EP2605420A1 - Method for separating electromagnetic emissions produced by a plurality of emitters - Google Patents

Method for separating electromagnetic emissions produced by a plurality of emitters Download PDF

Info

Publication number
EP2605420A1
EP2605420A1 EP12197331.7A EP12197331A EP2605420A1 EP 2605420 A1 EP2605420 A1 EP 2605420A1 EP 12197331 A EP12197331 A EP 12197331A EP 2605420 A1 EP2605420 A1 EP 2605420A1
Authority
EP
European Patent Office
Prior art keywords
polarization
electromagnetic signals
measurements
max
similarity criterion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP12197331.7A
Other languages
German (de)
French (fr)
Other versions
EP2605420B1 (en
Inventor
Dominique Heurguier
Anne Ferreol
Thierry Battut
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP2605420A1 publication Critical patent/EP2605420A1/en
Application granted granted Critical
Publication of EP2605420B1 publication Critical patent/EP2605420B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/74Multi-channel systems specially adapted for direction-finding, i.e. having a single antenna system capable of giving simultaneous indications of the directions of different signals
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2218/00Aspects of pattern recognition specially adapted for signal processing
    • G06F2218/22Source localisation; Inverse modelling

Definitions

  • the object of the invention relates to a method and a system for separating electromagnetic emissions from several transmitters or sources in the field of telecommunications or in the field of radars.
  • the prior art describes several methods for separating signals from multiple sources or transmitters.
  • the blind separation of sources consists of estimating a set of N sources from a set of P observations that are mixtures of these sources.
  • the term blind means in this context that we do not know the signals a priori.
  • the object of the invention is in particular to provide a method for separating detections from two near or similar emissions, if their polarization is different, this by exploiting the polarization of the electromagnetic emissions received on a sensor.
  • V i , V j are the polarization parameters of the detections D i , D j ; M i , M j the associated covariance matrices;
  • the polarization measurements corresponding to D i , D j are given by a complex polarization vector ( ⁇ , ⁇ ):
  • V i ⁇ i ⁇ i polarization parameters of the detection D i
  • V j ⁇ j ⁇ j polarization parameters of the detection D j
  • the exponent T is the sign of transposed and the index M is the meaning of Mahalanobis and then calculating a similarity measure in polarization by the formula:
  • the method according to the invention is applicable, for example, for telecommunications signals to be deinterlaced or for radar signals.
  • the invention also relates to a device for deinterleaving electromagnetic signals received on an antenna array, said antenna array being associated with a signal processing module adapted to perform the steps of the method having the aforementioned characteristics.
  • the figure 1 schematically an example of a system for carrying out the method according to the invention.
  • Several sources emit signals in different directions.
  • a sensor or a network of sensors associated with a data processing device receives the signals emitted by the different sources 10i or E.
  • FIG. figure 1 An example of a general architecture of the transmission interception and location equipment of the transmitters according to the invention is represented in FIG. figure 1 . It comprises an antenna array 1, a reception device 2, a signal acquisition circuit 3, a data extraction and processing module 4.
  • the antenna array is for example arranged on a carrier 5 locatable by its position and its attitude.
  • the antenna array 1 receives a set of signals from transmitters that are to be differentiated.
  • the objective is notably to separate the signals received on the antennal system, to group the elementary detections by emission, that is to say to realize a segmentation of the measurements by unsupervised classification, better known under the Anglo-Saxon term “ clustering ".
  • the idea implemented by the method according to the invention consists in particular in exploiting the measurement of polarization as an additional criterion of similarity in the unsupervised classification processing, known to those skilled in the art.
  • the polarization measurement is a complex factor estimate near the Jones J vector , well known to those skilled in the art. This vector makes it possible to characterize the behavior of the electric field E of a monochromatic plane wave in the wave plane 20 (polarization plane) orthogonal to the wave vector k.
  • the end of the vector E describes, as a function of time in the plane of polarization, an ellipse 30, figure 3 , characterized in a reference [u h u v ], by an inclination ⁇ , a half minor axis a, a half major axis b and a direction of travel.
  • the accuracy of the polarization measurement is supposed to be described by a covariance matrix on the parameters ( ⁇ , ⁇ ).
  • the choice of the base [ u h u v ] as a geometric reference is arbitrary but linked to the reference frame of the antenna or antennal network. Considering that u h characterizes the linear polarization propagating in the plane [ u h k ] and that u v characterizes the linear polarization propagating in the plane [ ku v ], we observe that the vector p represents the decomposition of the field E in the orthonormal basis [ u h u v ].
  • the figure 3 schematizes a representation of the use of the polarization measurement in the de-interlacing of the signals received on the receiver of the figure 1 several examples of which will be detailed below.
  • the figure 4 describes an example of implementation of the method in a COMINT segmentation processing and a way of taking into account the additional polarization criterion resulting from polarization measurements.
  • a typical COMINT segmentation processing is to perform a frequency histogram on the detection-goniometry data elementary plots, 400, and then separating the fixed frequency (FF) type emissions, 401, pulsed type or "bursts" EB, 402 emissions, based on a criterion of frequency occupancy.
  • the FF pads are then transmitted to a first FF processing chain which will perform, for each of the active frequencies, an azimuth histogram 404 making it possible to consolidate the grouping on arrival direction criterion DOA, for example, and to validate the FF tracks. 405.
  • Emissions of the EB type are transmitted to a second processing chain, 402, which will segment EVF evasion emissions, 406, as well as isolated burst emissions based on DOA arrival direction criteria (histogram in azimuth), then estimation of the jump frequencies 407, and 408 step durations, in order to complete the segmentation in duration and synchronization using histograms.
  • the classes obtained are then fused and synthesized for the preparation of FF, EVF and EB synthesis pads 410, 411, 412, respectively, using methods known to those skilled in the art.
  • the polarization criterion can be taken into account on the classes obtained following the azimuth histograms by introducing, for example, a polarization histogram calculation, or a partitioning based on the polarization similarity measurement (a definition of the polarization similarity criterion is given later in the description), in order to group in the same class as polarization-compatible polarization detections.
  • the addition of this segmentation step on polarization criterion 504b, 506b, is illustrated on the figure 5 .
  • the polarization of the transmitter (ie the emission source) is assumed to be constant. However, it is necessary to take into account the variations of the polarization measurement between successive measurements caused by the possible movements of the carrier.
  • the variation between two measurements of polarization of the same emission made at two times substantially spaced apart is caused by both the evolution of the geometrical configuration (angular scrolling of the carrier of the antennal network causing a variation of the incidence of the wave vector and thus a variation of the perceived polarization which can be seen as a projection of the polarization of the transmitter in the received wave plane) and by the attitude changes of the wearer (causing a rotation of the [ u h u v ] mark in the plane of polarization, which affects the tilt measurement of the polarization ellipse).
  • the method is used on fixed transmitters in the case of receivers or interceptors of transmitted signals fixed on the carrier.
  • the method uses a "raw" polarization measurement.
  • the covariance matrix is reduced to the associated standard deviations ⁇ ⁇ , ⁇ ⁇ .
  • This polarization similarity measure is then exploited in the separation and clustering process of electromagnetic emissions as an additional criterion for unsupervised classification.
  • the variations of position and attitude of the antenna array are small, but not negligible, compared with the measurement error of the polarization. These variations correspond, for example, the variations of attitude position of the antenna array remain weak vis-à-vis the intercepted transmitter. In this case, the method will introduce model noise to make comparisons between polarization measurements.
  • the attitude variation of the antennal network can be modeled by a centered angular standard deviation ⁇ ⁇ . This variation of attitude will essentially affect the inclination measurement ⁇ .
  • T 2 + ⁇ ⁇ 2 ⁇ b is determined from the maximum angular travel speed of the carrier and the standard deviation on the inclination.
  • model noise takes into account increase of the histogram step deduced from the standard deviation ⁇ b .
  • a third variant embodiment adapted to situations where the sensor is highly mobile, for example when the value of the polarization observed is greatly modified by the position and / or attitude position variations of the carrier.
  • the method for this third implementation variant consists in limiting the effect of the position variations of the wearer by limiting the exploitation of the polarization measurement to the deinterleaving processes that take place over a limited horizon, typically a sensor cycle (over time). of a sensor cycle, which is of the order of magnitude of the second, the position variation of the carrier can be considered negligible in the case of measurement accuracies).
  • the method relies on the use of navigation information delivered for example by a navigation center known to those skilled in the art and located on the carrier and on the choice of a mark [ u ' h u' v ] of the polarization plane which is wedged on the horizontal of the place and therefore independent of the attitude of the wearer .
  • the choice of such a marker involves correcting the tilt measurement of the polarization ellipse by taking into account the navigation information by performing a change of polarization plane mark (rotation in the polarization plane to pass from the reference [ u h u v ] linked to the calibrated antenna network and therefore to the attitude at the mark [ u ' h u' v ] related to the horizontal of the place).
  • This benchmark then makes it possible to compare the corrected measures when the variation of the position of the carrier relative to the transmitter remains low.
  • the corrected measures are directly counted with a histogram step based on the standard deviations of measurement.

