EP1794274A1 - Laundry treatment compositions - Google Patents

Laundry treatment compositions

Info

Publication number
EP1794274A1
EP1794274A1 EP05771350A EP05771350A EP1794274A1 EP 1794274 A1 EP1794274 A1 EP 1794274A1 EP 05771350 A EP05771350 A EP 05771350A EP 05771350 A EP05771350 A EP 05771350A EP 1794274 A1 EP1794274 A1 EP 1794274A1
Authority
EP
European Patent Office
Prior art keywords
group
laundry treatment
treatment composition
hydrolysed
reactive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP05771350A
Other languages
German (de)
French (fr)
Other versions
EP1794274B1 (en
EP1794274B2 (en
Inventor
Stephen N. Unilever R & D Port Sunlight BATCHELOR
Jayne Michelle Unilever R & D Port Sunlight BIRD
John Unilever R & D Port Sunlight LLOYD
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unilever PLC
Unilever NV
Original Assignee
Unilever PLC
Unilever NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=33186867&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1794274(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Unilever PLC, Unilever NV filed Critical Unilever PLC
Publication of EP1794274A1 publication Critical patent/EP1794274A1/en
Publication of EP1794274B1 publication Critical patent/EP1794274B1/en
Application granted granted Critical
Publication of EP1794274B2 publication Critical patent/EP1794274B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/40Dyes ; Pigments

Abstract

The present invention provides a laundry treatment composition comprising a surfactant and a hydrolysed reactive dye. A method of treating the textile, comprising treating the textile with an aqueous solution of the hydrolysed dye, rinsing and drying the textile, is also claimed.

