EP2101136A2 - Vaporiser pipe with optimised undercut on groove base - Google Patents

Vaporiser pipe with optimised undercut on groove base Download PDF

Info

Publication number
EP2101136A2
EP2101136A2 EP09002560A EP09002560A EP2101136A2 EP 2101136 A2 EP2101136 A2 EP 2101136A2 EP 09002560 A EP09002560 A EP 09002560A EP 09002560 A EP09002560 A EP 09002560A EP 2101136 A2 EP2101136 A2 EP 2101136A2
Authority
EP
European Patent Office
Prior art keywords
groove
distance
material projections
heat exchanger
ribs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP09002560A
Other languages
German (de)
French (fr)
Other versions
EP2101136A3 (en
EP2101136B1 (en
Inventor
Andreas Knöpfler
Andreas Schwitalla
Andreas Dr. Beutler
Jean Dr. El Hajal
Ronald Lutz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wieland Werke AG
Original Assignee
Wieland Werke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wieland Werke AG filed Critical Wieland Werke AG
Publication of EP2101136A2 publication Critical patent/EP2101136A2/en
Publication of EP2101136A3 publication Critical patent/EP2101136A3/en
Application granted granted Critical
Publication of EP2101136B1 publication Critical patent/EP2101136B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • F28F13/185Heat-exchange surfaces provided with microstructures or with porous coatings
    • F28F13/187Heat-exchange surfaces provided with microstructures or with porous coatings especially adapted for evaporator surfaces or condenser surfaces, e.g. with nucleation sites
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/42Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/34Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending obliquely
    • F28F1/36Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending obliquely the means being helically wound fins or wire spirals

Definitions

  • the invention relates to a metallic heat exchanger tube with on the outside of the tube helically encircling, integrally molded ribs according to the preamble of claim 1.
  • Such metallic heat exchanger tubes are used in particular for the evaporation of liquids from pure substances or mixtures on the outside of the tube.
  • Evaporation occurs in many areas of refrigeration and air conditioning technology as well as in process and energy technology.
  • shell-and-tube heat exchangers are used in which liquids of pure substances or mixtures evaporate on the outside of the pipe, cooling a brine or water on the inside of the pipe.
  • Such apparatuses are referred to as flooded evaporators.
  • the size of the evaporator can be greatly reduced. As a result, the production costs of such apparatuses decrease.
  • the necessary filling quantity of refrigerant which can account for a not inconsiderable share of the total investment costs in the chlorine-free safety refrigerants that are predominantly used today, is decreasing. In the case of toxic or flammable refrigerants, the risk potential can also be reduced by reducing the filling quantity.
  • the standard high-performance pipes are about four times more efficient than smooth pipes of the same diameter.
  • Integrally rolled finned tubes are understood to mean finned tubes in which the fins are formed from the wall material of a smooth tube.
  • various methods are known with which the channels located between adjacent ribs are closed in such a way that connections between the channel and the environment remain in the form of pores or slits.
  • substantially closed channels are formed by bending or flipping the ribs (FIG.
  • the most powerful commercially available finned tube finned tubes have on the tube exterior a fin structure with a fin density of 55 to 60 fins per inch ( US 5,669,441 ; US 5,697,430 ; DE 197 57 526 C1 ). This corresponds to a rib pitch of about 0.45 to 0.40 mm.
  • a rib pitch of about 0.45 to 0.40 mm.
  • a smaller rib division inevitably requires equally finer tools.
  • finer tools are subject to a higher risk of breakage and faster wear.
  • the currently available tools enable the safe production of finned tubes with rib densities of up to 60 ribs per inch. Further, as the rib pitch decreases, the production rate of the tubes becomes smaller, and hence the manufacturing cost becomes higher.
  • performance-enhanced evaporation structures can be produced at the same rib density on the outside of the tube by introducing additional structural elements in the region of the groove bottom between the ribs. Since the temperature of the rib is higher in the area of the groove base than in the area of the fin tip, structural elements for intensifying the formation of bubbles in this area are particularly effective.
  • EP 0 222 100 B1 US 5,186,252 ; JP 04039596A and US 2007/0151715 A1 to find.
  • These inventions have in common that the structural elements have no undercut shape at the groove bottom, which is why they do not sufficiently intensify the formation of bubbles.
  • EP 1 223 400 B1 It is proposed to produce at the groove bottom between the ribs undercut secondary grooves which extend continuously along the primary groove. The cross section of these secondary grooves can remain constant or varied at regular intervals.
  • the invention has for its object to provide a performance-enhanced heat exchanger tube for the evaporation of liquids on the outside of the tube with the same tube-side heat transfer and pressure drop.
  • the invention includes a metallic heat exchanger tube with on the outside of the tube helically encircling, integrally formed and continuously formed ribs, the fin foot protrudes substantially radially from the tube wall, as well as located between each adjacent ribs primary grooves.
  • At least one undercut secondary groove is arranged in the region of the groove bottom of the primary grooves. This secondary groove is limited to the primary groove by a pair of opposing material projections formed from material of respectively adjacent rib feet. These material projections extend continuously along the primary groove.
  • the cross section of the secondary groove is varied at regular intervals without affecting the shape of the ribs. There is a gap between the opposed material projections, this distance being varied at regular intervals, whereby local cavities are formed.
  • the invention is based on the consideration that to increase the heat transfer during evaporation of the process of bubbling is intensified.
  • the formation of bubbles begins at germinal sites. These germinal sites are usually small gas or steam inclusions. When the growing bubble reaches a certain size, it detaches from the surface. If the germinal site is flooded with fluid in the course of bladder detachment, the germinal site is deactivated.
  • the surface must therefore be designed in such a way that when the bubble is detached, a small bubble remains, which then serves as a germinal point for a new bubble formation cycle. This is achieved by applying cavities with openings on the surface. The opening of the cavity tapers in relation to the cavity located below the opening. Through the opening of the exchange of liquid and steam.
  • a connection between the primary and secondary groove is realized by the distance between the opposite material projections, so that the exchange of liquid and vapor between the primary groove and the secondary groove is made possible.
  • the particular advantage of the invention is that the effect of the undercut secondary groove on the formation of bubbles is particularly great when the distance between opposing material projections according to the invention is varied at regular intervals. As a result, the exchange of liquid and vapor is controlled specifically and prevents the flooding of the bubble nucleation site in the cavity.
  • the location of the cavities in the vicinity of the primary groove base is particularly favorable for the evaporation process, since at the groove bottom, the heat overtemperature is greatest and therefore there is the highest driving temperature difference for the bubble formation available.
  • the distance between the opposite material protrusions can assume the value zero at regular intervals.
  • the secondary groove is closed in certain areas relative to the primary groove. In these areas, the opposite material projections touch, without that it comes to a material conclusion.
  • the bubbles in turn escape through the cavities which are opened into the center of the primary groove, and the liquid preferably flows from the side into the cavity near the closed regions of the secondary groove.
  • the escaping bubble is not hindered by the inflowing liquid working medium and can expand undisturbed in the primary groove.
  • the respective flow zones for the liquid and the steam are spatially separated from each other.
  • a small channel is left between the cavities, which, however, has no connection to the primary groove. Nevertheless, for example, pressure differences between the mutually adjacent cavities can be compensated via these channels.
  • the secondary groove may be substantially pressed.
  • the maximum distance between the opposite material projections 0.03 mm to 0.1 mm.
  • the maximum distance between the opposite material projections 0.06 mm to 0.09 mm.
  • the length of the areas in the circumferential direction, in which the distance of the opposite material projections does not assume the value zero be between 0.2 mm and 0.5 mm.
  • the rib tips may be deformed such that they cover the primary grooves in the radial direction and partially close and thus a helically encircling, partially closed Form cavity.
  • the rib tips may have, for example, a substantially T-shaped cross section with pore-like recesses through which the vapor bubbles can escape.
  • Fig. 1 shows a view of the outside of a pipe section according to the invention.
  • the integrally rolled finned tube 1 has, on the outside of the tube, helical circumferential ribs 2, between which a primary groove 6 is formed.
  • the ribs 2 extend continuously without interruption along a helix line on the tube outside.
  • the ribbed foot 3 projects essentially radially from the tube wall 5.
  • a finned tube 1 is proposed, in which an undercut secondary groove extends in the region of the groove bottom 7, which extends between two respective adjacent ribs 2 located primary grooves 6 8 is arranged. This secondary groove 8 is limited to the primary groove 6 through a pair of opposed, formed of material respectively adjacent rib feet 3 shaped material protrusions 9.
  • These material projections 9 extend continuously along the primary groove 6, wherein a distance S is formed between opposite material projections 9, which is varied at regular intervals. With variation of the cross section of the secondary groove 8, the shape of the ribs 2 is not affected. Due to the change in cross-section in conjunction with the variation of the distance S, cavities 10 form locally, which favor bubble nucleation in particular.
  • the exchange of liquid and vapor between the primary groove 6 and secondary groove 8 is controlled by liquid supply and vapor discharge take place in separate areas.
  • tubes of the prior art for example, the after EP 1 223 400 B1 are made, not on, since here, although the cross-sectional shape of the secondary groove 8 is varied, but not their opening width and thus no preferred areas exist respectively for liquid supply and steam outlet.
  • the extent of the secondary groove 8 in the radial direction is measured from the groove bottom 7 in the areas with a large distance between the material projections 9 maximum 15% of the height H of the ribs 2.
  • the fin height H is measured on the finished finned tube 1 from the lowest point of the groove bottom 7 to the fin tip 4 of the fully formed finned tube.
  • Fig. 2 shows a front view of the pipe section according to Fig. 1 , In this partial view, the ribs 2 which extend helically on the outside of the pipe run into the plane of the drawing. Between the ribs 2, the primary groove 6 is formed. The ribbed foot 3 projects essentially radially from the tube wall 5. In the region of the groove bottom 7, which extends between each two adjacent ribs 2 located primary grooves 6, the undercut secondary groove 8 is formed. This secondary groove 8 is separated from the primary groove 6 by the opposing material projections 9.
  • These material projections 9 extend continuously along the primary groove 6 perpendicular to the plane of the drawing, wherein a distance S is formed between opposite material projections 9, which is varied at regular intervals. In different planes, S assumes the minimum value S min in the region between the cavities 10 and the value S max at the highest point of a cavity 10. By virtue of this change in cross-section, cavities 10 having an opening width are formed locally, which favor bubble nucleation in particular.
  • Fig. 3 shows a view of the outside of a pipe section 1 according to the invention with partially closed secondary groove 8.
  • the secondary groove 8 is completely closed at regular intervals to the primary groove 6 out. This corresponds to the case that in certain areas, the distance between the material projections 9 is reduced to zero.
  • the secondary groove 8 then has only in the respective intermediate areas openings to the primary groove 6 down, whereby the width of these openings is reduced at the respective edges.
  • Fig. 4 shows a front view of the pipe section according to Fig. 3 ,
  • the bubbles in turn escape through the cavities 10 which are opened into the center of the primary groove 6. Liquid flows into the cavity at the edges of the openings. In the closed region of the secondary groove 8, a small channel is maintained between the cavities 10, which has no connection to the primary groove 6. However, for example, pressure differences between the mutually adjacent cavities 10 can be compensated via these channels.
  • the length L of the regions in which the secondary groove is not closed is advantageously between 0.2 mm and 0.5 mm.
  • Fig. 5 shows a partial view of the outside of a pipe section according to the invention with fully closed secondary groove between the cavities.
  • the material projections 9 it also proves to be advantageous in the areas in which the distance between the material projections 9 is reduced to the value zero, the material projections 9 to deform so far that they are displaced to the bottom of the secondary 8 and thus the Secondary groove 8 is pressed in this area.
  • cavities 10 which are located in the intermediate regions and which are completely limited in their circumference are produced as undercut cavities at the bottom of the primary groove 6.
  • These cavities 10 act as extremely effective nucleation sites, since in these structures the subsequent flow of liquid can be very controlled and even particularly small bubbles can not be displaced.
  • the bubbles in turn escape through the cavities 10 which are opened into the center of the primary groove 6. Liquid flows into the cavity at the edges of the openings.
  • the length L of the regions in which the secondary groove is not closed is advantageously between 0.2 mm and 0.5 mm.
  • Fig. 6 shows a front view of the pipe section according to Fig. 5 , As shown, it is once again clarified how in the regions in which the distance between the material projections 9 is reduced to the value zero, the material projections 9 are deformed. These are displaced to the bottom of the secondary groove 8, whereby the secondary groove 8 is pressed in this area.
  • the distance S between the opposing material projections 9 varies between 0 mm and 0.1 mm. In the ranges in which this distance assumes its maximum value S max , this value is typically between 0.03 mm and 0.1 mm, preferably between 0.06 mm and 0.09 mm.
  • the rib tips are expediently deformed as a distal region 4 of the ribs 2 such that they partially close the primary grooves 6 in the radial direction and thus form a partially closed cavity.
  • the connection between the primary groove 6 and the environment is configured in the form of pores 11 or slots, so that vapor bubbles can escape from the primary groove 6.
  • the deformation of the rib tips 4 is done with methods that can be found in the prior art.
  • the primary grooves 6 then represent even undercut grooves.
  • a structure By combining the cavities 10 according to the invention with a primary groove 6 which is closed except for pores 11 or slots, a structure is obtained which is further characterized in that it has a very high efficiency in the evaporation of liquids over a very wide range of operating conditions. In particular, when the heat flow density or the driving temperature difference is varied, the heat transfer coefficient of the structure at a high level remains almost constant.
  • the solution according to the invention relates to structured tubes in which the heat transfer coefficient is increased on the tube outside.
  • the heat transfer coefficient on the inside can also be intensified by a suitable internal structuring.
  • the heat exchanger tubes for shell and tube heat exchangers usually have at least one structured area and smooth end pieces and possibly smooth spacers.
  • the smooth end or intermediate pieces limit the structured areas. So that the tube can be easily installed in the shell and tube heat exchanger, the outer diameter of the structured areas must not be greater than the outer diameter of the smooth end and intermediate pieces.

