EP0733871A1 - Heat transfer tube for a heat exchanger - Google Patents

Heat transfer tube for a heat exchanger Download PDF

Info

Publication number
EP0733871A1
EP0733871A1 EP96103390A EP96103390A EP0733871A1 EP 0733871 A1 EP0733871 A1 EP 0733871A1 EP 96103390 A EP96103390 A EP 96103390A EP 96103390 A EP96103390 A EP 96103390A EP 0733871 A1 EP0733871 A1 EP 0733871A1
Authority
EP
European Patent Office
Prior art keywords
ribs
exchanger tube
tube according
troughs
micro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP96103390A
Other languages
German (de)
French (fr)
Other versions
EP0733871B1 (en
Inventor
Ulrich Naumann
Martin Schmidt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KM Europa Metal AG
Original Assignee
KM Europa Metal AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7757210&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0733871(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by KM Europa Metal AG filed Critical KM Europa Metal AG
Publication of EP0733871A1 publication Critical patent/EP0733871A1/en
Application granted granted Critical
Publication of EP0733871B1 publication Critical patent/EP0733871B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S165/00Heat exchange
    • Y10S165/51Heat exchange having heat exchange surface treatment, adjunct or enhancement
    • Y10S165/515Patterned surface, e.g. knurled, grooved

Definitions

  • the invention relates to an exchanger tube for a heat exchanger according to the features in the preamble of claim 1.
  • the troughs formed in the ribs are produced by rolling.
  • the material deformed from the ribs bulges into the channels at the front of the troughs.
  • the bottoms of the troughs are at a distance from the canal bases.
  • the known exchanger tube is produced by first producing the structure of the subsequent inner surface on one side on a metal strip in a two-stage rolling process, then forming the metal strip into a slot tube with an internal surface structure and then welding the slot edges.
  • the two-stage rolling of the inner surface structure leads to high manufacturing costs.
  • Several roller embossing tools are required, which affect the economy.
  • the troughs of the ribs are created by rolling over an initially existing volume fraction of the ribs that were formed in the first rolling step. This former volume share of the ribs is only distributed in the immediate vicinity. However, a noteworthy reduction in the meter weight cannot be achieved.
  • the invention is based on the object of creating an exchanger tube with an inner surface structure in which, on the one hand, the advantages of an equally good evaporation or condensation performance combined with a reduced fin weight are combined and, on the other hand, a one-step embossing process is used to produce the exchanger tube can.
  • the core of the invention is formed by such an internal, rough surface structure, which has only rounded transitions and avoids sharp edges. Consequently, the rough surface structure can be produced in a particularly advantageous manner by roller embossing in a single step. This considerably reduces the expenditure on equipment.
  • the surfaces of the ribs up to the channel soles are additionally provided with a targeted micro-roughness. This is particularly noticeable in the condensation and evaporation of refrigerants if the exchanger tube is integrated into a corresponding heat exchanger.
  • the cross-sectional volume of the ribs has been reduced in favor of increasing the number of ribs. This makes it possible to enlarge the heat-exchanging surface structure and thus to improve the heat transfer. In this context, very slim ribs and thus narrow channels can also be created.
  • the ribs rounded at the head have the particular advantage that when a heat exchanger tube is drawn into fins of a heat exchanger, in particular by widening by means of a tool moved through the heat exchanger tube, the head portions of the ribs are only insignificantly flattened, so that the formation of condensate films that are difficult to tear open is also effective is opposed. Nevertheless, the large number of projections, edges, tips and depressions which are advantageous for effective evaporation can be provided as vapor bubble nuclei by the micro-roughness due to the large fin surfaces, without the need for larger amounts of material.
  • the surfaces of the fins can also be provided with a coarse structure corresponding to the inner structure of the exchanger tubes and / or with a micro-roughness.
  • the invention is applied to exchanger tubes made of metal, but especially of copper or copper alloys.
  • exchanger tubes can have, for example, a round or oval cross section.
  • Round exchanger tubes preferably have an outside diameter of approximately 6 mm to 20 mm.
  • the embodiment according to claim 2 provides that the central longitudinal planes of the troughs of adjacent ribs run in alignment.
  • micro-roughness of the fin surfaces can be achieved in various ways. For example, a diffuse roughening by blasted corundum is conceivable. Notching of the rib surfaces in the form of linear micro-grooves is also conceivable (claim 3). These micro grooves then preferably extend parallel to one another. However, their longitudinal direction deviates from the longitudinal direction of the ribs.
  • micro-roughness can moreover be formed according to claim 4 by intersecting micro-grooves which deviate from the longitudinal direction of the ribs.
  • punctual depressions can also be provided. These can also be arranged in a line or cross shape at a distance one behind the other.
  • microroughness can also be generated in various ways. A preferred variant is seen in the features of claim 5.
  • the micro-roughness of the fin surfaces is produced by irradiation with hard particles, such as corundum, or by texturing using laser beams. It is possible to either process the starting material (sheet metal strip) already provided with the surface structure accordingly or to provide an embossing roller itself with the desired negative micro-roughness.
  • the flank angle of the ribs can be 5 ° to 60 °, but preferably 10 ° to 40 °. In this way, a very slim rib contour can be produced.
  • the distance between two adjacent ribs is 0.10 mm to 2.0 mm, preferably 0.26 mm to 0.6 mm.
  • the height of the fins is appropriately between 0.03 mm and 1.0 mm, preferably 0.05 mm to 0.35 mm.
  • the distance between two adjacent troughs of a rib is 0.2 mm to 4.0 mm, preferably 0.3 mm to 1.0 mm.
  • the bottoms of the troughs and the channel soles do not have to lie on one level.
  • the minimum distance between the trough floors and the channel soles should then be at least 0.01 mm.
  • FIG. 1 in FIG. 1 denotes a longitudinal section of a longitudinally welded exchanger tube for an otherwise not shown heat exchanger for the condensation and evaporation of refrigerants.
  • the exchanger tube 1 which is circular in outer and inner cross section, has a smooth outer surface 2 and a structured inner surface 3.
  • the exchanger tube 1 is placed in one of its own Outside diameter adapted opening inserted in the lamella and fixed by widening in the opening.
  • an appropriately designed expansion tool is moved through the exchanger tube 1.
  • the exchanger tube 1 has an outer diameter D of 9.52 mm.
  • the exchanger tube 1 is produced from a sheet metal strip made of copper, which is flat on both sides and not shown.
  • the sheet metal strip is subjected to a single-stage roller stamping process, one side of the sheet metal strip 4 remaining smooth (the later outer surface 2 of the exchanger tube 1) and the other side with a structured surface (the later inner side 3 of the exchanger tube 1) as shown in FIGS. 2 and 3 ) is provided. Only the edge regions 5 of the sheet metal strip 4 (FIG. 2) used for welding remain unstructured. After the roll embossing, the sheet metal strip 4 is formed into a slotted tube and then welded along the longitudinal seam and divided into lengths.
  • both the head regions 10 of the ribs 7 and the transitions 11 from the flanks 8 to the channel soles 12 are rounded.
  • the cross-sectional volume of the ribs 7 is smaller than the cross-sectional volume of the channels 13 between the ribs 7.
  • each rib 7 is provided with a sinusoidal ridge shape when viewed in longitudinal section. Because of this sinusoidal wave crest of the ribs 7 in their longitudinal directions LR, transverse troughs 14 are formed in the ribs 7. As FIG. 2 shows in this connection, troughs 14 of adjacent ribs 7 are arranged one behind the other at an angle ⁇ of 45 ° to the longitudinal axis 6 of the exchanger tube 1. The angle ⁇ enclosed between the longitudinal direction LR of the ribs 7 and the central longitudinal planes MLE of the troughs 14 is 90 °. The distance A1 between two troughs 14 adjacent in the longitudinal direction of a rib 7 is 0.50 mm (FIGS. 2 and 5) and the distance A2 of the trough bottoms 15 from the channel soles 12 is 0.01 mm. The troughs 14 have a depth T1 of 0.25 mm (FIGS. 4 and 5).
  • the microroughness 16 is produced directly during the roll embossing.
  • the embossing roller has been provided with a negative diffuse surface structure by means of irradiation with corundum, which then ensures the generation of the surface structure on the later inner surface 3 of the exchanger tube 1.
  • the exchanger tube 1 illustrated in FIG. 1 has a significantly better heat transfer coefficient k '(W / mK) compared not only to an exchanger tube with a smooth inner surface, but also to an internally grooved exchanger tube.
  • FIGS. 6 and 7 drawn up on the basis of comparative investigations without additional explanations (FIG. 6 —condensation, FIG. 7 — evaporation).