Description

LAUNDRY TREATMENT COMPOSITIONS
TECHNICAL FIELD
The present invention relates to laundry treatment compositions which comprise a dye.
BACKGROUND OF THE INVENTION
Reactive dyes are coloured compounds with one or more functional groups capable of forming a covalent bond with a suitable substrate, generally cotton or other cellulosic fibres. Typical reactive groups of the reactive dyes are monochlorotriazinyl, monofluorotrazinyl and 2- sulfooxyethylsulfonyl. Typical chromophores of the reactive dyes are azo, anthraquinone, phthalocyanine, formazan and triphendioaxazine.
The reactive dyes have specific functional groups that can undergo addition or substitution reactions with -OH, -SH and -NH2 groups present in textile fibers. A consequence of the nature of these specific functional groups is that reactive dyes can cause irritation/sensitization of the respiratory tract and skin. There is also evidence that they give rise to contact dermatitis, allergic conjunctivis, rhinitis, occupational asthma and other allergic reactions.
SUMMARY OF THE INVENTION
We have found that hydrolysed reactive dyes may be used to impart shading to textiles whilst reducing the risk of irritation/sensitization of the respiratory tract and skin in comparison to reactive dyes. In the presence of water and high pH the reactive groups of reactive dyes are hydrolysed. We have found that the hydrolysed reactive dye is also substantive to cotton under normal wash conditions.
In one aspect the present invention provides a laundry treatment composition comprising between 0.0001 to 0.1 wt % of a hydrolysed reactive dye and between 2 to 60 wt % of a surfactant.
In another aspect the present invention provides a method of treating a textile, the method comprising the steps of: (i) treating a textile with an aqueous solution of a hydrolysed reactive dye, the aqueous solution comprising from 10 ppb to 1 ppm of the hydrolysed reactive dye and from 0.2 g/L to 3 g/L of a surfactant;- and, (ii) rinsing and drying the textile. Most preferably the hydrolysed reactive dye is at a concentration in the range from 100 ppb to 500 ppb. The present invention also extends to the aqueous solution used in the method.
A "unit dose" as used herein is a particular amount of the laundry treatment composition used for a type of wash, conditioning or requisite treatment step. The unit dose may be in the form of a defined volume of powder, granules or tablet or unit dose detergent liquid.
DETAILED DESCRIPTION OF THE INVENTION
The reactive dyes may be considered to be made up of a chromophore which is linked to an anchoring moiety, The chromophore may be linked directly to the anchor or via a bridging group. The chromophore serves to provide a colour and the anchor to bind to a textile substrate.
A marked advantage of reactive dyes over direct dyes is that their chemical structure is much simpler, their absorption bands are narrower and the dyeing/shading are brighter; industrial Dyes, K. Hunger ed. Wiley-VCH 2003 ISBN 3-527- 30426-6. However, mammalian contact with reactive dyes results in irritation and/or sensitisation of the respiratory tract and/or skin. In addition, wash conditions are not ideal for deposition of dyes because the efficiency of deposition is low.
With regard to reducing irritation and/or sensitisation, it is preferred that each individual anchor group of each reactive dyes is hydrolysed such that the most reactive group (s) of anchor groups of the dye is/are hydrolysed. In this regard, the term hydrolysed reactive dye encompasses both fully and partially hydrolysed reactive dyes.
The reactive dye may have more than one anchor. If the dye has more than one anchor, then each and every anchor, that contributes to irritation and/or sensitisation, needs to be hydrolysed to the extent discussed above.
The dyes used in the present invention comprise a chromophore and an anchor that are covalenly bound and may be represented in the following manner: Chromophore-anchor. The linking between the chromophore and an anchor are preferably provided by -NH-CO-, -NH-, NHCO-CH2CH2-, -NH-CO-, or -N=N-. It is preferred that when a "unit dose" of the laundry treatment composition is dissolved in water the ionic strength of the resultant aqueous laundry treatment composition is between 0.001 to 0.5, more preferably between 0.02 to 0.2.
Preferably the hydrolysed reactive dye comprises a chromophore moiety covalently bound to an anchoring group, the anchoring group for binding to cotton, the anchoring group selected from the group consisting of: a heteroaromatic ring, preferably comprising a nitrogen heteroatom, having at least one -OH substituent covalently
-SO2-C-C-OH H2 H2 bound to the heteroaromatic ring, and
It is preferred that the anchor group is of the form:
wherein: n takes a value between 1 and 3;
X is selected from the group consisting of: -Cl, -F, NHR, a quaternary ammonium group, -OR and -OH; R is selected from: an aromatic group, benzyl, a C1-C6- alkyl; and, wherein at least one X is -OH. It is preferred that R is selected from napthyl, phenyl, and -CH3. Most preferably the anchor group is selected from the group consisting of:
SO5-C-C—OH H, H, and
Preferably, the chromophore is selected from the group consisting of: azo, anthraquinone, phthalocyanine, formazan and triphendioaxazine.
