11045179B2 (en) 2019-05-20 2021-06-29 Global Medical Inc Robot-mounted retractor system
CN113081269A (en) * 2020-01-08 2021-07-09 格罗伯斯医疗有限公司 Surgical robotic system for performing surgery on anatomical features of a patient

Family Cites Families (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4706665A (en) 1984-12-17 1987-11-17 Gouda Kasim I Frame for stereotactic surgery
US4809694A (en) 1987-05-19 1989-03-07 Ferrara Vincent L Biopsy guide
DE3717871C3 (en) 1987-05-27 1995-05-04 Georg Prof Dr Schloendorff Method and device for reproducible visual representation of a surgical intervention
KR970001431B1 (en) 1987-05-27 1997-02-06 쉬뢴도르프 게오르그 Process and device for optical representation of surgical operation
US4991579A (en) 1987-11-10 1991-02-12 Allen George S Method and apparatus for providing related images over time of a portion of the anatomy using fiducial implants
US5251127A (en) 1988-02-01 1993-10-05 Faro Medical Technologies Inc. Computer-aided surgery apparatus
EP0326768A3 (en) 1988-02-01 1991-01-23 Faro Medical Technologies Inc. Computer-aided surgery apparatus
US5050608A (en) 1988-07-12 1991-09-24 Medirand, Inc. System for indicating a position to be operated in a patient's body
US5099846A (en) 1988-12-23 1992-03-31 Hardy Tyrone L Method and apparatus for video presentation from a variety of scanner imaging sources
EP0647428A3 (en) 1989-11-08 1995-07-12 George S Allen Interactive image-guided surgical system.
US5222499A (en) 1989-11-15 1993-06-29 Allen George S Method and apparatus for imaging the anatomy
US5107839A (en) 1990-05-04 1992-04-28 Pavel V. Houdek Computer controlled stereotaxic radiotherapy system and method
EP0931516B1 (en) 1990-10-19 2008-08-20 St. Louis University Surgical probe locating system for head use
US5662111A (en) 1991-01-28 1997-09-02 Cosman; Eric R. Process of stereotactic optical navigation
US5201742A (en) 1991-04-16 1993-04-13 Hasson Harrith M Support jig for a surgical instrument
US5279309A (en) 1991-06-13 1994-01-18 International Business Machines Corporation Signaling device and method for monitoring positions in a surgical operation
US5371778A (en) 1991-11-29 1994-12-06 Picker International, Inc. Concurrent display and adjustment of 3D projection, coronal slice, sagittal slice, and transverse slice images
DE4207901C3 (en) 1992-03-12 1999-10-07 Aesculap Ag & Co Kg Method and device for displaying a work area in a three-dimensional structure
US5603318A (en) 1992-04-21 1997-02-18 University Of Utah Research Foundation Apparatus and method for photogrammetric surgical localization
DE4233978C1 (en) 1992-10-08 1994-04-21 Leibinger Gmbh Body marking device for medical examinations
US5517990A (en) 1992-11-30 1996-05-21 The Cleveland Clinic Foundation Stereotaxy wand and tool guide
US5732703A (en) 1992-11-30 1998-03-31 The Cleveland Clinic Foundation Stereotaxy wand and tool guide
US5551429A (en) 1993-02-12 1996-09-03 Fitzpatrick; J. Michael Method for relating the data of an image space to physical space
US5799099A (en) 1993-02-12 1998-08-25 George S. Allen Automatic technique for localizing externally attached fiducial markers in volume images of the head
US5575794A (en) 1993-02-12 1996-11-19 Walus; Richard L. Tool for implanting a fiducial marker
DE4304570A1 (en) 1993-02-16 1994-08-18 Mdc Med Diagnostic Computing Device and method for preparing and supporting surgical procedures
US5728106A (en) 1993-04-16 1998-03-17 Oregon Neuro-Medical Technology, Inc. Radio-transparent system for stereotactic radiosurgery and fractionated radiation therapy