Abstract

The pipe (1) has a smooth outer surface (2) and a structured inner surface (3) having parallel ribs (7) running at an angle ( alpha ) of 90 degrees to the longitudinal axis (6) of the exchange pipe. The ribs have sloping flanges (8) and form channels (13) and cross running troughs (14). The middle longitudinal plane of the troughs runs at 90 degrees to the longitudinal axis of the exchange pipe. The troughs have a sine curve formed shape in their longitudinal cross-section and are formed with a micro roughness (16) upper surface (8,10,11) and have rounded ribbed (7) heads. The oppositely lying, neighbouring ribs of the flanges are connected to the channel soles (12) by rounded transitions (11).

Description

Die Erfindung betrifft ein Austauscherrohr für einen Wärmeaustauscher gemäß den Merkmalen im Oberbegriff des Anspruchs 1.The invention relates to an exchanger tube for a heat exchanger according to the features in the preamble of claim 1.

Ein derartiges Austauscherrohr zählt durch die US-PS 53 32 034 zum Stand der Technik. Hierbei weisen sowohl die Rippen als auch die von den Rippen seitlich begrenzten Kanäle jeweils einen trapezförmigen Querschnitt auf. Das Querschnittsvolumen der Rippen ist etwa halb so groß wie das Querschnittsvolumen der Kanäle bemessen.Such an exchanger tube is part of the prior art through US Pat. No. 5,332,034. Both the ribs and the channels laterally delimited by the ribs each have a trapezoidal cross section. The cross-sectional volume of the ribs is approximately half the size of the cross-sectional volume of the channels.

Die in den Rippen ausgeformten Mulden werden durch Walzen hergestellt. Hierbei wölbt sich das aus den Rippen verformte Material stirnseitig der Mulden in die Kanäle hinein. Die Böden der Mulden liegen im Abstand zu den Kanalsohlen.The troughs formed in the ribs are produced by rolling. The material deformed from the ribs bulges into the channels at the front of the troughs. The bottoms of the troughs are at a distance from the canal bases.

Die Herstellung des bekannten Austauscherrohrs erfolgt dadurch, daß zunächst in einem zweistufigen Walzprozeß die Struktur der späteren inneren Oberfläche einseitig an einem Metallband erzeugt, anschließend das Metallband zu einem Schlitzrohr mit innenliegender Oberflächenstruktur umgeformt wird und danach die Schlitzkanten verschweißt werden.The known exchanger tube is produced by first producing the structure of the subsequent inner surface on one side on a metal strip in a two-stage rolling process, then forming the metal strip into a slot tube with an internal surface structure and then welding the slot edges.

Das zweistufige Walzen der inneren Oberflächenstruktur führt zu einem hohen Fertigungsaufwand. Es sind mehrere Walzprägewerkzeuge erforderlich, welche die Wirtschaftlichkeit beeinträchtigen. Die Mulden der Rippen entstehen durch Überwalzen eines zunächst vorhandenen Volumenanteils der im ersten Walzschritt ausgeprägten Rippen. Dieser ehemalige Volumenanteil der Rippen wird nur in die unmittelbare Nachbarschaft verteilt. Eine nennenswerte Verringerung des Metergewichts kann aber nicht erreicht werden.The two-stage rolling of the inner surface structure leads to high manufacturing costs. Several roller embossing tools are required, which affect the economy. The troughs of the ribs are created by rolling over an initially existing volume fraction of the ribs that were formed in the first rolling step. This former volume share of the ribs is only distributed in the immediate vicinity. However, a noteworthy reduction in the meter weight cannot be achieved.