Preferably, the chromophore is linked to the hydrolysed anchor by a bridge selected from the group consisting of: - NH-CO-, -NH-, NHCO-CH2CH2-, -NH-CO-, and -N=N-.
Most preferred hydrolysed reactive dyes are hydrolysed Reactive Red 2, hydrolysed Reactive Blue 4, hydrolysed Reactive Black 5, and hydrolysed Reactive Blue 19.
BALANCE CARRIERS AND ADJUNCT INGREDIENTS The laundry treatment composition in addition to the hydrolysed reactive dye comprises the balance carriers and adjunct ingredients to 100 wt % of the composition.
These may be, for example, surfactants, builders, foam agents, anti-foam agents, solvents, fluorescers, bleaching agents, and enzymes. The use and amounts of these components are such that the composition performs depending upon economics, environmental factors and use of the composition.
The composition may comprise a surfactant and optionally other conventional detergent ingredients. The composition may also comprise an enzymatic detergent composition which comprises from 0.1 - 50 wt %, based on the total detergent composition, of one or more surfactants. This surfactant system may in turn comprise 0 - 95 wt % of one or more anionic surfactants and 5 to 100 wt % of one or more nonionic surfactants. The surfactant system may additionally contain amphoteric or zwitterionic detergent compounds, but this in not normally desired owing to their relatively high cost. The enzymatic detergent composition according to the invention will generally be used as 'a dilution in water of about 0.05 to 2 wt%.
It is preferred that the composition comprises between 2 to 60 wt % of a surfactant, most preferably 10 to 30 wt %. In general, the nonionic and anionic surfactants of the surfactant system may be chosen from the surfactants described "Surface Active Agents" Vol. 1, by Schwartz & Perry, Interscience 1949, Vol. 2 by Schwartz, Perry & Berch, Interscience 1958, in the current edition of "McCutcheon' s Emulsifiers and Detergents" published by Manufacturing Confectioners Company or in "Tenside-Taschenbuch", H. Stache, 2nd Edn., Carl Hauser Verlag, 1981.
Suitable nonionic detergent compounds which may be used include, in particular, the reaction products of compounds having a hydrophobic group and a -reactive hydrogen atom, for example, aliphatic alcohols, acids, amides or alkyl phenols with alkylene oxides, especially ethylene oxide either alone or with propylene oxide. Specific nonionic detergent compounds are C6-C22 alkyl phenol-ethylene oxide condensates, generally 5 to 25 EO, i.e. 5 to 25 units of ethylene oxide per molecule, and the condensation products of aliphatic C8- C18 primary or secondary linear or branched alcohols with ethylene oxide, generally 5 to 40 EO.
Suitable anionic detergent compounds which may be used are usually water-soluble alkali metal salts of organic sulphates and sulphonates having alkyl radicals containing from about 8 to about 22 carbon atoms, the term alkyl being used to include the alkyl portion of higher acyl radicals. Examples of suitable synthetic anionic detergent compounds are sodium and potassium alkyl sulphates, especially those obtained by sulphating higher Cs-Cis alcohols, produced for example from tallow or coconut oil, sodium and potassium alkyl C9-C20 benzene sulphonates, particularly sodium linear secondary alkyl C10-C15 benzene sulphonates; and sodium alkyl glyceryl ether sulphates, especially those ethers of the higher alcohols derived from tallow or coconut oil and synthetic alcohols derived from petroleum. The preferred anionic detergent compounds are sodium C11-C15 alkyl benzene sulphonates and sodium C12-C18 alkyl sulphates. Also applicable are surfactants such as those described in EP-A-328 177 (Unilever) , which show resistance to salting-out, the alkyl polyglycoside surfactants described in EP-A-070 074, and alkyl monoglycosides. Preferred surfactant systems are mixtures of anionic with nonionic detergent active materials, in particular the groups and examples, of anionic and nonionic surfactants pointed out in EP-A-346 995 (Unilever) . Especially preferred is surfactant system that is a mixture of an alkali metal salt of a C3.6-C18 primary alcohol sulphate together with a C12-C15 primary alcohol 3-7 EO ethoxylate.
The nonionic detergent is preferably present in amounts greater than 10%, e.g. 25-90 wt % of the surfactant system. Anionic surfactants can be present for example in amounts in the range from about 5% to about 40 wt % of the surfactant system.
CATIONIC COMPOUND
When the present invention is used as a fabric conditioner it needs to contain a cationic compound.
Most preferred are quaternary ammonium compounds.
It is advantageous if the quaternary ammonium compound is a quaternary ammonium compound having at least one C12-C22 alkyl chain.
It is preferred if the quaternary ammonium compound has the following formula:
in which R1 is a Ci2 to C22 alkyl or alkenyl chain; R2, R3 and R4 are independently selected from C1-C4 alkyl chains and X" is a compatible anion. A preferred compound of this type is the quaternary ammonium compound cetyl trimethyl quaternary ammonium bromide.
A second class of materials for use with the present invention are the quaternary ammonium of the above structure in which R1 and R2 are independently selected from C12 to C22 alkyl or alkenyl chain; R3 and R4 are independently selected from Ci-C4 alkyl chains and X~ is a compatible anion.