EP1219259B1 (en) 1993-04-22 2003-07-16 Image Guided Technologies, Inc. System for locating relative positions of objects
DE69432834T2 (en) 1993-04-26 2004-05-13 St. Louis University Display of the location of a surgical probe
US5961456A (en) 1993-05-12 1999-10-05 Gildenberg; Philip L. System and method for displaying concurrent video and reconstructed surgical views
US5791231A (en) 1993-05-17 1998-08-11 Endorobotics Corporation Surgical robotic system and hydraulic actuator therefor
EP0649117A3 (en) 1993-10-15 1996-01-31 George S Allen Method for providing medical images.
US5394875A (en) 1993-10-21 1995-03-07 Lewis; Judith T. Automatic ultrasonic localization of targets implanted in a portion of the anatomy
EP0729322A4 (en) 1993-11-15 1999-06-16 Urso Paul Steven D Surgical procedures
US5531227A (en) 1994-01-28 1996-07-02 Schneider Medical Technologies, Inc. Imaging device and method
DE4417944A1 (en) 1994-05-21 1995-11-23 Zeiss Carl Fa Process for correlating different coordinate systems in computer-assisted, stereotactic surgery
US5643286A (en) 1994-06-24 1997-07-01 Cytotherapeutics, Inc. Microdrive for use in stereotactic surgery
US5531520A (en) 1994-09-01 1996-07-02 Massachusetts Institute Of Technology System and method of registration of three-dimensional data sets including anatomical body data
US5829444A (en) 1994-09-15 1998-11-03 Visualization Technology, Inc. Position tracking and imaging system for use in medical applications
DE4432891C2 (en) 1994-09-15 2003-11-06 Brainlab Ag Device and mask part set for non-invasive stereotactic immobilization in a reproducible position
DE69531994T2 (en) 1994-09-15 2004-07-22 OEC Medical Systems, Inc., Boston SYSTEM FOR POSITION DETECTION BY MEANS OF A REFERENCE UNIT ATTACHED TO A PATIENT'S HEAD FOR USE IN THE MEDICAL AREA
US5695501A (en) 1994-09-30 1997-12-09 Ohio Medical Instrument Company, Inc. Apparatus for neurosurgical stereotactic procedures
US5891157A (en) 1994-09-30 1999-04-06 Ohio Medical Instrument Company, Inc. Apparatus for surgical stereotactic procedures
US5665095A (en) 1994-12-15 1997-09-09 Jacobson; Robert E. Stereotactic guidance device
US5588430A (en) 1995-02-14 1996-12-31 University Of Florida Research Foundation, Inc. Repeat fixation for frameless stereotactic procedure
US5660185A (en) 1995-04-13 1997-08-26 Neovision Corporation Image-guided biopsy apparatus with enhanced imaging and methods
US5645549A (en) 1995-04-24 1997-07-08 Danek Medical, Inc. Template for positioning interbody fusion devices
US5814038A (en) 1995-06-07 1998-09-29 Sri International Surgical manipulator for a telerobotic system
GB9515446D0 (en) 1995-07-27 1995-09-27 Marconi Gec Ltd Imaging systems
US5638819A (en) 1995-08-29 1997-06-17 Manwaring; Kim H. Method and apparatus for guiding an instrument to a target
US5817106A (en) 1995-09-19 1998-10-06 Real; Douglas D. Stereotactic guide apparatus for use with neurosurgical headframe
US5769861A (en) 1995-09-28 1998-06-23 Brainlab Med. Computersysteme Gmbh Method and devices for localizing an instrument
US5682886A (en) 1995-12-26 1997-11-04 Musculographics Inc Computer-assisted surgical system
US5781445A (en) 1996-08-22 1998-07-14 Taiwan Semiconductor Manufacturing Company, Ltd. Plasma damage monitor
US5984930A (en) 1996-09-30 1999-11-16 George S. Allen Biopsy guide
US5891158A (en) 1997-10-23 1999-04-06 Manwaring; Kim H. Method and system for directing an instrument to a target
US5957934A (en) 1997-12-22 1999-09-28 Uri Rapoport Method and apparatus for guiding a penetrating tool into a three-dimensional object