Ferner kann es aufgrund der Ebenflächigkeit der Kopfseiten und der Flanken der Rippen im praktischen Einsatz zur Bildung von schwer aufreißbaren, die Kondensation verzögernden Kondensatfilmen kommen, so daß sich Sperrschichten mit wärmeisolierenden Eigenschaften bilden. Für die Verdampfung stehen nur wenige Kanten als Dampfblasenkeime zur Verfügung.Furthermore, due to the flatness of the top sides and the flanks of the ribs in practical use, it is possible to form condensate films which are difficult to tear open and which delay condensation, so that barrier layers with heat-insulating properties are formed. Only a few edges are available as vapor bubble nuclei for evaporation.

Der Erfindung liegt ausgehend vom Stand der Technik die Aufgabe zugrunde, ein Austauscherrohr mit einer inneren Oberflächenstruktur zu schaffen, bei welcher sich einerseits die Vorteile einer gleichermaßen guten Verdampfungs- bzw. Kondensationsleistung bei reduziertem Rippengewicht verbinden und andererseits zur Herstellung des Austauscherrohrs ein einstufiges Prägeverfahren angewendet werden kann.Based on the prior art, the invention is based on the object of creating an exchanger tube with an inner surface structure in which, on the one hand, the advantages of an equally good evaporation or condensation performance combined with a reduced fin weight are combined and, on the other hand, a one-step embossing process is used to produce the exchanger tube can.

Die Lösung dieser Aufgabe besteht nach der Erfindung in den im kennzeichnenden Teil des Anspruchs 1 aufgeführten Merkmalen.This object is achieved according to the invention in the features listed in the characterizing part of claim 1.

Kern der Erfindung bildet eine solche innere grobe Oberflächenstruktur, die nur gerundete Übergänge aufweist und scharfe Kanten vermeidet. Folglich kann in besonders vorteilhafter Weise die grobe Oberflächenstruktur durch Walzprägen in einer einzigen Stufe erzeugt werden. Der apparatetechnische Aufwand wird dadurch erheblich gesenkt.The core of the invention is formed by such an internal, rough surface structure, which has only rounded transitions and avoids sharp edges. Consequently, the rough surface structure can be produced in a particularly advantageous manner by roller embossing in a single step. This considerably reduces the expenditure on equipment.

Ferner ist es jetzt hinsichtlich der Intensivierung des Wärmeübergangs zwischen dem in dem Austauscherrohr strömenden Fluid und der groben Oberflächenstruktur von Vorteil, daß die Oberflächen der Rippen bis hin zu den Kanalsohlen zusätzlich mit einer gezielten Mikrorauhigkeit versehen werden. Dies macht sich insbesondere bei der Kondensation und Verdampfung von Kältemitteln bemerkbar, wenn das Austauscherrohr in einen entsprechenden Wärmeaustauscher eingegliedert wird. Das Querschnittsvolumen der Rippen ist zugunsten der Erhöhung der Rippenanzahl verringert worden. Hierdurch ist es möglich, die wärmeaustauschende Oberflächenstruktur zu vergrößern und somit den Wärmeübergang zu verbessern. Auch können in diesem Zusammenhang sehr schlanke Rippen und damit schmale Kanäle erzeugt werden. Die kopfseitig gerundeten Rippen haben insbesondere den Vorteil, daß beim Einziehen eines Austauscherrohrs in Lamellen eines Wärmeaustauschers, insbesondere durch Aufweiten mittels eines durch das Austauscherrohr bewegten Werkzeugs, die Kopfpartien der Rippen nur unwesentlich abgeplattet werden, so daß hiermit auch der Bildung von schwer aufreißbaren Kondensatfilmen wirksam entgegengetreten wird. Dennoch kann durch die Mikrorauhigkeit aufgrund der großen Rippenoberflächen die für eine effektive Verdampfung vorteilhafte große Anzahl von Vorsprüngen, Kanten, Spitzen und Vertiefungen als Dampfblasenkeime bereitgestellt werden, ohne daß hierfür größere Materialmengen erforderlich sind.Furthermore, with regard to the intensification of the heat transfer between the fluid flowing in the exchanger tube and the coarse surface structure, it is now advantageous that the surfaces of the ribs up to the channel soles are additionally provided with a targeted micro-roughness. This is particularly noticeable in the condensation and evaporation of refrigerants if the exchanger tube is integrated into a corresponding heat exchanger. The cross-sectional volume of the ribs has been reduced in favor of increasing the number of ribs. This makes it possible to enlarge the heat-exchanging surface structure and thus to improve the heat transfer. In this context, very slim ribs and thus narrow channels can also be created. The ribs rounded at the head have the particular advantage that when a heat exchanger tube is drawn into fins of a heat exchanger, in particular by widening by means of a tool moved through the heat exchanger tube, the head portions of the ribs are only insignificantly flattened, so that the formation of condensate films that are difficult to tear open is also effective is opposed. Nevertheless, the large number of projections, edges, tips and depressions which are advantageous for effective evaporation can be provided as vapor bubble nuclei by the micro-roughness due to the large fin surfaces, without the need for larger amounts of material.

Auch die Oberflächen der Lamellen können bei Bedarf mit einer Grobstruktur entsprechend der Innenstruktur der Austauscherrohre und/oder mit einer Mikrorauhigkeit versehen werden.If necessary, the surfaces of the fins can also be provided with a coarse structure corresponding to the inner structure of the exchanger tubes and / or with a micro-roughness.

