EP0918364B1 - Phosphate additives for non-aqueous electrolyte in alkali metal electrochemical cells - Google Patents

Phosphate additives for non-aqueous electrolyte in alkali metal electrochemical cells Download PDF

Info

Publication number
EP0918364B1
EP0918364B1 EP98308674A EP98308674A EP0918364B1 EP 0918364 B1 EP0918364 B1 EP 0918364B1 EP 98308674 A EP98308674 A EP 98308674A EP 98308674 A EP98308674 A EP 98308674A EP 0918364 B1 EP0918364 B1 EP 0918364B1
Authority
EP
European Patent Office
Prior art keywords
pulse
phosphate
electrochemical cell
cell according
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98308674A
Other languages
German (de)
French (fr)
Other versions
EP0918364A1 (en
Inventor
Hong Gan
Esther S. Takeuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Greatbatch Ltd
Original Assignee
Greatbatch Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Greatbatch Ltd filed Critical Greatbatch Ltd
Publication of EP0918364A1 publication Critical patent/EP0918364A1/en
Application granted granted Critical
Publication of EP0918364B1 publication Critical patent/EP0918364B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
    • H01M6/168Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte by additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/50Methods or arrangements for servicing or maintenance, e.g. for maintaining operating temperature
    • H01M6/5088Initial activation; predischarge; Stabilisation of initial voltage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
    • H01M6/164Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte by the solvent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making