Abstract

The pipe i.e. integrally rolled ribbed type pipe (1), has ribs (2) running helically on a pipe exterior. Primary grooves (6) are found between the adjacent ribs. An undercut secondary groove (8) is arranged in an area of a groove base (7) of the primary grooves. A pair of oppositely lying material edges (9) extends continuously along the primary grooves. A cross section of the secondary groove is varied in space intervals without influencing a shape of the ribs. A distance is formed between the edges such that the distance is varied in spaced intervals to form local cavities (10).

Description

Die Erfindung betrifft ein metallisches Wärmeaustauscherrohr mit auf der Rohraußenseite helixförmig umlaufenden, integral ausgeformten Rippen gemäß dem Oberbegriff des Anspruchs 1.The invention relates to a metallic heat exchanger tube with on the outside of the tube helically encircling, integrally molded ribs according to the preamble of claim 1.

Derartige metallische Wärmeaustauscherrohre dienen insbesondere zur Verdampfung von Flüssigkeiten aus Reinstoffen oder Gemischen auf der Rohraußenseite.Such metallic heat exchanger tubes are used in particular for the evaporation of liquids from pure substances or mixtures on the outside of the tube.

Verdampfung tritt in vielen Bereichen der Kälte- und Klimatechnik sowie in der Prozess- und Energietechnik auf. Häufig werden Rohrbündelwärmeaustauscher verwendet, in denen Flüssigkeiten von Reinstoffen oder Mischungen auf der Rohraußenseite verdampfen und dabei auf der Rohrinnenseite eine Sole oder Wasser abkühlen. Solche Apparate werden als überflutete Verdampfer bezeichnet.Evaporation occurs in many areas of refrigeration and air conditioning technology as well as in process and energy technology. Frequently, shell-and-tube heat exchangers are used in which liquids of pure substances or mixtures evaporate on the outside of the pipe, cooling a brine or water on the inside of the pipe. Such apparatuses are referred to as flooded evaporators.

Durch die Intensivierung des Wärmeübergangs auf der Rohraußen- und der Rohrinnenseite lässt sich die Größe der Verdampfer stark reduzieren. Hierdurch nehmen die Herstellungskosten solcher Apparate ab. Außerdem sinkt die notwendige Füllmenge an Kältemittel, die bei den heute überwiegend verwendeten, chlorfreien Sicherheitskältemitteln einen nicht zu vernachlässigenden Kostenanteil an den gesamten Anlagekosten ausmachen kann. Bei toxischen oder brennbaren Kältemitteln lässt sich durch eine Reduktion der Füllmenge ferner das Gefahrenpotenzial herabsetzen. Die heute üblichen Hochleistungsrohre sind bereits etwa um den Faktor vier leistungsfähiger als glatte Rohre gleichen Durchmessers.By intensifying the heat transfer on the pipe outside and inside the pipe, the size of the evaporator can be greatly reduced. As a result, the production costs of such apparatuses decrease. In addition, the necessary filling quantity of refrigerant, which can account for a not inconsiderable share of the total investment costs in the chlorine-free safety refrigerants that are predominantly used today, is decreasing. In the case of toxic or flammable refrigerants, the risk potential can also be reduced by reducing the filling quantity. The standard high-performance pipes are about four times more efficient than smooth pipes of the same diameter.

Es ist Stand der Technik, derartig leistungsfähige Rohre auf der Basis von integral gewalzten Rippenrohren herzustellen. Unter integral gewalzten Rippenrohren werden berippte Rohre verstanden, bei denen die Rippen aus dem Wandmaterial eines Glattrohres geformt wurden. Es sind hierbei verschiedene Verfahren bekannt, mit denen die zwischen benachbarten Rippen befindlichen Kanäle derart verschlossen werden, dass Verbindungen zwischen Kanal und Umgebung in Form von Poren oder Schlitzen bleiben. Insbesondere werden solche im Wesentlichen geschlossene Kanäle durch Umbiegen oder Umlegen der Rippen ( US 3,696,861 ; US 5,054,548 ; US 7,178,361 B2 ), durch Spalten und Stauchen der Rippen ( DE 2 758 526 C2 ; US 4,577,381 ) und durch Kerben und Stauchen der Rippen ( US 4,660,630 ; EP 0 713 072 B1 ; US 4,216,826 ) erzeugt.It is state of the art to produce such efficient pipes based on integrally rolled finned tubes. Integrally rolled finned tubes are understood to mean finned tubes in which the fins are formed from the wall material of a smooth tube. Here, various methods are known with which the channels located between adjacent ribs are closed in such a way that connections between the channel and the environment remain in the form of pores or slits. In particular, such substantially closed channels are formed by bending or flipping the ribs (FIG. US 3,696,861 ; US 5,054,548 ; US 7,178,361 B2 ), by splitting and upsetting the ribs ( DE 2 758 526 C2 ; US 4,577,381 ) and by notching and upsetting the ribs ( US 4,660,630 ; EP 0 713 072 B1 ; US 4,216,826 ) generated.