Abstract

The method involves acquiring electromagnetic signals from different sources, and determining a similarity criterion from measurement of a polarization of the electromagnetic signals. The criterion of similarity is used for clustering data. The similarity criterion is determined on the polarization from two detection measurements of the electromagnetic signals received on a sensor network using a statistical distance of Mahalanobis. The similarity criterion is determined by introducing a noise mode between two polarization measurements separated by a time.

Description

L'objet de l'invention concerne un procédé et un système permettant de séparer des émissions électromagnétiques issues de plusieurs émetteurs ou sources dans le domaine des télécommunications ou encore dans le domaine des radars.The object of the invention relates to a method and a system for separating electromagnetic emissions from several transmitters or sources in the field of telecommunications or in the field of radars.

L'un des problèmes techniques lorsque l'on se trouve en présence de plusieurs sources émettrices est de les séparer et ensuite de regrouper les détections élémentaires par émission, c'est-à-dire de réaliser une segmentation des mesures par classification non supervisée plus connue par l'acronyme anglo-saxon « clustering ». Il est donc nécessaire de savoir séparer les émissions provenant de plusieurs sources émettrices et reçues sur plusieurs capteurs ou un réseau antennaire.One of the technical problems when one is in the presence of several emitting sources is to separate them and then to group the elementary detections by emission, that is to say to realize a segmentation of the measurements by unsupervised classification more known by the Anglo-Saxon acronym "clustering". It is therefore necessary to be able to separate the emissions coming from several emitting sources and received on several sensors or an antenna network.

L'art antérieur décrit plusieurs méthodes permettant de séparer des signaux en provenance de plusieurs sources ou émetteurs.The prior art describes several methods for separating signals from multiple sources or transmitters.

Par exemple, la séparation aveugle de sources consiste à estimer un jeu de N sources à partir d'un jeu de P observations qui sont des mélanges de ces sources. Le terme aveugle signifie dans le présent contexte que l'on ne connait pas les signaux a priori.For example, the blind separation of sources consists of estimating a set of N sources from a set of P observations that are mixtures of these sources. The term blind means in this context that we do not know the signals a priori.

Il est aussi connu d'effectuer la séparation de signaux en utilisant les paramètres tels que la fréquence, les instants de mesure, les directions d'arrivée. Le procédé mis en oeuvre dans l'art antérieur est connu sous l'expression de « classification non supervisée ».It is also known to perform the separation of signals using the parameters such as the frequency, the measurement instants, the directions of arrival. The method implemented in the prior art is known as the "unsupervised classification".

Les techniques utilisées dans l'art antérieur donnent de bons résultats. Toutefois, elles présentent notamment certains inconvénients dont une incapacité à séparer deux émissions électromagnétiques semblables même si elles sont de polarisation différente, En effet, comme elles n'exploitent pas les mesures de polarisation, une confusion est possible entre deux émissions de polarisation différentes, si elles présentent par ailleurs des caractéristiques relativement proches.The techniques used in the prior art give good results. However, they have certain disadvantages including an inability to separate two similar electromagnetic emissions even if they are of different polarization, Indeed, as they do not exploit the polarization measurements, a confusion is possible between two different polarization emissions, if they also have relatively similar characteristics.

L'objet de l'invention consiste notamment à offrir un procédé pour séparer des détections provenant de deux émissions proches ou similaires, si leur polarisation est différente, ceci en exploitant la polarisation des émissions électromagnétiques reçues sur un capteur.The object of the invention is in particular to provide a method for separating detections from two near or similar emissions, if their polarization is different, this by exploiting the polarization of the electromagnetic emissions received on a sensor.

L'invention concerne un procédé pour désentrelacer des signaux électromagnétiques reçus sur un réseau de capteurs positionnés sur un porteur, ledit réseau de capteurs étant associé à un module de traitement des signaux comportant en combinaison au moins les étapes suivantes :

  • acquérir des signaux électromagnétiques issus de plusieurs sources distinctes,
  • déterminer un critère de similarité à partir de la mesure de la polarisation desdits signaux électromagnétiques,
  • utiliser ledit critère de similarité dans une méthode de classification non supervisée de données.
The invention relates to a method for deinterleaving electromagnetic signals received on a network of sensors positioned on a carrier, said sensor network being associated with a signal processing module comprising in combination at least the following steps:
  • acquire electromagnetic signals from several different sources,
  • determining a similarity criterion from the measurement of the polarization of said electromagnetic signals,
  • using said similarity criterion in a method of unsupervised classification of data.

