Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20010013639 A1
Publication typeApplication
Application numberUS 09/465,755
Publication date16 Aug 2001
Filing date17 Dec 1999
Priority date21 Dec 1998
Also published asCN1258935A, US6410979
Publication number09465755, 465755, US 2001/0013639 A1, US 2001/013639 A1, US 20010013639 A1, US 20010013639A1, US 2001013639 A1, US 2001013639A1, US-A1-20010013639, US-A1-2001013639, US2001/0013639A1, US2001/013639A1, US20010013639 A1, US20010013639A1, US2001013639 A1, US2001013639A1
InventorsMasaaki Abe
Original AssigneeMasaaki Abe
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Ball-grid-array semiconductor with protruding terminals
US 20010013639 A1
Abstract
There is provided a ball-grid-array semiconductor device. The semiconductor device has a semiconductor element sealed with a resin material. In addition, a lead frame is connected to the semiconductor element in the resin material. The lead frame is provided with terminal portions that protrude through the surface of the resin material.
Images(2)
Previous page
Next page
Claims(7)
What is claimed is:
1. A ball-grid-array semiconductor device comprising:
a semiconductor element;
a resin material which seals said semiconductor element; and
a lead frame connected to said semiconductor element in said resin material, said lead frame having a terminal portion that protrudes through a surface of said resin material.
2. The ball-grid-array semiconductor device according to
claim 1
, which further comprising a solder layer formed on an edge surface of said terminal portion.
3. The ball-grid-array semiconductor device according to
claim 1
, which further comprising a bonding wire which connects said semiconductor element to said lead frame.
4. The ball-grid-array semiconductor device according to
claim 1
, wherein said terminal portion is formed by etching a sheet of metal, a material of said lead frame, substantially half of the thickness thereof.
5. A method for manufacturing a ball-grid-array semiconductor device, comprising the steps of:
forming a lead frame having a terminal portion that protrudes in the direction of thickness thereof;
mounting a semiconductor element on said lead frame;
connecting an electrode provided on said semiconductor device to the lead frame by means of a bonding wire; and
sealing said semiconductor element with a resin material, said terminal portion protruding through a surface of said resin material.
6. The method for manufacturing a ball-grid-array semiconductor device according to
claim 5
, which further comprising the step of forming a solder layer on an edge surface of said terminal portions.
7. The method for manufacturing a ball-grid-array semiconductor device according to
claim 5
, wherein the step of forming said lead frame comprises the step of etching a sheet of metal substantially half of the thickness thereof.
Description
    BACKGROUND OF THE INVENTION
  • [0001]
    1. Field of the Invention
  • [0002]
    The present invention relates to a ball-grid-array semiconductor device and a manufacturing method therefor, and more particularly, to a ball-grid-array semiconductor device having a lead frame with terminal portions formed to protrude by etching, and its manufacturing method.
  • [0003]
    2. Description of the Related Art
  • [0004]
    A package including a lead frame is available as one of semiconductor device packages that have been manufactured to meet the requirements for semiconductor devices such as higher-integration, miniaturization, decreasing in thickness, and higher pin count. A technique relating to a method for manufacturing lead frames that is applicable to ball-grid-array semiconductor devices is described in Japanese Patent Application Laid-Open No. Sho 60 (1985)-52050. FIG. 1 is a cross-sectional view showing a conventional semiconductor device having a lead frame described in Japanese Patent Application Laid-Open No. Sho 60 (1985)-52050.
  • [0005]
    According to the prior art described in this publication, in a process where a sheet of metal is etched to form a lead frame, approximately a half of one side of the metal sheet is etched. This allows for forming projected portions 110 a for use as external terminals on the side, which protrude in the direction of thickness of the metal sheet. Subsequently, an integrated circuit 114 is attached with a bonding portion 112 to the other side where the projected portions 110 a of the lead frame 110 have not been formed. Then, these are sealed with resin 118. At this time, edges of the projected portions 110 a and part of the sides of the resin 118 are coplanar. For the conventional semiconductor devices, such method was employed to manufacture the lead frame 110 having terminals for external connection in one process.
  • [0006]
    However, this presents a problem that it is difficult to clean flux residues remaining between a package and a substrate after the package has been mounted onto the substrate. This happens because the edges of the projected portions 110 a, or external terminals, and part of sides of the resin 118 are coplanar.
  • [0007]
    A method of mounting solder balls onto the projected portions 110 a is available to solve this problem, however, this method also presents a problem that material and manufacturing costs are hardly reduced.
  • SUMMARY OF THE INVENTION
  • [0008]
    An object of the present invention is to provide a ball-grid-array semiconductor device and manufacturing method therefor, which facilitates cleaning flux residues remaining in between the package and the substrate after having been mounted onto the substrate, and which provides drastically reduced material and manufacturing costs.