Die leistungsstärksten, kommerziell erhältlichen Rippenrohre für überflutete Verdampfer besitzen auf der Rohraußenseite eine Rippenstruktur mit einer Rippendichte von 55 bis 60 Rippen pro Zoll ( US 5,669,441 ; US 5,697,430 ; DE 197 57 526 C1 ). Dies entspricht einer Rippenteilung von ca. 0,45 bis 0,40 mm. Prinzipiell ist es möglich, die Leistungsfähigkeit derartiger Rohre durch eine noch höhere Rippendichte bzw. kleinere Rippenteilung zu verbessern, da hierdurch die Blasenkeimstellendichte erhöht wird. Eine kleinere Rippenteilung erfordert zwangsläufig gleichermaßen feinere Werkzeuge. Feinere Werkzeuge sind jedoch einer höheren Bruchgefahr und schnellerem Verschleiß unterworfen. Die derzeit verfügbaren Werkzeuge ermöglichen eine sichere Fertigung von Rippenrohren mit Rippendichten von maximal 60 Rippen pro Zoll. Ferner wird mit abnehmender Rippenteilung die Produktionsgeschwindigkeit der Rohre kleiner und folglich werden die Herstellungskosten höher.The most powerful commercially available finned tube finned tubes have on the tube exterior a fin structure with a fin density of 55 to 60 fins per inch ( US 5,669,441 ; US 5,697,430 ; DE 197 57 526 C1 ). This corresponds to a rib pitch of about 0.45 to 0.40 mm. In principle, it is possible to improve the performance of such pipes by means of an even higher fin density or smaller fin pitch, since this increases the bubble nuclei density. A smaller rib division inevitably requires equally finer tools. However, finer tools are subject to a higher risk of breakage and faster wear. The currently available tools enable the safe production of finned tubes with rib densities of up to 60 ribs per inch. Further, as the rib pitch decreases, the production rate of the tubes becomes smaller, and hence the manufacturing cost becomes higher.

Weiterhin ist bekannt, dass leistungsgesteigerte Verdampfungsstrukturen bei gleichbleibender Rippendichte auf der Rohraußenseite erzeugt werden können, indem man zusätzliche Strukturelemente im Bereich des Nutengrundes zwischen den Rippen einbringt. Da im Bereich des Nutengrundes die Temperatur der Rippe höher ist als im Bereich der Rippenspitze, sind Strukturelemente zur Intensivierung der Blasenbildung in diesem Bereich besonders wirkungsvoll.Furthermore, it is known that performance-enhanced evaporation structures can be produced at the same rib density on the outside of the tube by introducing additional structural elements in the region of the groove bottom between the ribs. Since the temperature of the rib is higher in the area of the groove base than in the area of the fin tip, structural elements for intensifying the formation of bubbles in this area are particularly effective.

Beispiele hierfür sind in EP 0 222 100 B1 ; US 5,186,252 ; JP 04039596A und US 2007/0151715 A1 zu finden. Diesen Erfindungen ist gemeinsam, dass die Strukturelemente am Nutengrund keine hinterschnittene Form aufweisen, weshalb sie die Blasenbildung nicht ausreichend intensivieren. In EP 1 223 400 B1 wird vorgeschlagen, am Nutengrund zwischen den Rippen hinterschnittene Sekundärnuten zu erzeugen, die sich kontinuierlich entlang der Primärnut erstrecken. Der Querschnitt dieser Sekundärnuten kann konstant bleiben oder in regelmäßigen Abständen variiert werden.Examples of this are in EP 0 222 100 B1 ; US 5,186,252 ; JP 04039596A and US 2007/0151715 A1 to find. These inventions have in common that the structural elements have no undercut shape at the groove bottom, which is why they do not sufficiently intensify the formation of bubbles. In EP 1 223 400 B1 It is proposed to produce at the groove bottom between the ribs undercut secondary grooves which extend continuously along the primary groove. The cross section of these secondary grooves can remain constant or varied at regular intervals.

Der Erfindung liegt die Aufgabe zugrunde, ein leistungsgesteigertes Wärmeaustauscherrohr zur Verdampfung von Flüssigkeiten auf der Rohraußenseite bei gleichem rohrseitigen Wärmeübergang und Druckabfall anzugeben.The invention has for its object to provide a performance-enhanced heat exchanger tube for the evaporation of liquids on the outside of the tube with the same tube-side heat transfer and pressure drop.

Die Erfindung wird durch die Merkmale des Anspruchs 1 wiedergegeben. Die weiteren rückbezogenen Ansprüche betreffen vorteilhafte Aus- und Weiterbildungen der Erfindung.The invention is represented by the features of claim 1. The other dependent claims relate to advantageous embodiments and further developments of the invention.

Die Erfindung schließt ein metallisches Wärmeaustauscherrohr ein mit auf der Rohraußenseite helixförmig umlaufenden, integral ausgeformten und durchgehend ausgebildeten Rippen, deren Rippenfuß im Wesentlichen radial von der Rohrwandung absteht, sowie mit zwischen jeweils benachbarten Rippen sich befindenden Primärnuten. Im Bereich des Nutengrundes der Primärnuten ist mindestens eine hinterschnittene Sekundärnut angeordnet. Diese Sekundärnut ist zur Primärnut hin durch ein Paar einander gegenüberliegender, aus Material jeweils benachbarter Rippenfüße geformter Werkstoffvorsprünge begrenzt. Diese Werkstoffvorsprünge erstrecken sich kontinuierlich entlang der Primärnut. Der Querschnitt der Sekundärnut wird in regelmäßigen Intervallen variiert, ohne dabei die Form der Rippen zu beeinflussen. Zwischen den gegenüberliegenden Werkstoffvorsprüngen ist ein Abstand, wobei dieser Abstand in regelmäßigen Intervallen variiert wird, wodurch lokale Kavitäten ausgebildet sind.The invention includes a metallic heat exchanger tube with on the outside of the tube helically encircling, integrally formed and continuously formed ribs, the fin foot protrudes substantially radially from the tube wall, as well as located between each adjacent ribs primary grooves. At least one undercut secondary groove is arranged in the region of the groove bottom of the primary grooves. This secondary groove is limited to the primary groove by a pair of opposing material projections formed from material of respectively adjacent rib feet. These material projections extend continuously along the primary groove. The cross section of the secondary groove is varied at regular intervals without affecting the shape of the ribs. There is a gap between the opposed material projections, this distance being varied at regular intervals, whereby local cavities are formed.

Die Erfindung geht dabei von der Überlegung aus, dass zur Erhöhung des Wärmeüberganges bei der Verdampfung der Vorgang des Blasensiedens intensiviert wird. Die Bildung von Blasen beginnt an Keimstellen. Diese Keimstellen sind meist kleine Gas- oder Dampfeinschlüsse. Wenn die anwachsende Blase eine bestimmte Größe erreicht hat, löst sie sich von der Oberfläche ab. Wird im Zuge der Blasenablösung die Keimstelle mit Flüssigkeit geflutet, dann wird die Keimstelle deaktiviert. Die Oberfläche muss also derart gestaltet werden, dass beim Ablösen der Blase eine kleine Blase zurück bleibt, die dann als Keimstelle für einen neuen Zyklus der Blasenbildung dient. Dies wird erreicht, indem man auf der Oberfläche Kavitäten mit Öffnungen aufbringt. Die Öffnung der Kavität verjüngt sich gegenüber dem unter der Öffnung liegenden Hohlraum. Durch die Öffnung erfolgt der Austausch von Flüssigkeit und Dampf.The invention is based on the consideration that to increase the heat transfer during evaporation of the process of bubbling is intensified. The formation of bubbles begins at germinal sites. These germinal sites are usually small gas or steam inclusions. When the growing bubble reaches a certain size, it detaches from the surface. If the germinal site is flooded with fluid in the course of bladder detachment, the germinal site is deactivated. The surface must therefore be designed in such a way that when the bubble is detached, a small bubble remains, which then serves as a germinal point for a new bubble formation cycle. This is achieved by applying cavities with openings on the surface. The opening of the cavity tapers in relation to the cavity located below the opening. Through the opening of the exchange of liquid and steam.