Definitions

  • the present invention generally relates to an alkali metal electrochemical cell, and more particularly, to an alkali metal cell suitable for current pulse discharge applications with reduced or no appreciable voltage delay. Still more particularly, the present invention relates to a lithium electrochemical cell activated with an electrolyte having an additive for the purpose of reducing and/or eliminating voltage delay under current pulse discharge applications. Voltage delay is a phenomenon typically exhibited in an alkali metal/transition metal oxide cell, and particularly, a lithium/silver vanadium oxide cell, that has been depleted of 40% to 70% of its capacity and is subjected to current pulse discharge applications.
  • the preferred additive to the activating electrolyte for such a chemistry is a phosphate compound.
  • Fig. 1 is a graph showing an illustrative discharge curve 10 as a typical or "ideal" response of a cell during the application of a series of pulses as a pulse train that does not exhibit voltage delay.
  • the voltage response of a cell which exhibits voltage delay during the application of a short duration pulse or during a pulse train can take one or both of two forms.
  • One form is that the leading edge potential of the first pulse is lower than the end edge potential of the first pulse.
  • the second form of voltage delay is that the minimum potential of the first pulse is lower than the minimum potential of the last pulse when a series of pulses have been applied.
  • Fig. 2 is a graph showing an illustrative discharge curve 12 as the voltage response of a cell that exhibits both forms of voltage delay.
  • the initial drop in cell potential during the application of a short duration pulse reflects the resistance of the cell, i.e., the resistance due to the cathode-electrolyte interphase and the anode-electrolyte interphase and due to polarization.
  • the resistance due to passivated films on the anode and/or cathode is negligible.
  • the formation of a surface film is unavoidable for alkali metal, and in particular, lithium metal anodes, and for lithium intercalated carbon anodes, due to their relatively low potential and high reactivity towards organic electrolytes.
  • the ideal anode surface film should be electrically insulating and ionically conducting.
  • the second requirement is difficult to achieve.
  • the resistance of these films is not negligible, and as a result, impedance builds up inside the cell due to this surface layer formation which often results in reduced discharge voltage and reduced cell capacity.
  • the drop in potential between the background voltage and the lowest voltage under pulse discharge conditions, excluding voltage delay is an indication of the conductivity of the cell, i.e., the conductivity of the cathode, anode, electrolyte, and surface films, while the gradual decrease in cell potential during the application of the pulse train is due to the polarization of the electrodes and electrolyte.
  • the present invention is directed to the provision of organic phosphate additives in the electrolyte of an alkali metal electrochemical cell to beneficially modify the anode surface film.
  • the phosphate additives are defined herein as organic phosphate monoester, diester or triester compounds or phosphoric acid provided as a co-solvent with commonly used organic aprotic solvents.
  • the organic phosphate additives are in a condensed phase which makes them easy to handle in electrolyte preparation.
  • the phosphate additives interact with the alkali metal anode to form an ionically conductive surface protective layer thereon.
  • the conductive surface layer improves the discharge performance of the alkali metal electrochemical cell and minimizes or even eliminates voltage delay in the high current pulse discharge of such cells.
  • the object of the present invention is to improve the pulse discharge performance of an alkali metal electrochemical cell, and more particularly a primary lithium electrochemical cell, by the provision of at least-one of a family of phosphate additives, preferably a monoester, a diester or triester compound as a co-solvent in the cell's activating nonaqueous electrolyte solution.
  • a family of phosphate additives preferably a monoester, a diester or triester compound as a co-solvent in the cell's activating nonaqueous electrolyte solution.
  • the phosphate additives compete effectively with the other electrolyte cosolvents or the solute to react with the lithium anode.
  • Lithium phosphate or the lithium salt of phosphate reduction products are believed to be the major reaction products.
  • These lithium salts are believed to deposit on the anode surface to form an ionically conductive protective film thereon.
  • the chemical composition and perhaps the morphology of the anode surface protective layer is changed, and this proves beneficial to the discharge characteristics of the cell.
  • the present invention is directed to the introduction of at least one phosphate additive into the electrolyte of a lithium/silver vanadium oxide electrochemical cell for the purpose of reducing and/or eliminating voltage delay during pulse discharging applications.
  • Alkali metal/transition metal oxide electrochemical systems are typically activated with an electrolyte comprising a relatively low viscosity solvent and a relatively high permittivity solvent.
  • the solute of the electrolyte is an inorganic alkali metal salt wherein the alkali metal of the salt is the same as the alkali metal of the anode.
  • the phosphate compound of the present invention is introduced into the electrolyte as an additive to interact with the alkali metal anode, and particularly with the lithium anode, to form an ionically conductive protective anode surface layer which improves the discharge performance of the cell, and minimizes or even eliminates voltage delay in current pulse discharge conditions. Therefore, the present invention is directed to a novel electrolyte solution provided in operative association with an electrochemical system incorporated into a defibrillator battery to minimize or even eliminate voltage delay under high current pulse discharge conditions.
  • Fig. 1 is a graph showing an illustrative pulse discharge curve 10 of an exemplary electrochemical cell that does not exhibit voltage delay.
  • Fig. 2 is a graph showing an illustrative pulse discharge curve 12 of an exemplary electrochemical cell that exhibits voltage delay.
  • Figs. 3 to 8 are graphs constructed from the pulse train waveforms of Li/SVO cells activated with a nonaqueous electrolyte having concentrations of dibenzyl phosphate ranging from 0.00M to 0.20M dissolved therein.
  • pulse means a short burst of electrical current of a significantly greater amplitude than that of a prepulse current immediately prior to the pulse.
  • a pulse train consists of at least two pulses of electrical current delivered in relatively short succession with or without open circuit rest between the pulses.
  • the electrochemical cell of the present invention includes an anode selected from Groups IA, IIA or IIIB of the Periodic Table of Elements, including lithium, sodium, potassium, etc., and their alloys and intermetallic compounds including, for example Li-Si, Li-B and Li-Si-B alloys and intermetallic compounds.
  • the preferred anode comprises lithium, and the more preferred anode comprises a lithium alloy, the preferred lithium alloy being a lithium-aluminum alloy. The greater the amount of aluminum present by weight in the alloy, however, the lower the energy density of the cell.
  • the form of the anode may vary, but preferably the anode is a thin metal sheet or foil of the anode metal, pressed or rolled on a metallic anode current collector, i.e., preferably comprising nickel, to form an anode component.
  • the anode component has an extended tab or lead of the same material as the anode current collector, i.e., preferably nickel, integrally formed therewith such as by. welding and contacted by a weld to a cell case of conductive metal in a case-negative electrical configuration.
  • the anode may be formed in some other geometry, such as a bobbin shape, cylinder or pellet to allow an alternate low surface cell design.
  • the cathode is preferably of a solid material and the electrochemical reaction at the cathode involves conversion of ions which migrate from the anode to the cathode in atomic or molecular forms.
  • the solid cathode material may comprise a metal, a metal oxide, a mixed metal oxide, a metal sulfide or a carbonaceous compound, and combinations thereof.
  • the metal oxide, the mixed metal oxide and the metal sulfide can be formed by the chemical addition, reaction, or otherwise intimate contact of various metal oxides, metal sulfides and/or metal elements, preferably during thermal treatment, sol-gel formation, chemical vapor deposition or hydrothermal synthesis in mixed states.
  • the active materials thereby produced contain metals, oxides and sulfides of Groups IB, IIB, IIIB, IVB, VB, VIB, VIIB and VIII, which includes the noble metals and/or other oxide and sulfide compounds.
  • One preferred mixed metal oxide has the general formula SM x V 2 O y wherein SM is a metal selected from Groups IB to VIIB and VIII of the Periodic Table of Elements, wherein x is about 0.30 to 2.0 and y is about 4.5 to 6.0 in the general formula.
  • SVO silver vanadium oxide
  • Another preferred composite cathode active material includes V 2 O z wherein z ⁇ 5 combined with Ag 2 O with the silver in either the silver(II), silver(I) or silver(0) oxidation state and CuO with the copper in either the copper(II), copper(I) or copper(0) oxidation state to provide the mixed metal oxide having the general formula Cu x Ag y V 2 O z , (CSVO).
  • this composite cathode active material may be described as a metal oxide-metal oxide-metal oxide, a metal-metal oxide-metal oxide, or a metal-metal-metal oxide and the range of material compositions found for Cu x Ag y V 2 O z is preferably about 0.01 ⁇ x ⁇ 1.0, about 0.01 ⁇ y ⁇ 1.0 and about 5.01 ⁇ z ⁇ 6.5.
  • Typical forms of CSVO are Cu 0.16 Ag 0.67 V 2 O z with z being about 5.5 and Cu 0.5 Ag 0.5 V 2 O z with z being about 5.75.
  • the oxygen content is designated by z since the exact stoichiometric proportion of oxygen in CSVO can vary depending on whether the cathode material is prepared in an oxidizing atmosphere such as air or oxygen, or in an inert atmosphere such as argon, nitrogen and helium.
  • an oxidizing atmosphere such as air or oxygen
  • an inert atmosphere such as argon, nitrogen and helium.
  • cathode active materials include manganese dioxide, lithium cobalt oxide, lithium nickel oxide, copper vanadium oxide, titanium disulfide, copper oxide, copper sulfide, iron sulfide, iron disulfide, and fluorinated carbon, and mixtures thereof.
  • the cathode comprises from about 80 to about 99 weight percent of the cathode active material.
  • Cathode active materials prepared as described above are preferably mixed with a binder material such as a powdered fluoro-polymer, more preferably powdered polytetrafluoroethylene or powdered polyvinylidene fluoride present at about 1 to about 5 weight percent of the cathode mixture. Further, up to about 10 weight percent of a conductive diluent is preferably added to the cathode mixture to improve conductivity. Suitable materials for this purpose include acetylene black, carbon black and/or graphite or a metallic powder such as powdered nickel, aluminum, titanium and stainless steel.
  • the preferred cathode active mixture thus includes a powdered fluoro-polymer binder present at about 3 weight percent, a conductive diluent present at about 3 weight percent and about 94 weight percent of the cathode active material.
  • the cathode active mixture may be in the form of one or more plates operatively associated with at least one or more plates of anode material, or in the form of a strip wound with a corresponding strip of anode material in a structure similar to a "jellyroll".
  • the cathode is separated from the Group IA, IIA or IIIB anode material by a suitable separator material.
  • the separator is of electrically insulative material, and the separator material also is chemically unreactive with the anode and cathode active materials and both chemically unreactive with and insoluble in the electrolyte.
  • the separator material has a degree of porosity sufficient to allow flow therethrough of the electrolyte during the electrochemical reaction of the cell.
  • Illustrative separator materials include woven and non-woven fabrics of polyolefinic fibers or fluoropolymeric fibers including polyvinylidene fluoride, polyethylenetetrafluoroethylene, and polyethylenechlorotrifluoroethylene laminated or superposed with a polyolefinic or a fluoropolymeric microporous film.
  • Suitable microporous films include a polytetrafluoroethylene membrane commercially available under the designation ZITEX (Chemplast Inc.), polypropylene membrane commercially available under the designation CELGARD (Celanese Plastic Company, Inc.) and a membrane commercially available under the designation DEXIGLAS (C.H. Dexter, Div., Dexter Corp.).
  • the separator may also be composed of non-woven glass, glass fiber materials and ceramic materials.
  • the form of the separator typically is a sheet which is placed between the anode and cathode electrodes and in a manner preventing physical contact therebetween.
  • Such is the case when the anode is folded in a serpentine-like structure with a plurality of cathode plates disposed intermediate the anode folds and received in a cell casing or when the electrode combination is rolled or otherwise formed into-a cylindrical "jellyroll" configuration.