A detergent composition according to claim 1 in which the ratio of (ii) cationic material to (iv) anionic surfactant is at least 2:1.
Other suitable quatenary ammonium compounds are disclosed in EP 0 239 910 (Proctor and Gamble) .
It is preferred if the ratio of cationic to nonionic surfactant is from 1:100 to 50:50, more preferably 1:50 to 20:50.
The cationic compound may be present from 0.02 wt % to 20 wt % of the total weight of the composition.
Preferably the cationic compound may be present from 0.05 wt % to 15 wt %, a more preferred composition range is from 0.2 wt % to 5 wt %, and most preferably the composition range is from 0.4 wt % to 2.5 wt % of the total weight of the composition. If the product is a liquid it is preferred if the level of cationic surfactant is from 0.05wt % to 10wt % of the total weight of the composition. Preferably the cationic compound may be present from 0.2 wt % to 5 wt %, and most preferably from 0.4 wt % to 2.5 wt % of the total weight of the composition.
If the product is a solid it is preferred if the level of cationic surfactant is 0.05 wt % to 15 wt % of the total weight of the composition. A more preferred composition range is from 0.2 wt % to 10 wt %, and the most preferred composition range is from 0.9 wt % to 3.0 wt % of the total weight of the composition.
BLEACHING SPECIES
The laundry treatment composition may comprise bleaching species. The bleaching species, for example, may selected from perborate and percarbonate. These peroxyl species may be further enhanced by the use of an activator, for example, TAED or SNOBS. Alternatively or in addition to, a transition metal catalyst may used with the peroxyl species. A transition metal catalyst may also be used in the absence of peroxyl species where the bleaching is termed to be via atmospheric oxygen, see, for example WO02/48301. Photobleaches, including singlet oxygen photobleaches, may be used with the laundry treatment composition. A preferred photobleach is vitamin K.
FLUORESCENT AGENT The laundry treatment composition preferably comprises a fluorescent agent (optical brightener) . Fluorescent agents are well known and many such fluorescent agents are available commercially. Usually, these fluorescent agents are supplied and used in the form of their alkali metal salts, for example, the sodium salts. The total amount of the fluorescent agent or agents used in laundry treatment composition is generally from 0.005-2 wt %, more preferably 0.01 to 0.1 wt %. Preferred classes of fluorescer are: Di- styryl biphenyl compounds, e.g. Tinopal (Trade Mark) CBS-X, Di-amine stilbene di-sulphonic acid compounds, e.g. Tinopal DMS pure Xtra and Blankophor (Trade Mark) HRH, and
Pyrazoline compounds, e.g. Blankophor SN. Preferred fluorescers are: sodium 2 (4-styryl-3-sulfophenyl) -2H- napthol [1, 2-d]trazole, disodium 4, 4'-bis{ [ (4-anilino-β- (N methyl-N-2 hydroxyethyl) amino 1, 3, 5-triazin-2- yl) ] amino}stilbene-2-2 ' disulfonate, disodium 4, 4 ' -bis{ [ (4- anilino-6-morpholino-l, 3, 5-triazin-2-yl) ] amino} stilbene-2- 2' disulfonate, and disodium 4, 4 '-bis (2- sulfoslyryl)biphenyl.
EXAMPLES
Example 1: Deposition on cotton
To determine the substantivity of a dye the following experiment was performed. A 0.1 wt % solution of the reactive dye was created in a pH = 10 buffer and was left for four days in the dark at room temperature to allow the reactive groups to hydrolyse. A stock solution of 1.5 g/L of a base washing powder in water was created. The washing powder contained 18 % NaLAS, 73 % salts (silicate, sodium tri-poly-phosphate, sulphate, carbonate) , 3 % minors including perborate, fluorescer and enzymes, remainder impurities and water. The solution was divided into 60 ml aliquots and hydrolysed reactive dye added to this to give a solution of optical density of approximately one (5 cm pathlength) at the maximum absorption of the dye in the visible lengths, 400 to 700nm. The optical density was measured using a UV-visible spectrometer. One piece of bleached, non-mercerised, non-fluorscent woven non- mercerised cotton cloth (ex Phoenic Calico) weighing 1.3 g was placed in the solution at room temperature (20 0C) . This cloth represents a slightly yellow cotton. The cloth was left to soak for 45 minutes then the solution agitated for 10 min., rinsed and dried. Following this the optical density of the solution was re-measured and the amount of dye absorbed by the cloth calculated.
The results are given in the table below.
Reactive Red 2 [17804-49-8] represents a dichlorotriazinyl azo dye having the following structure:
Reactive Blue 4 [13324-20-4] represents a dichlorotriazinyl anthraquinone dye having the following structure:
Reactive Black 5 [17095-24-8] represents a two anchor vinyl sulfonyl azo dye having the following structure:
Reactive Blue 19 [2580-78-1] represents a vinyl sulfonyl anthraquinone dye having the following structure:
All dyes were found to be substantive to cotton.
Example 2: Deposition on nylon
Deposition onto nylon fabric was measured in an analogous manner to Example 1, except nylon was used a fabric.
The results are given in the table below.
Some of the hydrolysed dyes were found to be substantive to nylon.

