EP2202332A1 - Method for gas-dynamic acceleration of materials in powder form and device for implementing this method - Google Patents

Method for gas-dynamic acceleration of materials in powder form and device for implementing this method Download PDF

Info

Publication number
EP2202332A1
EP2202332A1 EP09180869A EP09180869A EP2202332A1 EP 2202332 A1 EP2202332 A1 EP 2202332A1 EP 09180869 A EP09180869 A EP 09180869A EP 09180869 A EP09180869 A EP 09180869A EP 2202332 A1 EP2202332 A1 EP 2202332A1
Authority
EP
European Patent Office
Prior art keywords
nozzle
powder
supersonic
gas
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP09180869A
Other languages
German (de)
French (fr)
Other versions
EP2202332B1 (en
Inventor
Vladimir Federovich Kosarev
Sergey Vladimirovich Klinkov
Bernard Laget
Philippe Bertrand
Igor Smurov
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ecole Nationale dIngenieurs de Saint Etienne ENISE
De L'academie Des Sciences De Russie "institut De Mecanique Theorique Et Appliquee Sa Khristianovich" Ets
Original Assignee
Ecole Nationale dIngenieurs de Saint Etienne ENISE
De L'academie Des Sciences De Russie "institut De Mecanique Theorique Et Appliquee Sa Khristianovich" Ets
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=41800584&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2202332(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Ecole Nationale dIngenieurs de Saint Etienne ENISE, De L'academie Des Sciences De Russie "institut De Mecanique Theorique Et Appliquee Sa Khristianovich" Ets filed Critical Ecole Nationale dIngenieurs de Saint Etienne ENISE
Publication of EP2202332A1 publication Critical patent/EP2202332A1/en
Application granted granted Critical
Publication of EP2202332B1 publication Critical patent/EP2202332B1/en
Revoked legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/14Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas designed for spraying particulate materials
    • B05B7/1481Spray pistols or apparatus for discharging particulate material
    • B05B7/1486Spray pistols or apparatus for discharging particulate material for spraying particulate material in dry state
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/126Detonation spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/16Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed
    • B05B7/1606Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed the spraying of the material involving the use of an atomising fluid, e.g. air
    • B05B7/1613Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed the spraying of the material involving the use of an atomising fluid, e.g. air comprising means for heating the atomising fluid before mixing with the material to be sprayed
    • B05B7/162Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed the spraying of the material involving the use of an atomising fluid, e.g. air comprising means for heating the atomising fluid before mixing with the material to be sprayed and heat being transferred from the atomising fluid to the material to be sprayed
    • B05B7/1626Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed the spraying of the material involving the use of an atomising fluid, e.g. air comprising means for heating the atomising fluid before mixing with the material to be sprayed and heat being transferred from the atomising fluid to the material to be sprayed at the moment of mixing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Nozzles (AREA)

Abstract

The method of accelerating cold compressed gas dynamics of a metallic or non-metallic powder material (4), comprises supplying the powder material in a supersonic nozzle (1) via an injection point, accelerating the material by a supersonic gas flow and depositing the material by impact on the surface of the piece. The compressed gas is heated to 300-9800 K. The acceleration of the material corresponds to the parameters such as particle size, density of the material and gas parameters. The method of accelerating cold compressed gas dynamics of a metallic or non-metallic powder material (4), comprises supplying the powder material in a supersonic nozzle (1) via an injection point, accelerating the material by a supersonic gas flow and depositing the material by impact on the surface of the piece. The compressed gas is heated to 300-9800 K. The acceleration of the material corresponds to the parameters such as particle size, density of the material and gas parameters and satisfying an equation, L=4.35rho pd p+- 50% and b=0.065rho pd p+- 50%, where L is length of the supersonic nozzle, rho p is density of the material, d p is diameter of the particle, b is height of the nozzle and b=d c r is the diameter of the critical section of the axisymmetric nozzle. An independent claim is included for a device for acceleration of cold compressed gas dynamics of a metallic or non-metallic powder material.

Description

La présente invention concerne une méthode et un dispositif d'accélération gazodynamique de matériaux en poudre en vue de l'utilisation dans la mécanique et d'autres domaines industriels pour former des revêtements fonctionnels apportant des propriétés différentes sur les surfaces traitées. En outre, la présente invention peut être mise en oeuvre dans les procédés utilisant les impacts à haute vitesse entre des particules de poudre et une surface de substrat tels que le sablage des surfaces, le morcèlement/granulation de particules de poudre, etc.The present invention relates to a method and device for gasodynamic acceleration of powdered materials for use in mechanics and other industrial fields to form functional coatings providing different properties on the treated surfaces. In addition, the present invention can be implemented in processes using high velocity impacts between powder particles and a substrate surface such as sanding of surfaces, breaking up / granulating of powder particles, etc.

On connait déjà des systèmes de projection gazodynamique des matériaux en poudre.Gasodynamic projection systems for powder materials are already known.

Le document RU n° 2257423 décrit ainsi un système qui comporte un module de projection composé d'un réchauffeur électrique de gaz comprimé et d'une buse supersonique reliée à l'orifice de sortie dudit réchauffeur et comportant un module d'injection de poudre dans ladite buse, un module de commande relié au réchauffeur électrique de gaz comprimé par une conduite flexible et par un câble électrique, un conteneur d'alimentation en poudre dont l'orifice de sortie est reliée au module d'injection de poudre dans la buse. Pour sécuriser le fonctionnement du système en diminuant la température des composants extérieurs du réchauffeur électrique de gaz comprimé, ledit réchauffeur comporte une housse en cuir qui enveloppe un bâti métallique en laissant un espace libre entre lui et ledit bâti, l'espace libre étant rempli d'un matériau calorifuge et ledit bâti comportant un échangeur de chaleur et ayant des orifices d'aération permettant la circulation d'un gaz de refroidissement à l'intérieur de la housse. Le module d'injection de poudre dans la buse prévoit, selon une forme de réalisation préférée, l'injection de la poudre dans la zone supercritique de la buse supersonique à l'oblique par rapport à l'axe longitudinale de la buse afin d'augmenter l'efficacité du procédé de projection grâce à une répartition plus uniforme du matériau en poudre dans la section transversale de la buse. Le dispositif prévoit l'utilisation des buses ayant la section transversale ronde ou rectangulaire en fonction des formes géométriques des surfaces traitées d'une pièce. En fonction de la composition du matériau utilisé, le rapport entre la longueur de la partie supersonique de la buse et la dimension de la section transversale minimale de ladite buse peut varier de 20 à 100.The document UK No. 2257423 thus describes a system which comprises a projection module composed of an electric compressed gas heater and a supersonic nozzle connected to the outlet orifice of said heater and comprising a powder injection module in said nozzle, a module of control connected to the electric gas heater compressed by a flexible pipe and by an electric cable, a powder supply container whose outlet is connected to the powder injection module in the nozzle. To secure the operation of the system by decreasing the temperature of the external components of the electric compressed gas heater, said heater comprises a leather cover which envelops a metal frame leaving a free space between it and said frame, the free space being filled with a heat-insulating material and said frame having a heat exchanger and having vents for the circulation of a cooling gas inside the cover. The powder injection module in the nozzle provides, according to a preferred embodiment, the injection of the powder into the supercritical zone of the supersonic nozzle at oblique with respect to the longitudinal axis of the nozzle in order to to increase the efficiency of the projection process by a more uniform distribution of the powder material in the cross-section of the nozzle. The device provides for the use of nozzles having the round or rectangular cross section depending on the geometric shapes of the treated surfaces of a workpiece. Depending on the composition of the material used, the ratio between the length of the supersonic portion of the nozzle and the dimension of the minimum cross section of said nozzle may vary from 20 to 100.