Cited By (134)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6694168B2 (en) 1998-06-22 2004-02-17 Synthes (U.S.A.) Fiducial matching using fiducial implants
US6725082B2 (en) 1999-03-17 2004-04-20 Synthes U.S.A. System and method for ligament graft placement
US8845655B2 (en) 1999-04-20 2014-09-30 Medtronic Navigation, Inc. Instrument guide system
US6585651B2 (en) 1999-04-20 2003-07-01 Synthes Ag Chur Method and device for percutaneous determination of points associated with the surface of an organ
US10068671B2 (en) 1999-08-11 2018-09-04 Osteoplastics, Llc Methods and systems for producing an implant
US9208558B2 (en) 1999-08-11 2015-12-08 Osteoplastics Llc Methods and systems for producing an implant
US9275191B2 (en) 1999-08-11 2016-03-01 Osteoplastics Llc Methods and systems for producing an implant
US8781557B2 (en) 1999-08-11 2014-07-15 Osteoplastics, Llc Producing a three dimensional model of an implant
US9292920B2 (en) 1999-08-11 2016-03-22 Osteoplastics, Llc Methods and systems for producing an implant
US9330206B2 (en) 1999-08-11 2016-05-03 Osteoplastics Llc Producing a three dimensional model of an implant
US9626756B2 (en) 1999-08-11 2017-04-18 Osteoplastics Llc Methods and systems for producing an implant
US9672302B2 (en) 1999-08-11 2017-06-06 Osteoplastics, Llc Producing a three-dimensional model of an implant
US9672617B2 (en) 1999-08-11 2017-06-06 Osteoplastics, Llc Methods and systems for producing an implant
US7702380B1 (en) * 1999-11-03 2010-04-20 Case Western Reserve University System and method for producing a three-dimensional model
US7833231B2 (en) 2000-04-07 2010-11-16 Medtronic, Inc. Device for immobilizing a primary instrument and method therefor
US20020052610A1 (en) * 2000-04-07 2002-05-02 Skakoon James G. Deep organ access device and method
US8911452B2 (en) 2000-04-07 2014-12-16 Medtronic, Inc. Device for immobilizing a primary instrument and method therefor
US10300268B2 (en) 2000-04-07 2019-05-28 Medtronic, Inc. Device for immobilizing a primary instrument and method therefor
US8845656B2 (en) 2000-04-07 2014-09-30 Medtronic, Inc. Device for immobilizing a primary instrument and method therefor
US7815651B2 (en) 2000-04-07 2010-10-19 Medtronic, Inc. Device for immobilizing a primary instrument and method therefor
US7857820B2 (en) 2000-04-07 2010-12-28 Medtronic, Inc. Sheath assembly for an access device and method therefor
US7828809B2 (en) 2000-04-07 2010-11-09 Medtronic, Inc. Device for immobilizing a primary instrument and method therefor
US8192445B2 (en) 2000-08-17 2012-06-05 Medtronic, Inc. Trajectory guide with instrument immobilizer
US20030229279A1 (en) * 2000-11-03 2003-12-11 Christoph Amstutz Determination of deformations of surgical tools
US6879712B2 (en) * 2001-05-25 2005-04-12 Orhan C. Tuncay System and method of digitally modelling craniofacial features for the purposes of diagnosis and treatment predictions
US20020176612A1 (en) * 2001-05-25 2002-11-28 Tuncay Orhan C. System and method of digitally modelling craniofacial features for the purposes of diagnosis and treatment predictions
US7136696B2 (en) 2002-04-05 2006-11-14 The Cleveland Clinic Foundation Neuron signal analysis system and method
US20040030237A1 (en) * 2002-07-29 2004-02-12 Lee David M. Fiducial marker devices and methods
US7787934B2 (en) 2002-07-29 2010-08-31 Medtronic, Inc. Fiducial marker devices, tools, and methods
US20040030236A1 (en) * 2002-07-29 2004-02-12 Mazzocchi Rudy A. Fiducial marker devices, tools, and methods
EP1569576A2 (en) * 2002-08-09 2005-09-07 Kinamed, Inc. Non-imaging tracking tools and method for hip replacement surgery
EP1569576A4 (en) * 2002-08-09 2009-04-08 Kinamed Inc Non-imaging tracking tools and method for hip replacement surgery
US8002772B2 (en) 2002-08-09 2011-08-23 Kinamed, Inc. Non-imaging tracking tools and method for hip replacement surgery
US7704260B2 (en) 2002-09-17 2010-04-27 Medtronic, Inc. Low profile instrument immobilizer