Bei der vorliegenden Erfindung wird durch den Abstand zwischen den gegenüberliegenden Werkstoffvorsprüngen eine Verbindung zwischen Primär-und Sekundärnut realisiert, so dass der Austausch von Flüssigkeit und Dampf zwischen Primärnut und Sekundärnut ermöglicht ist. Der besondere Vorteil der Erfindung besteht darin, dass die Wirkung der hinterschnittenen Sekundärnut auf die Bildung von Blasen dann besonders groß ist, wenn der Abstand zwischen gegenüberliegenden Werkstoffvorsprüngen erfindungsgemäß in regelmäßigen Intervallen variiert wird. Dadurch wird der Austausch von Flüssigkeit und Dampf gezielt gesteuert und die Flutung der Blasenkeimstelle in der Kavität verhindert. Die Lage der Kavitäten in der Nähe des primären Nutengrundes ist für den Verdampfungsprozess besonders günstig, da am Nutengrund die Wärmeübertemperatur am größten ist und deshalb dort die höchste treibende Temperaturdifferenz für die Blasenbildung zur Verfügung steht.In the present invention, a connection between the primary and secondary groove is realized by the distance between the opposite material projections, so that the exchange of liquid and vapor between the primary groove and the secondary groove is made possible. The particular advantage of the invention is that the effect of the undercut secondary groove on the formation of bubbles is particularly great when the distance between opposing material projections according to the invention is varied at regular intervals. As a result, the exchange of liquid and vapor is controlled specifically and prevents the flooding of the bubble nucleation site in the cavity. The location of the cavities in the vicinity of the primary groove base is particularly favorable for the evaporation process, since at the groove bottom, the heat overtemperature is greatest and therefore there is the highest driving temperature difference for the bubble formation available.

In einer besonders bevorzugten Ausgestaltung der Erfindung kann der Abstand zwischen den gegenüberliegenden Werkstoffvorsprüngen in regelmäßigen Intervallen den Wert Null annehmen. Dadurch wird die Sekundärnut in bestimmten Bereichen gegenüber der Primärnut abgeschlossen. In diesen Bereichen berühren sich die gegenüberliegenden Werkstoffvorsprünge, ohne dass es zu einem Stoffschluss kommt. Die Blasen entweichen in diesem Falle wiederum durch die ins Zentrum der Primärnut hin geöffneten Kavitäten, die Flüssigkeit strömt bevorzugt von der Seite her nahe der verschlossenen Bereiche der Sekundärnut in die Kavität nach. Hierbei wird die entweichende Blase durch das einströmende flüssige Arbeitsmedium nicht behindert und kann sich ungestört in der Primärnut ausdehnen. Die jeweiligen Strömungszonen für die Flüssigkeit und den Dampf sind dabei räumlich voneinander getrennt. Zudem verbleibt auch im verschlossenen Bereich der Sekundärnut ein kleiner Kanal zwischen den Kavitäten erhalten, der jedoch keine Verbindung zur Primärnut aufweist. Dennoch können über diese Kanäle beispielsweise Druckunterschiede zwischen den zueinander benachbarten Kavitäten ausgeglichen werden.In a particularly preferred embodiment of the invention, the distance between the opposite material protrusions can assume the value zero at regular intervals. As a result, the secondary groove is closed in certain areas relative to the primary groove. In these areas, the opposite material projections touch, without that it comes to a material conclusion. In this case, the bubbles in turn escape through the cavities which are opened into the center of the primary groove, and the liquid preferably flows from the side into the cavity near the closed regions of the secondary groove. In this case, the escaping bubble is not hindered by the inflowing liquid working medium and can expand undisturbed in the primary groove. The respective flow zones for the liquid and the steam are spatially separated from each other. In addition, even in the closed region of the secondary groove, a small channel is left between the cavities, which, however, has no connection to the primary groove. Nevertheless, for example, pressure differences between the mutually adjacent cavities can be compensated via these channels.

Bevorzugt kann in den Bereichen, in denen der Abstand zwischen den gegenüberliegenden Werkstoffvorsprüngen den Wert Null annimmt, die Sekundärnut im Wesentlichen zugedrückt sein. Bei dieser Ausgestaltung besteht über die Teilabschnitte der Sekundärnut keine Verbindung der Kavitäten untereinander mehr.Preferably, in the regions in which the distance between the opposing material projections assumes the value zero, the secondary groove may be substantially pressed. In this embodiment, there is no connection of the cavities with one another more over the subsections of the secondary groove.

In bevorzugter Ausführungsform der Erfindung kann der maximale Abstand zwischen den gegenüberliegenden Werkstoffvorsprüngen 0,03 mm bis 0,1 mm betragen. Zudem kann vorteilhafterweise der maximale Abstand zwischen den gegenüberliegenden Werkstoffvorsprüngen 0,06 mm bis 0,09 mm sein.In a preferred embodiment of the invention, the maximum distance between the opposite material projections 0.03 mm to 0.1 mm. In addition, advantageously, the maximum distance between the opposite material projections 0.06 mm to 0.09 mm.

In bevorzugter Ausgestaltung kann die Länge der Bereiche in Umlaufrichtung, in denen der Abstand der gegenüberliegenden Werkstoffvorsprünge nicht den Wert Null annimmt, zwischen 0,2 mm und 0,5 mm betragen. Hierdurch wird eine optimale Abstimmung der aufeinanderfolgenden Kavitäten und dazwischen liegenden Bereiche erzielt.In a preferred embodiment, the length of the areas in the circumferential direction, in which the distance of the opposite material projections does not assume the value zero, be between 0.2 mm and 0.5 mm. As a result, an optimal coordination of the successive cavities and intermediate areas is achieved.

In weiterer vorteilhafter Ausgestaltung der Erfindung können die Rippenspitzen derart verformt sein, dass sie die Primärnuten in Radialrichtung überdecken und teilweise verschließen und so einen helixförmig umlaufenden, teilweise abgeschlossenen Hohlraum bilden. Die Rippenspitzen können dabei beispielsweise einen im Wesentlichen T-förmigen Querschnitt mit porenartigen Ausnehmungen aufweisen, durch welche die Dampfblasen entweichen können.In a further advantageous embodiment of the invention, the rib tips may be deformed such that they cover the primary grooves in the radial direction and partially close and thus a helically encircling, partially closed Form cavity. The rib tips may have, for example, a substantially T-shaped cross section with pore-like recesses through which the vapor bubbles can escape.

Die Druckschrift EP 1 223 400 B1 wird zur Ausgestaltung weiterer bevorzugter und vorteilhafter Kombinationen mit der erfindungsgemäßen Lösung vollumfänglich in diese Beschreibung einbezogen.The publication EP 1 223 400 B1 For the embodiment of further preferred and advantageous combinations with the solution according to the invention, this description is included in full in its entirety.

Ausführungsbeispiele der Erfindung werden anhand der schematischen Zeichnungen näher erläutert.Embodiments of the invention will be explained in more detail with reference to the schematic drawings.

Darin zeigen:Show:

  • Fig. 1 eine Teilansicht der Außenseite eines erfindungsgemäßen Rohrabschnittes, Fig. 1 a partial view of the outside of a pipe section according to the invention,
  • Fig. 2 eine Vorderansicht des Rohrabschnitts gemäß Fig. 1, Fig. 2 a front view of the pipe section according to Fig. 1 .
  • Fig. 3 eine Teilansicht der Außenseite eines erfindungsgemäßen Rohrabschnittes mit abschnittsweise verschlossener Sekundärnut, Fig. 3 a partial view of the outside of a pipe section according to the invention with partially closed secondary groove,
  • Fig. 4 eine Vorderansicht des Rohrabschnitts gemäß Fig. 3, Fig. 4 a front view of the pipe section according to Fig. 3 .
  • Fig. 5 eine Teilansicht der Außenseite eines erfindungsgemäßen Rohrabschnittes mit abschnittsweise zugedrückter Sekundärnut zwischen den Kavitäten, und Fig. 5 a partial view of the outside of a pipe section according to the invention with sectionally compressed secondary groove between the cavities, and
  • Fig. 6 eine Vorderansicht des Rohrabschnitts gemäß Fig. 5. Fig. 6 a front view of the pipe section according to Fig. 5 ,

Einander entsprechende Teile sind in allen Figuren mit denselben Bezugszeichen versehen.Corresponding parts are provided in all figures with the same reference numerals.