Selon un mode de réalisation, correspond à une configuration fixe de capteur, le critère de similarité sur la polarisation est déterminé à partir de deux mesures de détection D1 et D2 des signaux électromagnétiques reçus sur le réseau de capteurs en utilisant la distance statistique de Mahalanobis d 2 M = V i - V j T M i + M j - 1 V i - V j

Figure imgb0001

Vi, Vj sont les paramètres de polarisation des détections Di, Dj ; Mi,Mj les matrices de covariance associées ;
les mesures de polarisation correspondant à Di, Dj sont données, par un vecteur de polarisation complexe (α, ϕ) : V i = α i φ i
Figure imgb0002
paramètres de polarisation de la détection Di V j = α j φ j
Figure imgb0003
paramètres de polarisation de la détection Dj l'exposant T est le signe de transposé et l'indice M est la signification de Mahalanobis
et ensuite en calculant une mesure de similarité en polarisation par la formule: s V 1 V 2 = max 0 , 1 - β . V 1 - V 2 T M 1 + M 2 - 1 V 1 - V 2
Figure imgb0004
According to one embodiment, corresponds to a fixed sensor configuration, the similarity criterion on the polarization is determined from two detection measurements D 1 and D 2 of the electromagnetic signals received on the sensor array using the statistical distance of Mahalanobis d 2 M = V i - V j T M i + M j - 1 V i - V j
Figure imgb0001

where V i , V j are the polarization parameters of the detections D i , D j ; M i , M j the associated covariance matrices;
the polarization measurements corresponding to D i , D j are given by a complex polarization vector (α, φ): V i = α i φ i
Figure imgb0002
polarization parameters of the detection D i V j = α j φ j
Figure imgb0003
polarization parameters of the detection D j the exponent T is the sign of transposed and the index M is the meaning of Mahalanobis
and then calculating a similarity measure in polarization by the formula: s V 1 V 2 = max 0 , 1 - β . V 1 - V 2 T M 1 + M 2 - 1 V 1 - V 2
Figure imgb0004

Selon un autre mode de réalisation, correspondant à un capteur légèrement mobile, les variations de position d'attitude du réseau antennaire restant faibles vis-à-vis de l'émetteur intercepté, le critère de similarité est déterminé en introduisant un bruit de modèle b = 0 0

Figure imgb0005
entre deux mesures de polarisation V1 et V2 séparées par une durée T, prenant en compte l'évolution de l'inclinaison de l'ellipse entre les deux mesures : en déterminant la covariance du bruit de modèle M b = σ b 2 0 0 0
Figure imgb0006
covariance du bruit de modèle
avec un écart-type σ b 2 = 1 4 da max 2 . T 2 + σ ω 2
Figure imgb0007

et en calculant la distance statistique de Mahalanobis étendue en introduisant la covariance Mb du bruit de modèle : s V 1 V 2 = max 0 , 1 - α . V 1 - V 2 T M 1 + M 2 + M b - 1 V 1 - V 2
Figure imgb0008
According to another embodiment, corresponding to a slightly mobile sensor, the attitude position variations of the antenna array remaining small vis-à-vis the intercepted transmitter, the similarity criterion is determined by introducing a pattern noise b ~ = 0 0
Figure imgb0005
between two polarization measurements V1 and V2 separated by a duration T, taking into account the evolution of the inclination of the ellipse between the two measurements: determining the covariance of the noise model M b = σ b 2 0 0 0
Figure imgb0006
covariance of pattern noise
with a standard deviation σ b 2 = 1 4 da max 2 . T 2 + σ ω 2
Figure imgb0007

and calculating the extended Mahalanobis statistical distance by introducing the Mb covariance of the model noise: s V 1 V 2 = max 0 , 1 - α . V 1 - V 2 T M 1 + M 2 + M b - 1 V 1 - V 2
Figure imgb0008

Selon un troisième mode, adapté aux situations où le capteur est fortement mobile, , une première étape pour déterminer le critère de similarité consiste à corriger la mesure d'inclinaison de l'ellipse de polarisation en prenant en compte les informations de navigation du porteur, en effectuant un changement de repère du plan de polarisation, par une rotation dans le plan de polarisation permettant de passer du repère [uh uv] lié au réseau d'antenne calibré et à l'assiette au repère [u'h u'v] lié à l'horizontale du lieu, et lors d'une deuxième étape à calculer s V 1 V 2 = max 0 , 1 - β . V 1 - V 2 T M 1 + M 2 - 1 V 1 - V 2 .

Figure imgb0009
According to a third mode, adapted to situations where the sensor is highly mobile, a first step in determining the similarity criterion consists in correcting the tilt measurement of the polarization ellipse by taking into account the navigation information of the wearer, doing a change of reference of the plane of polarization, by a rotation in the plane of polarization making it possible to pass from the reference [u h u v ] linked to the calibrated antenna array and to the attitude to the reference [u ' h u' v ] linked to the horizontal of the place, and in a second step to calculate s V 1 V 2 = max 0 , 1 - β . V 1 - V 2 T M 1 + M 2 - 1 V 1 - V 2 .
Figure imgb0009

Le procédé selon l'invention s'applique, par exemple, pour des signaux de télécommunications à désentrelacer ou pour des signaux radar.The method according to the invention is applicable, for example, for telecommunications signals to be deinterlaced or for radar signals.

L'invention concerne aussi un dispositif permettant de désentrelacer des signaux électromagnétiques reçus sur un réseau antennaire, ledit réseau antennaire étant associé à un module de traitement des signaux adapté à exécuter les étapes du procédé présentant les caractéristiques précitées.The invention also relates to a device for deinterleaving electromagnetic signals received on an antenna array, said antenna array being associated with a signal processing module adapted to perform the steps of the method having the aforementioned characteristics.

D'autres caractéristiques et avantages du dispositif selon l'invention apparaîtront mieux à la lecture de la description qui suit d'un exemple de réalisation donné à titre illustratif et nullement limitatif annexé des figures qui représentent :

  • la figure 1 représente un exemple d'architecture permettant la mise en oeuvre du procédé selon l'invention,
  • la figure 2, une représentation de la modélisation de la polarisation en réception,
  • la figure 3, une modélisation de la prise en compte de la mesure de polarisation selon l'invention,
  • les figures 4 et 5, un exemple de mise en oeuvre du procédé selon l'invention dans un traitement de segmentation COMINT.
Other features and advantages of the device according to the invention will appear better on reading the description which follows of an example of embodiment given by way of illustration and in no way limiting attached to the figures which represent:
  • the figure 1 represents an example of an architecture allowing the implementation of the method according to the invention,
  • the figure 2 , a representation of the modeling of the polarization in reception,
  • the figure 3 , a modeling of the taking into account of the polarization measurement according to the invention,
  • the figures 4 and 5 an example of implementation of the method according to the invention in a COMINT segmentation process.

Afin de mieux faire comprendre l'objet de l'invention, la description donnée ci-après concerne un procédé de séparation d'émissions électromagnétiques pour des signaux de télécommunications.In order to better understand the subject of the invention, the description given below relates to a method for separating electromagnetic emissions for telecommunications signals.

La figure 1 schématise un exemple de système permettant la mise en oeuvre du procédé selon l'invention. Plusieurs sources émettent des signaux dans différentes directions. Un capteur ou un réseau de capteurs associé à un dispositif de traitement des données reçoit les signaux émis par les différentes sources 10i ou E.The figure 1 schematically an example of a system for carrying out the method according to the invention. Several sources emit signals in different directions. A sensor or a network of sensors associated with a data processing device receives the signals emitted by the different sources 10i or E.

Un exemple d'architecture générale de l'équipement d'interception d'émission et de localisation des émetteurs selon l'invention est représenté à la figure 1. Il comporte un réseau antennaire 1, un dispositif de réception 2, un circuit d'acquisition 3 des signaux, un module 4 d'extraction et de traitement des données. Le réseau antennaire est par exemple disposé sur un porteur 5 repérable par sa position et son attitude.An example of a general architecture of the transmission interception and location equipment of the transmitters according to the invention is represented in FIG. figure 1 . It comprises an antenna array 1, a reception device 2, a signal acquisition circuit 3, a data extraction and processing module 4. The antenna array is for example arranged on a carrier 5 locatable by its position and its attitude.