Die Anwendung der Erfindung erfolgt bei Austauscherrohren aus Metall, insbesondere aber aus Kupfer oder Kupferlegierungen. Derartige Austauscherrohre können z.B. einen runden oder ovalen Querschnitt besitzen. Runde Austauscherrohre weisen bevorzugt einen Außendurchmesser von etwa 6 mm bis 20 mm auf.The invention is applied to exchanger tubes made of metal, but especially of copper or copper alloys. Such exchanger tubes can have, for example, a round or oval cross section. Round exchanger tubes preferably have an outside diameter of approximately 6 mm to 20 mm.

Grundsätzlich ist es erfindungsgemäß vorstellbar, daß die Mittellängsebenen der Mulden zwar parallel zueinander, jedoch in Längsrichtung der Rippen zueinander versetzt verlaufen.Basically, it is conceivable according to the invention that the central longitudinal planes of the troughs run parallel to one another, but are offset in the longitudinal direction of the ribs.

Die Ausführungsform gemäß Anspruch 2 sieht demgegenüber vor, daß die Mittellängsebenen der Mulden benachbarter Rippen fluchtend verlaufen.In contrast, the embodiment according to claim 2 provides that the central longitudinal planes of the troughs of adjacent ribs run in alignment.

Die Mikrorauhigkeit der Rippenoberflächen kann auf verschiedene Art und Weise verwirklicht werden. So ist beispielsweise eine diffuse Aufrauhung durch gestrahlten Korund denkbar. Vorstellbar ist ferner eine Kerbung der Rippenoberflächen in Form von linienförmigen Mikrorillen (Anspruch 3). Diese Mikrorillen erstrecken sich dann bevorzugt parallel zueinander. Ihre Längsrichtung weicht jedoch von der Längsrichtung der Rippen ab.The micro-roughness of the fin surfaces can be achieved in various ways. For example, a diffuse roughening by blasted corundum is conceivable. Notching of the rib surfaces in the form of linear micro-grooves is also conceivable (claim 3). These micro grooves then preferably extend parallel to one another. However, their longitudinal direction deviates from the longitudinal direction of the ribs.

Die Mikrorauhigkeit kann darüberhinaus entsprechend Anspruch 4 durch sich kreuzförmig schneidende, von der Längsrichtung der Rippen abweichende Mikrorillen gebildet sein.The micro-roughness can moreover be formed according to claim 4 by intersecting micro-grooves which deviate from the longitudinal direction of the ribs.

Statt durchgehender Mikrorillen können aber auch punktuelle Vertiefungen vorgesehen werden. Diese können ebenfalls linienförmig oder kreuzförmig im Abstand hintereinander angeordnet sein.Instead of continuous micro grooves, punctual depressions can also be provided. These can also be arranged in a line or cross shape at a distance one behind the other.

Auch die Erzeugung der Mikrorauhigkeit kann auf verschiedene Art und Weise erfolgen. Eine bevorzugte Variante wird hierbei in den Merkmalen des Anspruchs 5 gesehen. Hier wird die Mikrorauhigkeit der Rippenoberflächen durch eine Bestrahlung mit Hartpartikeln, wie z.B. Korund, oder durch eine Texturierung mittels Laserstrahlen hergestellt. Dabei ist es möglich, entweder das bereits mit der Oberflächenstruktur versehene Ausgangsmaterial (Blechband) entsprechend zu bearbeiten oder eine Prägewalze selber mit der gewünschten negativen Mikrorauhigkeit zu versehen.The microroughness can also be generated in various ways. A preferred variant is seen in the features of claim 5. Here, the micro-roughness of the fin surfaces is produced by irradiation with hard particles, such as corundum, or by texturing using laser beams. It is possible to either process the starting material (sheet metal strip) already provided with the surface structure accordingly or to provide an embossing roller itself with the desired negative micro-roughness.

Auch eine Profilgebung der Prägewalze durch Funkenerodieren ist möglich.Profiling the embossing roller by spark eroding is also possible.

Interne Untersuchungen haben ergeben, daß es zur Erzielung einer gleichermaßen guten Kondensations- und Verdampfungsleistung entsprechend Anspruch 6 vorteilhaft ist, wenn die Tiefe der Mikrorauhigkeit 0,075 mm oder geringer bemessen wird.Internal investigations have shown that to achieve an equally good condensation and evaporation performance according to claim 6, it is advantageous if the depth of the micro roughness is 0.075 mm or less.

Nach Anspruch 7 kann der Flankenwinkel der Rippen 5° bis 60°, vorzugsweise jedoch 10° bis 40°, betragen. Auf diese Weise ist eine sehr schlanke Rippenkontur herstellbar.According to claim 7, the flank angle of the ribs can be 5 ° to 60 °, but preferably 10 ° to 40 °. In this way, a very slim rib contour can be produced.

Der Verlauf der Rippen relativ zur Längsachse des Austauscherrohrs erfolgt gemäß den Merkmalen des Anspruchs 8 unter einem Winkel von 1° bis 89°, vorzugsweise 20° bis 55°.The course of the ribs relative to the longitudinal axis of the exchanger tube takes place according to the features of claim 8 at an angle of 1 ° to 89 °, preferably 20 ° to 55 °.

Ferner ist es im Rahmen der Erfindung sinnvoll, wenn nach Anspruch 9 der zwischen der Längsrichtung der Rippen und den Mittellängsebenen der Mulden eingeschlossene Winkel 90° und kleiner bemessen ist.Furthermore, it makes sense within the scope of the invention if the angle enclosed between the longitudinal direction of the ribs and the central longitudinal planes of the troughs is 90 ° and smaller.

Gemäß Anspruch 10 ist es vorteilhaft, wenn der Abstand zweier benachbarter Rippen 0,10 mm bis 2,0 mm, vorzugsweise 0,26 mm bis 0,6 mm, beträgt.According to claim 10, it is advantageous if the distance between two adjacent ribs is 0.10 mm to 2.0 mm, preferably 0.26 mm to 0.6 mm.