Claims

We claim:
1. A laundry treatment composition comprising between 0.0001 to 0.1 wt % of a hydrolysed reactive dye and between 2 to 60 wt % of a surfactant.
2. A laundry treatment composition according to claim 1, wherein the hydrolysed reactive dye comprises a chromophore moiety covalently bound to an anchoring group, the anchoring group for binding to cotton, the anchoring group selected from the group consisting of: a heteroaromatic ring having at least one -OH substituent covalently bound to the heteroaromatic ring, and
SO2-C-C-OH H2 H2
A laundry formulation according to claim 2, wherein the heteroaromatic ring comprises a nitrogen heteroatom.
4. A laundry formulation according to claim 3, wherein the anchor group is of the form:
wherein: n takes a value between 1 and 3;
X is selected from the group consisting of: -Cl, -F, NHR, a quaternary ammonium group, -OR and -OH; R is selected from: an aromatic group, benzyl, a C1-C6- alkyl; and, wherein at least one X is -OH.
5. A laundry treatment composition according to claim 4, wherein R is selected from napthyl, phenyl, and -CH3.
6. A laundry treatment composition according to any one of claims 2 to 5, wherein the chromophore is selected from the group consisting of: azo, anthraquinone, phthalocyanine, formazan and triphendioaxazine..
7. A laundry treatment composition according to any one of claims 2 to 5, wherein the anchor moiety is selected from the group consisting of:
SOrC—C—OH , and H* H2 .
8. A laundry treatment composition according to any one of claims 2 to 5, wherein the chromophore is linked to the hydrolysed anchor by a bridge selected from the group consisting of: -NH-CO-, -NH-, NHCO-CH2CH2-, -NH-CO-, and -N=N-. 9. A laundry treatment composition according to claim 1, wherein the hydrolysed reactive dye is selected from the hydrolysed product of: reactive red 2, reactive blue 4, reactive black 5, and reactive blue 19.
10. A laundry treatment composition according to any preceding claim, wherein the laundry treatment composition comprises from 0.005 to 2 wt % of a fluorescer.
11. A method of treating a textile, the method comprising the steps of:
(i) treating a textile with an aqueous solution of a hydrolysed reactive dye, the aqueous solution comprising from 10 ppb to 1 ppm of the hydrolysed reactive dye and from 0.2 g/L to 3 g/L of a surfactant; and, (ii) rinsing and drying the textile.
12. A method of treating a textile according to claim 11, wherein the aqueous solution has an ionic strength from
0.001 to 0.5.
EP05771350.5A 2004-09-11 2005-08-15 Laundry treatment compositions Active EP1794274B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GBGB0420203.2A GB0420203D0 (en) 2004-09-11 2004-09-11 Laundry treatment compositions
PCT/EP2005/008861 WO2006027086A1 (en) 2004-09-11 2005-08-15 Laundry treatment compositions