  • the electrochemical cell of the present invention further includes a nonaqueous, ionically conductive electrolyte operatively associated with the anode and the cathode electrodes.
  • the electrolyte serves as a medium for migration of ions between the anode and the cathode during the electrochemical reactions of the cell and nonaqueous solvents suitable for the present invention are chosen so as to exhibit those physical properties necessary for ionic transport (low viscosity, low surface tension and wettability).
  • Suitable nonaqueous solvents are comprised of an inorganic salt dissolved in a nonaqueous solvent and more preferably an alkali metal salt dissolved in a mixture of aprotic organic solvents comprising a low viscosity solvent including organic esters, ethers and dialkyl carbonates, and mixtures thereof, and a high permittivity solvent including cyclic carbonates, cyclic esters and cyclic amides, and mixtures thereof.
  • Low viscosity solvents include tetrahydrofuran (THF), methyl acetate (MA), diglyme, triglyme, tetraglyme, 1,2-dimethoxyethane (DME), 1,2-diethoxyethane (DEE), 1-ethoxy, 2-methoxyethane (EME), dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate (DPC), ethyl methyl carbonate (EMC), methyl propyl carbonate (MPC) and ethyl propyl carbonate (EPC), and mixtures thereof.
  • THF tetrahydrofuran
  • MA 1,2-dimethoxyethane
  • DEE 1,2-diethoxyethane
  • EME dimethyl carbonate
  • DEC diethyl carbonate
  • DPC dipropyl carbonate
  • EMC ethyl methyl carbonate
  • MPC methyl propyl carbonate
  • EPC ethy
  • High permittivity solvents include propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), acetonitrile, dimethyl sulfoxide,- dimethyl formamide, dimethyl acetamide, ⁇ -butyrolactone (GBL) and N-methyl-pyrrolidinone (NMP), and mixtures thereof.
  • PC propylene carbonate
  • EC ethylene carbonate
  • BC butylene carbonate
  • acetonitrile dimethyl sulfoxide
  • GBL ⁇ -butyrolactone
  • NMP N-methyl-pyrrolidinone
  • the preferred electrolyte comprises an inorganic alkali metal salt, and in the case of an anode comprising lithium, the alkali metal salt of the electrolyte is a lithium based salt.
  • Known lithium salts that are useful as a vehicle for transport of alkali metal ions from the anode to the cathode include LiPF 6 , LiBF 4 , LiAsF 6 , LiSbF 6 , LiClO 4 , LiAlCl 4 , LiGaCl 4 -, LiC(SO 2 CF 3 ) 3 , LiN(SO 2 CF 3 ) 2 , LiSCN, LiO 3 SCF 2 CF 3 , LiC 6 F 5 SO 3 , LiO 2 CF 3 , LiSO 3 F, LiB(C 6 H 5 ) 4 and LiCF 3 SO 3 , and mixtures thereof.
  • Suitable salt concentrations typically range between about 0.8 to 1.5 molar, and a preferred electrolyte for a lithium/transition metal oxide electrochemical cell includes LiAsF 6 or LiPF 6 dissolved in a 50:50 mixture, by volume, of PC and DME.
  • At least one organic phosphate additive is provided as a co-solvent in the electrolyte solution of the previously described alkali metal electrochemical cell.
  • dimethyl phosphate, diethyl phosphate, dipropyl phosphate, dibutyl phosphate, diphenyl phosphate, dibenzyl phosphate, diallyl phosphate, monomethyl phosphate, mono-ethyl phosphate, mono-propyl phosphate, mono-butyl phosphate, mono-phenyl phosphate, mono-benzyl phosphate and mixtures thereof are used as additives in the electrolyte.
  • the anode is lithium metal and the cathode is preferably the transition mixed metal oxide AgV 2 O 5.5 (SVO).
  • the preferred electrolyte is 1.0M to 1.2M LiAsF 6 dissolved in an aprotic solvent mixture comprising at least one of the above listed low viscosity solvents and at least one of the above listed high permittivity solvents.
  • the preferred aprotic solvent mixture comprises a 50/50, by volume, mixture of propylene carbonate and dimethoxyethane.
  • concentration of the above discussed phosphate additives according to the present invention should preferably be in the range of between about 0.001M to about 0.40M.
  • an implantable cardiac defibrillator is a device that requires a power source for a generally medium rate, constant resistance load component provided by circuits performing such functions as, for example, the heart sensing and pacing functions. From time to time, the cardiac defibrillator may require a generally high rate, pulse discharge load component that occurs, for example, during charging of a capacitor in the defibrillator for the purpose of delivering an electrical shock to the heart to treat tachyarrhythmias, the irregular, rapid heart beats that can be fatal if left uncorrected. Reduction and even elimination of voltage delay during a current pulse application is important for proper device operation and extended device life.
  • the assembly of the cell described herein is preferably in the form of a wound element cell. That is, the fabricated cathode, anode and separator are wound together in a "jellyroll" type configuration or “wound element cell stack" such that the anode is on the outside of the roll to make electrical contact with the cell case in a case-negative configuration.
  • the wound cell stack is inserted into a metallic case of a suitable size dimension.
  • the metallic case may comprise materials such as stainless steel, mild steel, nickel-plated mild steel, titanium, tantalum or aluminum, but not limited thereto, so long as the metallic material is compatible for use with components of the cell.
  • the cell header comprises a metallic disc-shaped body with a first-hole to accommodate a glass-to-metal seal/terminal pin feedthrough and a second hole for electrolyte filling.
  • the glass used is of a corrosion resistant type having up to about 50% by weight silicon such as CABAL 12, TA 23 or FUSITE 425 or FUSITE 435.
  • the positive terminal pin feedthrough preferably comprises titanium although molybdenum, aluminum, nickel alloy, or stainless steel can also be used.
  • the cell header comprises elements having compatibility with the other components of the electrochemical cell and is resistant to corrosion.
  • the cathode lead is welded to the positive terminal pin in the glass-to-metal seal and the header is welded to the case containing the electrode stack.
  • the cell is thereafter filled with the electrolyte solution comprising at least one of the phosphate additives described hereinabove and hermetically sealed such as by close-welding a stainless steel ball over the fill hole, but not limited thereto.
  • the above assembly describes a case-negative cell, which is the preferred construction of the exemplary cell of the present invention.
  • the exemplary electrochemical system of the present invention can also be constructed in a case-positive configuration.
  • Lithium anode material was pressed on nickel current collector screen and silver vanadium oxide cathode material was pressed on titanium current collector screen.
  • a prismatic cell stack assembly configuration with two layers of microporous membrane propylene separator sandwiched between the anode and cathode was prepared.
  • the electrode assembly was then hermetically sealed in a stainless steel casing in a case-negative configuration.
  • Three cells were activated with the standard electrolyte consisting of 1.0M LiAsF 6 dissolved in a 50:50, by volume, mixture of PC and DME without an organic phosphate additive (Group 1).
  • DBP dibenzyl phosphate
  • a constant resistance load of 3.57 k ⁇ was applied to all of the cells for 21 hours during an initial predischarge burn-in period.
  • the predischarge period is referred to as burn-in and depleted the cells of approximately 1% of their theoretical capacity.
  • the cells were subjected to acceptance pulse testing consisting of four 10 second pulses (23.2 mA/cm 2 ) with a 15 second rest between each pulse.
  • the average discharge readings for the pre-pulse potentials, voltage delay and pulse minimum potentials during acceptance pulse testing for these pulse trains are summarized in Table 2.
  • pulse train 4 only the group 1 cells exhibited voltage delay while none of the other cells with the DBP additive exhibited voltage delay. In pulse train 4, all of the cells having the DBP additive exhibited greater pulse 1 minimum potentials than those of the cells without the DBP additive. However, the group 1 cells devoid of the DBP additive still had the greatest pulse 4 minimum potentials.
  • Figs. 6 to 8 wherein curve 30 was constructed from the pulse train 5 waveform of a representative group 4 cell activated with the electrolyte having the DBP additive at a concentration of 0.05M, curve 32 in Fig. 7 was constructed from the pulse train 5 waveform of the representative 5 cell activated with the electrolyte having the DBP additive at a concentration of 0.10M and curve 34 in Fig. 8 was constructed from the pulse train 5 waveform of a representative group 6 cell activated with the electrolyte having the DBP additive at a concentration of 0.20M. Moreover, among the groups 1 to 3 cells, the greater the DBP concentration, the lower the voltage delay. In pulse train 5, all of the cells having the DBP additive exhibited higher pulse 1 and pulse 4 minimum potentials than those of the group 1 cells. The best performance was observed for the group 4 cells with 0.05M DBP.
  • pulse train 6 only the group 3 cells exhibited some voltage delay while all other groups of cells exhibited no voltage delay. Also, in pulse train 6, except for the group 2 and 3 cells with relatively low DBP concentrations, all of the other cells with relatively high DBP concentrations presented greater pulse 1 minimum potentials than that of the group 1 control cells. Furthermore, in pulse train 6, all of the cells with the DBP additive exhibited greater pulse 4 minimum potentials than that of the group 1 control cells. The group 4 cells exhibited the best overall performance.
  • Eighteen cells were constructed in a similar manner as those described in Example I except for the phosphate additive. Specifically, three of the cells were activated with the standard electrolyte consisting of 1.0M LiAsF 6 dissolved in a 50:50, by volume, mixture of PC and DME without an organic phosphate additive (Group 1). Fifteen cells (three cells per group) were activated with the same electrolyte used to activate the Group 1 cells and further containing 0.005M, 0.01M, 0.05M, 0.10M, or 0.20M of trimethyl phosphate (TMP).
  • TMP trimethyl phosphate
  • Example 9 In a similar manner as the cells discharged in Example I, a constant resistance load of 3.57 k ⁇ was applied to all of the cells for 21 hours during an initial predischarge burn-in period. Following burn-in, the cells were subjected to acceptance pulse testing consisting of four 10 second pulses (23.2 mA/cm 2 ) with a 15 second rest between each pulse. The average discharge readings for the pre-pulse potentials, voltage delay and pulse minimum potentials during acceptance pulse testing for these pulse trains are summarized in Table 9.
  • Eighteen cells were constructed in a similar manner as those described in Example I except for the phosphate additive. Specifically, three of the cells were activated with the standard electrolyte consisting of 1.0M LiAsF 6 dissolved in a 50:50, by volume, mixture of PC and DME without an organic phosphate additive (Group 1). Fifteen cells (three cells per group) were activated with the same electrolyte used to activate the Group 1 cells and further containing 0.005M, 0.01M, 0.05M, 0.10M, or 0.20M of triphenyl phosphate (TPP).
  • TPP triphenyl phosphate
  • Example 17 In a similar manner as the cells discharged in Example I, a constant resistance load of 3.57 k ⁇ was applied to all of the cells for 21 hours during an initial predischarge burn-in period. Following burn-in, the cells were subjected to acceptance pulse testing consisting of four 10 second pulses (23.2 mA/cm 2 ) with a 15 second rest between each pulse. The averaged discharge readings for the pre-pulse potentials, voltage delay and pulse minimum potentials during acceptance pulse testing for these pulse trains are summarized in Table 17.
  • Example I demonstrates that if the O-R bond is activated by either R equal to hydrogen (acidic proton) or R equal to benzyl or allyl types of organic groups, an electrically insulating and ionically conducting anode surface film is obtain.
  • R methyl or phenyl
  • the reduction of the phosphate additive by the lithium anode does not result in the O-R bond cleavage to form an O-Li salt product.
  • the R group in the phosphate additive is hydrogen (acidic proton), it will react with lithium metal to form an O-Li bond directly.
  • the concentration limit for the phosphate additive is preferably about 0.001M to about 0.40M.
  • the beneficial effect of the phosphate additive will not be apparent if the additive concentration is less than about 0.001M. On the other hand, if the additive concentration is greater than about 0.40M, the beneficial effect of the additive will be cancelled by the detrimental effect of higher internal cell resistance due to the thicker anode surface film formation and lower electrolyte conductivity.
  • the existence of voltage delay is due to the formation of an anode surface passivation layer that is ionically less conductive than either the anode material itself or the electrolyte solution.
  • This surface film is ionically more conductive than the film formed in the absence of the additives and it is responsible for the increased cell performance, especially during pulse discharge applications.
  • diminished voltage delay results when an alkali metal/transition metal oxide couple activated with a nonaquous organic solvent having a phosphate additive dissolved therein according to the present invention is subjected to a pulse discharge application. This is particularly important in implantable medical devices powered by a cell according to the present invention.