Die Höhe der Rippen wird je nach Rohrdurchmesser entsprechend Anspruch 11 zweckmäßig zwischen 0,03 mm bis 1,0 mm, vorzugsweise 0,05 mm bis 0,35 mm, bemessen.Depending on the tube diameter, the height of the fins is appropriately between 0.03 mm and 1.0 mm, preferably 0.05 mm to 0.35 mm.

Desweiteren ist es nach der Erfindung von Vorteil, wenn nach Anspruch 12 der Abstand zweier benachbarter Mulden einer Rippe 0,2 mm bis 4,0 mm, vorzugsweise 0,3 mm bis 1,0 mm, beträgt.Furthermore, it is advantageous according to the invention if, according to claim 12, the distance between two adjacent troughs of a rib is 0.2 mm to 4.0 mm, preferably 0.3 mm to 1.0 mm.

Die Böden der Mulden und die Kanalsohlen müssen gemäß Anspruch 13 nicht auf einer Ebene liegen. Der minimale Abstand der Muldenböden von den Kanalsohlen sollte dann mindestens 0,01 mm betragen.The bottoms of the troughs and the channel soles do not have to lie on one level. The minimum distance between the trough floors and the channel soles should then be at least 0.01 mm.

Entsprechend den Merkmalen des Anspruchs 14 ist es aber auch denkbar, daß die Muldenböden und die Kanalsohlen in derselben Ebene liegen.According to the features of claim 14, it is also conceivable that the trough floors and the channel soles lie in the same plane.

Die Erfindung ist nachfolgend anhand von in den Zeichnungen dargestellten Ausführungsbeispielen näher erläutert. Es zeigen:

Figur 1
in der Perspektive einen Längenabschnitt eines Austauscherrohrs;
Figur 2
in der Draufsicht einen Längenabschnitt eines strukturierten Blechbands;
Figur 3
in der Perspektive den Ausschnitt III der Figur 2;
Figur 4
in vergrößerter Darstellung einen vertikalen Querschnitt entlang der Linie IV-IV der Figur 2;
Figur 5
einen vertikalen Längsschnitt entlang der Linie V-V der Figur 4 und die
Figuren 6 und 7
anhand von Diagrammen einen Leistungsvergleich an Wärmeaustauschern in Koaxialbauweise mit verschiedenen Rohrausführungen.
The invention is explained in more detail below on the basis of exemplary embodiments illustrated in the drawings. Show it:
Figure 1
in perspective a length section of an exchanger tube;
Figure 2
in plan view a length section of a structured sheet metal strip;
Figure 3
in perspective the section III of Figure 2;
Figure 4
in an enlarged view a vertical cross section along the line IV-IV of Figure 2;
Figure 5
a vertical longitudinal section along the line VV of Figure 4 and
Figures 6 and 7
Based on diagrams, a performance comparison of heat exchangers in coaxial design with different pipe designs.

Mit 1 ist in der Figur 1 ein Längenabschnitt eines längsnahtgeschweißten Austauscherrohrs für einen ansonsten nicht näher dargestellten Wärmeaustauscher zur Kondensation und Verdampfung von Kältemitteln bezeichnet.1 in FIG. 1 denotes a longitudinal section of a longitudinally welded exchanger tube for an otherwise not shown heat exchanger for the condensation and evaporation of refrigerants.

Das im Außen- und Innenquerschnitt kreisrunde Austauscherrohr 1 besitzt eine glatte äußere Oberfläche 2 und eine strukturierte innere Oberfläche 3. Zur Festlegung des Austauscherrohrs 1 in einer ggf. von mehreren zueinander parallel verlaufenden Austauscherrohren 1 durchsetzten Lamelle eines Wärmeaustauschers wird das Austauscherrohr 1 in eine an seinen Außendurchmesser angepaßte Öffnung in der Lamelle eingeführt und durch Aufweiten in der Öffnung festgelegt. Zu diesem Zweck wird ein entsprechend ausgebildetes nicht näher dargestelltes Aufweitwerkzeug durch das Austauscherrohr 1 verlagert.The exchanger tube 1, which is circular in outer and inner cross section, has a smooth outer surface 2 and a structured inner surface 3. To fix the exchanger tube 1 in a fin of a heat exchanger, which may be penetrated by several mutually parallel exchanger tubes 1, the exchanger tube 1 is placed in one of its own Outside diameter adapted opening inserted in the lamella and fixed by widening in the opening. For this purpose, an appropriately designed expansion tool, not shown, is moved through the exchanger tube 1.

Beim Ausführungsbeispiel besitzt das Austauscherrohr 1 einen Außendurchmesser D von 9,52 mm.In the exemplary embodiment, the exchanger tube 1 has an outer diameter D of 9.52 mm.

Die Herstellung des Austauscherrohrs 1 erfolgt aus einem nicht näher dargestellten beidseitig ebenen Blechband aus Kupfer. Das Blechband wird einem einstufigen Walzprägevorgang unterworfen, wobei entsprechend der Darstellung der Figuren 2 und 3 eine Seite des Blechbands 4 glatt bleibt (die spätere äußere Oberfläche 2 des Austauscherrohrs 1) und die andere Seite mit einer strukturierten Oberfläche (die spätere Innenseite 3 des Austauscherrohrs 1) versehen wird. Lediglich die dem Verschweißen dienenden Randbereiche 5 des Blechbands 4 (Figur 2) bleiben unstrukturiert. Nach dem Walzprägen wird das Blechband 4 zu einem Schlitzrohr eingeformt und dann längsnahtgeschweißt sowie auf Länge abgeteilt.The exchanger tube 1 is produced from a sheet metal strip made of copper, which is flat on both sides and not shown. The sheet metal strip is subjected to a single-stage roller stamping process, one side of the sheet metal strip 4 remaining smooth (the later outer surface 2 of the exchanger tube 1) and the other side with a structured surface (the later inner side 3 of the exchanger tube 1) as shown in FIGS. 2 and 3 ) is provided. Only the edge regions 5 of the sheet metal strip 4 (FIG. 2) used for welding remain unstructured. After the roll embossing, the sheet metal strip 4 is formed into a slotted tube and then welded along the longitudinal seam and divided into lengths.