Publications (3)

Publication Number Publication Date
EP1794274A1 true EP1794274A1 (en) 2007-06-13
EP1794274B1 EP1794274B1 (en) 2008-03-26
EP1794274B2 EP1794274B2 (en) 2019-12-18

Family

ID=33186867

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05771350.5A Active EP1794274B2 (en) 2004-09-11 2005-08-15 Laundry treatment compositions

Country Status (10)

Country Link
EP (1) EP1794274B2 (en)
CN (1) CN100577787C (en)
AR (1) AR053967A1 (en)
AT (1) ATE390476T1 (en)
BR (1) BRPI0515066A (en)
DE (1) DE602005005702T2 (en)
ES (1) ES2301042T3 (en)
GB (1) GB0420203D0 (en)
WO (1) WO2006027086A1 (en)
ZA (1) ZA200701947B (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015112339A1 (en) 2014-01-22 2015-07-30 The Procter & Gamble Company Fabric treatment composition
WO2015112340A1 (en) 2014-01-22 2015-07-30 The Procter & Gamble Company Method of treating textile fabrics
WO2015112338A1 (en) 2014-01-22 2015-07-30 The Procter & Gamble Company Method of treating textile fabrics
WO2015112341A1 (en) 2014-01-22 2015-07-30 The Procter & Gamble Company Fabric treatment composition
WO2015126547A1 (en) 2014-02-19 2015-08-27 Milliken & Company Composition comprising benefit agent and aprotic solvent
WO2015127004A1 (en) 2014-02-19 2015-08-27 The Procter & Gamble Company Composition comprising benefit agent and aprotic solvent
WO2016081437A1 (en) 2014-11-17 2016-05-26 The Procter & Gamble Company Benefit agent delivery compositions
EP3088503A1 (en) 2015-04-29 2016-11-02 The Procter and Gamble Company Method of treating a fabric
EP3088506A1 (en) 2015-04-29 2016-11-02 The Procter and Gamble Company Detergent composition
EP3088505A1 (en) 2015-04-29 2016-11-02 The Procter and Gamble Company Method of treating a fabric
EP3088504A1 (en) 2015-04-29 2016-11-02 The Procter and Gamble Company Method of treating a fabric
EP3088502A1 (en) 2015-04-29 2016-11-02 The Procter and Gamble Company Method of treating a fabric
EP3173467A1 (en) 2015-11-26 2017-05-31 The Procter & Gamble Company Cleaning compositions comprising enzymes
EP4112707A1 (en) 2021-06-30 2023-01-04 The Procter & Gamble Company Fabric treatment