Description

    BACKGROUND OF INVENTION 1. Field of the Invention
  • The present invention generally relates to an alkali metal electrochemical cell, and more particularly, to an alkali metal cell suitable for current pulse discharge applications with reduced or no appreciable voltage delay. Still more particularly, the present invention relates to a lithium electrochemical cell activated with an electrolyte having an additive for the purpose of reducing and/or eliminating voltage delay under current pulse discharge applications. Voltage delay is a phenomenon typically exhibited in an alkali metal/transition metal oxide cell, and particularly, a lithium/silver vanadium oxide cell, that has been depleted of 40% to 70% of its capacity and is subjected to current pulse discharge applications. According to the present invention, the preferred additive to the activating electrolyte for such a chemistry is a phosphate compound.
  • The voltage response of a cell which does not exhibit voltage delay during the application of a short duration pulse or pulse train has distinct features. First, the cell potential decreases throughout the application of the pulse until it reaches a minimum at the end of the pulse, and second, the minimum potential of the first pulse in a series of pulses is higher than the minimum potential of the last pulse. Fig. 1 is a graph showing an illustrative discharge curve 10 as a typical or "ideal" response of a cell during the application of a series of pulses as a pulse train that does not exhibit voltage delay.
  • On the other hand, the voltage response of a cell which exhibits voltage delay during the application of a short duration pulse or during a pulse train can take one or both of two forms. One form is that the leading edge potential of the first pulse is lower than the end edge potential of the first pulse. In other words, the voltage of the cell at the instant the first pulse is applied is lower than the voltage of the cell immediately before the first pulse is removed. The second form of voltage delay is that the minimum potential of the first pulse is lower than the minimum potential of the last pulse when a series of pulses have been applied. Fig. 2 is a graph showing an illustrative discharge curve 12 as the voltage response of a cell that exhibits both forms of voltage delay.
  • The initial drop in cell potential during the application of a short duration pulse reflects the resistance of the cell, i.e., the resistance due to the cathode-electrolyte interphase and the anode-electrolyte interphase and due to polarization. In the absence of voltage delay, the resistance due to passivated films on the anode and/or cathode is negligible. However, the formation of a surface film is unavoidable for alkali metal, and in particular, lithium metal anodes, and for lithium intercalated carbon anodes, due to their relatively low potential and high reactivity towards organic electrolytes. Thus, the ideal anode surface film should be electrically insulating and ionically conducting. While most alkali metal, and in particular, lithium electrochemical systems meet the first requirement, the second requirement is difficult to achieve. In the event of voltage delay, the resistance of these films is not negligible, and as a result, impedance builds up inside the cell due to this surface layer formation which often results in reduced discharge voltage and reduced cell capacity. In other words, the drop in potential between the background voltage and the lowest voltage under pulse discharge conditions, excluding voltage delay, is an indication of the conductivity of the cell, i.e., the conductivity of the cathode, anode, electrolyte, and surface films, while the gradual decrease in cell potential during the application of the pulse train is due to the polarization of the electrodes and electrolyte.
  • Thus, the existence of voltage delay is an undesirable characteristic of alkali metal/mixed metal oxide cells subjected to current pulse discharge conditions in terms of its influence on devices such as medical devices including implantable pacemakers and cardiac defibrillators. Voltage delay is undesirable because it limits the effectiveness and even the proper functioning of both the cell and the associated electrically powered device under current pulse discharge conditions.
  • 2. Prior Art
  • One of the known solutions to the above problem is to saturate the electrolyte solution with carbon dioxide CO2. Cycling efficiency is-improved dramatically in secondary cell systems having a lithium anode activated with CO2 saturated electrolytes (V.R. Koch and S.B. Brummer, Electrochimica Acta, 1978, 23, 55-62; U.S. Patent No. 4,853,304 to Ebner et al.; D. Aurbach, Y. Gofer, M. Ben-Zion and P. Aped, J. Electroanal. Chem. 1992, 339, 451-471). U.S. Patent No. 5,569,558 to Takeuchi et al. relates to the provision of a CO2 saturated electrolyte for alleviating the presence of voltage delay in primary cells having a mixed transition metal oxide cathode such as lithium/silver vanadium oxide cells. The same effect is also known for lithium intercalated carbon anode secondary batteries (D. Aurbach, Y. Ein-Eli, O. Chusid, Y. Carmeli, M. Babai and H. Yamin, J. Electrochem. Soc. 1994, 141, 603-611). Sulfur dioxide (SO2) has also been reported to be another additive that improves charge-discharge cycling in rechargeable lithium ion cells (Y. Ein-Eli, S.R. Thomas and V.R. Koch, J. Electrochem. Soc. 1996, 143, L195-L197).
  • In spite of the success of CO2 and SO2 in improving cell discharge characteristics, their use has been limited. One problem associated with both CO2 and SO2 as electrolyte additives is that they are in a gaseous state at room temperature, and are thus difficult to handle. Also, it is difficult to control the dissolved concentration of CO2. Best results are achieved at pressures, of up to 50 psig., which further detracts from the practicality of this additive.
  • Instead of carbon dioxide and sulfur dioxide, the present invention is directed to the provision of organic phosphate additives in the electrolyte of an alkali metal electrochemical cell to beneficially modify the anode surface film. The phosphate additives are defined herein as organic phosphate monoester, diester or triester compounds or phosphoric acid provided as a co-solvent with commonly used organic aprotic solvents. The organic phosphate additives are in a condensed phase which makes them easy to handle in electrolyte preparation. When used as a co-solvent in an activating electrolyte, the phosphate additives interact with the alkali metal anode to form an ionically conductive surface protective layer thereon. The conductive surface layer improves the discharge performance of the alkali metal electrochemical cell and minimizes or even eliminates voltage delay in the high current pulse discharge of such cells.
  • SUMMARY OF THE INVENTION
  • The object of the present invention is to improve the pulse discharge performance of an alkali metal electrochemical cell, and more particularly a primary lithium electrochemical cell, by the provision of at least-one of a family of phosphate additives, preferably a monoester, a diester or triester compound as a co-solvent in the cell's activating nonaqueous electrolyte solution. In particular the present invention provides an electrochemical cell which is dischargeable to deliver a current pulse while exhibiting reduced voltage delay, which comprises a)an anode comprising an alkali metal; b) a solid cathode of electrically conductive material; and c) a nonaqueous electrolyte activating the anode and the cathode, the nonaqueous electrolyte comprising: i) a first solvent selected from the group consisting of an ester, an ether, a dialkyl carbonate, and mixtures thereof; ii) a second solvent selected from the group consisting of a cyclic carbonate, a cyclic ester, a cyclic amide, and mixtures thereof; iii) a phosphate additive having the formula (R2O)P(=O) (OR2) (OR3) wherein R1, R2 and R3 can be a hydrogen atom or a saturated or unsaturated organic group containing 1 to 13 carbon atoms and at least one of R1, R2 and R3 is a hydrogen atom; and iv) an alkali metal salt dissolved therein, wherein the alkali metal of the salt is similar to the alkali metal comprising the anode, and wherein the activated anode and cathode provide the electrochemical cell dischargeable to deliver at least one current pulse of a short duration burst of electrical current of a significantly greater amplitude than that of a prepulse current immediately prior to the pulse such that the pulse one end potential minus the pulse one minimum potential is less than about 0.2 volts. Due to the high reduction potentials of the phosphate group vs. lithium, the phosphate additives compete effectively with the other electrolyte cosolvents or the solute to react with the lithium anode. Lithium phosphate or the lithium salt of phosphate reduction products are believed to be the major reaction products. These lithium salts are believed to deposit on the anode surface to form an ionically conductive protective film thereon. As a consequence, the chemical composition and perhaps the morphology of the anode surface protective layer is changed, and this proves beneficial to the discharge characteristics of the cell.
  • The thusly fabricated cell exhibits reduced or no appreciable voltage delay under current pulse discharge usage, which is an unexpected result. More particularly, the present invention is directed to the introduction of at least one phosphate additive into the electrolyte of a lithium/silver vanadium oxide electrochemical cell for the purpose of reducing and/or eliminating voltage delay during pulse discharging applications. Alkali metal/transition metal oxide electrochemical systems are typically activated with an electrolyte comprising a relatively low viscosity solvent and a relatively high permittivity solvent. The solute of the electrolyte is an inorganic alkali metal salt wherein the alkali metal of the salt is the same as the alkali metal of the anode. The phosphate compound of the present invention is introduced into the electrolyte as an additive to interact with the alkali metal anode, and particularly with the lithium anode, to form an ionically conductive protective anode surface layer which improves the discharge performance of the cell, and minimizes or even eliminates voltage delay in current pulse discharge conditions. Therefore, the present invention is directed to a novel electrolyte solution provided in operative association with an electrochemical system incorporated into a defibrillator battery to minimize or even eliminate voltage delay under high current pulse discharge conditions.
  • These and other objects of the present invention will become increasingly more apparent to those skilled in the art by reference to the following description and to the appended drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Fig. 1 is a graph showing an illustrative pulse discharge curve 10 of an exemplary electrochemical cell that does not exhibit voltage delay.
  • Fig. 2 is a graph showing an illustrative pulse discharge curve 12 of an exemplary electrochemical cell that exhibits voltage delay.
  • Figs. 3 to 8 are graphs constructed from the pulse train waveforms of Li/SVO cells activated with a nonaqueous electrolyte having concentrations of dibenzyl phosphate ranging from 0.00M to 0.20M dissolved therein.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • As used herein, the term "pulse" means a short burst of electrical current of a significantly greater amplitude than that of a prepulse current immediately prior to the pulse. A pulse train consists of at least two pulses of electrical current delivered in relatively short succession with or without open circuit rest between the pulses.
  • The electrochemical cell of the present invention includes an anode selected from Groups IA, IIA or IIIB of the Periodic Table of Elements, including lithium, sodium, potassium, etc., and their alloys and intermetallic compounds including, for example Li-Si, Li-B and Li-Si-B alloys and intermetallic compounds. The preferred anode comprises lithium, and the more preferred anode comprises a lithium alloy, the preferred lithium alloy being a lithium-aluminum alloy. The greater the amount of aluminum present by weight in the alloy, however, the lower the energy density of the cell.
  • The form of the anode may vary, but preferably the anode is a thin metal sheet or foil of the anode metal, pressed or rolled on a metallic anode current collector, i.e., preferably comprising nickel, to form an anode component. In the exemplary cell of the present invention, the anode component has an extended tab or lead of the same material as the anode current collector, i.e., preferably nickel, integrally formed therewith such as by. welding and contacted by a weld to a cell case of conductive metal in a case-negative electrical configuration. Alternatively, the anode may be formed in some other geometry, such as a bobbin shape, cylinder or pellet to allow an alternate low surface cell design.
  • The cathode is preferably of a solid material and the electrochemical reaction at the cathode involves conversion of ions which migrate from the anode to the cathode in atomic or molecular forms. The solid cathode material may comprise a metal, a metal oxide, a mixed metal oxide, a metal sulfide or a carbonaceous compound, and combinations thereof. The metal oxide, the mixed metal oxide and the metal sulfide can be formed by the chemical addition, reaction, or otherwise intimate contact of various metal oxides, metal sulfides and/or metal elements, preferably during thermal treatment, sol-gel formation, chemical vapor deposition or hydrothermal synthesis in mixed states. The active materials thereby produced contain metals, oxides and sulfides of Groups IB, IIB, IIIB, IVB, VB, VIB, VIIB and VIII, which includes the noble metals and/or other oxide and sulfide compounds.
  • One preferred mixed metal oxide has the general formula SMxV2Oy wherein SM is a metal selected from Groups IB to VIIB and VIII of the Periodic Table of Elements, wherein x is about 0.30 to 2.0 and y is about 4.5 to 6.0 in the general formula. By way of illustration, and in no way intended to be limiting, one exemplary cathode active material comprises silver vanadium oxide (SVO) having the general formula AgxV2Oy in any one of its many phases, i.e., β-phase silver vanadium oxide having in the general formula x = 0.35 and y = 5.8, γ-phase silver vanadium oxide having in the general formula x = 0.74 and y = 5.37 and ε-phase silver vanadium oxide having in the general formula x = 1.0 and y = 5.5, and combination and mixtures of phases thereof. For a more detailed description of such a cathode active material reference is made to U.S. Patent No. 4,310,609 to Liang et al., which is assigned to the assignee of the present invention and incorporated herein by reference.
  • Another preferred composite cathode active material includes V2Oz wherein z ≤ 5 combined with Ag2O with the silver in either the silver(II), silver(I) or silver(0) oxidation state and CuO with the copper in either the copper(II), copper(I) or copper(0) oxidation state to provide the mixed metal oxide having the general formula CuxAgyV2Oz, (CSVO). Thus, this composite cathode active material may be described as a metal oxide-metal oxide-metal oxide, a metal-metal oxide-metal oxide, or a metal-metal-metal oxide and the range of material compositions found for CuxAgyV2Oz is preferably about 0.01 ≤ x ≤ 1.0, about 0.01 ≤ y ≤ 1.0 and about 5.01 ≤ z ≤ 6.5. Typical forms of CSVO are Cu0.16Ag0.67V2Oz with z being about 5.5 and Cu0.5Ag0.5V2Oz with z being about 5.75. The oxygen content is designated by z since the exact stoichiometric proportion of oxygen in CSVO can vary depending on whether the cathode material is prepared in an oxidizing atmosphere such as air or oxygen, or in an inert atmosphere such as argon, nitrogen and helium. For a more detailed description of this cathode active material reference is made to U.S. Patent Nos. 5,472,810 to Takeuchi et al. and 5,516,340 to Takeuchi et al., both of which are assigned to the assignee of the present invention and incorporated herein by reference.
  • Additional cathode active materials include manganese dioxide, lithium cobalt oxide, lithium nickel oxide, copper vanadium oxide, titanium disulfide, copper oxide, copper sulfide, iron sulfide, iron disulfide, and fluorinated carbon, and mixtures thereof. Preferably, the cathode comprises from about 80 to about 99 weight percent of the cathode active material.