L'inconvénient de ce dispositif est que les dimensions de la buse supersonique en faisant partie intégrante ne sont aucunement liées à la taille de diamètre et la densité du matériau des particules projetées. De ce fait, en utilisant ce dispositif, il est impossible de communiquer aux particules au cours de leur mouvement dans la partie supersonique de la buse l'accélération optimale pour atteindre la vitesse d'impact à la surface de la pièce traitée maximale susceptible d'être atteinte par les particules projetées compte tenu de leurs caractéristiques de taille et de densité et, par conséquent, d'assurer la qualité maximale des revêtements résultants.The disadvantage of this device is that the dimensions of the supersonic nozzle as an integral part are in no way related to the size of diameter and the density of the material of the projected particles. Therefore, by using this device, it is impossible to communicate to the particles during their movement in the supersonic part of the nozzle the optimum acceleration to reach the impact velocity on the surface of the maximum treated part susceptible of to be achieved by the projected particles in view of their size and density characteristics and, consequently, to ensure the maximum quality of the resulting coatings.

Le document RU n° 2288970 décrit un système de projection gazodynamique à froid des matériaux en poudre qui comporte un réchauffeur électrique de gaz comprimé, une buse supersonique (dite de Laval) reliée par un orifice de sortie audit réchauffeur et comportant une gorge située entre les parties convergente et divergente de ladite buse, un module d'injection de poudre dans la buse comportant des points d'injection destinés à l'injection de poudre dans la buse et situés en amont de la buse après la gorge, ledit module d'injection comportant au moins un conteneur d'alimentation en poudre relié par des conduites auxdits points d'injection d'au moins un matériau en poudre, et les caractéristiques géométriques de la partie de la buse située en amont des points d'injection de poudre et destinée à accélérer les particules de poudre injectées dans la buse correspondant aux conditions suivantes : 0,015 < B(Saut/Sinj-1)/L < 0,03, où Sout est l'aire de la section transversale de la buse à son extrémité de sortie, Sinj est l'aire de la section transversale de la buse à l'endroit de la position des points d'injection de poudre, L est la longueur de la partie de la buse destinée à accélérer les particules de poudre injectées dans la buse, B est la dimension minimale de la section transversale de la buse à l'endroit de la position des points d'injection de poudre. Le dispositif prévoit l'utilisation des buses ayant la section transversale ronde ou rectangulaire en fonction des formes géométriques et de la composition des surfaces traitées d'une pièce ainsi que des objectifs visés et des caractéristiques du revêtement résultant désirées.The document UK No. 2288970 discloses a cold gasodynamic projection system of powder materials which comprises an electric compressed gas heater, a supersonic nozzle (called Laval) connected by an outlet orifice to said heater and having a groove located between the convergent and divergent portions of said nozzle, a powder injection module in the nozzle having injection points for injection of powder into the nozzle and located upstream of the nozzle after the groove, said injection module comprising at least one container of powder supply connected by pipes to said injection points of at least one powder material, and the geometric characteristics of the nozzle portion located upstream of the powder injection points and for accelerating the powder particles injected into the nozzle corresponding to the following conditions: 0.015 <B ( Jump / Sinj -1) / L <0.03, where Sout is the cross sectional area of the nozzle to at its outlet end, Sinj is the cross-sectional area of the nozzle at the position of the powder injection points, L is the length of the portion of the nozzle intended to accelerate the injected powder particles in the nozzle, B is the minimum dimension of the cross section of the nozzle at the position of the powder injection points. The device provides for the use of the nozzles having the round or rectangular cross-section depending on the geometric shapes and composition of the treated surfaces of a workpiece as well as the desired objectives and desired resultant coating characteristics.

Comme dans le cas précédant, l'inconvénient de ce dispositif est que les dimensions de la buse supersonique en faisant partie intégrante ne sont aucunement liées à la taille de diamètre et la densité du matériau des particules projetées. De ce fait, en utilisant ce dispositif, il est impossible de communiquer aux particules au cours de leur mouvement dans la partie supersonique de la buse l'accélération optimale pour atteindre la vitesse d'impact à la surface de la pièce traitée maximale susceptible d'être atteinte par les particules projetées compte tenu de leurs caractéristiques de taille et de densité et, par conséquent, d'assurer la qualité maximale des revêtements résultants. Or, le rapport typique des aires Sout et Sinj étant Sout/Sinj ≈ 2 - 4, la formule 0,015 < B(Saut/Sinj-1)/L < 0,03 utilisée par ce procédé et ce dispositif, en effet, ne détermine que le rapport entre la longueur de la partie de la buse destinée à accélérer les particules de poudre et la dimension minimale de la section transversale à l'endroit de la position des points d'injection de poudre. Par exemple, une buse ayant B = 0,1 mm, L = 5 mm et Sout/Sinj = 2 et, par cela, satisfaisant à la formule proposée ne permettrait pas de réaliser un revêtement à partir des particules ayant des tailles dans la gamme indiquée parce que le parcours d'accélération serait trop court pour que les particules puissent atteindre la vitesse nécessaire pour effectuer un dépôt.As in the previous case, the disadvantage of this device is that the dimensions of the supersonic nozzle as an integral part are in no way related to the size of the diameter and the density of the material of the projected particles. Therefore, by using this device, it is impossible to communicate to the particles during their movement in the supersonic part of the nozzle the optimum acceleration to reach the impact velocity on the surface of the maximum treated part susceptible of to be reached by the projected particles taking into account their size and density characteristics and, consequently, to ensure the maximum quality of the resulting coatings. However, since the typical ratio of the Sout and Sinj areas is Sout / Sinj ≈ 2 - 4, the formula 0.015 < B (Jump / Sinj -1) / L <0.03 used by this method and this device, in fact, does not determine the ratio of the length of the nozzle portion for accelerating the powder particles to the minimum dimension of the cross-section at the position of the powder injection points. For example, a nozzle having B = 0.1 mm, L = 5 mm and Sout / Sinj = 2 and thereby satisfying the proposed formula would not allow a coating to be made from particles having sizes in the range. indicated because the acceleration path would be too short for the particles to reach the speed necessary to make a deposit.