Die Struktur der inneren Oberfläche 3 des Austauscherrohrs 1 wird anschließend anhand der Figuren 2 bis 5 näher erläutert.The structure of the inner surface 3 of the exchanger tube 1 is subsequently explained in more detail with reference to FIGS. 2 to 5.

Sie umfaßt unter einem Winkel α von 45° zur Längsachse 6 des Austauscherrohrs 1 verlaufende parallele Rippen 7 (Figuren 2 und 3) mit geneigten Flanken 8 (Figuren 3 und 4). Der Flankenwinkel β der Rippen 7 beträgt beim Ausführungsbeispiel 20° und der Abstand A zweier benachbarter Rippen 7 0,35 mm (Figuren 2 und 4). Ihre Höhe H beläuft sich auf 0,30 mm (Figur 4). Der die Rippen 7 im Fußbereich verbindende Basisabschnitt 9 hat eine Dicke D1 von 0,30 mm (Figur 5).It comprises at an angle α of 45 ° to the longitudinal axis 6 of the exchanger tube 1 parallel ribs 7 (Figures 2 and 3) with inclined flanks 8 (Figures 3 and 4). Of the Flank angle β of the ribs 7 is 20 ° in the exemplary embodiment and the distance A between two adjacent ribs 7 is 0.35 mm (FIGS. 2 and 4). Its height H is 0.30 mm (Figure 4). The base section 9 connecting the ribs 7 in the foot region has a thickness D1 of 0.30 mm (FIG. 5).

Ferner ist aus den Figuren 3 und 4 zu erkennen, daß sowohl die Kopfbereiche 10 der Rippen 7 als auch die Übergänge 11 von den Flanken 8 auf die Kanalsohlen 12 gerundet sind. Das Querschnittsvolumen der Rippen 7 ist kleiner als das Querschnittsvolumen der Kanäle 13 zwischen den Rippen 7 bemessen.It can also be seen from FIGS. 3 and 4 that both the head regions 10 of the ribs 7 and the transitions 11 from the flanks 8 to the channel soles 12 are rounded. The cross-sectional volume of the ribs 7 is smaller than the cross-sectional volume of the channels 13 between the ribs 7.

Wie insbesondere die Figuren 3 und 5 veranschaulichen, ist jede Rippe 7 im Längsschnitt gesehen mit einem sinusförmigen Kammverlauf versehen. Aufgrund dieses sinusförmigen Wellenkamms der Rippen 7 in ihren Längsrichtungen LR werden in den Rippen 7 quer verlaufende Mulden 14 gebildet. Wie in diesem Zusammenhang die Figur 2 zeigt, sind Mulden 14 benachbarter Rippen 7 in einem Winkel γ von 45° zur Längsachse 6 des Austauscherrohrs 1 fluchtend hintereinander angeordnet. Der zwischen der Längsrichtung LR der Rippen 7 und den Mittellängsebenen MLE der Mulden 14 eingeschlossene Winkel δ beträgt 90°. Der Abstand A1 zweier in Längsrichtung einer Rippe 7 benachbarter Mulden 14 0,50 mm (Figuren 2 und 5) und der Abstand A2 der Muldenböden 15 von den Kanalsohlen 12 beträgt 0,01 mm. Die Mulden 14 haben eine Tiefe T1 von 0,25 mm (Figuren 4 und 5).As particularly illustrated in FIGS. 3 and 5, each rib 7 is provided with a sinusoidal ridge shape when viewed in longitudinal section. Because of this sinusoidal wave crest of the ribs 7 in their longitudinal directions LR, transverse troughs 14 are formed in the ribs 7. As FIG. 2 shows in this connection, troughs 14 of adjacent ribs 7 are arranged one behind the other at an angle γ of 45 ° to the longitudinal axis 6 of the exchanger tube 1. The angle δ enclosed between the longitudinal direction LR of the ribs 7 and the central longitudinal planes MLE of the troughs 14 is 90 °. The distance A1 between two troughs 14 adjacent in the longitudinal direction of a rib 7 is 0.50 mm (FIGS. 2 and 5) and the distance A2 of the trough bottoms 15 from the channel soles 12 is 0.01 mm. The troughs 14 have a depth T1 of 0.25 mm (FIGS. 4 and 5).

Wie die Figur 5 in bewußt übertriebener Darstellung anhand des Wellenkamms der Rippen 7 erkennen läßt, sind die Oberflächen 8, 10, 11 der Rippen 7, d.h. die Kopfbereiche 10, die Flanken 8 und die Übergänge 11 von den Flanken 8 auf die Kanalsohlen 12, ggf. aber auch die Kanalsohlen 12, mit einer Mikrorauhigkeit 16 versehen, deren Tiefe T 0,005 mm beträgt.As can be seen in FIG. 5 in a deliberately exaggerated representation based on the wave crest of the ribs 7, the surfaces 8, 10, 11 of the ribs 7, ie the head regions 10, the flanks 8 and the transitions 11 from the flanks 8 to the channel soles 12, but possibly also the channel soles 12, provided with a micro-roughness 16, the depth T of which is 0.005 mm.

Die Herstellung der Mikrorauhigkeit 16 erfolgt beim Ausführungsbeispiel unmittelbar beim Walzprägen. Dazu ist die Prägewalze mittels einer Bestrahlung durch Korunde mit einer negativen diffusen Oberflächenstruktur versehen worden, die dann die Erzeugung der Oberflächenstruktur an der späteren inneren Oberfläche 3 des Austauscherrohrs 1 gewährleistet.In the exemplary embodiment, the microroughness 16 is produced directly during the roll embossing. For this purpose, the embossing roller has been provided with a negative diffuse surface structure by means of irradiation with corundum, which then ensures the generation of the surface structure on the later inner surface 3 of the exchanger tube 1.