Le réseau antennaire 1 reçoit un ensemble de signaux en provenance d'émetteurs que l'on cherche à différencier. L'objectif est notamment de séparer les signaux reçus sur le système antennaire, de regrouper les détections élémentaires par émission, c'est-à-dire de réaliser une segmentation des mesures par classification non supervisée, plus connue sous le terme anglo-saxon « clustering ».The antenna array 1 receives a set of signals from transmitters that are to be differentiated. The objective is notably to separate the signals received on the antennal system, to group the elementary detections by emission, that is to say to realize a segmentation of the measurements by unsupervised classification, better known under the Anglo-Saxon term " clustering ".

L'idée mise en oeuvre par le procédé selon l'invention consiste notamment à exploiter la mesure de la polarisation comme un critère de similarité supplémentaire dans le traitement de classification non supervisé, connu de l'Homme du métier.The idea implemented by the method according to the invention consists in particular in exploiting the measurement of polarization as an additional criterion of similarity in the unsupervised classification processing, known to those skilled in the art.

Afin de mieux faire comprendre l'objet de l'invention, un rappel sur la mesure de la polarisation va être donné à la figure 2.In order to better understand the object of the invention, a reminder on the measurement of the polarization will be given to the figure 2 .

La mesure de polarisation est une estimation à un facteur complexe près du vecteur de Jones J, bien connu des gens du métier. Ce vecteur permet de caractériser le comportement du champ électrique E d'une onde plane monochromatique dans le plan d'onde 20 (plan de polarisation) orthogonal au vecteur d'onde k. The polarization measurement is a complex factor estimate near the Jones J vector , well known to those skilled in the art. This vector makes it possible to characterize the behavior of the electric field E of a monochromatic plane wave in the wave plane 20 (polarization plane) orthogonal to the wave vector k.

D'une façon générale, l'extrémité du vecteur E décrit, en fonction du temps dans le plan de polarisation, une ellipse 30, figure 3, caractérisée dans un repère [uh uv], par une inclinaison α, un demi petit axe a, un demi grand axe b et un sens de parcours. L'estimation du vecteur de Jones à un facteur complexe près peut être caractérisée par un vecteur unitaire p de composantes ph et pv telles que : P h = cos α

Figure imgb0010
P v = sinα e
Figure imgb0011

où α, abs(ϕ) (valeur absolue de ϕ) et signe(ϕ) définissent respectivement l'inclinaison, l'angle d'ellipticité et le sens de parcours de l'ellipse de polarisation dans le référentiel [uh uv ].
La mesure de polarisation est supposée donnée par l'estimation du vecteur unitaire p = [ph pv]' ou de façon équivalente par le rapport complexe Pv / Ph (=tanαe ) ou encore par le couple (α, ϕ) (ou par le vecteur v = [α ϕ]').
La précision de la mesure de polarisation est supposée décrite par une matrice de covariance sur les paramètres (α, ϕ).In general, the end of the vector E describes, as a function of time in the plane of polarization, an ellipse 30, figure 3 , characterized in a reference [u h u v ], by an inclination α, a half minor axis a, a half major axis b and a direction of travel. The estimate of the Jones vector to a close complex factor can be characterized by a unit vector p of components p h and p v such that: P h = cos α
Figure imgb0010
P v = sina e
Figure imgb0011

where α, abs (φ) (absolute value of φ) and sign (φ) respectively define the inclination, the ellipticity angle and the direction of travel of the polarization ellipse in the repository [ u h u v ] .
The polarization measurement is assumed given by the estimation of the unit vector p = [p h p v ] 'or equivalently by the complex ratio P v / P h (= tanαe ) or by the pair (α, φ ) (or by the vector v = [α φ] ').
The accuracy of the polarization measurement is supposed to be described by a covariance matrix on the parameters (α, φ).

Le choix de la base [uh uv ] comme référentiel géométrique est arbitraire mais lié au référentiel de l'antenne ou réseau antennaire. En considérant que uh caractérise la polarisation linéaire se propageant dans le plan [uh k] et que uv caractérise la polarisation linéaire se propageant dans le plan [k uv ], on observe que le vecteur p représente la décomposition du champ E dans la base orthonormée [uh uv ]. Par abus de langage, on dénomme respectivement les polarisations Ph et Pv, composantes horizontale et verticale, bien qu'elles ne le soient véritablement que lorsque le référentiel de l'antenne ou réseau antennaire coïncide avec l'horizontale et la verticale du lieu (c'est à dire en contexte embarqué lorsque l'attitude du porteur est horizontale) et que lorsque l'onde se propage dans le plan horizontal.The choice of the base [ u h u v ] as a geometric reference is arbitrary but linked to the reference frame of the antenna or antennal network. Considering that u h characterizes the linear polarization propagating in the plane [ u h k ] and that u v characterizes the linear polarization propagating in the plane [ ku v ], we observe that the vector p represents the decomposition of the field E in the orthonormal basis [ u h u v ]. By misuse of language, the polarizations P h and Pv, the horizontal and vertical components, are denominated respectively, although they are really so only when the reference of the antenna or antennal network coincides with the horizontal and the vertical of the place ( ie in embedded context when the attitude of the wearer is horizontal) and when the wave propagates in the horizontal plane.

La figure 3 schématise une représentation de l'utilisation de la mesure de polarisation dans le désentrelacement des signaux reçus sur le récepteur de la figure 1 dont plusieurs exemples vont être détaillés ci-après.The figure 3 schematizes a representation of the use of the polarization measurement in the de-interlacing of the signals received on the receiver of the figure 1 several examples of which will be detailed below.

La figure 4 décrit un exemple de mise en oeuvre du procédé dans un traitement de segmentation COMINT et une manière de prendre en compte le critère supplémentaire de polarisation issu de mesures de polarisation.The figure 4 describes an example of implementation of the method in a COMINT segmentation processing and a way of taking into account the additional polarization criterion resulting from polarization measurements.

Un traitement typique de segmentation COMINT consiste à réaliser un histogramme en fréquence sur les données de détection-goniométries élémentaires (plots élémentaires), 400, puis à séparer les émissions de type fréquence fixe (FF), 401, des émissions de type pulsées ou « bursts » EB, 402, sur un critère de taux d'occupation fréquentiel. Les plots FF sont ensuite transmis à une première chaîne de traitement FF qui va réaliser, pour chacune des fréquences actives un histogramme 404 en azimut permettant de consolider le regroupement sur critère de direction d'arrivée DOA, par exemple, et de valider les pistes FF 405.A typical COMINT segmentation processing is to perform a frequency histogram on the detection-goniometry data elementary plots, 400, and then separating the fixed frequency (FF) type emissions, 401, pulsed type or "bursts" EB, 402 emissions, based on a criterion of frequency occupancy. The FF pads are then transmitted to a first FF processing chain which will perform, for each of the active frequencies, an azimuth histogram 404 making it possible to consolidate the grouping on arrival direction criterion DOA, for example, and to validate the FF tracks. 405.