Le document US 6 743 468 considéré comme l'état de la technique le plus proche décrit un procédé et un dispositif pour le dépôt de revêtements sur la surface d'une pièce par projection cinétique et projection thermique en utilisant une seule et même buse. Le dispositif selon cette invention comporte un réchauffeur de gaz permettant à l'utilisateur de passer du mode de projection cinétique qui s'effectue sans amollissement thermique de particules au mode de projection thermique avec amollissement thermique de particules avant la projection. Une telle construction de buse s'élargit le spectre d'applications de la méthode dans la projection cinétique. La méthode selon cette invention utilise des particules ayant une taille de diamètre dp = 50 - 250 µm et des buses ayant des dimensions comme suit : la longueur de la partie supersonique est L = 60 - 400 mm, le diamètre de la section critique de la buse axisymétrique est dcr = 1,5 - 3,5 mm.The document US 6,743,468 The closest known state of the art describes a method and device for depositing coatings on the surface of a workpiece by kinetic projection and thermal spraying using one and the same nozzle. The device according to this invention comprises a gas heater allowing the user to switch from the kinetic projection mode which is carried out without thermal softening of the particles to thermal projection mode with thermal softening of particles before the projection. Such a nozzle construction broadens the spectrum of applications of the method in kinetic projection. The method according to this invention uses particles having a diameter diameter d p = 50 - 250 μm and nozzles having dimensions as follows: the length of the supersonic portion is L = 60 - 400 mm, the diameter of the critical section of the axisymmetric nozzle is to cr = 1.5 - 3.5 mm.

L'inconvénient de ce procédé et de ce dispositif est que les dimensions de la buse supersonique en faisant partie intégrante sont optimisées uniquement compte tenu de l'utilisation des particules ayant des tailles dans la gamme revendiquée dans le brevet (dp = 50 - 250 µm) et ne sont aucunement liées à la densité du matériau des particules. De ce fait, il est impossible, en mettant en oeuvre cette invention, de communiquer aux particules projetées au cours de leur mouvement dans la partie supersonique de la buse l'accélération optimale pour atteindre la vitesse d'impact à la surface de la pièce traitée maximale susceptible d'être atteinte si elles ont une taille distincte de celles revendiquées. Par exemple, ce dispositif est incapable d'assurer une haute vitesse d'impacte à la surface d'une pièce traitée aux particules ayant une taille de diamètre inférieure à 1 µm en raison du fait que les particules de telles dimensions seraient ralenties de façon considérable dans une couche limite compressible formée par un jet supersonique impactant une cible.The disadvantage of this method and this device is that the dimensions of the supersonic nozzle as an integral part are optimized only taking into account the use of particles having sizes in the range claimed in the patent ( d p = 50 - 250 μm) and are in no way related to the density of the material of the particles. Therefore, it is impossible, in carrying out this invention, to communicate to the particles projected during their movement in the supersonic part of the nozzle the optimum acceleration to reach the impact velocity on the surface of the treated part. maximum likely to be achieved if they are of a size distinct from those claimed. For example, this device is unable to provide a high impact speed on the surface of a workpiece treated with particles having a size of less than 1 μm in diameter because particles of such dimensions would be slowed considerably in a compressible boundary layer formed by a supersonic jet impacting a target.

Dans ce contexte technique, l'objectif de la présente invention est de communiquer aux particules au cours de leur mouvement dans la partie supersonique de la buse l'accélération optimale pour atteindre la vitesse d'impact à la surface de la pièce traitée maximale susceptible d'être atteinte aux paramètres de gaz donnés (composition, température et pression de stagnation) au moyen du développement et de l'application des buses ayant les paramètres géométriques optimales, notamment, le rapport entre la longueur de la partie supersonique et la section critique, calculés spécialement pour l'utilisation des particules ayant une taille et une densité du matériau les constituant concrètes.In this technical context, the object of the present invention is to impart to the particles during their movement in the supersonic part of the nozzle the optimum acceleration to reach the impact velocity on the surface of the maximum treated part susceptible to to achieve the given gas parameters (composition, temperature and stagnation pressure) by means of the development and application of the nozzles having the optimal geometrical parameters, in particular the ratio between the length of the supersonic part and the critical section, specifically calculated for the use of particles having a size and density of the material constituting them.

La présente invention offre les améliorations suivantes par rapport à l'état actuel de la technique :

  • l'augmentation du rendement de déposition et de la qualité des revêtements déposés par la projection gazodynamique à froid ;
  • la possibilité d'utiliser dans la projection gazodynamique à froid et le sablage des surfaces, selon une réalisation préférée, les particules ayant une taille inférieure à 1 µm et d'obtenir une résolution spatiale inférieure à 1 mm;
  • l'augmentation du rendement des procédés de sablage des surfaces et de morcèlement/granulation de particules.
The present invention offers the following improvements over the state of the art:
  • the increase of the deposition efficiency and the quality of the coatings deposited by the cold gasodynamic projection;
  • the possibility of using in the cold gasodynamic projection and sanding of the surfaces, according to a preferred embodiment, the particles having a size of less than 1 μm and of obtaining a spatial resolution of less than 1 mm;
  • the increase in the efficiency of sand blasting and particle grinding / granulation processes.

Prenons un exemple. On souhaite déposer un revêtement à partir d'un matériau en poudre avec les particules ayant un diamètre d'environ 100 nm (nanoparticules). Il ne se formera pas de dépôt si l'on utilise une buse de projection gazodynamique traditionnelle, c'est-à-dire, avec la longueur de la partie supersonique d'environ 100 mm et le diamètre de la section critique d'environ 3 mm. Cela s'explique par le fait que les particules de si faibles dimensions n'atteindront pas de grandes vitesses d'impact à la surface de cible à cause d'un ralentissement considérable qu'elles subiront dans une couche limite compressible formée par un jet supersonique impactant une cible.Let's take an example. It is desired to deposit a coating from a powder material with particles having a diameter of about 100 nm (nanoparticles). Deposition will not occur if a traditional gas-jet projection nozzle is used, ie, with the length of the supersonic portion of about 100 mm and the diameter of the critical section of about 3 mm. mm. This is because particles of such small dimensions will not reach high impact velocities at the target surface due to considerable slowing down in a compressible boundary layer formed by a supersonic jet. impacting a target.

