EP1301764A1 - Ellipsometre a haute resolution spatiale fonctionnant dans l'infrarouge - Google Patents

Ellipsometre a haute resolution spatiale fonctionnant dans l'infrarouge

Info

Publication number
EP1301764A1
EP1301764A1 EP01949572A EP01949572A EP1301764A1 EP 1301764 A1 EP1301764 A1 EP 1301764A1 EP 01949572 A EP01949572 A EP 01949572A EP 01949572 A EP01949572 A EP 01949572A EP 1301764 A1 EP1301764 A1 EP 1301764A1
Authority
EP
European Patent Office
Prior art keywords
sample
optical system
type
detector
focusing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP01949572A
Other languages
German (de)
English (en)
Inventor
Jean-Louis Stehle
Pierre Boher
Michel Luttmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Societe de Commercialisation des Produits de la Recherche Appliquee SOCPRA
Production Et De Recherches Appliquees Ste
Original Assignee
Societe de Commercialisation des Produits de la Recherche Appliquee SOCPRA
Production Et De Recherches Appliquees Ste
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Societe de Commercialisation des Produits de la Recherche Appliquee SOCPRA, Production Et De Recherches Appliquees Ste filed Critical Societe de Commercialisation des Produits de la Recherche Appliquee SOCPRA
Publication of EP1301764A1 publication Critical patent/EP1301764A1/fr
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J4/00Measuring polarisation of light
    • G01J4/04Polarimeters using electric detection means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties
    • G01N21/211Ellipsometry

Definitions

  • the invention relates to the field of ellipsometry, and more particularly to ellipsometry operating in one infrared.
  • Ellipsometric measurements can be performed at a fixed wavelength (monochromatic ellipsometry), or at several wavelengths (spectroscopic ellipsometry).
  • infrared is generally better suited than visible to access the volume properties of layers and materials.
  • an infrared ellipsometer includes:
  • - a sample holder, intended to carry a sample of given thickness, and comprising a front face and a rear face; - a detector;
  • a first optical system mounted between the source and the sample holder, and comprising a polarizer and a focusing device, in order to illuminate the sample placed on the sample holder under oblique incidence by a beam of polarized light;
  • a second optical system mounted between the sample holder and the detector and comprising a focusing device and an analyzer, to collect the light returned by the sample.
  • the rear face of the sample can disturb the ellipsometry measurements by reflecting parasitic radiation which pollutes the detection and processing of the useful signal.
  • Another known solution consists in taking absorbent samples (that is to say non-transparent samples, such as heavily doped silicon), but this also limits the application of such a solution.
  • the aim of the present invention is to remedy these drawbacks and precisely proposes an ellipsometer with high spatial resolution operating in infrared in which parasitic reflections due to the rear face of the sample are overcome.
  • the present invention relates to an ellipsometer device of the type comprising:
  • sample holder intended to carry a transparent or semi-transparent sample of given thickness, and comprising a front face and a rear face;
  • a first optical system mounted between the source and the sample holder, and comprising a polarizer and a focusing device, in order to illuminate the sample placed on the sample holder, under oblique incidence by a beam of polarized light; and - a second optical system mounted between the sample holder and the detector and comprising a focusing device and an analyzer, to collect the light returned by the sample.
  • the ellipsometer device further comprises a blocking device, mounted on the reflection path in the focal plane of the focusing device of the second optical system, and capable of blocking parasitic radiation from the rear face of the sample and allow the useful radiation from the front face of the sample to pass to the detector, which makes it possible to obtain a separating power with respect to the front and rear faces of the sample.
  • a blocking device mounted on the reflection path in the focal plane of the focusing device of the second optical system, and capable of blocking parasitic radiation from the rear face of the sample and allow the useful radiation from the front face of the sample to pass to the detector, which makes it possible to obtain a separating power with respect to the front and rear faces of the sample.
  • the blocking device is of the slot type with adjustable dimension, knife with adjustable edge, or the like.
  • the ellipsometer device further comprises a widening device mounted on the illumination path and able to widen the illumination beam on the focusing device of the first system and widening the reflection beam on the focusing device of the second optical system.
  • the widening device is of the slit type with adjustable dimension, knife with adjustable edge, divergent lens, or the like.
  • the digital aperture of the focusing device of the first optical system is chosen to obtain a small beam of illumination on the sample.
  • the size of the illumination beam on the sample is less than 40 microns x 40 microns in the case of a light source of the laser type.
  • the focusing device of the first optical system as well as of the second optical system comprises at least at least one optical element belonging to the group formed by concave mirrors (for example elliptical, parabolic, spherical, etc.).
  • the digital aperture of the focusing device of the second optical system is chosen to separate the beams reflected by the front and rear faces of the sample.
  • the ellipsometer device further comprises a device for selecting the angle of incidence, mounted on the reflection path downstream of the blocking device according to the direction of propagation of the light, and able to select, for measurements by the detector, only the radiation reflected by the sample under oblique incidence within a predetermined angle of incidence range.
  • the selector device is of the slit type with adjustable dimension, knife with adjustable edge, or the like.
  • the light source is of the laser type, operating at terahertz frequencies, or a source with silicon carbide, filament, plasma, or the like.
  • the polarizer of the first optical system is of the grid type, with or without a rotary compensator, mounting with several polarizers with grids or the like.