Les émissions de type EB, son transmises à une deuxième chaîne de traitement, 402, qui va segmenter les émissions en évasion de fréquence EVF, 406, ainsi que les émissions burstées isolées sur la base de critères de direction d'arrivée DOA (histogramme en azimut), puis d'estimation des fréquences de sauts 407, et des durées de palier 408, afin de compléter la segmentation en durée et synchronisation à l'aide d'histogrammes. Les classes obtenues sont ensuite fusionnées et synthétisées, pour l'élaboration de plots de synthèse de type FF, EVF et EB respectivement 410, 411, 412 par des méthodes connues de l'Homme du métier.Emissions of the EB type are transmitted to a second processing chain, 402, which will segment EVF evasion emissions, 406, as well as isolated burst emissions based on DOA arrival direction criteria (histogram in azimuth), then estimation of the jump frequencies 407, and 408 step durations, in order to complete the segmentation in duration and synchronization using histograms. The classes obtained are then fused and synthesized for the preparation of FF, EVF and EB synthesis pads 410, 411, 412, respectively, using methods known to those skilled in the art.

La prise en compte du critère de polarisation peut être réalisée sur les classes obtenues à la suite des histogrammes en azimut en introduisant par exemple un calcul d'histogramme en polarisation, ou bien un partitionnement basé sur la mesure de similarité en polarisation (une définition du critère de similarité est donnée plus loin dans la description), afin de ne regrouper dans une même classe que les détections de polarisation compatibles en polarisation. L'ajout de cette étape de segmentation sur critère de polarisation 504b, 506b, est illustré sur la figure 5.The polarization criterion can be taken into account on the classes obtained following the azimuth histograms by introducing, for example, a polarization histogram calculation, or a partitioning based on the polarization similarity measurement (a definition of the polarization similarity criterion is given later in the description), in order to group in the same class as polarization-compatible polarization detections. The addition of this segmentation step on polarization criterion 504b, 506b, is illustrated on the figure 5 .

La polarisation de l'émetteur (c'est à dire de la source d'émission) est supposée constante. Il convient cependant de prendre en compte les variations de la mesure de polarisation entre des mesures successives occasionnées par les éventuels mouvements du porteur. La variation entre deux mesures de polarisation d'une même émission effectuées à deux instants sensiblement espacés est causée à la fois par l'évolution de la configuration géométrique (défilement angulaire du porteur du réseau antennaire entrainant une variation de l'incidence du vecteur d'onde et donc une variation de la polarisation perçue qui peut être vue comme une projection de la polarisation de l'émetteur dans le plan d'onde reçue) et par les changements d'assiette du porteur (entrainant une rotation du repère [uh uv ] dans le plan de polarisation, qui affecte la mesure d'inclinaison de l'ellipse de polarisation).The polarization of the transmitter (ie the emission source) is assumed to be constant. However, it is necessary to take into account the variations of the polarization measurement between successive measurements caused by the possible movements of the carrier. The variation between two measurements of polarization of the same emission made at two times substantially spaced apart is caused by both the evolution of the geometrical configuration (angular scrolling of the carrier of the antennal network causing a variation of the incidence of the wave vector and thus a variation of the perceived polarization which can be seen as a projection of the polarization of the transmitter in the received wave plane) and by the attitude changes of the wearer (causing a rotation of the [ u h u v ] mark in the plane of polarization, which affects the tilt measurement of the polarization ellipse).

Selon une première variante de réalisation, le procédé est utilisé sur des émetteurs fixes dans le cas de récepteurs ou intercepteurs des signaux émis fixes sur le porteur. Le procédé utilise une mesure de polarisation « brute ».According to a first variant embodiment, the method is used on fixed transmitters in the case of receivers or interceptors of transmitted signals fixed on the carrier. The method uses a "raw" polarization measurement.

La prise en compte de la mesure de polarisation pour comparer deux détections se traduit en considérant un critère de similarité de polarisation basée sur la distance de Mahanalobis, bien connue des gens du métier. Considérons deux détections D1 et D2 des signaux électromagnétiques sur le réseau antennaire, les mesures de polarisation correspondant à ces détections sont données, par exemple, par un vecteur de polarisation complexe (α, ϕ) : V 1 = α 1 φ 1

Figure imgb0012
paramètres de polarisation de la détection D1 V 2 = α 2 φ 2
Figure imgb0013
paramètres de polarisation de la détection D2 Taking the polarization measurement into account in order to compare two detections results in considering a criterion of similarity of polarization based on the Mahanalobis distance, well known to those skilled in the art. Consider two detections D 1 and D 2 of the electromagnetic signals on the antenna array, the polarization measurements corresponding to these detections are given, for example, by a complex polarization vector (α, φ): V 1 = α 1 φ 1
Figure imgb0012
polarization parameters of the detection D 1 V 2 = α 2 φ 2
Figure imgb0013
polarization parameters of detection D 2

Les matrices de covariance associées aux mesures de polarisation (supposées gaussiennes) sont déterminées par des méthodes connues de l'Homme du métier. Soient

  • M1 la matrice de covariance associée à (V1 )
  • M2 la matrice de covariance associée à (V2 )
The covariance matrices associated with the polarization measurements (assumed Gaussian) are determined by methods known to those skilled in the art. Let
  • M 1 the covariance matrix associated with ( V 1 )
  • M 2 the covariance matrix associated with ( V 2 )

Si les mesures sur l'inclinaison et l'excentricité de l'ellipse de polarisation sont décorrélées, la matrice de covariance se résume aux écart-type associés σα, σϕ.If the measurements on the inclination and eccentricity of the polarization ellipse are decorrelated, the covariance matrix is reduced to the associated standard deviations σ α , σ φ .

Par définition dans ce premier cas, les variations relatives de position et d'attitude du réseau antennaire du récepteur vis-à-vis d'un émetteur sont supposées négligeables devant la moins bonne valeur des précisions d'estimation de l'inclinaison de polarisation max(σα 1, σα 2). Ceci permet de considérer que les incidences relatives des ondes reçues, et donc les vecteurs d'ondes, sont identiques.By definition in this first case, the relative variations of position and attitude of the antennal network of the receiver vis-à-vis an issuer are assumed negligible in view of the lower value of the estimation precisions of the polarization inclination max (σ α 1 , σ α 2 ). This makes it possible to consider that the relative incidences of the waves received, and therefore the wave vectors, are identical.

Dans le cas d'une configuration fixe de capteur, le critère de similarité en polarisation est exprimé en utilisant la distance statistique de Mahalanobis connue de l'Homme du métier: d 2 M = V i - V j T M i + M j - 1 V i - V j

Figure imgb0014

Vi, Vj sont les paramètres de polarisation des détections Di, Dj ; Mi,Mj les matrices de covariance associées ;
l'exposant T est le signe de transposé et l'indice M est la signification de MahalanobisIn the case of a fixed sensor configuration, the similarity criterion in polarization is expressed using the statistical distance of Mahalanobis known to those skilled in the art: d 2 M = V i - V j T M i + M j - 1 V i - V j
Figure imgb0014

where V i , V j are the polarization parameters of the detections D i , D j ; M i , M j the associated covariance matrices;
the exponent T is the sign of transposed and the index M is the meaning of Mahalanobis

Cette distance statistique de Mahalanobis permet ensuite de définir une mesure de similarité en polarisation donnée par la formule: s V 1 V 2 = max 0 , 1 - β . V 1 - V 2 T M 1 + M 2 - 1 V 1 - V 2

Figure imgb0015
s V 1 V 2 = max 0 , 1 - β . d 2 M
Figure imgb0016

où β est un coefficient d'ajustement qui est fixé en choisissant un seuil sur la distance de Mahanalobis. Ce seuil se définit généralement à partir d'une probabilité de non association de mesures portant sur la même entité (le seuil se calcul à partir de cette probabilité d en utilisant la fonction de répartition de la distance de Mahanalobis qui suit une loi du chi2).This statistical distance of Mahalanobis then makes it possible to define a measure of similarity in polarization given by the formula: s V 1 V 2 = max 0 , 1 - β . V 1 - V 2 T M 1 + M 2 - 1 V 1 - V 2
Figure imgb0015
or s V 1 V 2 = max 0 , 1 - β . d 2 M
Figure imgb0016

where β is an adjustment coefficient which is fixed by choosing a threshold over the distance of Mahanalobis. This threshold is generally defined from a probability of non-association of measurements relating to the same entity (the threshold is calculated from this probability d by using the Mahanalobis distance distribution function that follows a Chi2 law). .