Il y a encore un aspect à considérer. Si l'on souhaite obtenir une haute résolution spatiale du procédé mise en oeuvre, comme, par exemple, le dépôt de cordons de moins de 1 mm de largeur ou la fabrication directe d'objets tridimensionnels par projection de poudres, l'orifice de sortie de la buse utilisée doit avoir des dimensions spécialement prévues à cet effet. La partie supersonique de telle buse doit être raccourcie. En fonction des dimensions choisies d'une buse, les particules à projeter doivent être sélectionnées ayant une taille qui leur permettrait d'atteindre la vitesse maximale d'impact à la surface de cible susceptible d'être atteinte. Or, les particules de faibles dimensions sont bien accélérées dans la buse, mais fortement ralenties dans la couche limite compressible. Les particules grosses, au contraire, ne subissent presque pas de ralentissement dans la couche limite compressible, mais en même temps, leur accélération dans la buse est difficile. C'est pourquoi il s'agit d'opter pour une taille de particules qui permettrait aux particules projetées d'atteindre la vitesse maximale d'impact à la surface de cible et, de ce fait, d'obtenir le rendement de déposition et la qualité des revêtements déposés maximaux ou d'autres caractéristiques performantes propres au procédé mis en oeuvre (sablage des surfaces, morcèlement/granulation de particules).There is one more aspect to consider. If it is desired to obtain a high spatial resolution of the process implemented, such as, for example, the deposition of cords of less than 1 mm in width or the direct manufacture of three-dimensional objects by powder spraying, the outlet orifice of the nozzle used must have dimensions specially provided for this purpose. The supersonic part of such a nozzle must be shortened. Depending on the chosen dimensions of a nozzle, the particles to be sprayed must be selected having a size that would allow them to reach the maximum impact velocity at the target surface likely to be reached. However, the particles of small dimensions are well accelerated in the nozzle, but strongly slowed in the compressible boundary layer. The coarse particles, on the contrary, undergo almost no slowing in the compressible boundary layer, but at the same time, their acceleration in the nozzle is difficult. Therefore, it is a matter of choosing a particle size that would allow the projected particles to reach the maximum impact velocity on the target surface and, thus, to obtain the deposition efficiency and the quality of the maximum deposited coatings or other performance characteristics specific to the process used (sanding of the surfaces, fragmentation / granulation of particles).

La présente invention résout avantageusement les problèmes évoqués ci-dessus en proposant une méthode d'accélération gazodynamique à froid d'au moins un matériau en poudre comprenant l'alimentation dudit matériau en poudre dans une buse supersonique via un point d'injection, son accélération par un flux de gaz supersonique et son dépôt par impact sur la surface d'une pièce, la méthode prenant en compte la taille des particules et la densité du matériau les constituant ainsi que les paramètres du gaz afin de conférer aux particules de poudre entraînées par le flux de gaz la vitesse maximale susceptible d'être atteinte à leur impact à la surface de la pièce traitée grâce à l'accélération du flux de gaz et de poudre dans la partie supersonique de la buse dont la longueur et la dimension transversale correspondent aux conditions suivantes : L = 4 , 35 ρ p d p ± 50 % ; b = 0 , 065 ρ p d p ± 50 % ,

Figure imgb0001

L est la longueur de la partie supersonique de la buse, ρp est la densité d'une particule dudit matériau, dp est le diamètre d'une particule, b = h est la hauteur de la buse, b = dcr est le diamètre de la section critique de la buse axisymétrique.The present invention advantageously solves the problems mentioned above by proposing a cold gas-dynamic acceleration method of at least one powder material comprising feeding said powder material into a supersonic nozzle via an injection point, its acceleration by a supersonic gas flow and its deposition by impact on the surface of a workpiece, the method taking into account the size of the particles and the density of the material constituting them as well as the parameters of the gas in order to give the particles of powder entrained by the gas flow the maximum speed that can be reached at their impact on the surface of the treated part by accelerating the flow of gas and powder in the supersonic part of the nozzle whose length and transverse dimension correspond to the following conditions: The = 4 , 35 ρ p d p ± 50 % ; b = 0 , 065 ρ p d p ± 50 % ,
Figure imgb0001

where L is the length of the supersonic portion of the nozzle, ρ p is the density of a particle of said material, d p is the diameter of a particle, b = h is the height of the nozzle, b = d cr is the diameter of the critical section of the axisymmetric nozzle.

Les valeurs ci-dessus sont obtenues au moyen de la modélisation mathématique effectuée pour une large gamme de dimensions de particules et de buse, de pressions et de températures de gaz (air, azote, hélium) et comparée à des mesures expérimentales de la vitesse des particules de différentes tailles et de leur densité à l'orifice de sortie de la buse.The above values are obtained by means of mathematical modeling performed for a wide range of particle and nozzle dimensions, gas pressures and temperatures (air, nitrogen, helium) and compared with experimental measurements of the velocity of particles of different sizes and their density at the outlet orifice of the nozzle.

La méthode selon l'invention peut utiliser, comme gaz comprimé porteur : l'air comprimé, l'azote comprimé, l'hélium comprimé ou un mélange de ces gaz.The method according to the invention can use as compressed carrier gas: compressed air, compressed nitrogen, compressed helium or a mixture of these gases.

Selon une réalisation possible, le gaz comprimé est chauffé jusqu'à des températures entre 300 et 9800 K.According to one possible embodiment, the compressed gas is heated to temperatures between 300 and 9800 K.

Les matériaux en poudre utilisés sont par exemple constitués de particules ayant une taille comprise entre 0,1 et 1000 µm.The powder materials used are, for example, made up of particles having a size of between 0.1 and 1000 μm.

La méthode peut utiliser : des matériaux en poudre métalliques, des matériaux en poudre non métalliques, des mélanges de poudres métalliques ayant des valeurs de ρ pdp proches, des mélanges de poudres non métalliques ayant des valeurs de ρ pdp proches ou des mélanges de poudres métalliques et non métalliques ayant des valeurs de ρ pdp proches.The method may use: metallic powder materials, nonmetallic powder materials, metal powder mixtures having values of ρ p d p near, non-metallic powder mixtures having values of ρ p d p near or mixtures of metallic and non-metallic powders having values of ρ p d p near.

La présente méthode est mise en oeuvre par un dispositif d'accélération gazodynamique à froid d'au moins un matériau en poudre comprenant une buse supersonique reliée à un injecteur de poudre, un doseur de poudre relié par un orifice de sortie audit injecteur de poudre. Ce dispositif prévoit l'utilisation de buses plates ou axisymétriques démontables et échangeables, la longueur de la partie supersonique et la dimension typique de la section critique desdites buses correspondant aux conditions suivantes : L = 4 , 35 ρ p d p ± 50 % , b = 0 , 065 ρ p d p ± 50 % ,

Figure imgb0002

L est la longueur de la partie supersonique de la buse, ρ p est la densité d'une particule dudit matériau, dp est le diamètre d'une particule, b = h est la hauteur de la buse, b = dcr est le diamètre de la section critique de la buse axisymétrique.The present method is implemented by a cold gas-dynamic acceleration device of at least one powder material comprising a supersonic nozzle connected to a powder injector, a powder feeder connected by an outlet orifice to said powder injector. This device provides for the use of dismountable and exchangeable flat or axisymmetric nozzles, the length of the supersonic portion and the typical dimension of the critical section of said nozzles corresponding to the following conditions: The = 4 , 35 ρ p d p ± 50 % , b = 0 , 065 ρ p d p ± 50 % ,
Figure imgb0002

where L is the length of the supersonic portion of the nozzle, ρ p is the density of a particle of said material, d p is the diameter of a particle, b = h is the height of the nozzle, b = dc r is the diameter of the critical section of the axisymmetric nozzle.