  • [0009]
    According to one aspect of the present invention, a ball-grid-array semiconductor device comprises: a semiconductor element; a resin material which seals the semiconductor element; and a lead frame connected to the semiconductor element in the resin material. The lead frame has a terminal portion that protrudes through a surface of the resin material.
  • [0010]
    According to another aspect of the present invention, a method for manufacturing a ball-grid-array semiconductor device comprises the steps of: forming a lead frame having a terminal portion that protrudes in the direction of thickness thereof; mounting a semiconductor element on the lead frame; connecting an electrode provided on the semiconductor device to the lead frame by means of a bonding wire; and sealing the semiconductor element with a resin material. The terminal portion protrudes through a surface of the resin material.
  • [0011]
    The present invention allows the terminal portions to protrude through the surface of the resin material. Thus, the terminal portions can used as connecting terminals, as they are, to be mounted directly to the substrate, and cleaning of flux residues after mounting can be readily carried out. Therefore, conventional ball-grid-array semiconductor devices have required solder balls to be mounted on packages to facilitate cleaning flux residues, whereas the present invention requires no such necessity, allowing for providing remarkably reduced material and manufacturing costs.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0012]
    [0012]FIG. 1 is a cross-sectional view showing a conventional semiconductor device having a lead frame described in Japanese Patent Application Laid-Open No. Sho 60 (1985)-52050.
  • [0013]
    [0013]FIG. 2 is a cross-sectional view showing the structure of a ball-grid-array semiconductor device according to an embodiment of the present invention.
  • [0014]
    [0014]FIG. 3 is a bottom view showing the structure of the ball-grid-array semiconductor device according to the embodiment of the present invention.
  • [0015]
    [0015]FIG. 4 is a view showing the method for manufacturing the ball-grid-array semiconductor device according to the embodiment of the present invention, illustrating the step where the device is sealed with resin.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • [0016]
    The embodiment of the present invention is to be explained specifically with reference to the accompanying drawings. FIG. 2 is a cross-sectional view showing the structure of a ball-grid-array semiconductor device according to the embodiment of the present invention. FIG. 3 is a bottom view showing the structure of the ball-grid-array semiconductor device similarly according to the embodiment of the present invention.
  • [0017]
    A ball-grid-array semiconductor device 1 according to this embodiment allows a semiconductor element 14 to be mounted with an adhesive tape 12 on a lead frame 10 provided with terminal portions 10 a which protrude in the direction of thickness thereof. The lead frame 10 is formed, for example, by etching a sheet of metal approximately a half of the thickness thereof.
  • [0018]
    Moreover, bonding wires 16 connect the lead frame 10 to electrodes provided on the semiconductor element 14. Then, they are sealed with a resin material 18 to be formed in a predetermined package shape. Incidentally, the terminal portions 10 a protrude through the substrate mount surface of the resin material 18. Moreover, a solder layer 19 is formed on the edges of the terminal portions 10 a.
  • [0019]
    The ball-grid-array semiconductor device 1 of this embodiment constructed as such allows the terminal portions 10 a, on which the solder layer 19 is formed, to be used as terminals as they are for being mounted on a substrate.
  • [0020]
    Incidentally, the terminal portions 10 a can be etched into a variety of shapes such as a cylinder or a rectangular column. However, a cylindrical shape is desirable in which stress is unlikely to occur, when considering the heat-cycle resisting performance thereof after having been mounted on the substrate.
  • [0021]
    In addition, the terminal portions 10 a have desirably a height ranging from 0.1 to 0.3 mm from the substrate mount surface, when considering the easiness of cleaning flux residues after having been mounted.
  • [0022]
    Furthermore, the solder layer 19 to be formed on the edges of terminal portions 10 a is desirably about 5 to 10 μm in thickness, which is equivalent in thickness to a solder layer to be applied to outer leads of resin-sealed semiconductor devices, typified by conventional QFP (Quad Flat Pack) semiconductor devices.
  • [0023]
    Next, a method for manufacturing the aforementioned semiconductor device of this embodiment is to be explained. FIG. 4 is a cross-sectional view showing the method for manufacturing the ball-grid-array semiconductor device according to the embodiment of the present invention, illustrating the step where the device is sealed with resin.
  • [0024]
    First, a sheet of metal is etched approximately by half the thickness thereof to form a lead frame 10 having the terminal portions 10 a that protrude in the direction of thickness. Subsequently, a semiconductor element 14 is mounted onto the lead frame 10 with an adhesive tape. Then, the electrodes provided on the semiconductor element 14 are connected to the lead frame 10 by means of bonding wires 16.