Fig. 1 zeigt eine Ansicht der Außenseite eines erfindungsgemäßen Rohrabschnittes. Das integral gewalzte Rippenrohr 1 weist auf der Rohraußenseite schraubenlinienförmig umlaufende Rippen 2 auf, zwischen denen eine Primärnut 6 ausgebildet ist. Die Rippen 2 erstrecken sich ohne Unterbrechung kontinuierlich entlang einer Helixlinie auf der Rohraußenseite. Der Rippenfuß 3 steht im Wesentlichen radial von der Rohrwandung 5 ab. Es wird ein Rippenrohr 1 vorgeschlagen, bei dem im Bereich des Nutengrundes 7, der sich zwischen jeweils zwei benachbarten Rippen 2 befindenden Primärnuten 6 erstreckt, eine hinterschnittene Sekundärnut 8 angeordnet ist. Diese Sekundärnut 8 ist zur Primärnut 6 hin durch ein Paar einander gegenüberliegender, aus Material jeweils benachbarter Rippenfüße 3 geformter Werkstoffvorsprünge 9 begrenzt. Diese Werkstoffvorsprünge 9 erstrecken sich kontinuierlich entlang der Primärnut 6, wobei zwischen gegenüberliegenden Werkstoffvorsprüngen 9 ein Abstand S ausgebildet ist, der in regelmäßigen Intervallen variiert wird. Bei Variation des Querschnitts der Sekundärnut 8 wird die Form der Rippen 2 nicht beeinflusst. Durch die Querschnittsänderung in Verbindung mit der Variation des Abstands S bilden sich lokal Kavitäten 10, die eine Blasenkeimbildung besonders begünstigen. Fig. 1 shows a view of the outside of a pipe section according to the invention. The integrally rolled finned tube 1 has, on the outside of the tube, helical circumferential ribs 2, between which a primary groove 6 is formed. The ribs 2 extend continuously without interruption along a helix line on the tube outside. The ribbed foot 3 projects essentially radially from the tube wall 5. A finned tube 1 is proposed, in which an undercut secondary groove extends in the region of the groove bottom 7, which extends between two respective adjacent ribs 2 located primary grooves 6 8 is arranged. This secondary groove 8 is limited to the primary groove 6 through a pair of opposed, formed of material respectively adjacent rib feet 3 shaped material protrusions 9. These material projections 9 extend continuously along the primary groove 6, wherein a distance S is formed between opposite material projections 9, which is varied at regular intervals. With variation of the cross section of the secondary groove 8, the shape of the ribs 2 is not affected. Due to the change in cross-section in conjunction with the variation of the distance S, cavities 10 form locally, which favor bubble nucleation in particular.

Durch den Abstand S zwischen den gegenüberliegenden Werkstoffvorsprüngen 9 wird eine Verbindung zwischen Primärnut 6 und Sekundärnut 8 ausgebildet, so dass der Austausch von Flüssigkeit und Dampf zwischen Primärnut 6 und Sekundärnut 8 ermöglicht ist. In Bereichen, die einen kleinen Abstand S zwischen den Werkstoffvorsprüngen 9 aufweisen, gelangt bevorzugt Flüssigkeit von der Primärnut 6 in die Sekundärnut 8. Die Flüssigkeit verdampft innerhalb der Sekundärnut 8. Der entstehende Dampf tritt bevorzugt an den Stellen aus der Sekundärnut 8 aus, die einen großen Abstand zwischen den Werkstoffvorsprüngen 9 aufweisen, also im Bereich der Kavitäten 10. Diese dort austretenden Dampfblasen bilden Keimstellen für die weitere Verdampfung von Flüssigkeit in der Primärnut 6. Für die weitere Verdampfung von Flüssigkeit in der Primärnut 6, ist es vorteilhaft, dass sich die Rippen 2 kontinuierlich auf der Rohraußenseite entlang der Primärnut 6 erstrecken. Durch die gezielte Variation der Öffnungsweite der Sekundärnut 8 wird der Austausch von Flüssigkeit und Dampf zwischen Primärnut 6 und Sekundärnut 8 gesteuert, indem Flüssigkeitszufuhr und Dampfaustritt in von einander getrennten Bereichen stattfinden. Diese vorteilhafte Eigenschaft weisen Rohre des Standes der Technik, beispielsweise die nach EP 1 223 400 B1 gefertigt sind, nicht auf, da hier zwar die Querschnittsform der Sekundärnut 8 variiert wird, nicht jedoch deren Öffnungsweite und somit keine bevorzugten Bereiche jeweils für Flüssigkeitszufuhr und Dampfaustritt existieren. Die Erstreckung der Sekundärnut 8 in Radialrichtung beträgt vom Nutengrund 7 aus gemessen in den Bereichen mit großem Abstand zwischen den Werkstoffvorsprüngen 9 maximalen 15 % der Höhe H der Rippen 2. Die Rippenhöhe H wird am fertigen Rippenrohr 1 von der tiefsten Stelle des Nutengrundes 7 bis zur Rippenspitze 4 des vollständig geformten Rippenrohres gemessen.By the distance S between the opposite material projections 9, a connection between the primary groove 6 and the secondary groove 8 is formed so that the exchange of liquid and vapor between the primary groove 6 and the secondary groove 8 is made possible. In areas having a small distance S between the material projections 9, liquid preferably passes from the primary groove 6 into the secondary groove 8. The liquid evaporates within the secondary groove 8. The resulting vapor preferably exits at the points from the secondary groove 8 These vapor bubbles emerging there form nucleating sites for the further evaporation of liquid in the primary groove 6. For the further evaporation of liquid in the primary groove 6, it is advantageous that the Ribs 2 continuously on the tube outside along the primary groove 6 extend. By the targeted variation of the opening width of the secondary groove 8, the exchange of liquid and vapor between the primary groove 6 and secondary groove 8 is controlled by liquid supply and vapor discharge take place in separate areas. This advantageous feature, tubes of the prior art, for example, the after EP 1 223 400 B1 are made, not on, since here, although the cross-sectional shape of the secondary groove 8 is varied, but not their opening width and thus no preferred areas exist respectively for liquid supply and steam outlet. The extent of the secondary groove 8 in the radial direction is measured from the groove bottom 7 in the areas with a large distance between the material projections 9 maximum 15% of the height H of the ribs 2. The fin height H is measured on the finished finned tube 1 from the lowest point of the groove bottom 7 to the fin tip 4 of the fully formed finned tube.

Fig. 2 zeigt eine Vorderansicht des Rohrabschnitts gemäß Fig. 1. Bei dieser Teilansicht verlaufen die auf der Rohraußenseite schraubenlinienförmig umlaufenden Rippen 2 in die Zeichenebene hinein. Zwischen den Rippen 2 ist die Primärnut 6 ausgebildet. Der Rippenfuß 3 steht im Wesentlichen radial von der Rohrwandung 5 ab. Im Bereich des Nutengrundes 7, der sich zwischen jeweils zwei benachbarten Rippen 2 befindenden Primärnuten 6 erstreckt, ist die hinterschnittene Sekundärnut 8 ausgebildet. Diese Sekundärnut 8 grenzt sich gegenüber der Primärnut 6 durch die gegenüberliegenden Werkstoffvorsprünge 9 ab. Fig. 2 shows a front view of the pipe section according to Fig. 1 , In this partial view, the ribs 2 which extend helically on the outside of the pipe run into the plane of the drawing. Between the ribs 2, the primary groove 6 is formed. The ribbed foot 3 projects essentially radially from the tube wall 5. In the region of the groove bottom 7, which extends between each two adjacent ribs 2 located primary grooves 6, the undercut secondary groove 8 is formed. This secondary groove 8 is separated from the primary groove 6 by the opposing material projections 9.

Diese Werkstoffvorsprünge 9 erstrecken sich kontinuierlich entlang der Primärnut 6 senkrecht zur Zeichenebene, wobei zwischen gegenüberliegenden Werkstoffvorsprüngen 9 ein Abstand S ausgebildet ist, der in regelmäßigen Intervallen variiert wird. In unterschiedlichen Ebenen nimmt S im Bereich zwischen den Kavitäten 10 den minimalen Wert Smin und an der höchsten Stelle einer Kavität 10 den Wert Smax an. Durch diese Querschnittsänderung sind lokal Kavitäten 10 mit einer Öffnungsweite ausgebildet, die eine Blasenkeimbildung besonders begünstigen.These material projections 9 extend continuously along the primary groove 6 perpendicular to the plane of the drawing, wherein a distance S is formed between opposite material projections 9, which is varied at regular intervals. In different planes, S assumes the minimum value S min in the region between the cavities 10 and the value S max at the highest point of a cavity 10. By virtue of this change in cross-section, cavities 10 having an opening width are formed locally, which favor bubble nucleation in particular.

Fig. 3 zeigt eine Ansicht der Außenseite eines erfindungsgemäßen Rohrabschnittes 1 mit teilweise verschlossener Sekundärnut 8. Hierbei wird die Sekundärnut 8 in regelmäßigen Intervallen zur Primärnut 6 hin ganz verschlossen. Dies entspricht dem Fall, dass in bestimmten Bereichen der Abstand zwischen den Werkstoffvorsprüngen 9 auf Null reduziert wird. Die Sekundärnut 8 weist dann nur noch in den jeweils dazwischen liegenden Bereichen Öffnungen zur Primärnut 6 hin auf, wobei sich die Weite dieser Öffnungen an deren jeweiligen Rändern reduziert. Fig. 3 shows a view of the outside of a pipe section 1 according to the invention with partially closed secondary groove 8. Here, the secondary groove 8 is completely closed at regular intervals to the primary groove 6 out. This corresponds to the case that in certain areas, the distance between the material projections 9 is reduced to zero. The secondary groove 8 then has only in the respective intermediate areas openings to the primary groove 6 down, whereby the width of these openings is reduced at the respective edges.