L'un des avantages de la méthode et du dispositif de projection gazodynamique de matériaux en poudre proposés est qu'en fonction de la taille des particules et de la densité du matériau les constituant sélectionnées en vue d'une opération technologique distincte ainsi que de la pression et de la température de gaz (par exemple, air, azote, hélium ou le mélange d'au moins deux de ces gaz), les dimensions de la partie supersonique de la buse utilisée peuvent être calculées de manière à assurer la vitesse maximale d'impact des particules à la surface de cible susceptible d'être atteinte, et, de ce fait, à améliorer avantageusement la qualité du dépôt, le rendement et la qualité du procédé de nettoyage des surfaces, le rendement du procédé de morcèlement/granulation de particules. En même temps, pour assurer la résolution spatiale désirée du procédé de projection ou de sablage des surfaces, il est possible de jouer sur la granulométrie de la poudre en choisissant la taille des particules du matériau en poudre souhaité de manière à assurer un haut rendement de déposition et une haute qualité du revêtement résultant, la bonne réalisation du procédé de sablage d'une surface ayant une structure à grains fins correspondante à la tailles des particules projetées.One of the advantages of the method and apparatus for the gas-powder spraying of proposed powder materials is that depending on the particle size and the density of the material constituting them selected for a separate technological operation as well as the pressure and gas temperature (for example, air, nitrogen, helium or the mixture of at least two of these gases), the dimensions of the supersonic part of the nozzle used may be calculated so as to ensure the maximum speed of the impact of the particles on the target surface that can be reached, and thereby to advantageously improve the quality of the deposit, the efficiency and the quality of the surface cleaning process, the efficiency of the fragmentation / granulation of particles. At the same time, to ensure the desired spatial resolution of the process of blasting or sanding the surfaces, it is possible to vary the particle size of the powder by choosing the particle size of the desired powder material so as to ensure a high yield of deposition and high quality of the resulting coating, the successful completion of the sanding process of a surface having a fine grain structure corresponding to the size of the projected particles.

Pour sa bonne compréhension, l'invention est décrite en référence à la figure unique du dessin ci-annexé représentant à titre d'exemple non limitatif une forme de réalisation d'un dispositif selon l'invention.For a good understanding, the invention is described with reference to the single figure of the attached drawing showing by way of non-limiting example an embodiment of a device according to the invention.

Le dispositif d'accélération gazodynamique à froid des matériaux en poudre comprend une buse supersonique démontable et échangeable 1 reliée à l'orifice de sortie d'un réchauffeur électrique 2 et à un injecteur de poudre dans ladite buse 3, un doseur de poudre 4 dont l'orifice de sortie est relié audit injecteur de poudre. La partie supersonique de ladite buse peut être, selon une forme de réalisation préférée, de forme plate ou axisymétrique, la buse ayant la longueur de la partie supersonique et la dimension typique de la section critique correspondant aux conditions suivantes : L = 4 , 35 ρ p d p ± 50 % , b = 0 , 065 ρ p d p ± 50 % ,

Figure imgb0003

L est la longueur de la partie supersonique de la buse, ρ p est la densité d'une particule dudit matériau, dp est le diamètre d'une particule, b = h est la hauteur de la buse, b = dcr est le diamètre de la section critique de la buse axisymétrique.The device for accelerating gasodynamic cold powder materials comprises a removable and exchangeable supersonic nozzle 1 connected to the outlet of an electric heater 2 and a powder injector in said nozzle 3, a powder dispenser 4 whose the outlet port is connected to said powder injector. The supersonic portion of said nozzle may be, according to a preferred embodiment, of flat or axisymmetrical shape, the nozzle having the length of the supersonic portion and the typical dimension of the critical section corresponding to the following conditions: The = 4 , 35 ρ p d p ± 50 % , b = 0 , 065 ρ p d p ± 50 % ,
Figure imgb0003

where L is the length of the supersonic portion of the nozzle, ρ p is the density of a particle of said material, d p is the diameter of a particle, b = h is the height of the nozzle, b = d cr is the diameter of the critical section of the axisymmetric nozzle.

Le procédé est mis en oeuvre comme suit.The process is carried out as follows.

En fonction du procédé de projection/sablage/granulation de particules et du choix, à cet effet, de poudre (densité du matériau des particules et leur teilla moyenne) et de pression et de températures de gaz (par exemple, air, azote, hélium ou le mélange d'au moins deux de ces gaz), les rapports simulés présentés ci-dessus sont mis en oeuvre pour calculer les dimensions principales de la buse: la longueur de la partie supersonique et la section critique (la hauteur pour une buse plate et le diamètre de la section critique pour une buse axisymétrique). Les particules entraînées par un flux de gaz dans une telle buse spécialement calculée se voient conférer la vitesse maximale susceptible d'être atteinte à leur impact à la surface de la pièce traitée grâce à l'accélération du flux de gaz et de poudre dans la partie supersonique de ladite buse, plate ou axisymétrique.Depending on the method of projection / sanding / granulation of particles and the choice, for this purpose, of powder (density of the material of the particles and their mean teilla) and pressure and gas temperatures (for example, air, nitrogen, helium or the mixture of at least two of these gases), the simulated ratios presented above are used to calculate the main dimensions of the nozzle: the length of the supersonic part and the critical section (the height for a flat nozzle and the diameter of the critical section for an axisymmetric nozzle). Particles entrained by a flow of gas in such a specially calculated nozzle are given the maximum speed that can be achieved at their impact on the surface of the treated part by accelerating the flow of gas and powder in the part. supersonic of said nozzle, flat or axisymmetric.

L'utilisation des buses spécialement conçues pour une taille de diamètre concrète de particules d'un matériau en poudre souhaité permet d'obtenir la vitesse maximale d'impact des particules projetées à la surface de la pièce traitée.The use of the specially designed nozzles for a concrete particle size of particles of a desired powder material makes it possible to obtain the maximum impact speed of the particles projected on the surface of the treated part.

On décrit à présent, à titre d'exemples non limitatifs, des variantes d'utilisation de la présente invention avec les particules de différentes tailles.