  • the analyzer of the second optical system is of the grid polarizer type, with or without a rotary compensator, mounting with two grid polarizers or the like.
  • the detector is of the Mercury-Cadmium and / or Tellurium cell type, liquid nitrogen or the like.
  • sample holder is of the movable XYZ and / or rotating table type, suspended sample holder or the like.
  • FIG. 1 is a general diagram of an ellipsometer operating in the infrared according to the invention.
  • FIG. 2 shows the separating power of the blocking device according to the invention depending on its position relative to the light beams.
  • a light source S provides radiation in the infrared spectrum.
  • the source S is of the silicon carbide type at 1200 ° K. Its spectral range is from 1.44 to 18 microns.
  • the light source is of the laser type operating at terahertz, filament, plasma or similar frequencies.
  • the illumination system includes a Michelson-type interferometer mounted after the source and before the polarizer to scan the spectral range of the device.
  • a PE sample holder is intended to carry an ECH sample of given thickness, and comprising a front face FAV and a rear face FAR.
  • the sample is for example a silicon substrate with a thickness of the order of 400 to 700 microns.
  • the sample holder can be a mobile table in XYZ and / or mobile in rotation.
  • the sample holder can also be a suspended sample holder.
  • a first optical system comprising a polarizer P and a focusing device Ml. This first optical system makes it possible to illuminate the ECH sample placed on the PE sample holder, under oblique incidence by a beam of polarized light.
  • a widening device FI is mounted on the illumination path. It can be placed upstream or downstream of the polarizer depending on the direction of light propagation. This widening device widens the illumination beam on the mirror M1.
  • the widening device F1 is of the slot type with adjustable dimension, knife with adjustable edge, divergent lens, or the like.
  • the digital aperture of the mirror M1 is chosen to obtain a small illumination beam on the sample.
  • the size of the illumination beam on the sample is less than 40 microns x 40 microns in the context of a laser source.
  • the mirror M1 which constitutes the focusing device of the first optical system is an elliptical mirror.
  • this element M1 can be a parabolic, spherical mirror, a lens or even a dioptric, catadioptric or similar optic.
  • the polarizer P is of the grid polarizer type with or without a rotary compensator. As a variant, this polarizer may comprise an assembly with two grid polarizers or the like.
  • a second optical system is mounted between the sample holder PE and a detector D. This second optical system comprises a focusing device M2 and an analyzer A to collect the light returned by the sample.
  • the digital aperture of the focusing device M2 of the second optical system is chosen to separate the beams reflected by the front faces FAV and rear FAR of the sample.
  • the focusing device of the second optical system M2 comprises an optical element belonging to the group formed by concave mirrors (elliptical, parabolic or spherical), lenses and dioptric or catadioptric optics and the like.
  • the effective digital aperture of the focusing device M2 of the second optical system is of the order of 2.5 °.
  • the analyzer A of the optical system is of the grid polarizer type with or without a rotary compensator, mounting with two grid polarizers or the like. This analyzer A is placed on the reflection path downstream from the second mirror M2.
  • Detector D is of the Mercury-Cadmium-Tellurium cell type, liquid nitrogen or the like.
  • the detector is compatible with infrared operation.
  • the mirror M3 can be of the same type as that of the mirror M2.
  • a device for selecting the angle of incidence F3 is coupled to the mirror M3.
  • This selector device F3 makes it possible to select, for the measurements by the detector D, only the radiation reflected by the sample under oblique incidence within a predetermined incidence angle range.
  • the selector device F3 is of the slit type with adjustable dimension, knife with adjustable edge or the like.
  • a blocking device F2 mounted on the reflection path in the focal plane of the focusing device M2 of the second optical system.
  • This blocking device F2 is capable of blocking parasitic radiation RP from the rear face FAR of the sample and letting the useful radiation RU pass from the front face FAV of the sample to the detector D.
  • Such a blocking device F2 makes it possible to obtain a separating power with respect to the front and rear faces FAV and FAR of the sample.
  • the blocking device F2 is of the slot type with adjustable dimension, knife with adjustable edge or the like.
  • the selector device F3 is advantageously positioned in front of the mirror M3 because if it were placed in front of the mirror M2, the diffractions due to the selector device F3 would be such as to degrade the separating power of the blocking device according to the invention.
  • an optical fiber is placed between the source S and the first optical system P.
  • another optical fiber is placed between the second optical system M3 and the detector D.
  • FIG. 2 represents curves of intensity C1 and of derivative of intensity C2 of the beam as a function of the position of the knife F2 relative to the normal of the beam.
  • Curves C1 and C2 show the effective separation of the beams due to the front face and to the rear face of the sample.
  • the Applicant has observed that by using an ellipsometer according to the diagram as described with reference to FIG. 1, the ellipsometer has a separating power with respect to the front and rear faces of the sample, the value of which is entirely satisfactory for carrying out infrared ellipsometry measurements on semiconductor materials such as silicon.
  • the separating power is of the order of 400 microns with a light source of wavelength of the order of 12 microns, a silicon substrate with a thickness of the order of 500 microns, a mirror Ml d effective digital opening of 2.5 °, a mirror M2 of effective digital opening of the order of 2.5 °, and an image of the slit F1 of the order of 300 microns.
  • the implementation of the invention here depends on the size of the spot, the quality of the optics, the thickness of the silicon substrate and the angle of incidence.
  • the separating power of the blocking device is of the order of 600 microns, with a mirror M2 with a magnification factor of 4.21.