Fig. 4 zeigt eine Vorderansicht des Rohrabschnitts gemäß Fig. 3. Die Werkstoffvorsprünge 9 erstrecken sich wiederum kontinuierlich entlang der Primärnut 6 senkrecht zur Zeichenebene mit einem Abstand S zwischen den gegenüberliegenden Werkstoffvorsprüngen 9, der in regelmäßigen Intervallen variiert ist. Während im Bereich einer Kavität an der höchsten Stelle der Wert Smax zu Fig. 2 unverändert bleibt, nimmt S zwischen den Kavitäten 10 den minimalen Wert Smin = 0 an. In diesen Bereichen berühren sich die gegenüberliegenden Werkstoffvorsprünge 9, ohne dass es zu einem Stoffschluss kommt. Die Blasen entweichen wiederum durch die ins Zentrum der Primärnut 6 geöffneten Kavitäten 10. Flüssigkeit strömt an den Rändern der Öffnungen in die Kavität nach. Im verschlossenen Bereich der Sekundärnut 8 bleibt ein kleiner Kanal zwischen den Kavitäten 10 erhalten, der keine Verbindung zur Primärnut 6 aufweist. Jedoch können über diese Kanäle beispielsweise Druckunterschiede zwischen den zueinander benachbarten Kavitäten 10 ausgeglichen werden. Die Länge L der Bereiche, in denen die Sekundärnut nicht verschlossen ist, beträgt vorteilhafterweise zwischen 0,2 mm und 0,5 mm. Fig. 4 shows a front view of the pipe section according to Fig. 3 , The material projections 9 in turn extend continuously along the primary groove 6 perpendicular to the plane of the drawing with a distance S between the opposed material projections 9, which is varied at regular intervals. While in the region of a cavity at the highest point of the value S max to Fig. 2 remains unchanged, S assumes between the cavities 10 to the minimum value S min = 0. In these areas, the opposing material projections 9 touch, without resulting in a material bond. The bubbles in turn escape through the cavities 10 which are opened into the center of the primary groove 6. Liquid flows into the cavity at the edges of the openings. In the closed region of the secondary groove 8, a small channel is maintained between the cavities 10, which has no connection to the primary groove 6. However, for example, pressure differences between the mutually adjacent cavities 10 can be compensated via these channels. The length L of the regions in which the secondary groove is not closed is advantageously between 0.2 mm and 0.5 mm.

Fig. 5 zeigt eine Teilansicht der Außenseite eines erfindungsgemäßen Rohrabschnittes mit vollständig verschlossener Sekundärnut zwischen den Kavitäten. Wie dargestellt, erweist es sich ferner als vorteilhaft, in den Bereichen, in denen der Abstand zwischen den Werkstoffvorsprüngen 9 auf den Wert Null reduziert ist, die Werkstoffvorsprünge 9 soweit zu verformen, dass sie bis zum Boden der Sekundärnut 8 hin verlagert werden und somit die Sekundärnut 8 in diesen Bereich zugedrückt ist. Dadurch erzeugt man in den dazwischen liegenden Bereichen lokalisierte, in Rohrumfangsrichtung vollständig begrenzt ausgedehnte Kavitäten 10 als hinterschnittene Hohlräume am Grund der Primärnut 6. Diese Kavitäten 10 wirken als äußerst effektive Blasenkeimstellen, da in diesen Strukturen das Nachströmen von Flüssigkeit sehr kontrolliert erfolgen kann und selbst besonders kleine Blasen nicht verdrängt werden. Die Blasen entweichen wiederum durch die ins Zentrum der Primärnut 6 geöffneten Kavitäten 10. Flüssigkeit strömt an den Rändern der Öffnungen in die Kavität nach. Die Länge L der Bereiche, in denen die Sekundärnut nicht verschlossen ist, beträgt vorteilhafterweise zwischen 0,2 mm und 0,5 mm. Fig. 5 shows a partial view of the outside of a pipe section according to the invention with fully closed secondary groove between the cavities. As shown, it also proves to be advantageous in the areas in which the distance between the material projections 9 is reduced to the value zero, the material projections 9 to deform so far that they are displaced to the bottom of the secondary 8 and thus the Secondary groove 8 is pressed in this area. As a result, cavities 10 which are located in the intermediate regions and which are completely limited in their circumference are produced as undercut cavities at the bottom of the primary groove 6. These cavities 10 act as extremely effective nucleation sites, since in these structures the subsequent flow of liquid can be very controlled and even particularly small bubbles can not be displaced. The bubbles in turn escape through the cavities 10 which are opened into the center of the primary groove 6. Liquid flows into the cavity at the edges of the openings. The length L of the regions in which the secondary groove is not closed is advantageously between 0.2 mm and 0.5 mm.

Fig. 6 zeigt eine Vorderansicht des Rohrabschnitts gemäß Fig. 5. Wie dargestellt wird nochmals verdeutlicht, wie in den Bereichen, in denen der Abstand zwischen den Werkstoffvorsprüngen 9 auf den Wert Null reduziert ist, die Werkstoffvorsprünge 9 verformt sind. Diese sind bis zum Boden der Sekundärnut 8 hin verlagert, wodurch die Sekundärnut 8 in diesen Bereich zugedrückt ist. Fig. 6 shows a front view of the pipe section according to Fig. 5 , As shown, it is once again clarified how in the regions in which the distance between the material projections 9 is reduced to the value zero, the material projections 9 are deformed. These are displaced to the bottom of the secondary groove 8, whereby the secondary groove 8 is pressed in this area.

Der Abstand S zwischen den gegenüberliegenden Werkstoffvorsprüngen 9 variiert zwischen 0 mm und 0,1 mm. In den Bereichen, in denen dieser Abstand seinen maximalen Wert Smax annimmt, liegt dieser Wert typischerweise zwischen 0,03 mm und 0,1 mm, bevorzugt zwischen 0,06 mm und 0,09 mm.The distance S between the opposing material projections 9 varies between 0 mm and 0.1 mm. In the ranges in which this distance assumes its maximum value S max , this value is typically between 0.03 mm and 0.1 mm, preferably between 0.06 mm and 0.09 mm.

Zusätzlich zur Bildung der hinterschnittenen Sekundärnuten 8 am Nutengrund 7 der Primärnuten 6 werden zweckmäßigerweise die Rippenspitzen als distaler Bereich 4 der Rippen 2 derart verformt, dass sie die Primärnuten 6 in Radialrichtung teilweise verschließen und so einen teilweise abgeschlossenen Hohlraum bilden. Die Verbindung zwischen Primärnut 6 und Umgebung ist in Form von Poren 11 oder Schlitzen ausgestaltet, damit Dampfblasen aus der Primärnut 6 entweichen können. Das Verformen der Rippenspitzen 4 geschieht mit Methoden, die dem Stand der Technik zu entnehmen sind. Die Primärnuten 6 stellen dann selbst hinterschnittene Nuten dar.In addition to the formation of the undercut secondary grooves 8 on the groove bottom 7 of the primary grooves 6, the rib tips are expediently deformed as a distal region 4 of the ribs 2 such that they partially close the primary grooves 6 in the radial direction and thus form a partially closed cavity. The connection between the primary groove 6 and the environment is configured in the form of pores 11 or slots, so that vapor bubbles can escape from the primary groove 6. The deformation of the rib tips 4 is done with methods that can be found in the prior art. The primary grooves 6 then represent even undercut grooves.

Durch die Kombination der erfindungsgemäßen Kavitäten 10 mit einer bis auf Poren 11 oder Schlitze verschlossen Primärnut 6 erhält man eine Struktur, die sich ferner dadurch auszeichnet, dass sie über einen sehr weiten Bereich von Betriebsbedingungen eine sehr hohe Leistungsfähigkeit bei Verdampfung von Flüssigkeiten aufweist. Insbesondere bleibt bei Variation der Wärmestromdichte oder der treibenden Temperaturdifferenz der Wärmeübergangskoeffizient der Struktur auf einem hohen Niveau nahezu konstant.By combining the cavities 10 according to the invention with a primary groove 6 which is closed except for pores 11 or slots, a structure is obtained which is further characterized in that it has a very high efficiency in the evaporation of liquids over a very wide range of operating conditions. In particular, when the heat flow density or the driving temperature difference is varied, the heat transfer coefficient of the structure at a high level remains almost constant.

Die erfindungsgemäße Lösung bezieht sich auf strukturierte Rohre, bei denen der Wärmeübergangskoeffizient auf der Rohraußenseite gesteigert wird. Um nicht den Hauptanteil des Wärmedurchgangswiderstandes auf die Innenseite zu verlagern, kann der Wärmeübergangskoeffizient auf der Innenseite durch eine geeignete Innenstrukturierung ebenfalls intensiviert werden.The solution according to the invention relates to structured tubes in which the heat transfer coefficient is increased on the tube outside. In order not to the majority of the heat transfer resistance on the inside too Relocate the heat transfer coefficient on the inside can also be intensified by a suitable internal structuring.