WO2004026161A3 (en) * 2002-09-17 2004-07-01 Image Guided Neurologics Inc Low profile instrument immobilizer
US10974029B2 (en) 2002-09-17 2021-04-13 Medtronic, Inc. Low profile instrument immobilizer
WO2004026161A2 (en) * 2002-09-17 2004-04-01 Image-Guided Neurologics, Inc. Low profile instrument immobilizer
US10058681B2 (en) 2002-09-17 2018-08-28 Medtronic, Inc. Low profile instrument immobilizer
US9901713B2 (en) 2002-09-17 2018-02-27 Medtronic, Inc. Low profile instrument immobilizer
US7166114B2 (en) 2002-09-18 2007-01-23 Stryker Leibinger Gmbh & Co Kg Method and system for calibrating a surgical tool and adapter thereof
US20040097948A1 (en) * 2002-09-26 2004-05-20 Heldreth Mark Alan Method and apparatus for controlling a surgical burr in the performance of an orthopaedic procedure
US7022123B2 (en) * 2002-09-26 2006-04-04 Depuy Products, Inc. Method and apparatus for controlling a surgical burr in the performance of an orthopaedic procedure
US20110077510A1 (en) * 2002-10-25 2011-03-31 Jose Luis Moctezuma De La Barrera Flexible Tracking Article And Method Of Using The Same
US20040147839A1 (en) * 2002-10-25 2004-07-29 Moctezuma De La Barrera Jose Luis Flexible tracking article and method of using the same
US7869861B2 (en) * 2002-10-25 2011-01-11 Howmedica Leibinger Inc. Flexible tracking article and method of using the same
US8457719B2 (en) 2002-10-25 2013-06-04 Stryker Corporation Flexible tracking article and method of using the same
US8116850B2 (en) 2002-12-20 2012-02-14 Medtronic, Inc. Organ access device and method
US7896889B2 (en) 2003-02-20 2011-03-01 Medtronic, Inc. Trajectory guide with angled or patterned lumens or height adjustment
US7981120B2 (en) 2003-02-20 2011-07-19 University Of South Florida Trajectory guide with angled or patterned guide lumens or height adjustment
US7658879B2 (en) 2003-02-20 2010-02-09 Medtronic, Inc. Trajectory guide with angled or patterned guide lumens or height adjustment
US7699854B2 (en) 2003-02-20 2010-04-20 Medtronic, Inc. Trajectory guide with angled or patterned guide lumens or height adjustment
US8073530B2 (en) 2003-02-25 2011-12-06 Medtronic, Inc. Fiducial marker devices, tools, and methods
US8185184B2 (en) 2003-02-25 2012-05-22 Medtronic, Inc. Fiducial marker devices, tools, and methods
US8032204B2 (en) 2003-02-25 2011-10-04 Medtronic, Inc. Fiducial marker devices, tools, and methods
US7720522B2 (en) 2003-02-25 2010-05-18 Medtronic, Inc. Fiducial marker devices, tools, and methods
US20100063388A1 (en) * 2003-02-25 2010-03-11 Medtronic, Inc. Fiducial Marker Devices, Tools, and Methods
US20050020909A1 (en) * 2003-07-10 2005-01-27 Moctezuma De La Barrera Jose Luis Display device for surgery and method for using the same
US7313430B2 (en) * 2003-08-28 2007-12-25 Medtronic Navigation, Inc. Method and apparatus for performing stereotactic surgery
US7925328B2 (en) 2003-08-28 2011-04-12 Medtronic Navigation, Inc. Method and apparatus for performing stereotactic surgery
US7873400B2 (en) 2003-12-10 2011-01-18 Stryker Leibinger Gmbh & Co. Kg. Adapter for surgical navigation trackers
US20050288575A1 (en) * 2003-12-10 2005-12-29 De La Barrera Jose Luis M Surgical navigation tracker, system and method
US7771436B2 (en) * 2003-12-10 2010-08-10 Stryker Leibinger Gmbh & Co. Kg. Surgical navigation tracker, system and method
US10086193B2 (en) 2004-02-13 2018-10-02 Medtronic, Inc. Apparatus for securing a therapy delivery device within a burr hole and method for making same
US20050256541A1 (en) * 2004-04-30 2005-11-17 Medtronic, Inc. Catheter with temporary stimulation electrode
US8182491B2 (en) 2004-08-06 2012-05-22 Depuy Spine, Inc. Rigidly guided implant placement
US20070055291A1 (en) * 2004-08-06 2007-03-08 Depuy Spine, Inc. Rigidly guided implant placement with control assist
US8016835B2 (en) 2004-08-06 2011-09-13 Depuy Spine, Inc. Rigidly guided implant placement with control assist