Cette mesure de similarité en polarisation est ensuite exploitée dans le procédé de séparation et de regroupement des émissions électromagnétiques comme un critère supplémentaire pour la classification non supervisée.This polarization similarity measure is then exploited in the separation and clustering process of electromagnetic emissions as an additional criterion for unsupervised classification.

Elle peut l'être par exemple, soit par contribution à la définition d'une similarité globale multicritères sur les détections qui va donc inclure la polarisation, soit simplement comme un nouveau critère mis en oeuvre sur les classes obtenues après classification non supervisée basée sur les critères classiques (mise en cascade des critères). Dans ce dernier cas, si les précisions de mesures en polarisation sont à peu près constantes et homogènes entre elles, il peut être avantageux de limiter la complexité algorithmique introduite par le nouveau critère de partitionnement en privilégiant le recours à des histogrammes sur les mesures de polarisation dont le pas est fixé en fonction des écarts-types de précision.It can be, for example, either by contribution to the definition a global multicriteria similarity on the detections which will thus include the polarization, either simply as a new criterion implemented on the classes obtained after unsupervised classification based on the classical criteria (cascading of the criteria). In the latter case, if the polarization measurement accuracies are approximately constant and homogeneous with each other, it may be advantageous to limit the algorithmic complexity introduced by the new partitioning criterion by favoring the use of histograms on the polarization measurements. whose pitch is fixed according to standard deviations of precision.

Selon une deuxième variante de réalisation, les variations de position et d'attitude du réseau antennaire sont faibles, mais non négligeables, devant l'erreur de mesure de la polarisation. Ces variations correspondent, par exemple les variations de position d'attitude du réseau antennaire restent faibles vis-à-vis de l'émetteur intercepté. Dans ce cas, le procédé va introduire un bruit de modèle pour réaliser des comparaisons entre mesures de polarisation.According to a second variant embodiment, the variations of position and attitude of the antenna array are small, but not negligible, compared with the measurement error of the polarization. These variations correspond, for example, the variations of attitude position of the antenna array remain weak vis-à-vis the intercepted transmitter. In this case, the method will introduce model noise to make comparisons between polarization measurements.

Considérant une vitesse de défilement angulaire maximum damax, la variation d'assiette du réseau antennaire peut être modélisée par un bruit blanc centré d'écart-type angulaire σω. Cette variation d'assiette va essentiellement affecter la mesure d'inclinaison α.Considering a maximum angular travel speed damax, the attitude variation of the antennal network can be modeled by a centered angular standard deviation σ ω . This variation of attitude will essentially affect the inclination measurement α.

Entre deux mesures de polarisation V1 et V2 séparées par une durée T, le procédé introduit un bruit de modèle b prenant en compte l'évolution de l'inclinaison de l'ellipse entre les deux mesures : b = 0 0

Figure imgb0017
M b = σ b 2 0 0 0
Figure imgb0018
covariance du bruit de modèle avec un écart-type σ b 2 = 1 4 da max 2 . T 2 + σ ω 2
Figure imgb0019

σ b est déterminé à partir de la vitesse de défilement angulaire maximum du porteur et de l'écart-type sur l'inclinaison.Between two polarization measurements V1 and V2 separated by a duration T, the method introduces a pattern noise b taking into account the evolution of the inclination of the ellipse between the two measurements: b ~ = 0 0
Figure imgb0017
M b = σ b 2 0 0 0
Figure imgb0018
covariance of model noise with a standard deviation σ b 2 = 1 4 da max 2 . T 2 + σ ω 2
Figure imgb0019

σ b is determined from the maximum angular travel speed of the carrier and the standard deviation on the inclination.

Le critère de similarité en polarisation va ensuite utiliser une distance statistique de Mahalanobis étendue en introduisant la covariance Mb du bruit de modèle : s V 1 V 2 = max 0 , 1 - α . V 1 - V 2 T M 1 + M 2 + M b - 1 V 1 - V 2

Figure imgb0020
The polarization similarity criterion will then use an extended Mahalanobis statistical distance by introducing the covariance M b of the model noise: s V 1 V 2 = max 0 , 1 - α . V 1 - V 2 T M 1 + M 2 + M b - 1 V 1 - V 2
Figure imgb0020

Si l'on privilégie une méthode de partitionnement à base d'histogrammes sur les mesures de polarisation plutôt qu'une méthode de partitionnement exploitant la mesure de similarité basé sur la distance de Mahanalobis, la prise en compte du bruit de modèle se traduit par une augmentation du pas de l'histogramme déduit de l'écart-type σb.If a polarization-based histogram-based partitioning method is preferred over a partitioning method using the Mahanalobis distance-based similarity measure, then model noise takes into account increase of the histogram step deduced from the standard deviation σ b .

Selon une troisième variante de réalisation, adaptée aux situations où le capteur est fortement mobile, par exemple lorsque la valeur de la polarisation observée est fortement modifiée par les variations de position de position et/ou d'attitude du porteur.According to a third variant embodiment, adapted to situations where the sensor is highly mobile, for example when the value of the polarization observed is greatly modified by the position and / or attitude position variations of the carrier.

Le procédé pour cette troisième variante de mise en oeuvre consiste à limiter les effet des variations de position du porteur en limitant l'exploitation de la mesure de polarisation aux traitements de désentrelacement qui interviennent sur un horizon limité, typiquement un cycle capteur (sur la durée d'un cycle capteur, qui est de l'ordre de grandeur de la seconde, la variation de position du porteur peut être considérée comme négligeable devant les précisions de mesures).The method for this third implementation variant consists in limiting the effect of the position variations of the wearer by limiting the exploitation of the polarization measurement to the deinterleaving processes that take place over a limited horizon, typically a sensor cycle (over time). of a sensor cycle, which is of the order of magnitude of the second, the position variation of the carrier can be considered negligible in the case of measurement accuracies).

Pour ce qui concerne les variations d'attitude du réseau antennaire, considérées comme potentiellement importantes dans ce dernier cas (même sur l'horizon d'un cycle capteur), le procédé repose sur l'exploitation d'information de navigation délivrées par exemple par une centrale de navigation connue de l'Homme du métier et située sur le porteur et sur le choix d'un repère [u'h u'v ] du plan de polarisation qui soit calé sur l'horizontale du lieu et donc indépendant de l'attitude du porteur.With regard to the attitude variations of the antennal network, considered as potentially important in the latter case (even on the horizon of a sensor cycle), the method relies on the use of navigation information delivered for example by a navigation center known to those skilled in the art and located on the carrier and on the choice of a mark [ u ' h u' v ] of the polarization plane which is wedged on the horizontal of the place and therefore independent of the attitude of the wearer .