Abstract

L'ellipsomètre comprend une source (S) fournissant au moins un rayonnement infrarouge, un porte-échantillon (PE), un détecteur (D), un premier système optique monté entre la source (S) et le porte-échantillon (PE), afin d'illuminer un échantillon placé sur le porte-échantillon, sous incidence oblique par un faisceau de lumière polarisée et un second système optique monté entre le porte-échantillon (PE) et le détecteur (D) pour recuellir la lumière renvoyée par l'échantillon. L'ellipsomètre comprend en outre un dispositif bloqueur (F2), monté sur le trajet de réflexion dans le plan focal du dispositif de focalisation (M2) du second système optique, et apte à bloquer les rayonnements parasites (RP) issus dela face arrière (FAR) de l'échantillon et laisser passer les rayonnements utiles (RU) issus de la face avant (FAV) de l'échantillon vers le détecteur (D), ce qui permet d'obtenir un pouvoir séparateur à l'égard des faces avant et arrière de l'échantillon.

Description

Ellipsoπtètre à haute résolution spatiale fonctionnant dans l'infrarouge
L'invention se rapporte au domaine de l'ellipsométrie, et plus particulièrement à l'ellipsométrie fonctionnant dans 1' infrarouge .
Elle trouve une application générale dans tout domaine dans lequel l'ellipsométrie est utilisée, et plus particulièrement en micro-électronique, dans la caractérisation optique d'un échantillon, dans le contrôle optique d'un traitement de surface, ou dans l'étude de la croissance de couches minces, par exemple de matériaux semi-conducteurs, et de leurs interfaces. Elle trouve aussi une application dans le nettoyage, polissage et préparation de surfaces, notamment.
Les mesures ellipsométriques peuvent être réalisées à une longueur d'onde fixe (ellipsométrie monochromatique), ou à plusieurs longueurs d'ondes (ellipsométrie spectroscopique) .
Selon le domaine de longueur d'onde de la source : ultraviolet, visible, proche infrarouge, infrarouge, etc, il est possible d'accéder à des propriétés différentes des couches, des matériaux ou d'explorer des matériaux différents.
En pratique, l'infrarouge est généralement mieux adapté que le visible pour accéder aux propriétés volumiques des couches et des matériaux.
D'une façon générale, un ellipsomètre fonctionnant à l'infrarouge comprend :
- une source de radiations lumineuses fournissant au moins un rayonnement infrarouge ;
- un porte-échantillon, destiné à porter un échantillon d'épaisseur donné, et comprenant une face avant et une face arrière ; - un détecteur ;
- un premier système optique monté entre la source et le porte-échantillon, et comprenant un polariseur et un disposi- tif de focalisation, afin d'illuminer l'échantillon placé sur le porte-échantillon sous incidence oblique par un faisceau de lumière polarisée ; et
- un second système optique monté entre le porte-échantillon et le détecteur et comprenant un dispositif de focalisation et un analyseur, pour recueillir la lumière renvoyée par l'échantillon.
En raison des exigences très sévères requises dans la fabrication des semi-conducteurs, on a besoin d'une ellipsométrie présentant une haute résolution spatiale, et la meilleure justesse de mesure possible.
Or, avec un échantillon transparent ou semi-transparent d'épaisseur donnée, tel que le silicium, la face arrière de l'échantillon peut perturber les mesures d'ellipsométrie en réfléchissant des rayonnements parasites qui polluent la détection et le traitement du signal utile.
Cette pollution est difficile à traiter car le coefficient de réflexion de la face arrière d'un substrat de silicium n'est pas toujours connu. Le coefficient d'absorption k du substrat n'est pas non plus toujours connu. Des phénomènes d'interférences peuvent aussi naître avec cette face arrière. De même, des phénomènes de diffusion et/ou de diffraction en infrarouge peuvent également advenir sur cette face arrière. De plus la face arrière peut être non parallèle par rapport à la face avant, ce qui peut engendrer des calculs supplémentaires et inutiles puisque seule la mesure de la face avant est pertinente pour l'utilisateur.
Des solutions connues existent pour éliminer les effets néfastes engendrés par la face arrière de l'échantillon, notamment l'utilisation de moyens mécaniques tels que des moyens de dépolissage de la face arrière qui rendent négligeables les réflexions spéculaires issues de la face arrière. Mais ces moyens mécaniques sont destructifs.
Lorsque l'échantillon présente une épaisseur relativement grande, il est possible de séparer les rayonnements issus de la face avant les rayonnements issus de la face arrière. Toutefois , une telle solution ne peut se produire que pour des échantillons de grande épaisseur, ce qui limite son application.
Une autre solution connue consiste à prendre des échantillons absorbants (c'est-à-dire non transparents, tels que le silicium fortement dopé), mais cela limite également l'appli- cation d'une telle solution.
La présente invention a pour but de remédier à ces inconvénients et propose justement un ellipsomètre à haute résolution spatiale fonctionnant en infrarouge dans lequel on s'affranchit des réflexions parasites dues à la face arrière de l'échantillon.
La présente invention porte sur un dispositif ellipsomètre du type comprenant :
- une source de radiations lumineuses fournissant au moins un rayonnement à infrarouge ;
- un porte-échantillon, destiné à porter un échantillon transparent ou semi-transparent d'épaisseur donnée, et comprenant une face avant et une face arrière ;
- un détecteur ;
- un premier système optique monté entre la source et le porte-échantillon, et comprenant un polariseur et un dispositif de focalisation, afin d'illuminer l'échantillon placé sur le porte-échantillon, sous incidence oblique par un faisceau de lumière polarisée ; et - un second système optique monté entre le porte-échantillon et le détecteur et comprenant un dispositif de focalisation et un analyseur, pour recueillir la lumière renvoyée par l'échantillon.
Selon une définition générale de l'invention, le dispositif ellipsomètre comprend en outre un dispositif bloqueur, monté sur le trajet de réflexion dans le plan focal du dispositif de focalisation du second système optique, et apte à bloquer les rayonnements parasites issus de la face arrière de l'échantillon et laisser passer les rayonnements utiles issus de la face avant de l'échantillon vers le détecteur, ce qui permet d'obtenir un pouvoir séparateur à l'égard des faces avant et arrière de l'échantillon.
Par exemple, le dispositif bloqueur est du type fente à dimension ajustable, couteau à bord ajustable, ou analogue.
Selon un premier mode de réalisation préféré de l'invention, le dispositif ellipsomètre selon l'invention comprend en outre un dispositif élargisseur monté sur le trajet d'illumination et apte à élargir le faisceau d'illumination sur le dispositif de focalisation du premier système et à élargir le faisceau de réflexion sur le dispositif de focalisation du second système optique.
Par exemple, le dispositif élargisseur est du type fente à dimension ajustable, couteau à bord ajustable, lentille divergente, ou analogue.
De préférence, l'ouverture numérique du dispositif de focalisation du premier système optique est choisie pour obtenir un faisceau d'illumination de petite taille sur l'échantillon. Par exemple la taille du faisceau d'illumina- tion sur l'échantillon est inférieure à 40 microns x 40 microns dans le cas d'une source lumineuse de type laser.
Par exemple, le dispositif de focalisation du premier système optique ainsi que du second système optique comprennent au moins un élément optique appartenant au groupe formé par les miroirs concaves (par exemple elliptiques, paraboliques, sphériques, etc).
L'ouverture numérique du dispositif de focalisation du second système optique est choisie pour séparer les faisceaux réfléchis par les faces avant et arrière de l'échantillon.
Selon un second mode de réalisation préféré de l'invention, le dispositif ellipsomètre selon l'invention comprend en outre un dispositif sélectionneur d'angle d'incidence, monté sur le trajet de réflexion en aval du dispositif bloqueur selon le sens de propagation de la lumière, et apte à sélectionner, pour les mesures par le détecteur, seulement le rayonnement réfléchi par l'échantillon sous incidence oblique dans une plage d'angle d'incidence prédéterminée.