Die Wärmeaustauscherrohre für Rohrbündelwärmeaustauscher besitzen üblicherweise mindestens einen strukturierten Bereich sowie glatte Endstücke und eventuell glatte Zwischenstücke. Die glatten End- bzw. Zwischenstücke begrenzen die strukturierten Bereiche. Damit das Rohr problemlos in den Rohrbündelwärmeaustauscher eingebaut werden kann, darf der äußere Durchmesser der strukturierten Bereiche nicht größer sein als der äußere Durchmesser der glatten End- und Zwischenstücke.The heat exchanger tubes for shell and tube heat exchangers usually have at least one structured area and smooth end pieces and possibly smooth spacers. The smooth end or intermediate pieces limit the structured areas. So that the tube can be easily installed in the shell and tube heat exchanger, the outer diameter of the structured areas must not be greater than the outer diameter of the smooth end and intermediate pieces.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
metallisches Wärmeaustauscherrohr, Rippenrohrmetallic heat exchanger tube, finned tube
22
Rippenribs
33
Rippenfußfin base
44
Rippenspitzen, distale Bereiche der RippenRib tips, distal areas of the ribs
55
Rohrwandungpipe wall
66
Primärnutprimary groove
77
Nutengrundgroove base
88th
Sekundärnutsecondary groove
99
WerkstoffvorsprungMaterial advantage
1010
Kavitätcavity
1111
Porenpore
SS
Abstand zwischen gegenüberliegenden WerkstoffvorsprüngenDistance between opposite material projections
Smax S max
maximale Abstand zwischen gegenüberliegenden Werkstoffvorsprüngenmaximum distance between opposite material projections
Smin S min
minimale Abstand zwischen gegenüberliegenden Werkstoffvorsprüngenminimum distance between opposing material protrusions
LL
Länge der Bereiche in Umlaufrichtung, in denen der Abstand S ungleich Null istLength of the areas in the circumferential direction, in which the distance S is not equal to zero

Claims (7)

Metallisches Wärmeaustauscherrohr (1) mit auf der Rohraußenseite helixförmig umlaufenden, integral ausgeformten und durchgehend ausgebildeten Rippen (2), deren Rippenfuß (3) im Wesentlichen radial von der Rohrwandung (5) absteht, sowie mit zwischen jeweils benachbarten Rippen (2) sich befindenden Primärnuten (6), wobei im Bereich des Nutengrundes (7) der Primärnuten (6) mindestens eine hinterschnittene Sekundärnut (8) angeordnet ist, diese Sekundärnut (8) zur Primärnut (6) hin durch ein Paar einander gegenüberliegender, aus Material jeweils benachbarter Rippenfüße (3) geformter Werkstoffvorsprünge (9) begrenzt ist, diese Werkstoffvorsprünge (9) sich kontinuierlich entlang der Primärnut (6) erstrecken, der Querschnitt der Sekundärnut (8) in regelmäßigen Intervallen variiert wird, ohne dabei die Form der Rippen (2) zu beeinflussen, und zwischen gegenüberliegenden Werkstoffvorsprüngen (9) ein Abstand (S) ist, dadurch gekennzeichnet, dass dieser Abstand (S) in regelmäßigen Intervallen variiert wird, wodurch lokale Kavitäten (10) ausgebildet sind.Metallic heat exchanger tube (1) with on the outside of the tube helically encircling, integrally formed and continuously formed ribs (2), the ribbed foot (3) projects substantially radially from the tube wall (5), and with between each adjacent ribs (2) located primary grooves (6), wherein in the region of the groove bottom (7) of the primary grooves (6) at least one undercut secondary groove (8) is arranged, this secondary groove (8) to the primary groove (6) through a pair of opposing, each of material adjacent rib feet ( 3) shaped material projections (9) is limited, these material projections (9) extend continuously along the primary groove (6), the cross section of the secondary groove (8) is varied at regular intervals, without affecting the shape of the ribs (2), and between opposite material projections (9) a distance (S), characterized in that this distance (S) in regelmä is varied strength intervals, which local cavities (10) are formed. Metallisches Wärmeaustauscherrohr nach Anspruch 1, dadurch gekennzeichnet, dass der Abstand (S) zwischen den gegenüberliegenden Werkstoffvorsprüngen (9) in regelmäßigen Intervallen den Wert Null annimmt.Metallic heat exchanger tube according to claim 1, characterized in that the distance (S) between the opposing material projections (9) assumes the value zero at regular intervals. Metallisches Wärmeaustauscherrohr nach Anspruch 2, dadurch gekennzeichnet, dass in den Bereichen, in denen der Abstand zwischen den gegenüberliegenden Werkstoffvorsprüngen (9) den Wert Null annimmt, die Sekundärnut (8) im Wesentlichen zugedrückt ist.Metallic heat exchanger tube according to claim 2, characterized in that in the areas in which the distance between the opposing material projections (9) assumes the value zero, the secondary groove (8) is substantially closed. Metallisches Wärmeaustauscherrohr nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der maximale Abstand (Smax) zwischen den gegenüberliegenden Werkstoffvorsprüngen (9) 0,03 mm bis 0,1 mm beträgt.Metallic heat exchanger tube according to one of claims 1 to 3, characterized in that the maximum distance (S max ) between the opposing material projections (9) is 0.03 mm to 0.1 mm. Metallisches Wärmeaustauscherrohr nach Anspruche 4, dadurch gekennzeichnet, dass der maximale Abstand (Smax) zwischen den gegenüberliegenden Werkstoffvorsprüngen (9) 0,06 mm bis 0,09 mm beträgt.Metallic heat exchanger tube according to claim 4, characterized in that the maximum distance (S max ) between the opposing material projections (9) is 0.06 mm to 0.09 mm. Metallisches Wärmeaustauscherrohr nach einem der Ansprüche 2 bis 5, dadurch gekennzeichnet, dass die in Umlaufrichtung gemessene Länge (L) der Bereiche, in denen der Abstand (S) der gegenüberliegenden Werkstoffvorsprünge (9) nicht den Wert Null annimmt, zwischen 0,2 mm und 0,5 mm beträgt.Metallic heat exchanger tube according to one of Claims 2 to 5, characterized in that the length (L) measured in the direction of rotation of the regions in which the distance (S) of the opposing material projections (9) does not become zero lies between 0.2 mm and 0.5 mm. Metallisches Wärmeaustauscherrohr nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Rippenspitzen (4) derart verformt sind, dass sie die Primärnuten (6) in Radialrichtung überdecken und teilweise verschließen und so einen helixförmig umlaufenden, teilweise abgeschlossenen Hohlraum bilden.Metallic heat exchanger tube according to one of claims 1 to 6, characterized in that the rib tips (4) are deformed such that they cover the primary grooves (6) in the radial direction and partially close, thus forming a helically encircling, partially enclosed cavity.
EP09002560.2A 2008-03-12 2009-02-24 Metallic heat exchanger tube Active EP2101136B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102008013929A DE102008013929B3 (en) 2008-03-12 2008-03-12 Metallic heat exchanger pipe i.e. integrally rolled ribbed type pipe, for e.g. air-conditioning and refrigeration application, has pair of material edges extending continuously along primary grooves, where distance is formed between edges

Publications (3)

Publication Number Publication Date
EP2101136A2 true EP2101136A2 (en) 2009-09-16
EP2101136A3 EP2101136A3 (en) 2013-08-07
EP2101136B1 EP2101136B1 (en) 2015-01-14

Family

ID=40418436

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09002560.2A Active EP2101136B1 (en) 2008-03-12 2009-02-24 Metallic heat exchanger tube

Country Status (9)

Country Link
US (1) US8281850B2 (en)
EP (1) EP2101136B1 (en)
JP (1) JP5684456B2 (en)
KR (1) KR20090097773A (en)
CN (1) CN101532795B (en)
BR (1) BRPI0900816B1 (en)
DE (1) DE102008013929B3 (en)
MX (1) MX2009001692A (en)
PT (1) PT2101136E (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101603793B (en) * 2009-07-16 2010-09-01 江苏萃隆精密铜管股份有限公司 Intensified condenser tube
WO2014011372A2 (en) * 2012-06-19 2014-01-16 The Board Of Trustees Of The University Of Illinois, A Body Corporate And Politic Of The State Of Illinois Refrigerant repelling surfaces
CN102980432A (en) * 2012-11-12 2013-03-20 沃林/维兰德传热技术有限责任公司 Evaporation heat transfer pipe with hollow cavity body
CN102980431A (en) * 2012-11-12 2013-03-20 沃林/维兰德传热技术有限责任公司 Evaporation heat-transfer pipe
DE102014002829A1 (en) * 2014-02-27 2015-08-27 Wieland-Werke Ag Metallic heat exchanger tube
EP3377838B1 (en) * 2015-11-17 2022-02-23 Arvind Jaikumar Pool boiling enhancement with feeder channels supplying liquid to nucleating regions
DE102016006914B4 (en) 2016-06-01 2019-01-24 Wieland-Werke Ag heat exchanger tube
DE202020005625U1 (en) 2020-10-31 2021-11-10 Wieland-Werke Aktiengesellschaft Metallic heat exchanger tube
US20230400264A1 (en) 2020-10-31 2023-12-14 Wieland-Werke Ag Metal heat exchanger tube