  1. 1. Des particules de poudre de cuivre de 1 µm de diamètre moyen sont projetées par la méthode gazodynamique à froid. La pression de stagnation de l'azote ou de l'aire, selon une réalisation préférée, est de 2,0 MPa, la température de stagnation est de 700 K. Les rapport simulés pour une buse plate sont L = 4,35ρ pdp ± 50%, h = 0,065ρ pdp 50%. On introduit ρ p = 8940 kg/m3 et dp = 1.10-6 m et obtient les dimensions optimales de la buse L = 20 - 60 mm et h = 0,29 - 0,87 mm qui assureront la vitesse maximale d'impact des particules projetées à la surface de cible.
  2. 2. Pour les particules d'aluminium (ρ p = 2700 kg/m3) de la même taille projetées par une buse axisymétrique, on obtient L = 6 - 18 mm et dcr = 0,09 - 0,26 mm. La pression de stagnation de l'azote ou de l'aire est de 2,0 MPa, la température de stagnation est de 500 K.
  3. 3. On souhaite obtenir une résolution spatiale de 0,5 mm lors de projection de particules de cuivre. On choisi une buse avec 0,5 mm de diamètre d'orifice de sortie et, en conséquence, d'environ 0,3 mm de diamètre de section critique. La pression de stagnation de l'hélium est de 2,0 MPa, la température de stagnation est de 300 K. Selon la formule dcr = 0,065ρ pdp ± 50%, on obtient la taille nécessaire des particules de cuivre et, selon la formule L = 4,35ρpdp ± 50%, on calcule la longueur de la partie supersonique de la buse nécessaire pour communiquer aux particules l'accélération optimale. Dans ce cas, on obtient dp = (0,34 - 1,03)·10-6 m = 0,34 - 1,03 µm et L = 13,2 - 40 mm.
  4. 4. Pour le sablage d'une surface, prenons la poudre d'Al2O3 avec 10 µm de diamètre moyen de particules. La pression de stagnation de l'aire est de 0,6 MPa, la température de stagnation est de 300 K. Les rapports simulés pour une buse plate sont L = 4,35ρpdp ± 50%, h = 0,065ρpdp ± 50%. On introduit ρ p ≈ 4000 kg/m3 et dp = 10·10-6 m et obtient les dimensions optimales de la buse L ≈ 90 - 270 mm et h ≈ 1,2 - 3,7 mm qui assureront la vitesse maximale d'impact des particules projetées à la surface de cible.
Non-limiting examples of embodiments of the present invention with the particles of different sizes are now described.
  1. 1. Copper powder particles of 1 μm average diameter are projected by the cold gasodynamic method. The stagnation pressure of the nitrogen or the area, according to a preferred embodiment, is 2.0 MPa, the stagnation temperature is 700 K. The simulated ratios for a flat nozzle are L = 4.35 ρ p. p ± 50%, h = 0.065 ρ p d p 50%. We introduce ρ p = 8940 kg / m 3 and d p = 1.10 -6 m and obtain the optimal dimensions of the nozzle L = 20 - 60 mm and h = 0.29 - 0.87 mm which will ensure the maximum speed of impact of particles projected on the target surface.
  2. 2. For aluminum particles (ρ p = 2700 kg / m 3 ) of the same size projected by an axisymmetric nozzle, L = 6 - 18 mm and d cr = 0.09 - 0.26 mm are obtained. The stagnation pressure of the nitrogen or the area is 2.0 MPa, the stagnation temperature is 500 K.
  3. 3. It is desired to obtain a spatial resolution of 0.5 mm when spraying copper particles. A nozzle with a 0.5 mm diameter outlet orifice and, consequently, a diameter of about 0.3 mm in critical section is chosen. The helium stagnation pressure is 2.0 MPa, the stagnation temperature is 300 K. According to the formula a = 0.065 ρ p d p ± 50%, we obtain the necessary size of the copper particles, and according to the formula L = 4,35ρ p d p ± 50%, is calculated the length of the supersonic portion of the nozzle necessary to communicate to the particles the optimum acceleration. In this case, one obtains d p = (0.34 to 1.03) · 10 -6 m = 0.34 to 1.03 microns and L = 13.2 to 40 mm.
  4. 4. For sandblasting a surface, take Al 2 O 3 powder with 10 μm average particle diameter. The area of the stagnation pressure is 0.6 MPa, the stagnation temperature is 300 K. The reports simulated for a slot nozzle are 4,35ρ L = p d p ± 50%, h = p d 0,065ρ p ± 50%. We introduce ρ p ≈ 4000 kg / m 3 and d p = 10 · 10 -6 m and obtain the optimal dimensions of the nozzle L ≈ 90 - 270 mm and h ≈ 1.2 - 3.7 mm which will ensure the maximum speed impact of the particles projected on the target surface.

On souhaite obtenir une résolution spatiale de 1,0 mm lors de sablage d'une surface par projection de la poudre de SiC. On choisi une buse avec 0,1 mm de diamètre d'orifice de sortie et, en conséquence, d'environ 0,5 mm de diamètre de section critique. La pression de stagnation de l'air est de 1,0 MPa, la température de stagnation est de 300 K. Selon la formule dcr = 0,065ρ pdp ± 50%, on obtient la taille nécessaire des particules de carbure de silicium et, selon la formule L = 4,35ρ pdp ± 50%, on calcule la longueur de la partie supersonique de la buse nécessaire pour communiquer aux particules l'accélération optimale. Dans ce cas, on obtient : d p = 1 , 2 - 3 , 6 10 - 6 m = 1 , 2 - 3 , 6 μm et L = 16 , 7 - 50 , 1 mm .

Figure imgb0004
It is desired to obtain a spatial resolution of 1.0 mm when sanding a surface by spraying the SiC powder. We chose a nozzle with 0.1 mm diameter outlet orifice and, therefore, about 0.5 mm critical section diameter. Air stagnation pressure is 1.0 MPa, the stagnation temperature is 300 K. According to the formula a = d p 0,065ρ p ± 50%, we obtain the necessary size of the silicon carbide particles and, according to the formula L = 4,35ρ p d p ± 50%, is calculated the length of the supersonic portion of the nozzle necessary to communicate to the particles the optimum acceleration. In this case, we obtain: d p = 1 , 2 - 3 , 6 10 - 6 m = 1 , 2 - 3 , 6 μm and The = 16 , 7 - 50 , 1 mm .
Figure imgb0004

Claims (13)