Families Citing this family (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009523903A (en) 2006-01-23 2009-06-25 ミリケン・アンド・カンパニー Laundry care composition having a thiazolium dye
US20080177089A1 (en) 2007-01-19 2008-07-24 Eugene Steven Sadlowski Novel whitening agents for cellulosic substrates
US7642282B2 (en) 2007-01-19 2010-01-05 Milliken & Company Whitening agents for cellulosic substrates
US8673836B2 (en) * 2007-03-20 2014-03-18 The Procter & Gamble Company Laundry detergent composition with a reactive dye
EP2345711B1 (en) * 2008-04-02 2017-09-06 The Procter and Gamble Company Detergent composition comprising non-ionic detersive surfactant and reactive dye
EP2107105B1 (en) * 2008-04-02 2013-08-07 The Procter and Gamble Company Detergent composition comprising reactive dye
US8449626B2 (en) 2009-11-11 2013-05-28 The Procter & Gamble Company Cleaning method
US8715368B2 (en) 2010-11-12 2014-05-06 The Procter & Gamble Company Thiophene azo dyes and laundry care compositions containing the same
BR112013021581A2 (en) 2011-05-26 2016-11-16 Unilever Nv liquid laundry detergent composition and method of treating a textile
US9163146B2 (en) 2011-06-03 2015-10-20 Milliken & Company Thiophene azo carboxylate dyes and laundry care compositions containing the same
MX337154B (en) 2011-07-21 2016-02-15 Unilever Nv Liquid laundry composition.
US9796952B2 (en) 2012-09-25 2017-10-24 The Procter & Gamble Company Laundry care compositions with thiazolium dye
EP2899260A1 (en) 2014-01-22 2015-07-29 Unilever PLC Process to manufacture a liquid detergent formulation
WO2016188693A1 (en) 2015-05-27 2016-12-01 Unilever Plc Laundry detergent composition
BR112017025607B1 (en) 2015-06-02 2022-08-30 Unilever Ip Holdings B.V. DETERGENT COMPOSITION FOR WASHING CLOTHES AND DOMESTIC FABRIC TREATMENT METHOD
EP3356504B1 (en) 2015-10-01 2019-08-14 Unilever PLC Powder laundry detergent composition
BR112018016129B1 (en) 2016-02-17 2022-06-07 Unilever Ip Holdings B.V. Detergent composition for washing clothes and domestic method of treating a fabric
WO2017140392A1 (en) 2016-02-17 2017-08-24 Unilever Plc Whitening composition
US10947480B2 (en) 2016-05-17 2021-03-16 Conopeo, Inc. Liquid laundry detergent compositions
BR112018073598B1 (en) 2016-05-17 2022-09-27 Unilever Ip Holdings B.V LIQUID COMPOSITION FOR WASHING CLOTHES AND USE OF A LIQUID COMPOSITION DETERGENT FOR WASHING CLOTHES
CN109790491B (en) 2016-09-27 2021-02-23 荷兰联合利华有限公司 Household washing method
BR112019007851B1 (en) 2016-10-18 2022-10-18 Unilever Ip Holdings B.V. DETERGENT COMPOSITION FOR WASHING CLOTHES AND DOMESTIC FABRIC TREATMENT METHOD
WO2018085394A1 (en) 2016-11-01 2018-05-11 Milliken & Company Reactive leuco compounds and compositions comprising the same
WO2019008036A1 (en) 2017-07-07 2019-01-10 Unilever Plc Whitening composition
WO2019008035A1 (en) 2017-07-07 2019-01-10 Unilever Plc Laundry cleaning composition
CN111479912B (en) 2017-11-30 2021-08-10 联合利华知识产权控股有限公司 Detergent composition comprising protease
CN111788290B (en) 2018-02-23 2021-08-27 联合利华知识产权控股有限公司 Solid compositions comprising aminopolycarboxylates
BR112020019253A2 (en) 2018-04-03 2021-01-12 Unilever N.V. DETERGENT COLORING GRANULE, DETERGENT GRANULAR LAUNDRY COMPOSITION, PROCESS TO PROVIDE A DETERGENT GRANULAR LAUNDRY COMPOSITION AND METHOD OF TREATING A FABRIC
CN112119144A (en) 2018-05-17 2020-12-22 荷兰联合利华有限公司 Cleaning compositions comprising rhamnolipids and alkyl ether carboxylate surfactants
EP3775127B1 (en) 2018-05-17 2022-07-20 Unilever IP Holdings B.V. Cleaning composition
US20210283036A1 (en) 2018-07-17 2021-09-16 Conopco, Inc., D/B/A Unilever Use of a rhamnolipid in a surfactant system
CN112703246A (en) 2018-09-17 2021-04-23 联合利华知识产权控股有限公司 Detergent composition
CN113056550B (en) 2018-11-20 2022-10-28 联合利华知识产权控股有限公司 Detergent composition
CN113056548B (en) 2018-11-20 2023-05-02 联合利华知识产权控股有限公司 Detergent composition
EP3884023A1 (en) 2018-11-20 2021-09-29 Unilever Global Ip Limited Detergent composition
EP3884022A1 (en) 2018-11-20 2021-09-29 Unilever Global Ip Limited Detergent composition
WO2020104159A1 (en) 2018-11-20 2020-05-28 Unilever Plc Detergent composition
EP3750978A1 (en) 2019-06-12 2020-12-16 Unilever N.V. Laundry detergent composition
EP3750979A1 (en) 2019-06-12 2020-12-16 Unilever N.V. Use of laundry detergent composition
BR112021025399A2 (en) 2019-06-28 2022-04-26 Unilever Ip Holdings B V Detergent composition and household method for treating a fabric
WO2020259949A1 (en) 2019-06-28 2020-12-30 Unilever Plc Detergent composition
WO2020259947A1 (en) 2019-06-28 2020-12-30 Unilever Plc Detergent composition
EP3990602A1 (en) 2019-06-28 2022-05-04 Unilever Global IP Limited Detergent composition
BR112021025430A2 (en) 2019-06-28 2022-02-01 Unilever Ip Holdings B V Surfactant composition, detergent composition for home and personal care use and home method for treating a fabric
WO2020260006A1 (en) 2019-06-28 2020-12-30 Unilever Plc Detergent compositions
ES2945459T3 (en) 2019-08-21 2023-07-03 Unilever Ip Holdings B V Solid detergent composition
US20220333038A1 (en) 2019-09-02 2022-10-20 Conopco, Inc., D/B/A Unilever Detergent composition
AR120142A1 (en) 2019-10-07 2022-02-02 Unilever Nv DETERGENT COMPOSITION
BR112022018393A2 (en) 2020-03-19 2022-11-08 Unilever Ip Holdings B V METHOD AND USE OF SAPONIN TO INHIBIT LIPASE ACTIVITY IN A DETERGENT COMPOSITION
WO2021185956A1 (en) 2020-03-19 2021-09-23 Unilever Ip Holdings B.V. Detergent composition
WO2021249927A1 (en) 2020-06-08 2021-12-16 Unilever Ip Holdings B.V. Method of improving protease activity
EP4189051B1 (en) 2020-07-27 2024-02-28 Unilever IP Holdings B.V. Use of an enzyme and surfactant for inhibiting microorganisms
US20230287300A1 (en) 2020-08-28 2023-09-14 Conopco, Inc., D/B/A Unilever Surfactant and detergent composition
WO2022043042A1 (en) 2020-08-28 2022-03-03 Unilever Ip Holdings B.V. Detergent composition
WO2022042989A1 (en) 2020-08-28 2022-03-03 Unilever Ip Holdings B.V. Surfactant and detergent composition
EP4204531A1 (en) 2020-08-28 2023-07-05 Unilever IP Holdings B.V. Detergent composition
WO2022042977A1 (en) 2020-08-28 2022-03-03 Unilever Ip Holdings B.V. Detergent composition
WO2022128786A1 (en) 2020-12-17 2022-06-23 Unilever Ip Holdings B.V. Use and cleaning composition
US20240002751A1 (en) 2020-12-17 2024-01-04 Conopco, Inc., D/B/A Unilever Cleaning composition
WO2022268657A1 (en) 2021-06-24 2022-12-29 Unilever Ip Holdings B.V. Unit dose cleaning composition
WO2023041694A1 (en) 2021-09-20 2023-03-23 Unilever Ip Holdings B.V. Detergent composition
WO2023067074A1 (en) 2021-10-21 2023-04-27 Unilever Ip Holdings B.V. Detergent compositions
WO2023144071A1 (en) 2022-01-28 2023-08-03 Unilever Ip Holdings B.V. Laundry composition