  • Cathode active materials prepared as described above are preferably mixed with a binder material such as a powdered fluoro-polymer, more preferably powdered polytetrafluoroethylene or powdered polyvinylidene fluoride present at about 1 to about 5 weight percent of the cathode mixture. Further, up to about 10 weight percent of a conductive diluent is preferably added to the cathode mixture to improve conductivity. Suitable materials for this purpose include acetylene black, carbon black and/or graphite or a metallic powder such as powdered nickel, aluminum, titanium and stainless steel. The preferred cathode active mixture thus includes a powdered fluoro-polymer binder present at about 3 weight percent, a conductive diluent present at about 3 weight percent and about 94 weight percent of the cathode active material. The cathode active mixture may be in the form of one or more plates operatively associated with at least one or more plates of anode material, or in the form of a strip wound with a corresponding strip of anode material in a structure similar to a "jellyroll".
  • In order to prevent internal short circuit conditions, the cathode is separated from the Group IA, IIA or IIIB anode material by a suitable separator material. The separator is of electrically insulative material, and the separator material also is chemically unreactive with the anode and cathode active materials and both chemically unreactive with and insoluble in the electrolyte. In addition, the separator material has a degree of porosity sufficient to allow flow therethrough of the electrolyte during the electrochemical reaction of the cell. Illustrative separator materials include woven and non-woven fabrics of polyolefinic fibers or fluoropolymeric fibers including polyvinylidene fluoride, polyethylenetetrafluoroethylene, and polyethylenechlorotrifluoroethylene laminated or superposed with a polyolefinic or a fluoropolymeric microporous film. Suitable microporous films include a polytetrafluoroethylene membrane commercially available under the designation ZITEX (Chemplast Inc.), polypropylene membrane commercially available under the designation CELGARD (Celanese Plastic Company, Inc.) and a membrane commercially available under the designation DEXIGLAS (C.H. Dexter, Div., Dexter Corp.). The separator may also be composed of non-woven glass, glass fiber materials and ceramic materials.
  • The form of the separator typically is a sheet which is placed between the anode and cathode electrodes and in a manner preventing physical contact therebetween. Such is the case when the anode is folded in a serpentine-like structure with a plurality of cathode plates disposed intermediate the anode folds and received in a cell casing or when the electrode combination is rolled or otherwise formed into-a cylindrical "jellyroll" configuration.
  • The electrochemical cell of the present invention further includes a nonaqueous, ionically conductive electrolyte operatively associated with the anode and the cathode electrodes. The electrolyte serves as a medium for migration of ions between the anode and the cathode during the electrochemical reactions of the cell and nonaqueous solvents suitable for the present invention are chosen so as to exhibit those physical properties necessary for ionic transport (low viscosity, low surface tension and wettability). Suitable nonaqueous solvents are comprised of an inorganic salt dissolved in a nonaqueous solvent and more preferably an alkali metal salt dissolved in a mixture of aprotic organic solvents comprising a low viscosity solvent including organic esters, ethers and dialkyl carbonates, and mixtures thereof, and a high permittivity solvent including cyclic carbonates, cyclic esters and cyclic amides, and mixtures thereof. Low viscosity solvents include tetrahydrofuran (THF), methyl acetate (MA), diglyme, triglyme, tetraglyme, 1,2-dimethoxyethane (DME), 1,2-diethoxyethane (DEE), 1-ethoxy, 2-methoxyethane (EME), dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate (DPC), ethyl methyl carbonate (EMC), methyl propyl carbonate (MPC) and ethyl propyl carbonate (EPC), and mixtures thereof. High permittivity solvents include propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), acetonitrile, dimethyl sulfoxide,- dimethyl formamide, dimethyl acetamide, γ-butyrolactone (GBL) and N-methyl-pyrrolidinone (NMP), and mixtures thereof.
  • The preferred electrolyte comprises an inorganic alkali metal salt, and in the case of an anode comprising lithium, the alkali metal salt of the electrolyte is a lithium based salt. Known lithium salts that are useful as a vehicle for transport of alkali metal ions from the anode to the cathode include LiPF6, LiBF4, LiAsF6, LiSbF6, LiClO4, LiAlCl4, LiGaCl4-, LiC(SO2CF3)3, LiN(SO2CF3)2, LiSCN, LiO3SCF2CF3, LiC6F5SO3, LiO2CF3, LiSO3F, LiB(C6H5)4 and LiCF3SO3, and mixtures thereof. Suitable salt concentrations typically range between about 0.8 to 1.5 molar, and a preferred electrolyte for a lithium/transition metal oxide electrochemical cell includes LiAsF6 or LiPF6 dissolved in a 50:50 mixture, by volume, of PC and DME.
  • In accordance with the present invention, at least one organic phosphate additive is provided as a co-solvent in the electrolyte solution of the previously described alkali metal electrochemical cell. The phosphate additive is preferably an alkyl phosphate compound having the general formula (R1O) P(=O) (OR2) (OR3) wherein R1, R2 and R3 are the same or different, and they can be a hydrogen atom or a saturated or unsaturated organic group containing 1 to 13 carbon atoms. If R1, R2 and R3 are not hydrogen, at least one of them is CR4R5R6 where at least R4 is an aromatic substituent or an unsaturated organic or inorganic group. The greatest effect is found when dimethyl phosphate, diethyl phosphate, dipropyl phosphate, dibutyl phosphate, diphenyl phosphate, dibenzyl phosphate, diallyl phosphate, monomethyl phosphate, mono-ethyl phosphate, mono-propyl phosphate, mono-butyl phosphate, mono-phenyl phosphate, mono-benzyl phosphate and mixtures thereof are used as additives in the electrolyte.
  • The above described compounds are only intended to be exemplary of those that are useful with the present invention, and are not to be construed as limiting. Those skilled in the art will readily recognize phosphate compounds which come under the purview of the general formula set forth above and which will be useful as additives for the electrolyte to reduce voltage delay according to the present invention.
  • While not intending to be bound by any particular mechanism, it is believed that due to the presence of the P=O bond-in the -OP(=O)O2- functional group, the bond between oxygen and at least one of the group R1, R2 and R3 is severed and the phosphate intermediate is able to compete effectively with the other electrolyte solvents or solutes to react with lithium and form a phosphate salt, i.e., lithium phosphate, or the lithium salt of a phosphate reduction product on the surface of the anode. The resulting salt is ionically more conductive than lithium oxide which may form on the anode in the absence of the organic phosphate additive. As a consequence, the chemical composition and perhaps the morphology of the anode surface protective layer is believed to be changed with concomitant benefits to the cell's discharge characteristics.
  • In the present invention, the anode is lithium metal and the cathode is preferably the transition mixed metal oxide AgV2O5.5 (SVO). The preferred electrolyte is 1.0M to 1.2M LiAsF6 dissolved in an aprotic solvent mixture comprising at least one of the above listed low viscosity solvents and at least one of the above listed high permittivity solvents. The preferred aprotic solvent mixture comprises a 50/50, by volume, mixture of propylene carbonate and dimethoxyethane. The concentration of the above discussed phosphate additives according to the present invention should preferably be in the range of between about 0.001M to about 0.40M. The positive effects of these additives in reducing voltage delay in a pulse discharging alkali metal cell have been achieved both at room temperature as well as at temperatures up to about 37°C. This makes the novel electrolyte solution of the present invention particularly useful for activating an alkali metal/transition metal oxide cell incorporated into an implantable medical device such as a cardiac defibrillator to minimize or even eliminate voltage delay under high current pulse discharge conditions.
  • As is well known by those skilled in the art, an implantable cardiac defibrillator is a device that requires a power source for a generally medium rate, constant resistance load component provided by circuits performing such functions as, for example, the heart sensing and pacing functions. From time to time, the cardiac defibrillator may require a generally high rate, pulse discharge load component that occurs, for example, during charging of a capacitor in the defibrillator for the purpose of delivering an electrical shock to the heart to treat tachyarrhythmias, the irregular, rapid heart beats that can be fatal if left uncorrected. Reduction and even elimination of voltage delay during a current pulse application is important for proper device operation and extended device life.
  • The assembly of the cell described herein is preferably in the form of a wound element cell. That is, the fabricated cathode, anode and separator are wound together in a "jellyroll" type configuration or "wound element cell stack" such that the anode is on the outside of the roll to make electrical contact with the cell case in a case-negative configuration. Using suitable top and bottom insulators, the wound cell stack is inserted into a metallic case of a suitable size dimension. The metallic case may comprise materials such as stainless steel, mild steel, nickel-plated mild steel, titanium, tantalum or aluminum, but not limited thereto, so long as the metallic material is compatible for use with components of the cell.
  • The cell header comprises a metallic disc-shaped body with a first-hole to accommodate a glass-to-metal seal/terminal pin feedthrough and a second hole for electrolyte filling. The glass used is of a corrosion resistant type having up to about 50% by weight silicon such as CABAL 12, TA 23 or FUSITE 425 or FUSITE 435. The positive terminal pin feedthrough preferably comprises titanium although molybdenum, aluminum, nickel alloy, or stainless steel can also be used. The cell header comprises elements having compatibility with the other components of the electrochemical cell and is resistant to corrosion. The cathode lead is welded to the positive terminal pin in the glass-to-metal seal and the header is welded to the case containing the electrode stack. The cell is thereafter filled with the electrolyte solution comprising at least one of the phosphate additives described hereinabove and hermetically sealed such as by close-welding a stainless steel ball over the fill hole, but not limited thereto.
  • The above assembly describes a case-negative cell, which is the preferred construction of the exemplary cell of the present invention. As is well known to those skilled in the art, the exemplary electrochemical system of the present invention can also be constructed in a case-positive configuration.
  • The following examples describe the manner and process of an electrochemical cell according to the present invention, and set forth the best mode contemplated by the inventors of carrying out the invention, but are not construed as limiting.
  • EXAMPLE I
  • Lithium anode material was pressed on nickel current collector screen and silver vanadium oxide cathode material was pressed on titanium current collector screen. A prismatic cell stack assembly configuration with two layers of microporous membrane propylene separator sandwiched between the anode and cathode was prepared. The electrode assembly was then hermetically sealed in a stainless steel casing in a case-negative configuration. Three cells were activated with the standard electrolyte consisting of 1.0M LiAsF6 dissolved in a 50:50, by volume, mixture of PC and DME without an organic phosphate additive (Group 1). Fifteen cells (three cells per group) were activated with the same electrolyte used to activate the Group 1 cells and further containing 0.005M, 0.01M, 0.05M, 0.10M, or 0.20M of dibenzyl phosphate (DBP), as set forth in Table 1.
    Cell Construction
    Group [LiAsF6] PC:DME [DBP]
    1 1.0M 50:50 0.00M
    2 1.0M 50:50 0.005M
    3 1.0M 50:50 0.01M
    4 1.0M 50:50 0.05M
    5 1.0M 50:50 0.10M
    6 1.0M 50:50 0.20M
  • A constant resistance load of 3.57 kΩ was applied to all of the cells for 21 hours during an initial predischarge burn-in period. The predischarge period is referred to as burn-in and depleted the cells of approximately 1% of their theoretical capacity. Following burn-in, the cells were subjected to acceptance pulse testing consisting of four 10 second pulses (23.2 mA/cm2) with a 15 second rest between each pulse. The average discharge readings for the pre-pulse potentials, voltage delay and pulse minimum potentials during acceptance pulse testing for these pulse trains are summarized in Table 2.
    Acceptance Pulse Train Voltages (average)
    Group [DBP] Ppre1 V-Delay P1min P4min
    1 0.00M 3.263 0.272 2.284 2.503
    2 0.005M 3.267 0.242 2.329 2.517
    3 0.01M 3.266 0.275 2.297 2.520
    4 0.05M 3.265 0.388 2.135 2.479
    5 0.10M 3.273 0.481 1.981 2.427
    6 0.20M 3.282 0.438 1.965 2.383
  • Following acceptance pulse testing, all of the cells were discharged under loads of 9.53 kohms with superimposed pulse trains applied every 39 days. The pulse trains consisted of four 10 second pulses (23.2 mA/cm2) with 15 seconds rest between each pulse. The average discharge readings for the pre-pulse potentials, voltage delay and pulse minimum potentials for pulse trains 1 to 6 are summarized in Tables 3 to 8, respectively.
    Pulse Train 1 Voltages (average)
    Group [DBP] Ppre1 V-Delay P1min P4min
    1 0.00M 3.224 0.000 2.629 2.507
    2 0.005M 3.224 0.000 2.625 2.516
    3 0.01M 3.224 0.000 2.624 2.513
    4 0.05M 3.222 0.000 2.593 2.470
    5 0.10M 3.221 0.000 2.577 2.442
    6 0.20M 3.223 0.001 2.554 2.404
    Pulse Train 2 Voltages (average)
    Group [DBP] Ppre1 V-Delay P1min P4min
    1 0.00M 3.165 0.001 2.558 2.416
    2 0.005M 3.164 0.000 2.538 2.407
    3 0.01M 3.164 0.001 2.524 2.392
    4. 0.05M 3.165 0.001 2.503 2.368
    5 0.10M 3.162 0.001 2.490 2.350
    6 0.20M 3.162 0.000 2.490 2.332
    Pulse Train 3 Voltages (average)
    Group [DBP] Ppre1 V-Delay P1min P4min
    1 0.00M 2.895 0.000 2.374 2.269
    2 0.005M 2.882 0.000 2.357 2.259
    3 0.01M 2.882 0.000 2.343 2.249
    4 0.05M 2.891 0.000 2.327 2.224
    5 0.10M 2.882 0.000 2.305 2.202
    6 0.20M 2.889 0.000 2.305 2.189
    Pulse Train 4 Voltages (average)
    Group [DBP] Ppre1 V-Delay P1min P4min
    1 0.00M 2.620 0.053 2.116 2.139
    2 0.005M 2.601 0.000 2.174 2.134
    3 0.01M 2.600 0.000 2.174 2.127
    4 0.05M 2.612 0.000 2.157 2.095
    5 0.10M 2.603 0.001 2.133 2.069
    6 0.20M 2.614 0.002 2.129 2.044
    Pulse Train 5 Voltages (average)
    Group [DBP] Ppre1 V-Delay P1min P4min
    1 0.00M 2.532 0.167 1.680 1.858
    2 0.005M 2.528 0.150 1.766 1.901
    3 0.01M 2.527 0.103 1.840 1.914
    4 0.05M 2.530 0.000 2.038 1.970
    5 0.10M 2.529 0.000 2.020 1.936
    6 0.20M 2.532 0.000 2.025 1.938
    Pulse Train 6 Voltages (average)
    Group [DBPJ Ppre1 V-Delay P1min P4min
    1 0.00M 2.484 0.000 1.767 1.657
    2 0.005M 2.470 0.005 1.750 1.687
    3 0.01M 2.468 0.100 1.633 1.683
    4 0.05M 2.481 0.000 2.903 1.770
    5 0.10M 2.474 0.000 2.867 1.700
    6 0.20M 2.483 0.000 2.887 1.712
  • The data in tables 3 to 8 demonstrate the beneficial effect that DBP has on voltage delay in a pulse discharging electrochemical cell. All groups of cells had similar pre-pulse potentials. There was no voltage delay in pulse trains 1 to 3 for any of the cells. In pulse trains 1 to 3, the group 1 cells without the DBP additive exhibited higher pulse minimum potentials than those of the groups 2 to 6 cells. In pulse trains 1 to 3, the trend is that the greater the DBP concentration, the lower the pulse minimum potentials.
  • In pulse train 4, only the group 1 cells exhibited voltage delay while none of the other cells with the DBP additive exhibited voltage delay. In pulse train 4, all of the cells having the DBP additive exhibited greater pulse 1 minimum potentials than those of the cells without the DBP additive. However, the group 1 cells devoid of the DBP additive still had the greatest pulse 4 minimum potentials.
  • In pulse train 5, only the group 1 cells devoid of the DBP additive and the groups 2 and 3 cells with relatively low DBP concentrations exhibited voltage delay. This is illustrated in Figs. 3 to 5 wherein curve 20 in Fig. 3 was constructed from the pulse train 5 waveform of a representative group 1 cell devoid of the DBP additive, curve 22 in Fig. 4 was constructed from the pulse train 5 waveform of a representative group 2 cell activated with the electrolyte having the DBP additive at a concentration of 0.005M and curve 24 in Fig. 5 was constructed from the pulse train 5 waveform of a representative group 3 cell activated with the electrolyte having the DBP additive at a concentration of 0.01M.