De préférence, le dispositif sélectionneur est du type fente à dimension ajustable, couteau à bord ajustable, ou analogue.
En pratique, la source lumineuse est de type laser, fonctionnant à des fréquences terahertz, ou une source au carbure de silicium, filament, plasma, ou analogue.
Avantageusement, le polariseur du premier système optique est du type à grille, avec ou sans compensateur tournant, montage à plusieurs polariseurs à grilles ou analogue.
De même, l'analyseur du second système optique est du type polariseur à grille, avec ou sans compensateur tournant, montage à deux polariseurs a grilles ou analogue.
Par exemple, le détecteur est du type cellule Mercure-Cadmium et/ou Tellure, nitrogène liquide ou analogue.
En pratique, le porte-échantillon est du type table mobile en XYZ et/ou en rotation, porte-échantillon suspendu ou analogue. D'autres caractéristiques et avantages de l'invention apparaîtront à la lumière de la description détaillée ci- après et des dessins dans lesquels :
- la figure 1 est un schéma général d'un ellipsomètre fonctionnant à l' infrarouge selon l' invention ; et
- la figure 2 représente le pouvoir séparateur du dispositif bloqueur selon l'invention en fonction de sa position par rapport aux faisceaux lumineux.
En référence à la figure 1, une source lumineuse S fournit un rayonnement dans le spectre de l'infrarouge.
Par exemple, la source S est du type au carbure de silicium à 1200°K. Sa gamme spectrale est de 1,44 à 18 microns.
En variante, la source lumineuse est du type laser fonctionnant à des fréquences terahertz, source à filament, plasma ou analogue.
En ellipsométrie spectroscopique, le système d'illumination inclus un interféromètre de type Michelson monté après la source et avant le polariseur pour balayer la gamme spectrale de l'appareil.
Un porte-échantillon PE est destiné à porter un échantillon ECH d'épaisseur donnée, et comprenant une face avant FAV et une face arrière FAR.
L'échantillon est par exemple un substrat de silicium d'une épaisseur de l'ordre de 400 à 700 microns.
Le porte-échantillon peut être une table mobile en XYZ et/ou mobile en rotation.
Le porte-échantillon peut également être un porte-échantillon suspendu. Entre la source S et le porte-échantillon PE, il est prévu un premier système optique comprenant un polariseur P et un dispositif de focalisation Ml. Ce premier système optique permet d'illuminer l'échantillon ECH placé sur le porte- échantillon PE, sous incidence oblique par un faisceau de lumière polarisée.
Avantageusement, un dispositif élargisseur FI est monté sur le trajet d'illumination. Il peut être placé en amont ou en aval du polariseur selon le sens de la propagation de la lumière. Ce dispositif élargisseur élargit le faisceau d'illumination sur le miroir Ml.
En pratique, le dispositif élargisseur Fl est du type fente à dimension ajustable, couteau à bord ajustable, lentille divergente, ou analogue.
En pratique, l'ouverture numérique du miroir Ml est choisi pour obtenir un faisceau d'illumination de petite taille sur l'échantillon.
Par exemple, la taille du faisceau d'illumination sur l'échantillon est inférieure à 40 microns x 40 microns dans le cadre d'une source laser.
En pratique, le miroir Ml qui constitue le dispositif de focalisation du premier système optique est un miroir elliptique.
En variante, cet élément Ml peut être un miroir parabolique, sphérique, une lentille ou bien encore une optique dioptri- que, catadioptrique ou analogue.
Le polariseur P est du type polariseur à grille avec ou sans compensateur tournant. En variante, ce polariseur peut comprendre un montage à deux polariseurs à grilles ou analogue. Un second système optique est monté entre le porte-échantillon PE et un détecteur D. Ce second système optique comprend un dispositif de focalisation M2 et un analyseur A pour recueillir la lumière renvoyée par l'échantillon.
L'ouverture numérique du dispositif de focalisation M2 du second système optique est choisie pour séparer les faisceaux réfléchis par les faces avant FAV et arrière FAR de l'échantillon.
Le dispositif de focalisation du second système optique M2 comprend un élément optique appartenant au groupe formé par les miroirs concaves (elliptiques, paraboliques ou sphéri- ques), les lentilles et les optiques dioptriques ou catadiop- triques et analogues.
Par exemple, l'ouverture numérique effective du dispositif de focalisation M2 du second système optique est de l'ordre de 2,5°.
L'analyseur A du système optique est du type polariseur à grille avec ou sans compensateur tournant, montage à deux polariseurs à grilles ou analogue. Cet analyseur A est disposé sur le trajet de réflexion en aval du second miroir M2.
Le détecteur D est du type cellule Mercure-Cadmium-Tellure, nitrogène liquide ou analogue. Le détecteur est compatible avec le fonctionnement en infrarouge.
Entre le miroir M2 et le détecteur D, il est avantageusement prévu un autre miroir M3 propre à focaliser le faisceau de réflexion sur le détecteur. Le miroir M3 peut être du même type que celui du miroir M2.
Avantageusement, un dispositif sélectionneur d'angle d'incidence F3 est couplé au miroir M3. Ce dispositif sélectionneur F3 permet de sélectionner, pour les mesures par le détecteur D, seulement le rayonnement réfléchi par l'échantillon sous incidence oblique dans une plage d'angle d'incidence prédéterminée .
Par exemple, le dispositif sélectionneur F3 est du type fente à dimension ajustable, couteau à bord ajustable ou analogue.
Selon l'invention, il est prévu un dispositif bloqueur F2, monté sur le trajet de réflexion dans le plan focal du dispositif de focalisation M2 du second système optique. Ce dispositif bloqueur F2 est propre à bloquer les rayonnements parasites RP issus de la face arrière FAR de l'échantillon et laisser passer les rayonnements utiles RU issus de la face avant FAV de l'échantillon vers le détecteur D.
Un tel dispositif bloqueur F2 permet d'obtenir un pouvoir séparateur à l'égard des faces avant et arrière FAV et FAR de l'échantillon.
Avantageusement, le dispositif bloqueur F2 est du type fente à dimension ajustable, couteau à bord ajustable ou analogue.
Le dispositif sélectionneur F3 est avantageusement positionné devant le miroir M3 car s'il était placé devant le miroir M2, les diffractions dues au dispositif sélectionneur F3 seraient telles qu'elles dégradraient le pouvoir séparateur du dispositif bloqueur selon l'invention.
Dans un mode préféré de l'invention, une fibre optique est disposée entre la source S et le premier système optique P. De même une autre fibre optique est disposée entre le second système optique M3 et le détecteur D.
La figure 2 représente des courbes d'intensité Cl et de dérivé d'intensité C2 du faisceau en fonction de la position du couteau F2 par rapport à la normale du faisceau.
Les courbes Cl et C2 mettent en évidence la séparation effective des faisceaux dus à la face avant et à la face arrière de l'échantillon. La Demanderesse a observé qu'en utilisant un ellipsomètre suivant le schéma tel que décrit en référence à la figure 1 , l'ellipsomètre possède un pouvoir séparateur à l'égard des faces avant et arrière de l'échantillon dont la valeur est tout à fait satisfaisante pour mener des mesures d'ellipsométrie en infrarouge sur des matériaux semi-conducteurs tels que le silicium.
Par exemple, le pouvoir séparateur est de l'ordre de 400 microns avec une source lumineuse de longueur d'onde de l'ordre de 12 microns, un substrat de silicium d'épaisseur de l'ordre de 500 microns, un miroir Ml d'ouverture numérique effective de 2,5°, un miroir M2 d'ouverture numérique effective de l'ordre de 2,5°, et une image de la fente Fl de l'ordre de 300 microns.
En pratique, la mise en oeuvre de l'invention dépend ici de la taille du spot, de la qualité des optiques, de l'épaisseur du substrat de silicium et de l'angle d'incidence. Par exemple, avec un angle d'incidence de 70°, le pouvoir séparateur de dispositif bloqueur est de l'ordre de 600 microns, avec un miroir M2 d'un facteur de grossissement de 4,21.