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3762859A (en) 1971-03-15 1973-10-02 Colgate Palmolive Co Enhancing the apparent whiteness of fabrics by applying an effective amount of an alkali and heat stable water soluble disazo blue dyestuff fabric softening and detergent composition therefor
JPS5345808B2 (en) * 1973-11-29 1978-12-09
GB2094826B (en) 1981-03-05 1985-06-12 Kao Corp Cellulase enzyme detergent composition
US5770552A (en) * 1997-03-13 1998-06-23 Milliken Research Corporation Laundry detergent composition containing poly(oxyalkylene)-substituted reactive dye colorant
US6126700A (en) 1999-01-20 2000-10-03 Everlight Usa, Inc. Black dye composition
BRPI0411581A (en) * 2003-06-18 2006-08-08 Unilever Nv bleach composition

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2006027086A1 *

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015112339A1 (en) 2014-01-22 2015-07-30 The Procter & Gamble Company Fabric treatment composition
WO2015112340A1 (en) 2014-01-22 2015-07-30 The Procter & Gamble Company Method of treating textile fabrics
WO2015112338A1 (en) 2014-01-22 2015-07-30 The Procter & Gamble Company Method of treating textile fabrics
WO2015112341A1 (en) 2014-01-22 2015-07-30 The Procter & Gamble Company Fabric treatment composition
WO2015126547A1 (en) 2014-02-19 2015-08-27 Milliken & Company Composition comprising benefit agent and aprotic solvent
WO2015127004A1 (en) 2014-02-19 2015-08-27 The Procter & Gamble Company Composition comprising benefit agent and aprotic solvent
WO2016081437A1 (en) 2014-11-17 2016-05-26 The Procter & Gamble Company Benefit agent delivery compositions
EP3088504A1 (en) 2015-04-29 2016-11-02 The Procter and Gamble Company Method of treating a fabric
WO2016176282A1 (en) 2015-04-29 2016-11-03 The Procter & Gamble Company Method of treating a fabric
EP3088505A1 (en) 2015-04-29 2016-11-02 The Procter and Gamble Company Method of treating a fabric
EP3088503A1 (en) 2015-04-29 2016-11-02 The Procter and Gamble Company Method of treating a fabric
EP3088502A1 (en) 2015-04-29 2016-11-02 The Procter and Gamble Company Method of treating a fabric
WO2016176240A1 (en) 2015-04-29 2016-11-03 The Procter & Gamble Company Method of treating a fabric
WO2016176241A1 (en) 2015-04-29 2016-11-03 The Procter & Gamble Company Detergent composition
EP3088506A1 (en) 2015-04-29 2016-11-02 The Procter and Gamble Company Detergent composition
WO2016176280A1 (en) 2015-04-29 2016-11-03 The Procter & Gamble Company Method of treating a fabric
WO2016176296A1 (en) 2015-04-29 2016-11-03 The Procter & Gamble Company Method of laundering a fabric
EP3674387A1 (en) 2015-04-29 2020-07-01 The Procter & Gamble Company Method of treating a fabric
WO2017091674A1 (en) 2015-11-26 2017-06-01 The Procter & Gamble Company Liquid detergent compositions comprising protease and encapsulated lipase
EP3173467A1 (en) 2015-11-26 2017-05-31 The Procter & Gamble Company Cleaning compositions comprising enzymes
EP4112707A1 (en) 2021-06-30 2023-01-04 The Procter & Gamble Company Fabric treatment
WO2023278970A1 (en) 2021-06-30 2023-01-05 The Procter & Gamble Company Fabric treatment

Also Published As

Publication number Publication date
DE602005005702T2 (en) 2009-04-09
ES2301042T3 (en) 2008-06-16
ATE390476T1 (en) 2008-04-15
DE602005005702D1 (en) 2008-05-08
BRPI0515066A (en) 2008-07-01
CN100577787C (en) 2010-01-06
WO2006027086A1 (en) 2006-03-16
AR053967A1 (en) 2007-05-30
ZA200701947B (en) 2008-07-30
CN101056971A (en) 2007-10-17
GB0420203D0 (en) 2004-10-13
EP1794274B1 (en) 2008-03-26
EP1794274B2 (en) 2019-12-18

Similar Documents

Publication Publication Date Title
EP1794274B1 (en) Laundry treatment compositions
EP1791940B1 (en) Laundry treatment compositions
US10106762B2 (en) Treating a textile garment with a hydrophobic dye solution
EP2300589B1 (en) Shading composition
EP1945747B1 (en) Shading composition
EP2009088B1 (en) Laundry treatment compositions
EP2440645B1 (en) Cationic dye polymers
WO2006021285A1 (en) Shading dyes
EP1984485B1 (en) Laundry treatment compositions
WO2006102984A1 (en) Shading dyes
EP2147090B1 (en) Triphenyl methane and xanthene pigments
EP2331670B1 (en) Cationic isothiazolium dyes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070227

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 602005005702

Country of ref document: DE

Date of ref document: 20080508

Kind code of ref document: P

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2301042

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080326

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080326

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080326

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080326

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080326

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080626

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080901

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080326

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080326

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080726

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080326

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080326

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: THE PROCTER & GAMBLE COMPANY

Effective date: 20081223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080626

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080326

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080326

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090831

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080927

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080627

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: THE PROCTER & GAMBLE COMPANY

Effective date: 20081223

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

R26 Opposition filed (corrected)

Opponent name: THE PROCTER & GAMBLE COMPANY

Effective date: 20081223

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PLAY Examination report in opposition despatched + time limit

Free format text: ORIGINAL CODE: EPIDOSNORE2

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160822

Year of fee payment: 12

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: THE PROCTER & GAMBLE COMPANY

Effective date: 20081223

PLBC Reply to examination report in opposition received

Free format text: ORIGINAL CODE: EPIDOSNORE3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20160721

Year of fee payment: 12

Ref country code: ES

Payment date: 20160810

Year of fee payment: 12

PLAY Examination report in opposition despatched + time limit

Free format text: ORIGINAL CODE: EPIDOSNORE2

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PLBC Reply to examination report in opposition received

Free format text: ORIGINAL CODE: EPIDOSNORE3

PLAY Examination report in opposition despatched + time limit

Free format text: ORIGINAL CODE: EPIDOSNORE2

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602005005702

Country of ref document: DE

PLBC Reply to examination report in opposition received

Free format text: ORIGINAL CODE: EPIDOSNORE3

PLAY Examination report in opposition despatched + time limit

Free format text: ORIGINAL CODE: EPIDOSNORE2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180301

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PLBC Reply to examination report in opposition received

Free format text: ORIGINAL CODE: EPIDOSNORE3

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20181029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170816

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: THE PROCTER & GAMBLE COMPANY

Effective date: 20081223

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20191218

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 602005005702

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20220203 AND 20220209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170815

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230822

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230823

Year of fee payment: 19