  • However, the group 4 to 6 cells in pulse train 5 having relatively high DBP concentrations exhibited no voltage delay. This is illustrated in Figs. 6 to 8 wherein curve 30 was constructed from the pulse train 5 waveform of a representative group 4 cell activated with the electrolyte having the DBP additive at a concentration of 0.05M, curve 32 in Fig. 7 was constructed from the pulse train 5 waveform of the representative 5 cell activated with the electrolyte having the DBP additive at a concentration of 0.10M and curve 34 in Fig. 8 was constructed from the pulse train 5 waveform of a representative group 6 cell activated with the electrolyte having the DBP additive at a concentration of 0.20M. Moreover, among the groups 1 to 3 cells, the greater the DBP concentration, the lower the voltage delay. In pulse train 5, all of the cells having the DBP additive exhibited higher pulse 1 and pulse 4 minimum potentials than those of the group 1 cells. The best performance was observed for the group 4 cells with 0.05M DBP.
  • In pulse train 6, only the group 3 cells exhibited some voltage delay while all other groups of cells exhibited no voltage delay. Also, in pulse train 6, except for the group 2 and 3 cells with relatively low DBP concentrations, all of the other cells with relatively high DBP concentrations presented greater pulse 1 minimum potentials than that of the group 1 control cells. Furthermore, in pulse train 6, all of the cells with the DBP additive exhibited greater pulse 4 minimum potentials than that of the group 1 control cells. The group 4 cells exhibited the best overall performance.
  • COMPARATIVE EXAMPLE I
  • Eighteen cells were constructed in a similar manner as those described in Example I except for the phosphate additive. Specifically, three of the cells were activated with the standard electrolyte consisting of 1.0M LiAsF6 dissolved in a 50:50, by volume, mixture of PC and DME without an organic phosphate additive (Group 1). Fifteen cells (three cells per group) were activated with the same electrolyte used to activate the Group 1 cells and further containing 0.005M, 0.01M, 0.05M, 0.10M, or 0.20M of trimethyl phosphate (TMP).
  • In a similar manner as the cells discharged in Example I, a constant resistance load of 3.57 kΩ was applied to all of the cells for 21 hours during an initial predischarge burn-in period. Following burn-in, the cells were subjected to acceptance pulse testing consisting of four 10 second pulses (23.2 mA/cm2) with a 15 second rest between each pulse. The average discharge readings for the pre-pulse potentials, voltage delay and pulse minimum potentials during acceptance pulse testing for these pulse trains are summarized in Table 9.
    Acceptance Pulse Train Voltages (average)
    Group Ppre1 V-Delay P1min P4min
    1 3.266 0.383 2.162 2.508
    2 3.263 0.327 2.241 2.531
    3 3.263 0.261 2.335 2.549
    4 3.262 0.187 2.423 2.555
    5 3.266 0.165 2.456 2.560
    6 3.266 0.119 2.503 2.553
  • During acceptance pulse testing, all groups of cells had similar pre-pulse potentials and all of the cells exhibited at least some voltage delay. However, those cells activated with an electrolyte including the TMP additive had smaller voltage delay than cells without the TMP additive. Voltage delay is calculated as pulse 1 end potential minus pulse 1 minimum potential. The trend is that the greater the TMP concentration, the smaller the voltage delay and the higher the pulse 1 minimum potential. Moreover, the pulse 1 minimum potentials and the pulse 4 minimum potentials for the respective pulse trains showed a maximum average voltage at TMP concentrations of 0.20M and 0.10M, respectively. At TMP concentrations greater than about 0.20M, the pulse minimum potentials decreased as a result of increasing TMP concentrations during acceptance pulse testing.
  • Following acceptance pulse testing, all of the cells were discharged under loads of 9.53 kohms with superimposed pulse trains applied every 39 days. The pulse trains consisted of four 10 second pulses (23.2 mA/cm2) with 15 seconds rest between each pulse. The average discharge readings for the pre-pulse potentials, voltage delay and pulse minimum potentials for pulse trains 1 to 7 are summarized in Tables 10 to 16, respectively.
    Pulse Train 1 Voltages (average)
    Group [TMP] Ppre1 V-Delay P1min P4min
    1 0.00M 3.222 0.000 2.630 2.526
    2 0.005M 3.219 0.000 2.632 2.527
    3 0.01M 3.217 0.000 2.633 2.528
    4 0.05M 3.218 0.002 2.638 2.528
    5 0.10M 3.219 0.000 2.644 2.539
    6 0.20M 3.217 0.000 2.621 2.515
    Pulse Train 2 Voltages (average)
    Group [TMP] Ppre1 V-Delay P1min P4min
    1 0.00M 3.186 0.000 2.560 2.441
    2 0.005M 3.165 0.000 2.572 2.454
    3 0.01M 3.164 0.000 2.569 2.445
    4 0.05M 3.164 0.000 2.560 2.438
    5 0.10M 3.164 0.000 2.563 2.441
    6 0.20M 3.163 0.000 2.543 2.419
    Pulse Train 3 Voltages (average)
    Group [TMP] Ppre1 V-Delay P1min P4min
    1 0.00M 2.898 0.000 2.361 2.273
    2 0.005M 2.896 0.001 2.365 2.282
    3 0.01M 2.886 0.000 2.366 2.282
    4 0.05M 2.892 0.001 2.372 2.287
    5 0.10M 2.890 0.000 2.381 2.295
    6 0.20M 2.882 0.001 2.359 2.277
    Pulse Train 4 Voltages (average)
    Group [TMP] Ppre1 V-Delay P1min P4min
    1 0.00M 2.623 0.105 2.117 2.195
    2 0.005M 2.622 0.096 2.123 2.198
    3 0.01M 2.611 0.108 2.106 2.191
    4 0.05M 2.616 0.100 2.111 2.186
    5 0.10M 2.614 0.107 2.105 2.191
    6 0.20M 2.605 0.125 2.068 2.172
    Pulse Train 5 Voltages (average)
    Group [TMP] Ppre1 V-Delay P1min P4min
    1 0.00M 2.542 0.130 1.785 1.935
    2 0.005M 2.540 0.154 1.739 1.924
    3 0.01M 2.539 0.162 1.742 1.936
    4 0.05M 2.538 0.221 1.687 1.942
    5 0.10M 2.538 0.246 1.680 1.961
    6 0.20M 2.538 0.271 1.632 1.927
    Pulse Train 6 Voltages (average)
    Group [TMP] Ppre1 V-Delay P1min P4min
    1 0.00M 2.514 0.100 1.720 1.819
    2 0.005M 2.512 0.090 1.731 1.807
    3 0.01M 2.510 0.118 1.709 1.823
    4 0.05M 2.511 0.113 1.698 1.792
    5 0.10M 2.509 0.106 1.687 1.776
    6 0.20M 2.506 0.263 1.454 1.732
    Pulse Train 7 Voltages (average)
    Group [TMP] Ppre1 V-Delay P1min P4min
    1 0.00M 2.382 0.000 1.561 1.415
    2 0.005M 2.379 0.000 1.547 1.395
    3 0.01M 2.358 0.000 1.589 1.444
    4 0.05M 2.362 0.000 1.489 1.291
    5 0.10M 2.352 0.000 1.454 1.256
    6 0.20M 2.343 0.000 1.444 1.265
  • From the data presented in Tables 10 to 16, it is evident that the presence of the TMP additive in the electrolyte did not have a significant effect on the pulse discharge performance of the Li/SVO cells. Those cells with the greater TMP concentrations (0.10M and 0.20M) presented lower pulse minimum potentials in pulse trains 6 and 7.
  • COMPARATIVE EXAMPLE II
  • Eighteen cells were constructed in a similar manner as those described in Example I except for the phosphate additive. Specifically, three of the cells were activated with the standard electrolyte consisting of 1.0M LiAsF6 dissolved in a 50:50, by volume, mixture of PC and DME without an organic phosphate additive (Group 1). Fifteen cells (three cells per group) were activated with the same electrolyte used to activate the Group 1 cells and further containing 0.005M, 0.01M, 0.05M, 0.10M, or 0.20M of triphenyl phosphate (TPP).
  • In a similar manner as the cells discharged in Example I, a constant resistance load of 3.57 kΩ was applied to all of the cells for 21 hours during an initial predischarge burn-in period. Following burn-in, the cells were subjected to acceptance pulse testing consisting of four 10 second pulses (23.2 mA/cm2) with a 15 second rest between each pulse. The averaged discharge readings for the pre-pulse potentials, voltage delay and pulse minimum potentials during acceptance pulse testing for these pulse trains are summarized in Table 17.
    Acceptance Pulse Train Voltages (average)
    Group [TTP] Ppre1 V-Delay P1min P4min
    1 0.00M 3.265 0.322 2.245 2.529
    2 0.005M 3.269 0.203 2.361 2.524
    3 0.01M 3.268 0.217 2.367 2.545
    4 0.05M 3.265 0.099 2.472 2.529
    5 0.10M 3.262 0.107 2.429 2.487
    6 0.20M 3.261 0.008 2.385 2.357
  • During acceptance pulse testing, all groups of cells had similar pre-pulse potentials and all of the cells exhibited at least some voltage delay. However, those cells activated with an electrolyte including the TPP additive had smaller voltage delay than cells without the TPP additive. The trend is that the greater the TPP concentration, the smaller the voltage delay. The pulse 1 minimum potentials and the pulse 4 minimum potentials for the respective pulse trains showed a maximum average voltage at TPP concentrations of 0.05M and 0.01M, respectively. At TPP concentrations greater than about 0.05M, the pulse minimum potentials decreased as a result of increasing TPP concentrations during acceptance pulse testing.
  • Following acceptance pulse testing, all of the cells were discharged under loads of 9.53 kohms with superimposed pulse trains applied every 39 days. The pulse trains consisted of four 10 second pulses (23.2 mA/cm2) with 15 seconds rest between each pulse. The average discharge readings for the pre-pulse potentials, voltage delay and pulse minimum potentials for pulse trains 1 to 7 are summarized in Tables 18 to 24, respectively.
    Pulse Train 1 Voltages (average)
    Group [TTP] Ppre1 V-Delay P1min P4min
    1 0.00M 3.219 0.001 2.636 2.515
    2 0.005M 3.221 0.000 2.627 2.514
    3 0.01M 3.221 0.000 2.638 2.532
    4 0.05M 3.220 0.000 2.599 2.496
    5 0.10M 3.219 0.001 2.570 2.450
    6 0.20M 3.219 0.000 2.457 2.365
    Pulse Train 2 Voltages (average)
    Group [TTP] Ppre1 V-Delay P1min P4min
    1 0.00M 3.154 0.000 2.563 2.428
    2 0.005M 3.158 0.000 2.546 2.422
    3 0.01M 3.158 0.000 2.567 2.445
    4 0.05M 3.157 0.000 2.550 2.436
    5 0.10M 3.156 0.089 2.415 2.384
    6 0.20M 3.153 0.122 2.294 2.293
    Pulse Train 3 Voltages (average)
    Group [TTP] Ppre1 V-Delay P1min P4min
    1 0.00M 2.869 0.001 2.395 2.296
    2 0.005M 2.873 0.000 2.365 2.277
    3 0.01M 2.837 0.000 2.359 2.274
    4 0.05M 2.869 0.016 2.348 2.291
    5 0.10M 2.865 0.338 1.934 2.219
    6 0.20M 2.850 0.522 1.524 2.002
    Pulse Train 4 Voltages (average)
    Group [TTP] Ppre1 V-Delay P1min P4min
    1 0.00M 2.600 0.098 2.095 2.171
    2 0.005M 2.603 0.131 2.035 2.149
    3 0.01M 2.576 0.175 1.898 2.066
    4 0.05M 2.595 0.464 1.408 1.941
    5 0.10M 2.585 1.171 0.587 1.877
    6 0.20M 2.571 0.093 0.583 1.634
    Pulse Train 5 Voltages (average)
    Group [TTP] Ppre1 V-Delay P1min P4min
    1 0.00M 2.538 0.157 1.720 1.902
    2 0.005M 2.539 0.165 1.624 1.848
    3 0.01M 2.538 0.173 1.579 1.832
    4 0.05M 2.535 0.067 1.786 1.830
    5 0.10M 2.528 0.111 1.650 1.739
    6 0.20M ----- ----- ----- -----
    Pulse Train 6 Voltages (average)
    Group [TTP] Ppre1 V-Delay P1min P4min
    1 0.00M 2.505 0.042 1.744 1.733
    2 0.005M 2.502 0.000 1.797 1.699
    3 0.01M 2.499 0.000 1.765 1.657
    4 0.05M 2.411 0.000 1.435 0.990
    5 0.10M 2.339 0.000 1.254 0.489
    6 0.20M ----- ----- ----- -----
    Pulse Train 7 Voltages (average)
    Group [TTP] Ppre1 V-Delay P1min P4min
    1 0.00M 2.325 0.001 1.480 1.182
    2 0.005M 2.295 0.000 1.347 0.793
    3 0.01M 2.263 0.000 1.121 0.587
    4. 0.05M 2.178 0.000 0.461 0.239
    5 0.10M ----- ----- ----- -----
    6 0.20M ----- ----- ----- -----
  • From the data in Tables 18 to 24, it is evident that groups 5 and 6 cells with relatively high TPP concentrations (0.10M and 0.20M) performed poorly throughout the test. They presented lower pulse minimum potentials than that of the other groups of cells in all pulse trains. For groups 2 to 4 cells with low TTP concentrations, the presence of TPP additive does not provide any improvement for SVO cell pulse performance. Slightly lower pulse minimum potentials were also observed for those cells relative to that of the control cells (group 1).
  • From Comparative Examples I and II, it can be concluded that for phosphate additives having the general (R1O)P(=O) (OR2) (OR3), if all three R groups are either aromatic (phenyl for example) or saturated alkyl (methyl for example) groups, the presence of these additives does not help to improve the SVO cell pulse performance in terms of minimizing voltage delay and maintaining high pulse minimum potentials. It is believed that when the R groups are aromatic with a sp2 hybridized carbon atom directly attached to the oxygen atom in the phosphate compound, or if the R group is a saturated organic alkyl group, the O-R bond is too strong to be broken under reduction conditions. A good anode surface film will not be generated easily in the presence of such types of phosphate additives. Therefore, the SVO cells with these types of phosphate additives do not provide improved long term pulse performance over SVO cells without the additives. Similar conclusions can be drawn for other mixed metal oxides such as the previously discussed copper silver vanadium oxide (CSVO).
  • On the other hand, Example I demonstrates that if the O-R bond is activated by either R equal to hydrogen (acidic proton) or R equal to benzyl or allyl types of organic groups, an electrically insulating and ionically conducting anode surface film is obtain. Hence, improved pulse performance of SVO cells is achieved by using these types of phosphate additives as SVO cell electrolyte additives. Therefore, for SVO cells, at least one of the R groups in the phosphate additive having the general formula (R1O)P(=O) (OR2) (OR3) should be either hydrogen (acidic proton) or a CR4R5R6 group where at least R4 is an arometic substituent or an unsaturated organic or inorganic groups.
  • While not intended to be bound by any particular theory, it is believed that the formation of O=P-(O-Li)n(OR)m (n = 1 to 3; m = 0 to 2) deposited on the anode surface is responsible for the improved performance of alkali metal/transition metal oxide cell, and in particular Li/SVO cells. In the case of a strong O-R bond (R=methyl or phenyl), the reduction of the phosphate additive by the lithium anode does not result in the O-R bond cleavage to form an O-Li salt product. In contrast, if the R group in the phosphate additive is hydrogen (acidic proton), it will react with lithium metal to form an O-Li bond directly. In addition, if R group is activated (benzyl for example), the O-R bond is relatively weak. During reduction, the O-R bond breaks to form a product containing P-O-Li salt group. This is believed to be the reason for the observed improvements in the pulse discharge performance of Li/SVO cells, as exemplified by those having the DBP additive in Example I. As previously discussed in the BACKGROUND OF THE INVENTION section, voltage delay is a phenomenon typically exhibited by Li/SVO cells that have been depleted of 40% to 70% of their capacity. However, the cells discharged in Example I did not experience voltage delay during this portion of their useful life (pulse trains 4 to 8).
  • The concentration limit for the phosphate additive is preferably about 0.001M to about 0.40M. The beneficial effect of the phosphate additive will not be apparent if the additive concentration is less than about 0.001M. On the other hand, if the additive concentration is greater than about 0.40M, the beneficial effect of the additive will be cancelled by the detrimental effect of higher internal cell resistance due to the thicker anode surface film formation and lower electrolyte conductivity.
  • Thus, the existence of voltage delay is due to the formation of an anode surface passivation layer that is ionically less conductive than either the anode material itself or the electrolyte solution. In the presence of an alkyl phosphate additive or phosphoric acid according to the present invention, the anode passivation layer is chemically modified to be ionically more conductive than the passivation layer formed without the benefit of the additive. It is believed that due to the presence of the -OP(=O)O2- functional group, the reductive cleavage of at least one of the OR1, OR2 and OR3 bonds in the phosphate additives of the present invention may produce lithium phosphate or the lithium salt of a phosphate reduction product on the anode surface. This surface film is ionically more conductive than the film formed in the absence of the additives and it is responsible for the increased cell performance, especially during pulse discharge applications. As a consequence, diminished voltage delay results when an alkali metal/transition metal oxide couple activated with a nonaquous organic solvent having a phosphate additive dissolved therein according to the present invention is subjected to a pulse discharge application. This is particularly important in implantable medical devices powered by a cell according to the present invention.
  • It is appreciated that various modifications to the inventive concepts described herein may be apparent to those of ordinary skill in the art without departing from the scope of the present invention as defined by the appended claim.