US20060036264A1 (en) * 2004-08-06 2006-02-16 Sean Selover Rigidly guided implant placement
US8852210B2 (en) 2004-08-06 2014-10-07 DePuy Synthes Products, LLC Rigidly guided implant placement
US9968415B2 (en) 2004-10-28 2018-05-15 Vycor Medical, Inc. Apparatus and methods for performing brain surgery
US9386974B2 (en) 2004-10-28 2016-07-12 Vycor Medical, Inc. Apparatus and methods for performing brain surgery
US9968414B2 (en) 2004-10-28 2018-05-15 Vycor Medical, Inc. Apparatus and methods for performing brain surgery
US9216015B2 (en) 2004-10-28 2015-12-22 Vycor Medical, Inc. Apparatus and methods for performing brain surgery
US20060184014A1 (en) * 2004-12-02 2006-08-17 Manfred Pfeiler Registration aid for medical images
US8280490B2 (en) * 2004-12-02 2012-10-02 Siemens Aktiengesellschaft Registration aid for medical images
US7867242B2 (en) 2004-12-04 2011-01-11 Medtronic, Inc. Instrument for guiding stage apparatus and method for using same
US20090118743A1 (en) * 2004-12-04 2009-05-07 Medtronic, Inc. Instrument For Guiding Stage Apparatus And Method For Using Same
US7803163B2 (en) 2004-12-04 2010-09-28 Medtronic, Inc. Multiple instrument retaining assembly and methods therefor
US7744606B2 (en) 2004-12-04 2010-06-29 Medtronic, Inc. Multi-lumen instrument guide
US20060135957A1 (en) * 2004-12-21 2006-06-22 Dorin Panescu Method and apparatus to align a probe with a cornea
US9782157B2 (en) 2005-06-17 2017-10-10 Vycor Medical, Inc. Tissue retractor apparatus and methods
US9566052B2 (en) 2005-06-17 2017-02-14 Vycor Medical, Inc. Tissue retractor apparatus and methods
US9675331B2 (en) 2005-06-17 2017-06-13 Vycor Medical, Inc. Tissue retractor apparatus and methods
US9307969B2 (en) 2005-06-17 2016-04-12 Vycor Medical, Inc. Tissue retractor apparatus and methods
US7840256B2 (en) 2005-06-27 2010-11-23 Biomet Manufacturing Corporation Image guided tracking array and method
WO2008053165A1 (en) * 2006-10-31 2008-05-08 Prosurgics Limited Fiducial marker placement
US20100069746A1 (en) * 2006-10-31 2010-03-18 Prosurgics Limited Fiducial marker placement
US20080183074A1 (en) * 2007-01-25 2008-07-31 Warsaw Orthopedic, Inc. Method and apparatus for coordinated display of anatomical and neuromonitoring information
US8374673B2 (en) 2007-01-25 2013-02-12 Warsaw Orthopedic, Inc. Integrated surgical navigational and neuromonitoring system having automated surgical assistance and control
US7987001B2 (en) 2007-01-25 2011-07-26 Warsaw Orthopedic, Inc. Surgical navigational and neuromonitoring instrument
US8548563B2 (en) * 2007-03-29 2013-10-01 Medtronic Navigation, Inc. Method for registering a physical space to image space
US20120179026A1 (en) * 2007-03-29 2012-07-12 Medtronic Navigation, Inc. Method for Registering a Physical Space to Image Space
US20080275339A1 (en) * 2007-05-03 2008-11-06 Ingmar Thiemann Determination of sound propagation speed in navigated surgeries
US20080306375A1 (en) * 2007-06-07 2008-12-11 Surgi-Vision, Inc. Mri-guided medical interventional systems and methods
US8175677B2 (en) 2007-06-07 2012-05-08 MRI Interventions, Inc. MRI-guided medical interventional systems and methods
US8374677B2 (en) 2007-06-07 2013-02-12 MRI Interventions, Inc. MRI-guided medical interventional systems and methods
US20090112082A1 (en) * 2007-06-07 2009-04-30 Surgi-Vision, Inc. Imaging device for mri-guided medical interventional systems
US9055884B2 (en) 2007-06-07 2015-06-16 MRI Interventions, Inc. MRI-guided medical interventional systems and methods
US8208993B2 (en) * 2007-06-07 2012-06-26 MRI Interventions, Inc. Imaging device for MRI-guided medical interventional systems
US20090082783A1 (en) * 2007-09-24 2009-03-26 Surgi-Vision, Inc. Control unit for mri-guided medical interventional systems
US9097756B2 (en) 2007-09-24 2015-08-04 MRI Interventions, Inc. Control unit for MRI-guided medical interventional systems