Claims

Revendications
1. Dispositif ellipsomètre du type comprenant:
- une source (S) de radiations lumineuses fournissant au moins un rayonnement infrarouge;
- un porte-échantillon (PE), destiné à porter un échantillon transparent ou semi-transparent(ECH) d'épaisseur donnée, et comprenant une face avant et une face arrière (FAV et FAR),
- un détecteur (D),
- un premier système optique monté entre la source (S) et le porte-échantillon (PE), et comprenant un polariseur (P) et un dispositif de focalisation (Ml), afin d'illuminer l'échantillon placé sur le porte-échantillon, sous incidence oblique par un faisceau de lumière polarisée,
- un second système optique monté entre le porte-échantillon (PE) et le détecteur (D) et comprenant un dispositif de focalisation (M2) et un analyseur (A), pour recueillir la lumière renvoyée par l'échantillon,
caractérisé en ce qu'il comprend en outre un dispositif bloqueur (F2), monté sur le trajet de réflexion dans le plan focal du dispositif de focalisation (M2) du second système optique, et apte à bloquer les rayonnements parasites (RP) issus de la face arrière (FAR) de l'échantillon et laisser passer les rayonnements utiles (RU) issus de la face avant (FAV) de l'échantillon vers le détecteur (D), ce qui permet d'obtenir un pouvoir séparateur à l'égard des faces avant et arrière de l'échantillon.
2. Dispositif selon la revendication 1, caractérisé en ce qu'il comprend un dispositif sélectionneur (M3, F3) d'angle d'incidence, monté sur le trajet de réflexion en aval du dispositif bloqueur selon le sens de propagation de la lumière, et apte à sélectionner, pour les mesures du détecteur, seulement le rayonnement réfléchi par l'échantillon sous incidence oblique dans une plage d'angles d'incidence prédéterminée.
3. Dispositif selon la revendication 2, caractérisé en ce que le dispositif sélectionneur (M3, F3) est du type fente à dimensions ajustables, couteau à bord ajustable, ou analogue.
4. Dispositif selon la revendication 1, caractérisé en ce que le dispositif bloqueur (F2) est du type fente à dimensions ajustables, couteau à bord ajustable, ou analogue.
5. Dispositif selon la revendication 1, caractérisé en ce qu'il comprend en outre un dispositif élargisseur (FI) monté sur le trajet d'illumination, et apte à élargir le faisceau d'illumination sur le dispositif de focalisation (Ml) du premier système et à élargir le faisceau de réflexion sur le dispositif de focalisation (M2) du second système optique.
6. Dispositif selon la revendication 5, caractérisé en ce que le dispositif élargisseur (Fl) est du type fente à dimensions ajustables, couteau à bord ajustable, lentille divergente, ou analogue.
7. Dispositif selon la revendication 1, caractérisé en ce que l'ouverture numérique du dispositif de focalisation (Ml) du premier système optique est choisie pour obtenir un faisceau d'illumination de petite taille sur l'échantillon.
8. Dispositif selon la revendication 7, caractérisé en ce que la taille du faisceau d'illumination sur l'échantillon est inférieure à 40 microns x 40 microns.
9. Dispositif selon la revendication 1, caractérisé en ce que le dispositif de focalisation (Ml) du premier système optique comprend au moins un élément optique appartenant au groupe formé par les miroirs concaves, miroirs sphériques, lentilles, optiques dioptriques ou catadioptriques, et analogues.
10. Dispositif selon la revendication 1, caractérisé en ce que l'ouverture numérique du dispositif de focalisation (M2) du second système optique est choisie pour séparer les faisceaux réfléchis par les faces avant et arrière de l'échantillon.
11. Dispositif selon la revendication 1, caractérisé en ce que le dispositif de focalisation (M2) du second système optique comprend au moins un élément optique appartenant au groupe formé par les miroirs concaves, lentilles, optiques dioptriques ou catadioptriques, et analogues.
12. Dispositif selon la revendication 8, caractérisé en ce que l'ouverture numérique effective du dispositif de focali- sation (M2) du second système optique est de l'ordre 2,5°.
13. Dispositif selon la revendication 1, caractérisé en ce que la source lumineuse (S) est du type laser, terahertz, globar, filament, plasma, ou analogue.
14. Dispositif selon la revendication 1, caractérisé en ce que le polariseur (P) du premier système optique est du type polariseur à grille, avec ou sans compensateur tournant, montage à deux polariseurs à grille, ou analogue.
15. Dispositif selon la revendication 1, caractérisé en ce que l'analyseur (A) du second système optique est du type polariseur à grille, avec ou sans compensateur tournant, montage à deux polariseurs à grille, ou analogue.
16. Dispositif selon la revendication 1, caractérisé en ce que le détecteur (D) est du type MCT ou analogue.
17. Dispositif selon la revendication 1, caractérisé en ce que le porte échantillon (PE) est du type table mobile en XYZ et/ou en rotation, porte-échantillon suspendu, ou analogue.
18. Dispositif selon la revendication 1, caractérisé en ce qu'il comprend une fibre optique entre la source (S) et le premier système optique.
19. Dispositif selon la revendication 1, caractérisé en ce qu'il comprend une fibre optique entre le second système optique et le détecteur (D).
20. Dispositif selon la revendication 1, caractérisé en ce que l'échantillon (ECH) est du type substrat en matériau semi-conducteur tel que du silicium.'
EP01949572A 2000-07-17 2001-06-28 Ellipsometre a haute resolution spatiale fonctionnant dans l'infrarouge Ceased EP1301764A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0009318A FR2811761B1 (fr) 2000-07-17 2000-07-17 Ellipsometre a haute resolution spatiale fonctionnant dans l'infrarouge
FR0009318 2000-07-17
PCT/FR2001/002072 WO2002006780A1 (fr) 2000-07-17 2001-06-28 Ellipsometre a haute resolution spatiale fonctionnant dans l'infrarouge