Aufgrund der strukturierten inneren Oberfläche 3 hat das in Figur 1 veranschaulichte Austauscherrohr 1 im Vergleich nicht nur zu einem Austauscherrohr mit einer glatten inneren Oberfläche, sondern auch zu einem innen gerillten Austauscherrohr einen wesentlich besseren Wärmedurchgangskoeffizienten k' (W/mK).Due to the structured inner surface 3, the exchanger tube 1 illustrated in FIG. 1 has a significantly better heat transfer coefficient k '(W / mK) compared not only to an exchanger tube with a smooth inner surface, but also to an internally grooved exchanger tube.

Dieser Sachverhalt ist aus den aufgrund vergleichender Untersuchungen erstellten Diagrammen gemäß den Figuren 6 und 7 ohne zusätzliche Erläuterungen erkennbar (Figur 6 -Kondensation, Fig. 7 - Verdampfung).This fact can be seen from the diagrams according to FIGS. 6 and 7 drawn up on the basis of comparative investigations without additional explanations (FIG. 6 —condensation, FIG. 7 — evaporation).

BezugszeichenaufstellungList of reference symbols

1 -1 -
AustauscherrohrExchanger tube
2 -2 -
äußere Oberfläche v. 1outer surface v. 1
3 -3 -
innere Oberfläche v. 1inner surface v. 1
4 -4 -
BlechbandMetal strip
5 -5 -
Randbereiche v. 4Marginal areas v. 4th
6 -6 -
Längsachse v. 1Longitudinal axis v. 1
7 -7 -
RippenRibs
8 -8th -
Flanken v. 7Flanks v. 7
9 -9 -
Basisabschnitt v. 4Base section v. 4th
10 -10 -
Kopfbereiche v. 7Head areas v. 7
11 -11 -
Übergänge v. 8 auf 12Transitions v. 8 on 12
12 -12 -
KanalsohlenChannel soles
13 -13 -
Kanälechannels
14 -14 -
MuldenHopper
15 -15 -
MuldenbödenTrough floors
16 -16 -
MikrorauhigkeitMicro roughness
A -A -
Abstand zweier benachbarter Rippen 7Distance between two adjacent ribs 7
A1 -A1 -
Abstand zweier benachbarter MLE auf einer Rippe 7Distance between two adjacent MLE on a rib 7
A2 -A2 -
Abstand v. 12 zu 15Distance from 12 to 15
D -D -
Außendurchmesser v. 1Outer diameter of 1
D1 -D1 -
Dicke v. 9Thickness v. 9
H -H -
Höhe v. 7Height of 7
LR -LR -
Längsrichtung v. 7Longitudinal direction v. 7
MLE-MLE-
Mittellängsebenen direkt benachbarter Mulden 14 auf verschiedenen Rippen 7Middle longitudinal planes of directly adjacent troughs 14 on different ribs 7
T -T -
Tiefe v. 16Depth of 16
T1 -T1 -
Tiefe v. 14Depth of 14
α -α -
Winkel zw. 6 u. 7Angle between 6 u. 7
β -β -
Flankenwinkel v. 7Flank angle v. 7
γ -γ -
Winkel zw. 6 u. MLEAngle between 6 u. MLE
δ -δ -
Winkel zw. LR u. MLEAngle between LR and MLE

Claims (15)