Méthode d'accélération gazodynamique à froid d'au moins un matériau en poudre comprenant l'alimentation dudit matériau en poudre dans une buse supersonique via un point d'injection, son accélération par un flux de gaz supersonique et son dépôt par impact sur la surface d'une pièce, caractérisée en ce qu'elle prend en compte la taille des particules et la densité dudit matériau les constituant ainsi que les paramètres du gaz afin de conférer aux particules de poudre entraînées par le flux de gaz la vitesse maximale susceptible d'être atteinte à leur impact à la surface de la pièce traitée grâce à l'accélération du flux de gaz et de poudre dans la partie supersonique de la buse dont la longueur et la dimension transversale correspondent aux conditions suivantes : L = 4 , 35 ρ p d p ± 50 % ; b = 0 , 065 ρ p d p ± 50 % ,
Figure imgb0005

où L est la longueur de la partie supersonique de la buse, ρ p est la densité d'une particule dudit matériau, dp est le diamètre d'une particule, b = h est la hauteur de la buse, b = dcr est le diamètre de la section critique de la buse axisymétrique.
Method for cold gasodynamic acceleration of at least one powder material comprising feeding said powder material into a supersonic nozzle via an injection point, its acceleration by a supersonic gas flow and its deposition by impact on the surface characterized in that it takes into account the size of the particles and the density of said material constituting them, as well as the parameters of the gas, in order to give the powder particles entrained by the gas flow the maximum speed likely to to achieve their impact on the surface of the treated part by accelerating the flow of gas and powder in the supersonic part of the nozzle whose length and transverse dimension correspond to the following conditions: The = 4 , 35 ρ p d p ± 50 % ; b = 0 , 065 ρ p d p ± 50 % ,
Figure imgb0005

where L is the length of the supersonic portion of the nozzle, ρ p is the density of a particle of said material, d p is the diameter of a particle, b = h is the height of the nozzle, b = d cr is the diameter of the critical section of the axisymmetric nozzle.
Méthode selon la revendication 1, caractérisée en ce qu'elle utilise l'air comprimé comme gaz comprimé porteur.Method according to claim 1, characterized in that it uses compressed air as carrier compressed gas. Méthode selon la revendication 1, caractérisée en ce qu'elle utilise l'azote comprimé comme gaz comprimé porteur.Method according to claim 1, characterized in that it uses compressed nitrogen as a carrier compressed gas. Méthode selon la revendication 1, caractérisée en ce qu'elle utilise l'hélium comprimé comme gaz comprimé porteur.Method according to claim 1, characterized in that it uses compressed helium as a carrier compressed gas. Méthode selon la revendication 1, caractérisée en ce qu'elle utilise comme gaz comprimé porteur un mélange d'air comprimé, d'azote comprimé et/ou d'hélium comprimé.Method according to claim 1, characterized in that a compressed air, compressed nitrogen and / or compressed helium mixture is used as carrier gas. Méthode selon l'une des revendications 1 à 5, caractérisée en ce que le gaz comprimé est chauffé jusqu'à des températures entre 300 et 9800 K.Method according to one of claims 1 to 5, characterized in that the compressed gas is heated to temperatures between 300 and 9800 K. Méthode selon l'une des revendications 1 à 6, caractérisée en ce qu'elle utilise des matériaux en poudre constitués de particules ayant une taille comprise entre 0,1 et 1000 µm.Method according to one of claims 1 to 6, characterized in that it uses powdered materials consisting of particles having a size between 0.1 and 1000 μm. Méthode selon l'une des revendications 1 à 7, caractérisée en ce qu'elle utilise des matériaux en poudre métalliques.Method according to one of claims 1 to 7, characterized in that it uses metal powder materials. Méthode selon l'une des revendications 1 à 8, caractérisée en ce qu'elle utilise des matériaux en poudre non métalliques.Method according to one of claims 1 to 8, characterized in that it uses non-metallic powdered materials. Méthode selon l'une des revendications 1 à 9, caractérisée en ce qu'elle utilise des mélanges de poudres métalliques ayant des valeurs de ρ pdp proches.Method according to one of claims 1 to 9, characterized in that it uses mixtures of metal powders with values of ρ p d p near. Méthode selon l'une des revendications 1 à 10, caractérisée en ce qu'elle utilise des mélanges de poudres non métalliques ayant des valeurs de ρ pdp proches.Method according to one of claims 1 to 10, characterized in that it uses mixtures of non-metallic powders with values of ρ p d p close. Méthode selon l'une des revendications 1 à 11, caractérisée en ce qu'elle utilise des mélanges de poudres métalliques et non métalliques ayant des valeurs de ρ pdp proches.Method according to one of claims 1 to 11, characterized in that it uses mixtures of metallic and non-metallic powders with values of ρ p d p near. Dispositif d'accélération gazodynamique à froid d'au moins un matériau en poudre comprenant une buse supersonique reliée à un injecteur de poudre, un doseur de poudre relié par un orifice de sortie audit injecteur de poudre, caractérisé en ce qu'il prévoit l'utilisation de buses plates ou axisymétriques démontables et échangeables, la longueur de la partie supersonique et la dimension typique de la section critique desdites buses correspondant aux conditions suivantes : L = 4 , 35 ρ p d p ± 50 % , b = 0 , 065 ρ p d p ± 50 % ,
Figure imgb0006

L est la longueur de la partie supersonique de la buse, ρ p est la densité d'une particule dudit matériau, dp est le diamètre d'une particule, b = h est la hauteur de la buse, b = dcr est le diamètre de la section critique de la buse axisymétrique.
Cold gas-dynamic acceleration device of at least one powder material comprising a supersonic nozzle connected to a powder injector, a powder dispenser connected by an outlet orifice to said powder injector, characterized in that it provides for use of dismountable and exchangeable flat or axisymmetric nozzles, the length of the supersonic part and the typical dimension of the critical section of said nozzles corresponding to the following conditions: The = 4 , 35 ρ p d p ± 50 % , b = 0 , 065 ρ p d p ± 50 % ,
Figure imgb0006

where L is the length of the supersonic portion of the nozzle, ρ p is the density of a particle of said material, d p is the diameter of a particle, b = h is the height of the nozzle, b = d cr is the diameter of the critical section of the axisymmetric nozzle.
EP09180869A 2008-12-29 2009-12-29 Method for gas-dynamic acceleration of materials in powder form and device for implementing this method Revoked EP2202332B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2008152548/02A RU2399694C1 (en) 2008-12-29 2008-12-29 Procedure for surface gas-dynamic processing with powder material and facility for its implementation

Publications (2)

Publication Number Publication Date
EP2202332A1 true EP2202332A1 (en) 2010-06-30
EP2202332B1 EP2202332B1 (en) 2012-03-28

Family

ID=41800584

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09180869A Revoked EP2202332B1 (en) 2008-12-29 2009-12-29 Method for gas-dynamic acceleration of materials in powder form and device for implementing this method

Country Status (4)

Country Link
EP (1) EP2202332B1 (en)
AT (1) ATE551442T1 (en)
ES (1) ES2382720T3 (en)
RU (1) RU2399694C1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018101520A1 (en) * 2018-01-24 2019-07-25 Karlsruher Institut für Technologie two-fluid nozzle

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2468123C2 (en) * 2010-10-01 2012-11-27 Институт теоретической и прикладной механики им. С.А. Христиановича Сибирского отделения Российской академии наук (ИТПМ СО РАН) Method for gas dynamic sputtering of powder materials and device for gas dynamic sputtering of powder materials (versions)
WO2018154599A1 (en) * 2017-02-26 2018-08-30 International Advanced Research Centre For Powder Metallurgy And New Materials (Arci) An improved gas dynamic cold spray device and method of coating a substrate
CN108745677B (en) * 2018-07-25 2023-06-20 上海莘临科技发展有限公司 Supersonic oxyacetylene explosion combustion nozzle and sand melting method
RU2743944C1 (en) * 2020-08-03 2021-03-01 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский авиационный институт (национальный исследовательский университет)" Device for gas-dynamic coating