Claims (23)

  1. An electrochemical cell which is dischargeable to deliver a current pulse while exhibiting reduced voltage delay, which comprises:
    a) an anode comprising an alkali metal;
    b) a solid cathode of electrically conductive material; and
    c) a nonaqueous electrolyte activating the anode and the cathode, the nonaqueous electrolyte comprising:
    i) a first solvent selected from the group consisting of an ester, an ether, a dialkyl carbonate, and mixtures thereof;
    ii) a second solvent selected from the group consisting of a cyclic carbonate, a cyclic ester, a cyclic amide, and mixtures thereof;
    iii) a phosphate additive having the formula (R1O)P(=O)(OR2)(OR3) wherein R1, R2 and R3 can be a hydrogen atom or a saturated or unsaturated organic group containing 1 to 13 carbon atoms and at least one of R1, R2 and R3 is a hydrogen atom; and
    iv) an alkali metal salt dissolved therein, wherein the alkali metal of the salt is similar to the alkali metal comprising the anode, and wherein the activated anode and cathode provide the electrochemical cell dischargeable to deliver at least one current pulse of a short duration burst of electrical current of a significantly greater amplitude than that of a prepulse current immediately prior to the pulse such that the pulse one end potential minus the pulse one minimum potential is less than about 0.2 volts.
  2. The electrochemical cell according to Claim 1 wherein the phosphate additive is selected from dimethyl phosphate, diethyl phosphate, dipropyl phosphate, dibutyl phosphate, diphenyl phosphate, dibenzyl phosphate, diallyl phosphate, monomethyl phosphate, mono-ethyl phosphate, mono-propyl phosphate, mono-butyl phosphate, mono-phenyl phosphate, mono-benzyl phosphate, or mixtures thereof.
  3. The electrochemical cell according to Claims 1 or 2 wherein the phosphate additive is present in the electrolyte in a range of about 0.001M to about 0.40M.
  4. The electrochemical cell according to any one of Claims 1 to 3 wherein the phosphate additive is dibenzyl phosphate present in the electrolyte at a concentration up to about 0.20M.
  5. The electrochemical cell according to any one of Claims 1 to 4 wherein there are at least two pulses delivered in succession with or without an open circuit period between the pulses.
  6. The electrochemical cell according to Claim 5 wherein the current pulses are of about 23.2 mA/cm2.
  7. The electrochemical cell according to any one of Claims 1 to 6 wherein the first solvent is selected from tetrahydrofuran, methyl acetate, diglyme, triglyme, tetraglyme, 1,2-dimethoxyethane, 1,2-diethoxyethane, 1-ethoxy,2-methoxyethane, dimethyl carbonate, diethyl carbonate, dipropyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, ethyl propyl carbonate, or mixtures thereof.
  8. The electrochemical cell according to any one of Claims 1 to 7 wherein the second solvent is selected from propylene carbonate, ethylene carbonate, butylene carbonate, acetonitrile, dimethyl sulfoxide, dimethyl formamide, dimethyl acetamide, γ-butyrolactone, N-methyl-pyrrolidinone, or mixtures thereof.
  9. The electrochemical cell according to any one of Claims 1 to 8 wherein the alkali metal salt is selected from LiPF6, LiBF4, LiAsF6, LiSbF6, LiClO4, LiAlCl4, LiGaCl4, LiC(SO2CF3)3, LiN(SO2CF3)2, LiSCN, LiO3SCF2CF3, LiC6F5SO3, LiO2CF3, LiSO3F, LiB(C6H5)4, LiCF3SO3, or mixtures thereof.
  10. The electrochemical cell according to any one of Claims 1 to 9 wherein the solid cathode is selected from silver vanadium oxide, copper silver vanadium oxide, manganese dioxide, cobalt oxide, nickel oxide, fluorinated carbon, copper oxide, copper sulfide, iron sulfide, iron disulfide, titanium disulfide, copper vanadium oxide, or mixtures thereof.
  11. The electrochemical cell according to any one of Claims 1 to 10 wherein the anode is comprised of lithium or a lithium-aluminum alloy.
  12. The electrochemical cell according to any one of Claims 1 to 11 wherein the cathode comprises from about 80 to about 99 weight percent of the cathode active material.
  13. The electrochemical cell according to any one of Claims 1 to 12 wherein the cathode further comprises a binder material and a conductive additive.
  14. The electrochemical cell according to Claim 13 wherein the binder material is a fluoro-resin powder.
  15. The electrochemical cell according to Claim 13 or Claim 14 wherein the conductive additive is selected from carbon, graphite powder or acetylene black or metallic powder selected from titanium, aluminum, nickel, stainless steel, or mixtures thereof.
  16. The electrochemical cell according to any one of Claims 1 to 15 wherein the cathode comprises from about 0 to 3 weight percent carbon, about 1 to 5 weight percent of a powder fluoro-resin and about 94 weight percent of the cathode active material.
  17. The electrochemical cell according to any one of Claims 1 to 16 wherein the cathode includes a mixed metal oxide comprised of vanadium oxide and a second metal "SM" selected from Groups IB, IIB, IIIB, IVB, VIB, VIIB or VIII of the Periodic Table of the Elements, the mixed metal oxide having the general formula SMxV2Oy wherein 0.30 ≤ x ≤ 2.0 and 4.5 ≤ y ≤ 6.0.
  18. The electrochemical cell according to any one of Claims 1 to 16 wherein the cathode includes a mixed metal oxide comprised of vanadium oxide and a mixture of copper and a second metal "SM" selected from Groups IB, IIB, IIIB, IVB, VIB, VIIB or VIII of the Periodic Table of the Elements, the mixed metal oxide having the general formula CuxSMyV2Oz wherein 0.01 ≤ x ≤ 1.0, 0.01 ≤ y ≤ 1.0 and 5.01 ≤ z ≤ 6.5.
  19. The electrochemical cell according to Claim 18 wherein the general formula x ≤ y.
  20. An implantable medical device comprising the electrochemical cell according to any one of Claims 1 to 19.
  21. The implantable medical device according to Claim 20 wherein the device requires at least one current pulse for a medical device operating function.
  22. A method of reducing voltage delay in the pulse discharging electrochemical cell according to any one of Claims 1 to 19 activated with a nonaqueous electrolyte, comprising the steps of:
    a) providing an anode comprising an alkali metal;
    b) providing-a solid cathode of electrically conductive material;
    c) activating the electrochemical cell with the nonaqueous electrolyte operatively associated with the anode and the cathode, the nonaqueous electrolyte comprising:
    i) a first solvent selected from the group consisting of an ester, an ether, a dialkyl carbonate, and mixtures thereof;
    ii) a second solvent selected from the group consisting of a cyclic carbonate, a cyclic ester, a cyclic amide, and mixtures thereof;
    iii) a phosphate additive; and
    iv) an alkali metal salt dissolved therein, wherein the alkali metal of the salt is similar to the alkali metal comprising the anode; and
    d) discharging the cell to deliver at least one current pulse of a short duration burst of electrical current of a significantly greater amplitude than that of a prepulse current immediately prior to the pulse such that the pulse one end potential minus the pulse one minimum potential is less than about 0.2 volts.
  23. A method of powering an implantable medical device wherein the device comprises the electrochemical cell according to any one of Claims 1 to 19 or wherein the method includes the method according to Claim 22.
EP98308674A 1997-11-19 1998-10-23 Phosphate additives for non-aqueous electrolyte in alkali metal electrochemical cells Expired - Lifetime EP0918364B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/974,305 US6068950A (en) 1997-11-19 1997-11-19 Organic phosphate additives for nonaqueous electrolyte in alkali metal electrochemical cells
US974305 1997-11-19

Publications (2)

Publication Number Publication Date
EP0918364A1 EP0918364A1 (en) 1999-05-26
EP0918364B1 true EP0918364B1 (en) 2002-03-27

Family

ID=25521875

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98308674A Expired - Lifetime EP0918364B1 (en) 1997-11-19 1998-10-23 Phosphate additives for non-aqueous electrolyte in alkali metal electrochemical cells

Country Status (5)

Country Link
US (2) US6068950A (en)
EP (1) EP0918364B1 (en)
JP (1) JPH11250919A (en)
AU (1) AU9243898A (en)
DE (1) DE69804409T2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7807300B2 (en) 2006-01-31 2010-10-05 Medtronic, Inc. Resistance-stabilizing additives for electrolyte
US7824805B2 (en) 2006-01-17 2010-11-02 Medtronic, Inc. Implantable medical device battery