Le choix d'un tel repère implique de corriger la mesure d'inclinaison de l'ellipse de polarisation en prenant en compte les informations de navigation en effectuant un changement de repère du plan de polarisation (rotation dans le plan de polarisation permettant de passer du repère [uh uv ] lié au réseau d'antenne calibré et donc à l'assiette au repère [u'h u'v ] lié à l'horizontale du lieu). Ce repère permet alors de comparer les mesures corrigées lorsque la variation de la position du porteur relativement à l'émetteur reste faible.The choice of such a marker involves correcting the tilt measurement of the polarization ellipse by taking into account the navigation information by performing a change of polarization plane mark (rotation in the polarization plane to pass from the reference [ u h u v ] linked to the calibrated antenna network and therefore to the attitude at the mark [ u ' h u' v ] related to the horizontal of the place). This benchmark then makes it possible to compare the corrected measures when the variation of the position of the carrier relative to the transmitter remains low.

Les mesures de polarisation corrigées sont déterminées par la formule suivante, en utilisant les valeurs de V1, V2, corrigées en changeant le repère : s V 1 V 2 = max 0 , 1 - β . V 1 - V 2 T M 1 + M 2 - 1 V 1 - V 2

Figure imgb0021
The corrected polarization measurements are determined by the following formula, using the values of V1, V2, corrected by changing the reference: s V 1 V 2 = max 0 , 1 - β . V 1 - V 2 T M 1 + M 2 - 1 V 1 - V 2
Figure imgb0021

Si l'on privilégie une méthode de partitionnement à base d'histogrammes, on comptabilise directement les mesures corrigées avec un pas d'histogramme basé sur les écarts-types de mesure.If a method of partitioning based on histograms is favored, the corrected measures are directly counted with a histogram step based on the standard deviations of measurement.

Claims (7)

Procédé pour désentrelacer des signaux électromagnétiques reçus sur un réseau (1) de capteurs positionnés sur un porteur (5), ledit réseau de capteurs étant associé à un module (4) de traitement des signaux comportant en combinaison au moins les étapes suivantes : • acquérir des signaux électromagnétiques issus de plusieurs sources distinctes, • déterminer un critère de similarité à partir de la mesure de la polarisation desdits signaux électromagnétiques, • utiliser ledit critère de similarité dans une méthode de classification non supervisée de données. Method for deinterleaving electromagnetic signals received on a network (1) of sensors positioned on a carrier (5), said sensor array being associated with a signal processing module (4) comprising in combination at least the following steps: • acquire electromagnetic signals from several different sources, Determining a similarity criterion from the measurement of the polarization of said electromagnetic signals, • use said similarity criterion in a method of unsupervised classification of data. Procédé selon la revendication 1 caractérisé en ce que le critère de similarité sur la polarisation est déterminé à partir de deux mesures de détection D1 et D2 des signaux électromagnétiques reçus sur le réseau de capteurs en utilisant la distance statistique de Mahalanobis d 2 M = V i - V j T M i + M j - 1 V i - V j
Figure imgb0022

Vi, Vj sont les paramètres de polarisation des détections Di, Dj ; Mi,Mj les matrices de covariance associées ;
les mesures de polarisation correspondant à Di, Dj sont données, par un vecteur de polarisation complexe (α, ϕ) : V i = α i φ i
Figure imgb0023
paramètres de polarisation de la détection Di V j = α j φ j
Figure imgb0024
paramètres de polarisation de la détection Dj
l'exposant T est le signe de transposé et l'indice M est la signification de Mahalanobis
et ensuite en calculant une mesure de similarité en polarisation par la formule: s V 1 V 2 = max 0 , 1 - β . V 1 - V 2 T M 1 + M 2 - 1 V 1 - V 2
Figure imgb0025
Method according to Claim 1, characterized in that the polarization similarity criterion is determined from two detection measurements D 1 and D 2 of the electromagnetic signals received on the sensor array using the statistical distance of Mahalanobis. d 2 M = V i - V j T M i + M j - 1 V i - V j
Figure imgb0022

where V i , V j are the polarization parameters of the detections D i , D j ; M i , M j the associated covariance matrices;
the polarization measurements corresponding to D i , D j are given by a complex polarization vector (α, φ): V i = α i φ i
Figure imgb0023
polarization parameters of the detection D i V j = α j φ j
Figure imgb0024
polarization parameters of the detection D j
the exponent T is the sign of transposed and the index M is the meaning of Mahalanobis
and then calculating a similarity measure in polarization by the formula: s V 1 V 2 = max 0 , 1 - β . V 1 - V 2 T M 1 + M 2 - 1 V 1 - V 2
Figure imgb0025
Procédé selon la revendication 1 caractérisé en ce que le critère de similarité est déterminé
en introduisant un bruit de modèle b = 0 0
Figure imgb0026
entre deux mesures de polarisation V1 et V2 séparées par une durée T, prenant en compte l'évolution de l'inclinaison de l'ellipse entre les deux mesures
en déterminant la covariance du bruit de modèle ; M b = σ b 2 0 0 0
Figure imgb0027
covariance du bruit de modèle avec un écart-type σ b 2 = 1 4 da max 2 . T 2 + σ ω 2 ,
Figure imgb0028
et
en calculant la distance statistique de Mahalanobis étendue en introduisant la covariance Mb du bruit de modèle : s V 1 V 2 = max 0 , 1 - α . V 1 - V 2 T M 1 + M 2 + M b - 1 V 1 - V 2
Figure imgb0029
Process according to Claim 1, characterized in that the similarity criterion is determined
by introducing a pattern noise b ~ = 0 0
Figure imgb0026
between two polarization measurements V1 and V2 separated by a duration T, taking into account the evolution of the inclination of the ellipse between the two measurements
determining the covariance of the model noise; M b = σ b 2 0 0 0
Figure imgb0027
covariance of model noise with a standard deviation σ b 2 = 1 4 da max 2 . T 2 + σ ω 2 ,
Figure imgb0028
and
calculating the extended Mahalanobis statistical distance by introducing the model noise covariance Mb: s V 1 V 2 = max 0 , 1 - α . V 1 - V 2 T M 1 + M 2 + M b - 1 V 1 - V 2
Figure imgb0029
Procédé selon la revendication 2 caractérisé en ce que pour déterminer le critère de similarité, • une première étape consiste à corriger la mesure d'inclinaison de l'ellipse de polarisation en prenant en compte les informations de navigation du porteur, en effectuant un changement de repère du plan de polarisation, par une rotation dans le plan de polarisation permettant de passer du repère [uh uv] lié au réseau d'antenne calibré et à l'assiette au repère [u'h u'v] lié à l'horizontale du lieu, et • lors d'une deuxième étape on calcule s V 1 V 2 = max 0 , 1 - β . V 1 - V 2 T M 1 + M 2 - 1 V 1 - V 2 .
Figure imgb0030
Method according to Claim 2, characterized in that to determine the similarity criterion, A first step consists in correcting the tilt measurement of the polarization ellipse by taking into account the navigation information of the wearer, by making a change of reference of the plane of polarization, by a rotation in the plane of polarization allowing to go from the reference [u h u v ] linked to the calibrated antenna array and the attitude to the reference [u ' h u' v ] linked to the horizontal of the place, and • in a second step we calculate s V 1 V 2 = max 0 , 1 - β . V 1 - V 2 T M 1 + M 2 - 1 V 1 - V 2 .
Figure imgb0030
Procédé selon l'une des revendications 1 à 4 caractérisé en ce que les signaux électromagnétiques à désentrelacer sont des signaux de télécommunications.Method according to one of Claims 1 to 4, characterized in that the electromagnetic signals to be deinterleaved are telecommunications signals. Procédé selon l'une des revendications 1 à 4 caractérisé en ce que les signaux électromagnétiques à désentrelacer sont des signaux radar.Method according to one of Claims 1 to 4, characterized in that the electromagnetic signals to be deinterlaced are radar signals. Dispositif permettant de désentrelacer des signaux électromagnétiques reçus sur un réseau antennaire (1), ledit réseau antennaire étant associé à un module (4) de traitement des signaux adapté à exécuter les étapes du procédé selon l'une des revendications 1 à 6.Device for deinterleaving electromagnetic signals received on an antenna array (1), said antenna array being associated with a signal processing module (4) adapted to perform the steps of the method according to one of claims 1 to 6.
EP12197331.7A 2011-12-16 2012-12-14 Method and apparatus for separating electromagnetic emissions produced by a plurality of emitters Active EP2605420B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1103887A FR2984492B1 (en) 2011-12-16 2011-12-16 METHOD FOR SEPARATING ELECTROMAGNETIC EMISSIONS FROM SEVERAL TRANSMITTERS