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4300723A (en) * 1980-02-29 1981-11-17 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Controlled overspray spray nozzle
US20040058064A1 (en) * 2002-09-23 2004-03-25 Delphi Technologies, Inc. Spray system with combined kinetic spray and thermal spray ability
DE10319481A1 (en) * 2003-04-30 2004-11-18 Linde Ag Laval nozzle use for cold gas spraying, includes convergent section and divergent section such that portion of divergent section of nozzle has bell-shaped contour
RU2257423C2 (en) 2003-08-21 2005-07-27 Общество с ограниченной ответственностью Обнинский центр порошкового напыления (ООО ОЦПН) Portable apparatus for gasodynamic deposition of coatings
RU2288970C1 (en) 2005-05-20 2006-12-10 Общество с ограниченной ответственностью Обнинский центр порошкового напыления (ООО ОЦПН) Device for the gas-dynamic deposition of the coatings and the method for the gas-dynamic deposition of the coatings
WO2008025815A1 (en) * 2006-08-30 2008-03-06 H.C. Starck Gmbh Ceramic nozzle

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4300723A (en) * 1980-02-29 1981-11-17 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Controlled overspray spray nozzle
US20040058064A1 (en) * 2002-09-23 2004-03-25 Delphi Technologies, Inc. Spray system with combined kinetic spray and thermal spray ability
US6743468B2 (en) 2002-09-23 2004-06-01 Delphi Technologies, Inc. Method of coating with combined kinetic spray and thermal spray
DE10319481A1 (en) * 2003-04-30 2004-11-18 Linde Ag Laval nozzle use for cold gas spraying, includes convergent section and divergent section such that portion of divergent section of nozzle has bell-shaped contour
RU2257423C2 (en) 2003-08-21 2005-07-27 Общество с ограниченной ответственностью Обнинский центр порошкового напыления (ООО ОЦПН) Portable apparatus for gasodynamic deposition of coatings
RU2288970C1 (en) 2005-05-20 2006-12-10 Общество с ограниченной ответственностью Обнинский центр порошкового напыления (ООО ОЦПН) Device for the gas-dynamic deposition of the coatings and the method for the gas-dynamic deposition of the coatings
WO2008025815A1 (en) * 2006-08-30 2008-03-06 H.C. Starck Gmbh Ceramic nozzle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018101520A1 (en) * 2018-01-24 2019-07-25 Karlsruher Institut für Technologie two-fluid nozzle

Also Published As

Publication number Publication date
ATE551442T1 (en) 2012-04-15
EP2202332B1 (en) 2012-03-28
RU2399694C1 (en) 2010-09-20
RU2008152548A (en) 2010-07-10
ES2382720T3 (en) 2012-06-12

Similar Documents

Publication Publication Date Title
EP2202332B1 (en) Method for gas-dynamic acceleration of materials in powder form and device for implementing this method
JP4772860B2 (en) Abrasion resistant metal matrix composite coating layer forming method and coating layer manufactured using the same
RU2261763C1 (en) Device and nozzle for cold powder spraying
FR2931086A1 (en) ATOMIZER.
US9328918B2 (en) Combustion cold spray
EP1579921A2 (en) Improved kinetic spray nozzle system design
WO2005061116A1 (en) Cold spray apparatus having powder preheating device
WO2002005969A2 (en) Apparatus and method for synthesizing films and coatings by focused particle beam deposition
EP3787836A1 (en) Device and method for the surface treatment of a material
WO2011065512A1 (en) Cermet coating, spraying particles for forming same, method for forming cermet coating, and article with coating
US20060251821A1 (en) Multi-sectioned pulsed detonation coating apparatus and method of using same
EP2411554B1 (en) Nozzle for a thermal spray gun and method of thermal spraying
JP2006052449A (en) Cold spray coating film formation method
Champagne et al. The effects of gas and metal characteristics on sprayed metal coatings
EP1925693B1 (en) Cold gas spraying method and apparatus therefor
TW202020190A (en) Method for forming thermal spray coating
EP0766595B1 (en) Process for spraying a dispersible liquid material
US20030175442A1 (en) Method and apparatus for low-pressure pulsed coating
EP3374543A1 (en) Multilayer ceramic coating for high-temperature thermal protection, in particular for aeronautical application, and method for producing same
Tillmann et al. Investigation of low-pressure cold-gas dynamic spraying of polyamide-12 (PA12) on steel surfaces
WO2013038084A1 (en) Device for spraying dry ice, particularly frozen carbon dioxide, and nozzle for said device
WO1995007768A1 (en) Method for the production of composite materials or coatings and system for implementing it
Shkodkin et al. The basic principles of DYMET technology
WO2015145236A1 (en) Method of forming carbon coating
FR2950280A1 (en) Working method for e.g. peeling of coated/non-coated materials, involves distributing jet of cryogenic fluid by distribution nozzle at temperature not greater than minus specific degree Celsius and at pressure of specific bars

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

17P Request for examination filed

Effective date: 20101004

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: C23C 4/12 20060101ALI20111102BHEP

Ipc: B05B 7/14 20060101ALI20111102BHEP

Ipc: B05B 7/16 20060101ALN20111102BHEP

Ipc: C23C 24/04 20060101AFI20111102BHEP

RIC1 Information provided on ipc code assigned before grant

Ipc: B05B 7/16 20060101ALN20111104BHEP

Ipc: C23C 4/12 20060101ALI20111104BHEP

Ipc: C23C 24/04 20060101AFI20111104BHEP

Ipc: B05B 7/14 20060101ALI20111104BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 551442

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602009006112

Country of ref document: DE

Effective date: 20120524

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2382720

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20120612

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20120328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120328

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120328

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120628

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20120328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120328

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120629

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120328

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 551442

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120328

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120328

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120328

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120328

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120728

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120328

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120328

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120730

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAN Information deleted related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSDOBS2

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120328

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120328

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120328

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20121015

Year of fee payment: 4

Ref country code: FR

Payment date: 20121017

Year of fee payment: 4

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: SIEMENS AKTIENGESELLSCHAFT

Effective date: 20121221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120328

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20121219

Year of fee payment: 4

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 602009006112

Country of ref document: DE

Effective date: 20121221

BERE Be: lapsed

Owner name: ECOLE NATIONALE D'INGENIEURS DE SAINT ETIENNE

Effective date: 20121231

Owner name: ETABLISSEMENT DE L'ACADEMIE DES SCIENCES DE RUSSIE

Effective date: 20121231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121231

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120628

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121229

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120328

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602009006112

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091229

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20131229

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140829

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602009006112

Country of ref document: DE

Effective date: 20140701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140701

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131229

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131231

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20150327

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131230

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120328

27W Patent revoked

Effective date: 20150419