Families Citing this family (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6919141B2 (en) 1998-10-22 2005-07-19 Wilson Greatbatch Technologies, Inc. Phosphate additives for nonaqueous electrolyte rechargeable electrochemical cells
US6203942B1 (en) * 1998-10-22 2001-03-20 Wilson Greatbatch Ltd. Phosphate additives for nonaqueous electrolyte rechargeable electrochemical cells
EP1037293B1 (en) * 1999-03-16 2007-05-16 Sumitomo Chemical Company, Limited Non-aqueous electrolyte and lithium secondary battery using the same
KR100431100B1 (en) * 1999-06-04 2004-05-12 마쯔시다덴기산교 가부시키가이샤 Non-aqueous liquid electrolyte secondary cell and method for manufacturing the same
US6489055B1 (en) * 1999-06-25 2002-12-03 Sanyo Electric Co., Ltd. Lithium secondary battery
KR100330151B1 (en) * 1999-08-03 2002-03-28 김순택 A electrolyte for a lithium secondary battery
CA2353751A1 (en) * 2000-11-27 2002-05-27 Wilson Greatbatch Ltd. Phosphate additives for nonaqueous electrolyte rechargeable electrochemical cells
US6759164B2 (en) 2000-11-29 2004-07-06 Wilson Greatbatch Ltd. Use of heat-treated electrodes containing a polyamic acid-PVDF binder mixture
JP5167566B2 (en) * 2001-01-04 2013-03-21 三菱化学株式会社 Non-aqueous electrolyte for lithium secondary battery
US6511772B2 (en) * 2001-01-17 2003-01-28 Wilson Greatbatch Ltd. Electrochemical cell having an electrode with a phosphate additive in the electrode active mixture
US6939647B1 (en) 2001-02-13 2005-09-06 The United States Of America As Represented By The Secretary Of The Army Non-aqueous electrolyte solutions and non-aqueous electrolyte cells comprising the same
US6905762B1 (en) 2001-02-13 2005-06-14 The United States Of America As Represented By The Secretary Of The Army Non-aqueous electrolyte solutions comprising additives and non-aqueous electrolyte cells comprising the same
US6924061B1 (en) 2001-02-13 2005-08-02 The United States Of America As Represented By The Secretary Of Army Nonflammable non-aqueous electrolyte and non-aqueous electrolyte cells comprising the same
JP4236390B2 (en) * 2001-04-19 2009-03-11 三洋電機株式会社 Lithium secondary battery
US6746794B2 (en) * 2001-06-12 2004-06-08 Tech Drive, Inc Thermal runaway inhibitors
US7263449B1 (en) * 2001-10-23 2007-08-28 Greatbatch Ltd. Method for determining poor performing cells
US20030088378A1 (en) * 2001-10-23 2003-05-08 Gary Freitag Method for determining poor performing cells
US6911280B1 (en) 2001-12-21 2005-06-28 Polyplus Battery Company Chemical protection of a lithium surface
US7026074B2 (en) * 2002-02-15 2006-04-11 The University Of Chicago Lithium ion battery with improved safety
US6849360B2 (en) 2002-06-05 2005-02-01 Eveready Battery Company, Inc. Nonaqueous electrochemical cell with improved energy density
US7375496B2 (en) * 2002-08-22 2008-05-20 Wilson Greatbatch Technologies, Inc. Discharge methodologies for lithium/silver vanadium oxide cells to manage voltage delay and permanent RDC growth region
EP1411578A1 (en) * 2002-09-09 2004-04-21 Wilson Greatbatch Technologies, Inc. Discharge methodologies for optimizing the performance of alkali metal/silver vanadium oxide cells
US20080057386A1 (en) 2002-10-15 2008-03-06 Polyplus Battery Company Ionically conductive membranes for protection of active metal anodes and battery cells
KR20050070053A (en) * 2002-10-15 2005-07-05 폴리플러스 배터리 컴퍼니 Ionically conductive composites for protection of active metal anodes
US7645543B2 (en) 2002-10-15 2010-01-12 Polyplus Battery Company Active metal/aqueous electrochemical cells and systems
US7390591B2 (en) 2002-10-15 2008-06-24 Polyplus Battery Company Ionically conductive membranes for protection of active metal anodes and battery cells
US7282302B2 (en) * 2002-10-15 2007-10-16 Polyplus Battery Company Ionically conductive composites for protection of active metal anodes
DE10251640B3 (en) * 2002-11-06 2004-04-22 Epcos Ag Electrolyte used in aluminum electrolyte capacitors comprises high boiling solvent selected from glycol, gamma-butyrolactone and N-methylpyrrolidone, conducting salt, and alkylphosphoric acid ester
US7026791B2 (en) * 2003-01-23 2006-04-11 Wilson Greatbatch Technologies, Inc. Electrochemical treatment method to reduce voltage delay and cell resistance in lithium/silver vanadium oxide cells
US20040161671A1 (en) * 2003-02-13 2004-08-19 Medtronic, Inc. Liquid electrolyte for an electrochemical cell
US20040253510A1 (en) * 2003-06-04 2004-12-16 Polyplus Battery Company Aliovalent protective layers for active metal anodes
US7482096B2 (en) 2003-06-04 2009-01-27 Polyplus Battery Company Alleviation of voltage delay in lithium-liquid depolarizer/electrolyte solvent battery cells
TW200520292A (en) 2003-08-08 2005-06-16 Rovcal Inc High capacity alkaline cell
US7491458B2 (en) 2003-11-10 2009-02-17 Polyplus Battery Company Active metal fuel cells
US7608178B2 (en) * 2003-11-10 2009-10-27 Polyplus Battery Company Active metal electrolyzer
US20070279006A1 (en) * 2004-01-09 2007-12-06 Takeuchi Esther S Method of testing electrochemical cells
US9368775B2 (en) * 2004-02-06 2016-06-14 Polyplus Battery Company Protected lithium electrodes having porous ceramic separators, including an integrated structure of porous and dense Li ion conducting garnet solid electrolyte layers
US7282295B2 (en) * 2004-02-06 2007-10-16 Polyplus Battery Company Protected active metal electrode and battery cell structures with non-aqueous interlayer architecture
US20060088763A1 (en) * 2004-05-17 2006-04-27 Wen Li Additives for increasing ion conductivity of molten salt type electrolyte in battery
AR047875A1 (en) 2004-06-04 2006-03-01 Rovcal Inc ALKAL CELLS THAT PRESENT HIGH CAPACITY
KR20060029747A (en) * 2004-10-01 2006-04-07 삼성에스디아이 주식회사 Electrolyte for rechargeable lithium ion battery and rechargeable lithium ion battery comprising same
KR100635704B1 (en) 2004-10-01 2006-10-17 삼성에스디아이 주식회사 Electrolyte for rechargeable lithium ion battery and rechargeable lithium ion battery comprising same
KR100703845B1 (en) * 2004-12-28 2007-04-04 제일모직주식회사 Non-aqueous electrolyte for Lithium Secondary Batteries and Lithium Secondary Batteries containing the same
GB0506022D0 (en) * 2005-03-24 2005-04-27 Wildbird J C Foods Ltd Bird feeder accessory
US20070077488A1 (en) * 2005-10-04 2007-04-05 Kaimin Chen Power capability of a cathode
JP5003095B2 (en) * 2005-10-20 2012-08-15 三菱化学株式会社 Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery using the same
WO2007062220A2 (en) * 2005-11-23 2007-05-31 Polyplus Battery Company Li/air non-aqueous batteries
US8182943B2 (en) 2005-12-19 2012-05-22 Polyplus Battery Company Composite solid electrolyte for protection of active metal anodes
US7638243B2 (en) * 2006-03-22 2009-12-29 Novolyte Technologies Inc. Stabilized nonaqueous electrolytes for rechargeable batteries
JP5702901B2 (en) * 2006-12-06 2015-04-15 三星エスディアイ株式会社Samsung SDI Co.,Ltd. Lithium secondary battery and non-aqueous electrolyte for lithium secondary battery
JP5508674B2 (en) * 2007-01-04 2014-06-04 株式会社東芝 Non-aqueous electrolyte battery, battery pack and automobile
US8021496B2 (en) 2007-05-16 2011-09-20 Fmc Corporation Stabilized lithium metal powder for Li-ion application, composition and process
US8323820B2 (en) 2008-06-16 2012-12-04 Polyplus Battery Company Catholytes for aqueous lithium/air battery cells
EP2312685B1 (en) 2008-08-06 2016-03-23 Mitsui Chemicals, Inc. Lithium secondary battery comprising a non-aqueous electrolytic solution, method for producing the same, and mixed non-aqueous electrolytic solution
US20110135810A1 (en) * 2009-12-03 2011-06-09 Marina Yakovleva Finely deposited lithium metal powder
KR101181835B1 (en) 2010-06-07 2012-09-11 솔브레인 주식회사 Electrolyte for lithium secondary battery including additives, and lithium secondary battery including the same
WO2013028574A2 (en) 2011-08-19 2013-02-28 Polyplus Battery Company Aqueous lithium air batteries
US8828574B2 (en) 2011-11-15 2014-09-09 Polyplus Battery Company Electrolyte compositions for aqueous electrolyte lithium sulfur batteries
US8828575B2 (en) 2011-11-15 2014-09-09 PolyPlus Batter Company Aqueous electrolyte lithium sulfur batteries
US8828573B2 (en) 2011-11-15 2014-09-09 Polyplus Battery Company Electrode structures for aqueous electrolyte lithium sulfur batteries
US9660265B2 (en) 2011-11-15 2017-05-23 Polyplus Battery Company Lithium sulfur batteries and electrolytes and sulfur cathodes thereof
US8932771B2 (en) 2012-05-03 2015-01-13 Polyplus Battery Company Cathode architectures for alkali metal / oxygen batteries
US9905860B2 (en) 2013-06-28 2018-02-27 Polyplus Battery Company Water activated battery system having enhanced start-up behavior
EP3319161A4 (en) * 2015-07-02 2019-03-27 Maxell Holdings, Ltd. Non-aqueous electrolyte battery and method for manufacturing same
JP6921739B2 (en) * 2016-03-30 2021-08-18 マクセルホールディングス株式会社 Non-aqueous electrolyte primary battery and its manufacturing method
CN117280504A (en) 2021-05-12 2023-12-22 利特罗尼克电池技术有限公司 Alkali metal galvanic cell with geminal dinitrile additive

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02244565A (en) * 1989-03-17 1990-09-28 Asahi Chem Ind Co Ltd Nonaqueous battery
US5219675A (en) * 1989-06-30 1993-06-15 Yamaha Hatsudoki Kabushiki Kaisha Electrolyte for fuel cell
EP0563988B1 (en) * 1992-04-02 1997-07-16 Fuji Photo Film Co., Ltd. Nonaqueous secondary battery
CA2119959C (en) * 1993-03-30 2000-03-14 Soichiro Kawakami Secondary battery
EP0630064B1 (en) * 1993-04-28 1998-07-15 Fuji Photo Film Co., Ltd. Nonaqueous electrolyte-secondary battery
AU7454894A (en) * 1993-08-11 1995-03-14 National Research Council Of Canada Use of stable form of limno2 as cathode in lithium cell
JPH07254415A (en) * 1993-12-20 1995-10-03 Wilson Greatbatch Ltd Electrochemical battery and method of reducing its voltage delay
WO1995026057A1 (en) * 1994-03-19 1995-09-28 Hitachi Maxell, Ltd. Organic-electrolyte secondary battery
JPH07263028A (en) * 1994-03-25 1995-10-13 Fuji Photo Film Co Ltd Nonaqueous secondary battery
US5455127A (en) * 1994-03-31 1995-10-03 Olsen; Ib I. Fire resistant curable solid electrolytes and electrolytic cells produced therefrom
US5545497A (en) * 1994-06-21 1996-08-13 Wilson Greatbatch Ltd. Cathode material for nonaqueous electrochemical cells
DE69508671T2 (en) * 1994-07-07 1999-10-14 Mitsui Chemicals Non-aqueous electrolyte solutions and secondary cells containing them
JP3425493B2 (en) * 1994-07-28 2003-07-14 日立マクセル株式会社 Non-aqueous secondary battery and method of manufacturing the same
US5753389A (en) * 1995-03-17 1998-05-19 Wilson Greatbatch Ltd. Organic carbonate additives for nonaqueous electrolyte in alkali metal electrochemical cells
US5614331A (en) * 1995-12-22 1997-03-25 Wilson Greatbatch Ltd. Medium and high discharge rate combination battery and method
US5639577A (en) * 1996-04-16 1997-06-17 Wilson Greatbatch Ltd. Nonaqueous electrochemical cell having a mixed cathode and method of preparation
US5830600A (en) * 1996-05-24 1998-11-03 Sri International Nonflammable/self-extinguishing electrolytes for batteries

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7824805B2 (en) 2006-01-17 2010-11-02 Medtronic, Inc. Implantable medical device battery
US7807300B2 (en) 2006-01-31 2010-10-05 Medtronic, Inc. Resistance-stabilizing additives for electrolyte

Also Published As

Publication number Publication date
AU9243898A (en) 1999-06-10
DE69804409T2 (en) 2002-10-24
DE69804409D1 (en) 2002-05-02
JPH11250919A (en) 1999-09-17
US6274269B1 (en) 2001-08-14
EP0918364A1 (en) 1999-05-26
US6068950A (en) 2000-05-30

Similar Documents

Publication Publication Date Title
EP0918364B1 (en) Phosphate additives for non-aqueous electrolyte in alkali metal electrochemical cells
US6096447A (en) Phosphonate additives for nonaqueous electrolyte in alkali metal electrochemical cells
US6060184A (en) Inorganic and organic nitrate additives for nonaqueous electrolyte in alkali metal electrochemical cells
US6403256B1 (en) Alkali metal electrochemical cell activated with a nonaqueous electrolyte having a sulfite additive
US6027827A (en) Organic nitrite additives for nonaqueous electrolyte in alkali metal electrochemical cells
US6221534B1 (en) Alkali metal electrochemical cell having an improved cathode activated with a nonaqueous electrolyte having a carbonate additive
EP0803924B1 (en) Organic carbonate additives for nonaqueous electrolyte in alkali metal electrochemical cells
US6511772B2 (en) Electrochemical cell having an electrode with a phosphate additive in the electrode active mixture
US6551747B1 (en) Sandwich cathode design for alkali metal electrochemical cell with high discharge rate capability
US6444360B2 (en) Electrochemical cell activated with a nonaqueous electrolyte having a sulfate additive
US6063526A (en) Dicarbonate additives for nonaqueous electrolyte in alkali metal electrochemical cells
US6692865B2 (en) Double current collector cathode design using mixtures of two active materials for alkali metal or ion electrochemical cells
US6117591A (en) Hydrogen fluoride additive for nonaqueous electrolyte in alkali metal electrochemical cells
US6180283B1 (en) Method for reducing voltage delay in an alkali metal electrochemical cell activated with a nonaqueous electrolyte having a sulfate additive
US6265106B1 (en) Alkali metal electrochemical cell activated with a nonaqueous electrolyte having a sulfate additive
US6013394A (en) Organic sulfate additives for nonaqueous electrolyte in alkali metal electrochemical cells
EP1143544A2 (en) Application of Gamma-SVO and mixture of Gamma-SVO/ Epsilon-SVO in high rate electrochemical lithium cells containing SVO/CFx/SVO sandwich cathodes
US6562515B2 (en) Electrochemical cell having an electrode with a nitrate additive in the electrode active mixture
US7033707B2 (en) Organic cyclic carbonate additives for nonaqueous electrolyte in alkali metal electrochemical cells
US6586135B2 (en) Electrochemical cell having an electrode with a dicarbonate additive in the electrode active mixture
US6528207B2 (en) Electrochemical cell having an electrode with a nitrite additive in the electrode active mixture
WO1996029750A1 (en) Organic carbonate additives for nonaqueous electrolyte in alkali metal electrochemical cells

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI NL SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 19991116

AKX Designation fees paid

Free format text: CH DE FR GB IT LI NL SE

17Q First examination report despatched

Effective date: 20000417

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI NL SE

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 69804409

Country of ref document: DE

Date of ref document: 20020502

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ISLER & PEDRAZZINI AG

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20021230

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20030930

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20031013

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20031020

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20031027

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20031031

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20031128

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050503

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20041023

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050630

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20050501

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051023