Publications (1)

Publication Number Publication Date
EP1301764A1 true EP1301764A1 (fr) 2003-04-16

Family

ID=8852567

Family Applications (2)

Application Number Title Priority Date Filing Date
EP01949572A Ceased EP1301764A1 (fr) 2000-07-17 2001-06-28 Ellipsometre a haute resolution spatiale fonctionnant dans l'infrarouge
EP01954108A Ceased EP1301763A2 (fr) 2000-07-17 2001-07-16 Ellipsometre spectroscopique compact

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP01954108A Ceased EP1301763A2 (fr) 2000-07-17 2001-07-16 Ellipsometre spectroscopique compact

Country Status (7)

Country Link
US (2) US6819423B2 (fr)
EP (2) EP1301764A1 (fr)
JP (2) JP2004504591A (fr)
KR (2) KR100846474B1 (fr)
AU (2) AU2001270701A1 (fr)
FR (1) FR2811761B1 (fr)
WO (2) WO2002006780A1 (fr)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004012134B4 (de) * 2004-03-12 2006-06-29 Nanofilm Technologie Gmbh Ellipsometer mit Blendenanordnung
CN101258387A (zh) 2005-07-05 2008-09-03 马特森技术公司 确定半导体晶片的光学属性的方法与系统
DE102005062180B3 (de) * 2005-12-23 2007-01-04 Gesellschaft zur Förderung der Analytischen Wissenschaften e.V. Infrarot-Ellipsometer
US7928390B1 (en) 2007-09-06 2011-04-19 Kla-Tencor Corporation Infrared metrology
JP2009210421A (ja) * 2008-03-04 2009-09-17 Sony Corp テラヘルツ分光装置
US8467057B1 (en) 2008-09-15 2013-06-18 J.A. Woollam Co., Inc. Ellipsometers and polarimeters comprising polarization state compensating beam directing sample wobble compensating system, and method of use
US8339603B1 (en) 2008-10-03 2012-12-25 J.A. Woollam Co., Inc. Mapping ellipsometers and polarimeters comprising polarization state compensating beam directing means, and method of use
US8488119B2 (en) 2009-02-27 2013-07-16 J.A. Woollam Co., Inc. Terahertz-infrared ellipsometer system, and method of use
US8736838B2 (en) 2009-02-27 2014-05-27 J.A. Woollam Co., Inc. Terahertz ellipsometer system, and method of use
US8169611B2 (en) 2009-02-27 2012-05-01 University Of Nebraska Board Of Regents Terahertz-infrared ellipsometer system, and method of use
US8934096B2 (en) 2009-02-27 2015-01-13 University Of Nebraska Board Of Regents Terahertz-infrared ellipsometer system, and method of use
US8416408B1 (en) 2009-02-27 2013-04-09 J.A. Woollam Co., Inc. Terahertz-infrared ellipsometer system, and method of use
JP5650733B2 (ja) * 2009-06-23 2015-01-07 ジェイ・エイ・ウーラム・カンパニー・インコーポレイテッドJ.A.Woollam Co.,Inc. テラヘルツ赤外線エリプソメーターシステムおよびその使用方法
JP5534315B2 (ja) * 2010-03-01 2014-06-25 独立行政法人理化学研究所 物性測定装置、物性測定方法及びプログラム
DE102011078418A1 (de) * 2011-06-30 2013-01-03 Friedrich-Alexander-Universität Erlangen-Nürnberg Vorrichtung und Verfahren zur Reflexions-Ellipsometrie im Millimeterwellenbereich
JP6289450B2 (ja) 2012-05-09 2018-03-07 シーゲイト テクノロジー エルエルシーSeagate Technology LLC 表面特徴マッピング
US9212900B2 (en) 2012-08-11 2015-12-15 Seagate Technology Llc Surface features characterization
US9297751B2 (en) 2012-10-05 2016-03-29 Seagate Technology Llc Chemical characterization of surface features
US9297759B2 (en) 2012-10-05 2016-03-29 Seagate Technology Llc Classification of surface features using fluorescence
US9377394B2 (en) 2012-10-16 2016-06-28 Seagate Technology Llc Distinguishing foreign surface features from native surface features
US9217714B2 (en) * 2012-12-06 2015-12-22 Seagate Technology Llc Reflective surfaces for surface features of an article
US9513215B2 (en) 2013-05-30 2016-12-06 Seagate Technology Llc Surface features by azimuthal angle
US9201019B2 (en) 2013-05-30 2015-12-01 Seagate Technology Llc Article edge inspection
US9274064B2 (en) 2013-05-30 2016-03-01 Seagate Technology Llc Surface feature manager
US9217715B2 (en) 2013-05-30 2015-12-22 Seagate Technology Llc Apparatuses and methods for magnetic features of articles
US10338362B1 (en) 2014-06-06 2019-07-02 J.A. Woollam Co., Inc. Beam focusing and reflecting optics with enhanced detector system
US9442016B2 (en) 2014-06-06 2016-09-13 J.A. Woollam Co., Inc Reflective focusing optics
US9921395B1 (en) 2015-06-09 2018-03-20 J.A. Woollam Co., Inc. Beam focusing and beam collecting optics with wavelength dependent filter element adjustment of beam area
US10018815B1 (en) 2014-06-06 2018-07-10 J.A. Woolam Co., Inc. Beam focusing and reflective optics
KR102313345B1 (ko) 2014-10-02 2021-10-15 삼성전자주식회사 광대역 광원 및 이를 구비하는 광학 검사장치
KR102016452B1 (ko) * 2017-12-27 2019-08-30 한양대학교 에리카산학협력단 타원해석기
KR102029824B1 (ko) * 2018-04-11 2019-10-08 조선대학교산학협력단 타원계측기 기반의 다채널 광 계측기
RU2688961C1 (ru) * 2018-07-06 2019-05-23 Федеральное государственное унитарное предприятие "Центральный аэрогидродинамический институт имени профессора Н.Е. Жуковского" (ФГУП "ЦАГИ") Устройство для измерения двунаправленного коэффициента яркости инфракрасного излучения материалов
US11035790B2 (en) * 2018-12-31 2021-06-15 Industrial Cooperation Foundation Chonbuk National University Inspection apparatus and inspection method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5859424A (en) * 1997-04-08 1999-01-12 Kla-Tencor Corporation Apodizing filter system useful for reducing spot size in optical measurements and other applications