US20090136099A1 (en) * 2007-11-26 2009-05-28 Boyden Edward S Image guided surgery with dynamic image reconstruction
US9076203B2 (en) * 2007-11-26 2015-07-07 The Invention Science Fund I, Llc Image guided surgery with dynamic image reconstruction
US8571637B2 (en) 2008-01-21 2013-10-29 Biomet Manufacturing, Llc Patella tracking method and apparatus for use in surgical navigation
US20110144476A1 (en) * 2008-08-18 2011-06-16 The Brigham And Women's Hospital, Inc. Integrated Surgical Sampling Probe
US20110218550A1 (en) * 2010-03-08 2011-09-08 Tyco Healthcare Group Lp System and method for determining and adjusting positioning and orientation of a surgical device
US9688023B2 (en) 2010-08-20 2017-06-27 H. David Dean Continuous digital light processing additive manufacturing of implants
US10183477B2 (en) 2010-08-20 2019-01-22 H. David Dean Absorbant and reflecting biocompatible dyes for highly accurate medical implants
US11865785B2 (en) 2010-08-20 2024-01-09 H. David Dean Continuous digital light processing additive manufacturing of implants
AU2011305508B2 (en) * 2010-09-21 2015-07-09 The Johns Hopkins University Method and apparatus for cochlear implant surgery
EP2676627A3 (en) * 2012-04-18 2014-05-21 Medtronic Navigation, Inc. System and method for automatic registration between an image and a subject
US9192446B2 (en) 2012-09-05 2015-11-24 MRI Interventions, Inc. Trajectory guide frame for MRI-guided surgeries
US9854991B2 (en) 2013-03-15 2018-01-02 Medtronic Navigation, Inc. Integrated navigation array
US20170105802A1 (en) * 2014-03-27 2017-04-20 Bresmedical Pty Limited Computer aided surgical navigation and planning in implantology
US9737287B2 (en) 2014-05-13 2017-08-22 Vycor Medical, Inc. Guidance system mounts for surgical introducers
US10327748B2 (en) 2014-05-13 2019-06-25 Vycor Medical, Inc. Guidance system mounts for surgical introducers
US11116487B2 (en) 2014-05-13 2021-09-14 Vycor Medical, Inc. Guidance system mounts for surgical introducers
US10537363B2 (en) 2014-10-28 2020-01-21 Cogentix Medical, Inc. Method and device for controlled delivery of medical devices
EP3212269A4 (en) * 2014-10-28 2018-04-18 Cogentix Medical, Inc. Method and device for controlled delivery of medical devices
US11589898B2 (en) 2014-10-28 2023-02-28 Cogentix Medical, Inc. Method and device for controlled delivery of medical devices
US20160199146A1 (en) * 2015-01-14 2016-07-14 Reference Technology Limited Company Stereotactic stabilizer
US20220257383A1 (en) * 2015-02-18 2022-08-18 The Johns Hopkins University Computer-assisted cranioplasty
US10543016B2 (en) 2016-11-07 2020-01-28 Vycor Medical, Inc. Surgical introducer with guidance system receptacle
US11045182B2 (en) 2016-11-07 2021-06-29 Vycor Medical, Inc. Surgical introducer with guidance system receptacle
US10376258B2 (en) 2016-11-07 2019-08-13 Vycor Medical, Inc. Surgical introducer with guidance system receptacle
US11517347B2 (en) 2016-11-07 2022-12-06 Vycor Medical, Inc. Surgical introducer with guidance system receptacle
WO2023039271A1 (en) 2016-11-07 2023-03-16 Vycor Medical, Inc. Surgical introducer with guidance system receptacle
EP4218610A1 (en) 2016-11-07 2023-08-02 Vycor Medical, Inc. Surgical introducer with guidance system receptacle
WO2018085827A1 (en) 2016-11-07 2018-05-11 Vycor Medical, Inc. Surgical introducer with guidance system receptacle
US10478265B2 (en) * 2017-03-31 2019-11-19 Integra Lifesciences Corporation Cranial fixation device
US20180280106A1 (en) * 2017-03-31 2018-10-04 DePuy Synthes Products, Inc. Cranial fixation device
US20210236042A1 (en) * 2018-05-01 2021-08-05 Mayo Foundation For Medical Education And Research Intracranial electrode and delivery system
US10976148B2 (en) 2018-05-15 2021-04-13 Biosense Webster (Israel) Ltd. Calibration jig for a catheter comprising a position sensor
EP3569145A1 (en) 2018-05-15 2019-11-20 Biosense Webster (Israel) Ltd. A calibration jig for a catheter comprising a position sensor