Publications (2)

Publication Number Publication Date
EP2605420A1 true EP2605420A1 (en) 2013-06-19
EP2605420B1 EP2605420B1 (en) 2020-02-12

Family

ID=47324001

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12197331.7A Active EP2605420B1 (en) 2011-12-16 2012-12-14 Method and apparatus for separating electromagnetic emissions produced by a plurality of emitters

Country Status (2)

Country Link
EP (1) EP2605420B1 (en)
FR (1) FR2984492B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2846166A1 (en) * 2013-09-09 2015-03-11 Thales Method for direction classification of signal sources

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6430239B1 (en) * 1998-01-23 2002-08-06 Thomson-Csf Process of cyclic detection in diversity of polarization of digital cyclostationary radioelectric signals
US6845243B1 (en) * 2000-03-24 2005-01-18 Aubrey L. Gaddy Method and system for assessing the susceptibility of a wireless communication channel to wind-induced fading
US7269223B2 (en) * 2003-04-16 2007-09-11 Bae Systems Information And Electronic Systems Integration Inc. System and method for increasing throughput in a multiuser detection based multiple access communications system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6430239B1 (en) * 1998-01-23 2002-08-06 Thomson-Csf Process of cyclic detection in diversity of polarization of digital cyclostationary radioelectric signals
US6845243B1 (en) * 2000-03-24 2005-01-18 Aubrey L. Gaddy Method and system for assessing the susceptibility of a wireless communication channel to wind-induced fading
US7269223B2 (en) * 2003-04-16 2007-09-11 Bae Systems Information And Electronic Systems Integration Inc. System and method for increasing throughput in a multiuser detection based multiple access communications system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ALBERA L ET AL: "Blind Identification of Overcomplete MixturEs of sources (BIOME)", LINEAR ALGEBRA AND ITS APPLICATIONS, ELSEVIER SCIENCE PUBLISHING CO., NEW YORK, NY, US, vol. 391, 1 November 2004 (2004-11-01), pages 3 - 30, XP027251466, ISSN: 0024-3795, [retrieved on 20041011] *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2846166A1 (en) * 2013-09-09 2015-03-11 Thales Method for direction classification of signal sources
FR3010558A1 (en) * 2013-09-09 2015-03-13 Thales Sa METHOD FOR CHARACTERIZING AT LEAST ONE SIGNAL SOURCE
US9325453B2 (en) 2013-09-09 2016-04-26 Thales Method for characterizing at least one signal source

Also Published As

Publication number Publication date
FR2984492A1 (en) 2013-06-21
EP2605420B1 (en) 2020-02-12
FR2984492B1 (en) 2016-07-01

Similar Documents

Publication Publication Date Title
EP2318854B1 (en) Method for protecting a radio navigation receiver user against aberrant pseudo-range measurements
EP1582888B1 (en) Method for the blind wideband localization of one or more transmitters from a carrier that is passing by
EP2344902B1 (en) Method of determining the direction of arrival in terms of bearing of a high-frequency electromagnetic wave
EP2579063B1 (en) Method and system for locating interference by frequency sub-band
EP3047298B1 (en) Method for detecting targets and associated multifunction radar
EP3281026B1 (en) Method of separating sources for parsimonious signals
EP2428810A1 (en) Multi-transmitter geo-positioning method by space-time processing.
WO2016102697A1 (en) Method for the non-linear estimation of a mixture of signals
EP2517037B1 (en) Method for estimating the number of incident sources in a sensor array by means of estimating noise statistics
EP1751574B1 (en) Method for tracking a transmitter by means of a synthetic gap antenna network
EP1682923B1 (en) Method for localising at least one emitter
EP3356840B1 (en) Method for determining characteristics of an electromagnetic wave
EP2605420B1 (en) Method and apparatus for separating electromagnetic emissions produced by a plurality of emitters
EP3021130B1 (en) Method and system for locating a transmitter
EP2544020B1 (en) Method and device for detecting a target masked by high-energy reflectors
EP3252423A1 (en) Adaptive method for detecting a target with a radar device in the presence of stationary interference, and radar and missile seeker implementing such a method
FR3104733A1 (en) SET INCLUDING A TRANSMITTER LOCATION SYSTEM AND A MOBILE PLATFORM; TRANSMITTER LOCATION SYSTEM, MOBILE PLATFORM AND ASSOCIATED ARRIVAL DIRECTION MEASUREMENT METHOD
FR3030772A1 (en) METHOD OF LOCATING AN UNKNOWN POSITION TRANSMITTER WITH SYNCHRONIZED RECEPTORS OF KNOWN POSITIONS
EP2851703A1 (en) Method for jointly synchronising, identifying, measuring and estimating the propagation filter and the location of useful and interfering emitters
EP2662701A1 (en) Receiver sequencing method
EP2846166A1 (en) Method for direction classification of signal sources
EP3306350A1 (en) Detection module of a disturbance signal while initial receiving by a receiver of navigation information, receiver comprising such module, associated method and computer program product
FR2737578A1 (en) IMPULSE DOPPLER RADAR DEVICE WITH COMPLETE DETERMINATION OF TARGET SPEED VECTOR
EP2439556B1 (en) Method for identifying emitters by a terminal in an iso-frequency network
EP3259606A1 (en) Method and system for detecting useful signals, with respective non-negligible frequency drift, in a total signal

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20131206

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20161121

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190621

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTC Intention to grant announced (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THALES

INTG Intention to grant announced

Effective date: 20190829

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1233481

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602012067674

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200512

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200512

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200612

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200705

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602012067674

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1233481

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200212

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20201113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602012067674

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20201214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201214

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210701

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201214

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230517

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231122

Year of fee payment: 12