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3799679A (en) * 1972-06-27 1974-03-26 Ppg Industries Inc Glass distortion scanning system
US3857637A (en) * 1973-01-10 1974-12-31 Ppg Industries Inc Surface distortion analyzer
JPS5414953B2 (fr) 1973-04-13 1979-06-11
US5329357A (en) * 1986-03-06 1994-07-12 Sopra-Societe De Production Et De Recherches Appliquees Spectroscopic ellipsometry apparatus including an optical fiber
FR2595471B1 (fr) 1986-03-06 1988-06-10 Production Rech Appliquees Dispositif d'ellipsometrie spectroscopique a fibres optiques
DE4013211A1 (de) 1990-04-25 1991-10-31 Fraunhofer Ges Forschung Ellipsometer
FR2685962B1 (fr) * 1992-01-07 1994-05-20 Centre Nal Recherc Scientifique Ellipsometre infrarouge.
US6353477B1 (en) * 1992-09-18 2002-03-05 J. A. Woollam Co. Inc. Regression calibrated spectroscopic rotating compensator ellipsometer system with pseudo-achromatic retarder system
US5706212A (en) * 1996-03-20 1998-01-06 Board Of Regents Of University Of Nebraska Infrared ellipsometer/polarimeter system, method of calibration, and use thereof
US5805285A (en) 1992-09-18 1998-09-08 J.A. Woollam Co. Inc. Multiple order dispersive optics system and method of use
US5764365A (en) 1993-11-09 1998-06-09 Nova Measuring Instruments, Ltd. Two-dimensional beam deflector
JP3311497B2 (ja) * 1994-06-29 2002-08-05 日本電子株式会社 フーリエ変換分光位相変調偏光解析法
US5546179A (en) * 1994-10-07 1996-08-13 Cheng; David Method and apparatus for mapping the edge and other characteristics of a workpiece
US6088104A (en) * 1994-12-02 2000-07-11 Veridian Erim International, Inc. Surface characterization apparatus
US5608526A (en) * 1995-01-19 1997-03-04 Tencor Instruments Focused beam spectroscopic ellipsometry method and system
FR2737779B1 (fr) 1995-08-11 1997-09-12 Soc D Production Et De Rech Ap Dispositif ellipsometre a haute resolution spatiale
US5638178A (en) * 1995-09-01 1997-06-10 Phase Metrics Imaging polarimeter detector for measurement of small spacings
US5963327A (en) 1998-03-03 1999-10-05 J.A. Woollam Co. Inc. Total internal reflection electromagnetic radiation beam entry to, and exit from, ellipsometer, polarimeter, reflectometer and the like systems
US5969818A (en) 1998-03-03 1999-10-19 J. A. Woollam Co. Inc. Beam folding optics system and method of use with application in ellipsometry and polarimetry
DE19547787C1 (de) * 1995-12-20 1997-04-17 Siemens Ag Zweistrahl-Gasanalysator und Verfahren zu seiner Kalibrierung
US5646733A (en) * 1996-01-29 1997-07-08 Medar, Inc. Scanning phase measuring method and system for an object at a vision station
JP3677868B2 (ja) * 1996-05-28 2005-08-03 松下電工株式会社 光学式変位測定装置
US5877859A (en) * 1996-07-24 1999-03-02 Therma-Wave, Inc. Broadband spectroscopic rotating compensator ellipsometer
US5822035A (en) 1996-08-30 1998-10-13 Heidelberg Engineering Optische Messysteme Gmbh Ellipsometer
JPH10125753A (ja) * 1996-09-02 1998-05-15 Murata Mfg Co Ltd 半導体のキャリア濃度測定方法、半導体デバイス製造方法及び半導体ウエハ
US6166808A (en) * 1996-12-24 2000-12-26 U.S. Philips Corporation Optical height meter, surface-inspection device provided with such a height meter, and lithographic apparatus provided with the inspection device
EP1012571A1 (fr) * 1997-07-11 2000-06-28 Therma-Wave Inc. Dispositif permettant d'analyser des couches minces empilees sur des semi-conducteurs
US6392749B1 (en) * 1997-09-22 2002-05-21 Candela Instruments High speed optical profilometer for measuring surface height variation
US6031615A (en) * 1997-09-22 2000-02-29 Candela Instruments System and method for simultaneously measuring lubricant thickness and degradation, thin film thickness and wear, and surface roughness
JP3866849B2 (ja) * 1998-01-27 2007-01-10 大塚電子株式会社 偏光解析装置
US5917594A (en) * 1998-04-08 1999-06-29 Kla-Tencor Corporation Spectroscopic measurement system using an off-axis spherical mirror and refractive elements
EP0950881A3 (fr) * 1998-04-17 2000-08-16 NanoPhotonics AG Méthode et dispositif pour l'ajustage automatique d'échantillons relativement à un ellipsomètre
US6031614A (en) 1998-12-02 2000-02-29 Siemens Aktiengesellschaft Measurement system and method for measuring critical dimensions using ellipsometry
US6184984B1 (en) * 1999-02-09 2001-02-06 Kla-Tencor Corporation System for measuring polarimetric spectrum and other properties of a sample
US6804003B1 (en) * 1999-02-09 2004-10-12 Kla-Tencor Corporation System for analyzing surface characteristics with self-calibrating capability
US6268916B1 (en) * 1999-05-11 2001-07-31 Kla-Tencor Corporation System for non-destructive measurement of samples
US6097482A (en) * 1999-06-08 2000-08-01 Philip Morris Incorporated High speed flaw detecting system for reflective material
US6088092A (en) * 1999-06-21 2000-07-11 Phase Metrics, Inc. Glass substrate inspection apparatus
US6710881B1 (en) * 1999-09-28 2004-03-23 Nanyang Technological University Heterodyne interferometry for small spacing measurement
US6469788B2 (en) * 2000-03-27 2002-10-22 California Institute Of Technology Coherent gradient sensing ellipsometer
US6787745B2 (en) * 2001-01-09 2004-09-07 Avanex Corporation Fiber optic signal detector with two switchable input channels
US6856384B1 (en) * 2001-12-13 2005-02-15 Nanometrics Incorporated Optical metrology system with combined interferometer and ellipsometer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5859424A (en) * 1997-04-08 1999-01-12 Kla-Tencor Corporation Apodizing filter system useful for reducing spot size in optical measurements and other applications