  • [0025]
    Subsequently, as shown in FIG. 4, the lead frame 10, the semiconductor element 14 and the like are sandwiched in between an upper metal mold 22 having a cavity 22 a of a predetermined shape and a lower metal mold 20 having recessed portions 20 a as a cavity for accommodating the terminal portions 10 a. Then, resin is allowed to flow in from an injection portion (not shown) which is in connection with the cavities 20 a and 22 a, thereby sealing the lead frame 10 and the semiconductor element 14 with the resin.
  • [0026]
    After the encapsulation with the resin has been completed, there will exist thin fins on the edges of the terminal portions 10 a. Thus, those thin fins are removed by laser honing, sand blasting, water jet honing or the like in order to allow the terminal portions 10 a of the lead frame 10 to be exposed. Thereafter, a solder layer 19 is formed on the edges of the terminal portions 10 a.
  • [0027]
    Such method as mentioned above allows the terminal portions 10 a of the lead frame 10 to protrude through the substrate mount surface of the resin material 18.
  • [0028]
    As described above, this embodiment allows the terminal portions 10 a to protrude through the substrate mount surface of the package and the solder layer 19 to be formed on the edges thereof. Therefore, the terminal portions 10 a can be used as connecting terminals, as they are, for being mounted directly to the substrate, and the cleaning of flux residues after the portions have been mounted can be readily carried out. Therefore, conventional ball-grid-array semiconductor devices have required solder balls to be mounted on packages to facilitate cleaning flux residues, whereas this embodiment requires no such necessity, allowing for providing remarkably reduced material and manufacturing costs.
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US6667544 *30 Jun 200023 Dec 2003Amkor Technology, Inc.Stackable package having clips for fastening package and tool for opening clips
US6858919 *23 Mar 200122 Feb 2005Amkor Technology, Inc.Semiconductor package
US727376916 Aug 200025 Sep 2007Micron Technology, Inc.Method and apparatus for removing encapsulating material from a packaged microelectronic device
US7892894 *20 Sep 200722 Feb 2011Stats Chippac Ltd.Method of manufacturing integrated circuit package system with warp-free chip
US8106496 *4 Jun 200731 Jan 2012Stats Chippac, Inc.Semiconductor packaging system with stacking and method of manufacturing thereof
US8390105 *28 Sep 20095 Mar 2013Toppan Printing Co., Ltd.Lead frame substrate, manufacturing method thereof, and semiconductor apparatus
US84211978 Feb 201116 Apr 2013Stats Chippac Ltd.Integrated circuit package system with warp-free chip
US20020020907 *23 Mar 200121 Feb 2002Amkor Technology, Inc.Semiconductor package
US20020190396 *12 Aug 200219 Dec 2002Brand Joseph M.Method and apparatus for removing encapsulating material from a packaged microelectronic device
US20040256188 *5 Apr 200423 Dec 2004Taylor Pty Ltd.Retractable cable assemblies and devices including the same
US20060079027 *16 May 200313 Apr 2006Renesas Technology CorporationSemiconductor device and its manufacturing method
US20070031998 *12 Oct 20068 Feb 2007Micron Technology, Inc.Method and apparatus for removing encapsulating material from a packaged microelectronic device
US20080296759 *4 Jun 20074 Dec 2008Stats Chippac, Inc.Semiconductor packages
US20090079049 *20 Sep 200726 Mar 2009Byung Tai DoIntegrated circuit package system with warp-free chip
US20110121466 *8 Feb 201126 May 2011Byung Tai DoIntegrated circuit package system with warp-free chip
US20110163433 *28 Sep 20097 Jul 2011Toppan Printing Co., Ltd.Lead frame substrate, manufacturing method thereof, and semiconductor apparatus
US20130208439 *29 Feb 201215 Aug 2013Azhar AripinMethod of forming an electronic package and structure
US20160183384 *29 Feb 201623 Jun 2016Presidio Components. Inc.Electrical devices and methods for manufacturing same
CN102290356A *2 Sep 201121 Dec 2011四川卫士通信息安全平台技术有限公司一种适用于bga芯片贴片焊接后进行封装保护的方法
Legal Events
DateCodeEventDescription
17 Dec 1999ASAssignment
Owner name: NEC CORPORATION, JAPAN
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ABE, MASAAKI;REEL/FRAME:010481/0068
Effective date: 19991213
25 Feb 2003ASAssignment
Owner name: NEC ELECTRONICS CORPORATION, JAPAN
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NEC CORPORATION;REEL/FRAME:013774/0295
Effective date: 20021101
11 Jan 2006REMIMaintenance fee reminder mailed
26 Jun 2006LAPSLapse for failure to pay maintenance fees
22 Aug 2006FPExpired due to failure to pay maintenance fee
Effective date: 20060625