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3696861A (en) 1970-05-18 1972-10-10 Trane Co Heat transfer surface having a high boiling heat transfer coefficient
US4216826A (en) 1977-02-25 1980-08-12 Furukawa Metals Co., Ltd. Heat transfer tube for use in boiling type heat exchangers and method of producing the same
DE2758526C2 (en) 1977-12-28 1986-03-06 Wieland-Werke Ag, 7900 Ulm Method and device for manufacturing a finned tube
US4577381A (en) 1983-04-01 1986-03-25 Kabushiki Kaisha Kobe Seiko Sho Boiling heat transfer pipes
US4660630A (en) 1985-06-12 1987-04-28 Wolverine Tube, Inc. Heat transfer tube having internal ridges, and method of making same
EP0222100B1 (en) 1985-10-31 1989-08-09 Wieland-Werke Ag Finned tube with a notched groove bottom and method for making it
US5054548A (en) 1990-10-24 1991-10-08 Carrier Corporation High performance heat transfer surface for high pressure refrigerants
JPH0439596A (en) 1990-06-06 1992-02-10 Furukawa Electric Co Ltd:The Boiling type heat transfer tube
US5186252A (en) 1991-01-14 1993-02-16 Furukawa Electric Co., Ltd. Heat transmission tube
US5669441A (en) 1994-11-17 1997-09-23 Carrier Corporation Heat transfer tube and method of manufacture
US5697430A (en) 1995-04-04 1997-12-16 Wolverine Tube, Inc. Heat transfer tubes and methods of fabrication thereof
DE19757526C1 (en) 1997-12-23 1999-04-29 Wieland Werke Ag Heat exchanger tube manufacturing method
US7178361B2 (en) 2002-04-19 2007-02-20 Wolverine Tube, Inc. Heat transfer tubes, including methods of fabrication and use thereof
EP1223400B1 (en) 2001-01-16 2007-03-14 Wieland-Werke AG Tube for heat exchanger and process for making same
US20070151715A1 (en) 2005-12-13 2007-07-05 Hao Yunyu A flooded type evaporating heat-exchange copper tube for an electrical refrigeration unit

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5419247A (en) * 1977-07-12 1979-02-13 Furukawa Metals Co Method of producing heat exchanger tube for boiling type heat exchanger
US4179911A (en) * 1977-08-09 1979-12-25 Wieland-Werke Aktiengesellschaft Y and T-finned tubes and methods and apparatus for their making
JPS5946490A (en) * 1982-09-08 1984-03-15 Kobe Steel Ltd Heat transmitting tube for heat exchanger of boiling type
JPS5959194A (en) * 1982-09-27 1984-04-04 Kuraray Co Ltd Preparation of beta,gamma-dihydropolyprenyl alcohol
JPS6064194A (en) * 1983-09-19 1985-04-12 Sumitomo Light Metal Ind Ltd Heat transfer tube
JPH0612222B2 (en) * 1985-08-12 1994-02-16 三菱重工業株式会社 Heat transfer tube with cross groove on inner wall
JP2730824B2 (en) * 1991-07-09 1998-03-25 三菱伸銅株式会社 Heat transfer tube with inner groove and method of manufacturing the same
FR2678930B1 (en) * 1991-07-10 1995-01-13 Rhone Poulenc Rorer Sa PROCESS FOR THE PREPARATION OF DERIVATIVES OF BACCATIN III AND DESACETYL-10 BACCATIN III.
US7225155B1 (en) * 1997-09-30 2007-05-29 Acs State & Local Solutions, Inc. Method and apparatus for payment processing using debit-based electronic funds transfer and disbursement processing using addendum-based electronic data interchange
CA2289428C (en) * 1998-12-04 2008-12-09 Beckett Gas, Inc. Heat exchanger tube with integral restricting and turbulating structure
DE10024682C2 (en) * 2000-05-18 2003-02-20 Wieland Werke Ag Heat exchanger tube for evaporation with different pore sizes
CN100365369C (en) * 2005-08-09 2008-01-30 江苏萃隆铜业有限公司 Heat exchange tube of evaporator

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3696861A (en) 1970-05-18 1972-10-10 Trane Co Heat transfer surface having a high boiling heat transfer coefficient
US4216826A (en) 1977-02-25 1980-08-12 Furukawa Metals Co., Ltd. Heat transfer tube for use in boiling type heat exchangers and method of producing the same
DE2758526C2 (en) 1977-12-28 1986-03-06 Wieland-Werke Ag, 7900 Ulm Method and device for manufacturing a finned tube
US4577381A (en) 1983-04-01 1986-03-25 Kabushiki Kaisha Kobe Seiko Sho Boiling heat transfer pipes
US4660630A (en) 1985-06-12 1987-04-28 Wolverine Tube, Inc. Heat transfer tube having internal ridges, and method of making same
EP0222100B1 (en) 1985-10-31 1989-08-09 Wieland-Werke Ag Finned tube with a notched groove bottom and method for making it
JPH0439596A (en) 1990-06-06 1992-02-10 Furukawa Electric Co Ltd:The Boiling type heat transfer tube
US5054548A (en) 1990-10-24 1991-10-08 Carrier Corporation High performance heat transfer surface for high pressure refrigerants
US5186252A (en) 1991-01-14 1993-02-16 Furukawa Electric Co., Ltd. Heat transmission tube
US5669441A (en) 1994-11-17 1997-09-23 Carrier Corporation Heat transfer tube and method of manufacture
EP0713072B1 (en) 1994-11-17 2002-02-27 Carrier Corporation Heat transfer tube
US5697430A (en) 1995-04-04 1997-12-16 Wolverine Tube, Inc. Heat transfer tubes and methods of fabrication thereof
DE19757526C1 (en) 1997-12-23 1999-04-29 Wieland Werke Ag Heat exchanger tube manufacturing method
EP1223400B1 (en) 2001-01-16 2007-03-14 Wieland-Werke AG Tube for heat exchanger and process for making same
US7178361B2 (en) 2002-04-19 2007-02-20 Wolverine Tube, Inc. Heat transfer tubes, including methods of fabrication and use thereof
US20070151715A1 (en) 2005-12-13 2007-07-05 Hao Yunyu A flooded type evaporating heat-exchange copper tube for an electrical refrigeration unit

Also Published As

Publication number Publication date
DE102008013929B3 (en) 2009-04-09
EP2101136A3 (en) 2013-08-07
CN101532795B (en) 2013-07-24
KR20090097773A (en) 2009-09-16
US8281850B2 (en) 2012-10-09
JP2009216374A (en) 2009-09-24
CN101532795A (en) 2009-09-16
US20090229807A1 (en) 2009-09-17
BRPI0900816A2 (en) 2010-01-19
PT2101136E (en) 2015-04-22
MX2009001692A (en) 2009-10-05
JP5684456B2 (en) 2015-03-11
BRPI0900816B1 (en) 2020-11-10
EP2101136B1 (en) 2015-01-14

Similar Documents

Publication Publication Date Title
EP2101136B1 (en) Metallic heat exchanger tube
EP1223400B1 (en) Tube for heat exchanger and process for making same
EP2795233B1 (en) Evaporator pipe with optimised external structure
DE102009007446B4 (en) Heat exchanger tube and method for its production
DE4404357C1 (en) Heat exchange core for condensing vapour (steam)
EP3111153B1 (en) Metal heat exchanger tube
EP2253922B1 (en) Metallic heat exchange pipe
EP2151655B1 (en) Heat exchanger and use and production method of a heat exchanger
EP1182416B1 (en) Heat exchanger tube with inner offset fins with variable height
DE10024682C2 (en) Heat exchanger tube for evaporation with different pore sizes
EP2791609B1 (en) Condenser tubes with additional flank structure
DE10306848A1 (en) Flat tube with bend section forming heat exchanger for gas cooler or evaporator has bent over section with main bend axis parallel to flat tube plane and at definable angle to pipe length
EP3465057B1 (en) Heat exchanger tube
EP3465055B1 (en) Heat exchanger tube
DE102016006913B4 (en) heat exchanger tube
EP3581871B1 (en) Metallic heat exchange pipe
WO2022089772A1 (en) Metal heat exchanger tube
DE202020005628U1 (en) Metallic heat exchanger tube
DE202020005625U1 (en) Metallic heat exchanger tube
CH549193A (en) HEAT EXCHANGE TUBE WITH INTERNAL RIBS AND METHOD FOR ITS MANUFACTURING.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

RIC1 Information provided on ipc code assigned before grant

Ipc: F28F 1/36 20060101ALI20130628BHEP

Ipc: F28F 13/18 20060101ALI20130628BHEP

Ipc: F28F 1/40 20060101AFI20130628BHEP

17P Request for examination filed

Effective date: 20140109

RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20140331

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140919

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 707281

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009010489

Country of ref document: DE

Effective date: 20150305

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20150331

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20150114

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150114

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150114

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150114

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150114

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150114

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150414

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150414

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150415

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150114

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150114

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150114

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150514

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009010489

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150114

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150114

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150114

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150228

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150114

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150114

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150114

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20151015

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150414

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150224

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150414

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150114

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 707281

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150114

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150224

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150114

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230110

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20230224

Year of fee payment: 15

Ref country code: IT

Payment date: 20230110

Year of fee payment: 15

Ref country code: DE

Payment date: 20230228

Year of fee payment: 15