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO0206780A1 *

Also Published As

Publication number Publication date
US6819423B2 (en) 2004-11-16
AU2001270701A1 (en) 2002-01-30
KR100846474B1 (ko) 2008-07-17
US7230701B2 (en) 2007-06-12
FR2811761A1 (fr) 2002-01-18
JP2004504591A (ja) 2004-02-12
EP1301763A2 (fr) 2003-04-16
WO2002006779A3 (fr) 2002-03-28
KR20030026322A (ko) 2003-03-31
AU2001276456A1 (en) 2002-01-30
FR2811761B1 (fr) 2002-10-11
WO2002006779A2 (fr) 2002-01-24
JP2004504590A (ja) 2004-02-12
WO2002006780A1 (fr) 2002-01-24
KR20030022292A (ko) 2003-03-15
US20040027571A1 (en) 2004-02-12
US20040070760A1 (en) 2004-04-15

Similar Documents

Publication Publication Date Title
EP1301764A1 (fr) Ellipsometre a haute resolution spatiale fonctionnant dans l'infrarouge
EP2917688B1 (fr) Procede de mesure des variations d'epaisseur d'une couche d'une structure semi-conductrice multicouche
EP3394560A1 (fr) Dispositif et procede de mesure de hauteur en presence de couches minces
EP0974042B1 (fr) Polarimetre et procede de mesure correspondant
EP2734884A1 (fr) Dispositif optique d'éclairage conoscopique a cone creux pour microscope optique et procédé de microscopie optique en conoscopie
JP3360822B2 (ja) 同時多数角度/多数波長の楕円偏光器および方法
JP2022521489A (ja) 空間的に変化する偏光回転子および偏光子を用いた高感度粒子検出
WO2016146460A1 (fr) Dispositif et procede pour detecter des defauts dans des zones de liaison entre des echantillons tels que des wafers
FR2726365A1 (fr) Dispositif d'analyse spectrale a filtrages complementaires combines, en particulier de spectrometrie raman
EP3513171B1 (fr) Dispositif optique de caractérisation d'un échantillon
EP0402191B1 (fr) Procédé et dispositif de mesure de largeur de traits à balayage optique
FR2737779A1 (fr) Dispositif ellipsometre a haute resolution spatiale
FR3090863A1 (fr) Appareil et procédé de micro-spectrométrie à balayage de faisceau lumineux
EP1532432B1 (fr) Supports anti-reflechissants pour la lumiere polarisee en reflexion
EP1682879A2 (fr) Utilisation de la transformee de fourier optique pour le controle dimensionnel en microelectronique
FR3087539A1 (fr) Instrument de mesure avec systeme de visualisation du spot de mesure et accessoire de visualisation pour un tel instrument de mesure
EP3575774B1 (fr) Procédé d'observation de particules, en particulier des particules submicroniques
FR3120443A1 (fr) Dispositif optique reflectometrique a balayage angulaire incline de surfaces cibles et procede de mesure associe
FR2542084A1 (fr) Spectrometre interferometrique
George et al. Nanowire grid polarizers for mid-and long-wavelength infrared applications
WO2023222815A1 (fr) Appareil et procédé de spectrométrie raman ou de fluorescence à analyse instantanée de polarisation
FR3059156A1 (fr) Module de detection optique
CH291561A (fr) Interféromètre comportant une surface séparatrice semi-réfléchissante.
FR2866709A1 (fr) Dispositif perfectionne de mesure non destructive par rayons x de caracteristiques d'echantillon, en reflectivite rasante
FR2860298A1 (fr) Ellipsometre spectroscopique a polarisation incidente et analyseur fixes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030109

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: LUTTMANN, MICHEL

Inventor name: BOHER, PIERRE

Inventor name: STEHLE, JEAN-LOUIS

17Q First examination report despatched

Effective date: 20091126

REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

APBK Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNE

APBN Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2E

APAF Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNE

APBT Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9E

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20131022