Also Published As

Publication number Publication date
US6298262B1 (en) 2001-10-02

Similar Documents

Publication Publication Date Title
US6298262B1 (en) Instrument guidance for stereotactic surgery
US6273896B1 (en) Removable frames for stereotactic localization
US6546277B1 (en) Instrument guidance system for spinal and other surgery
US6351662B1 (en) Movable arm locator for stereotactic surgery
US6282437B1 (en) Body-mounted sensing system for stereotactic surgery
US6529765B1 (en) Instrumented and actuated guidance fixture for sterotactic surgery
US9649168B2 (en) Systems and methods for frameless image-guided biopsy and therapeutic intervention
US7217276B2 (en) Instrument guidance method and system for image guided surgery
USRE39133E1 (en) Percutaneous registration apparatus and method for use in computer-assisted surgical navigation
US6377839B1 (en) Tool guide for a surgical tool
US7313430B2 (en) Method and apparatus for performing stereotactic surgery
US5904691A (en) Trackable guide block
US6267769B1 (en) Trajectory guide method and apparatus for use in magnetic resonance and computerized tomographic scanners
US6187018B1 (en) Auto positioner
JP2003505132A (en) Ultrasound guidance of target structures for medical procedures
US20210038338A1 (en) Neurosurgical systems and related methods
US20050055035A1 (en) Image-based stereotactic frame for non-human animals
US20030114876A1 (en) Device for use by brain operations
CN1064609A (en) Craniocerebral ct 3-d orientation system
EP0832610A2 (en) Trackable guide for surgical tool
Van Geems The development of a simple stereotactic device for neurosurgical applications
Rhodes et al. An Improved Stereotactic System for CT Aided Neurosurgery

Legal Events

Date Code Title Description
AS Assignment

Owner name: NEUTAR L.L.C., MAINE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BUCHOLZ, RICHARD D.;CARROLL, CATALINA J.;SMITH, KURT R.;AND OTHERS;REEL/FRAME:013193/0079;SIGNING DATES FROM 20001011 TO 20010201

Owner name: NEUTAR L.L.C., MAINE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FRANCK, JOEL I.;FRANKLIN, RONALD J.;HAER, FREDERICK C.;REEL/FRAME:013193/0082

Effective date: 19980421

AS Assignment

Owner name: NEUTAR L.L.C., MAINE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BUCHOLZ, RICHARD D.;CARROLL, CATALINA J.;SMITH, KURT R.;AND OTHERS;REEL/FRAME:013193/0145;SIGNING DATES FROM 20001011 TO 20011011

Owner name: NEUTAR L.L.C., MAINE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FRANCK, JOEL I.;FRANKLIN, RONALD J.;HAER, FREDERICK C.;REEL/FRAME:013193/0345

Effective date: 19980421

FEPP Fee payment procedure

Free format text: PAT HOLDER CLAIMS SMALL ENTITY STATUS, ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: LTOS); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

REMI Maintenance fee reminder mailed
REIN Reinstatement after maintenance fee payment confirmed
FP Lapsed due to failure to pay maintenance fee

Effective date: 20051002

FEPP Fee payment procedure

Free format text: PETITION RELATED TO MAINTENANCE FEES FILED (ORIGINAL EVENT CODE: PMFP); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

FPAY Fee payment

Year of fee payment: 4

SULP Surcharge for late payment
FEPP Fee payment procedure

Free format text: PETITION RELATED TO MAINTENANCE FEES FILED (ORIGINAL EVENT CODE: PMFP); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

FEPP Fee payment procedure

Free format text: PETITION RELATED TO MAINTENANCE FEES FILED (ORIGINAL EVENT CODE: PMFP); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

FEPP Fee payment procedure

Free format text: PETITION RELATED TO MAINTENANCE FEES GRANTED (ORIGINAL EVENT CODE: PMFG); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

PRDP Patent reinstated due to the acceptance of a late maintenance fee

Effective date: 20080814

STCF Information on status: patent grant

Free format text: PATENTED CASE

REMI Maintenance fee reminder mailed
FPAY Fee payment

Year of fee payment: 8

SULP Surcharge for late payment

Year of fee payment: 7

FPAY Fee payment

Year of fee payment: 12