1. Austauscherrohr für einen Wärmeaustauscher, das eine glatte äußere Oberfläche (2) und eine strukturierte innere Oberfläche (3) aufweist, die aus in einem von 90° abweichenden Winkel (α) zur Längsachse (6) des Austauscherrohrs (1) verlaufenden parallelen Rippen (7) mit geneigten Flanken (8), von den Rippen (7) seitlich begrenzten Kanälen (13) und in den Rippen (7) ausgeformten quer verlaufenden Mulden (14) gebildet ist, wobei die Mittellängsebenen (MLE) der Mulden (14) in einem von 90° abweichenden Winkel ( ) zur Längsachse (6) des Austauscherrohrs (1) verlaufen, dadurch gekennzeichnet, daß die Mulden (14) durch eine im Längsschnitt sinusförmige Gestaltung der hinsichtlich ihrer Oberflächen (8, 10, 11) mit einer Mikrorauhigkeit (16) versehenen und kopfseitig gerundeten Rippen (7) gebildet sind, wobei die einander gegenüberliegenden Flanken (8) benachbarter Rippen (7) durch gerundete Übergänge (11) mit den Kanalsohlen (12) verbunden sind. 1. Exchanger tube for a heat exchanger, which has a smooth outer surface (2) and a structured inner surface (3), which extends from an angle (α) deviating from 90 ° to the longitudinal axis (6) of the exchanger tube (1) parallel ribs (7) is formed with inclined flanks (8), channels (13) laterally delimited by the ribs (7) and transverse troughs (14) formed in the ribs (7), the central longitudinal planes (MLE) of the troughs (14) run at an angle () deviating from 90 ° to the longitudinal axis (6) of the exchanger tube (1), characterized in that the troughs (14) have a micro-roughness due to their longitudinally sinusoidal design of the surfaces (8, 10, 11) (16) and ribs (7) rounded on the head side, the opposite flanks (8) of adjacent ribs (7) being connected to the channel soles (12) by rounded transitions (11). 2. Austauscherrohr nach Anspruch 1, dadurch gekennzeichnet, daß die Mittellängsebenen (MLE) der Mulden (14) benachbarter Rippen (7) fluchtend verlaufen. 2. Exchanger tube according to claim 1, characterized in that the central longitudinal planes (MLE) of the troughs (14) of adjacent ribs (7) run in alignment. 3. Austauscherrohr nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Mikrorauhigkeit (16) der Rippenoberflächen (8, 10, 11) durch parallel zueinander verlaufende, von der Längsrichtung (LR) der Rippen (7) abweichende Mikrorillen gebildet ist. 3. Exchanger tube according to claim 1 or 2, characterized in that the micro-roughness (16) of the fin surfaces (8, 10, 11) is formed by mutually parallel, from the longitudinal direction (LR) of the ribs (7) deviating micro-grooves. 4. Austauscherrohr nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Mikrorauhigkeit (16) der Rippenoberflächen (8, 10, 11) durch sich kreuzförmig schneidende, von der Längsrichtung (LR) der Rippen (7) abweichende Mikrorillen gebildet ist. 4. Exchanger tube according to claim 1 or 2, characterized in that the micro-roughness (16) of the fin surfaces (8, 10, 11) is formed by cross-cutting, from the longitudinal direction (LR) of the ribs (7) deviating micro-grooves. 5. Austauscherrohr nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Mikrorauhigkeit (16) durch Partikelstrahlen oder mittels Laserstrahlen hergestellt ist. 5. Exchanger tube according to one of claims 1 to 4, characterized in that the micro-roughness (16) is produced by particle beams or by means of laser beams. 6. Austauscherrohr nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Tiefe (T) der Mikrorauhigkeit (16) 0,075 mm oder geringer bemessen ist. 6. Exchanger tube according to one of claims 1 to 5, characterized in that the depth (T) of the microroughness (16) is dimensioned 0.075 mm or less. 7. Austauscherrohr nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß der Flankenwinkel (β) der Rippen (7) 5° bis 60°, vorzugsweise 10° bis 40°, beträgt. 7. Exchanger tube according to one of claims 1 to 6, characterized in that the flank angle (β) of the ribs (7) is 5 ° to 60 °, preferably 10 ° to 40 °. 8. Austauscherrohr nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die Längsrichtung (LR) der Rippen (7) unter einem Winkel (α) von 1° bis 89°, bevorzugt 20° bis 55°, zur Längsachse (6) des Austauscherrohrs (1) verläuft. 8. Exchanger tube according to one of claims 1 to 7, characterized in that the longitudinal direction (LR) of the ribs (7) at an angle (α) of 1 ° to 89 °, preferably 20 ° to 55 °, to the longitudinal axis (6) of the exchanger tube (1). 9. Austauscherrohr nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß der zwischen der Längsrichtung (LR) der Rippen (7) und den Mittellängsebenen (MLE) der Mulden (14) eingeschlossene Winkel (δ) 90° und kleiner bemessen ist. 9. Exchanger tube according to one of claims 1 to 8, characterized in that between the longitudinal direction (LR) of the ribs (7) and the central longitudinal planes (MLE) of the troughs (14) included angle (δ) is 90 ° and smaller. 10. Austauscherrohr nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß der Abstand (A) zweier benachbarter Rippen (7) 0,10 mm bis 2,0 mm, vorzugsweise 0,26 mm bis 0,6 mm, beträgt. 10. Exchanger tube according to one of claims 1 to 9, characterized in that the distance (A) between two adjacent ribs (7) is 0.10 mm to 2.0 mm, preferably 0.26 mm to 0.6 mm. 10. Austauscherrohr nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß der Abstand (A) zweier benachbarter Rippen (7) 0,10 mm bis 2,0 mm, vorzugsweise 0,26 mm bis 0,6 mm, beträgt. 10. Exchanger tube according to one of claims 1 to 9, characterized in that the distance (A) between two adjacent ribs (7) is 0.10 mm to 2.0 mm, preferably 0.26 mm to 0.6 mm. 11. Austauscherrohr nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß die Höhe (H) der Rippen (7) 0,03 mm bis 1,0 mm, vorzugsweise 0,05 mm bis 0,35 mm, beträgt. 11. Exchanger tube according to one of claims 1 to 10, characterized in that the height (H) of the ribs (7) is 0.03 mm to 1.0 mm, preferably 0.05 mm to 0.35 mm. 12. Austauscherrohr nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß der Abstand ( A1) zweier benachbarter Mulden (14) einer Rippe (7) 0,2 mm bis 4,0 mm, vorzugsweise 0,3 mm bis 1,0 mm, beträgt. 12. Exchanger tube according to one of claims 1 to 11, characterized in that the distance (A1) between two adjacent troughs (14) of a rib (7) 0.2 mm to 4.0 mm, preferably 0.3 mm to 1.0 mm. 13. Austauscherrohr nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß die Muldenböden (15) im Abstand (A2) von den Kanalsohlen (12) angeordnet sind. 13. Exchanger tube according to one of claims 1 to 12, characterized in that the trough bottoms (15) are arranged at a distance (A2) from the channel soles (12). 14. Austauscherrohr nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß die Muldenböden (15) in derselben Ebene wie die Kanalsohlen (12) angeordnet sind. 14. Exchanger tube according to one of claims 1 to 12, characterized in that the trough bottoms (15) are arranged in the same plane as the channel soles (12).
EP96103390A 1995-03-21 1996-03-05 Heat transfer tube for a heat exchanger Expired - Lifetime EP0733871B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19510124 1995-03-21
DE19510124A DE19510124A1 (en) 1995-03-21 1995-03-21 Exchanger tube for a heat exchanger

Publications (2)

Publication Number Publication Date
EP0733871A1 true EP0733871A1 (en) 1996-09-25
EP0733871B1 EP0733871B1 (en) 2000-02-02

Family

ID=7757210

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96103390A Expired - Lifetime EP0733871B1 (en) 1995-03-21 1996-03-05 Heat transfer tube for a heat exchanger

Country Status (9)

Country Link
US (1) US5682946A (en)
EP (1) EP0733871B1 (en)
JP (1) JPH08327273A (en)
AT (1) ATE189518T1 (en)
DE (2) DE19510124A1 (en)
DK (1) DK0733871T3 (en)
ES (1) ES2143102T3 (en)
GR (1) GR3033193T3 (en)
PT (1) PT733871E (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0819908A3 (en) * 1996-07-19 1999-06-09 Alcan Alluminio S.p.A. Rolled section for the realization of heat exchangers and relevant production method
EP1202018A3 (en) * 2000-10-27 2004-04-07 Alcoa Inc. Micro-textured heat transfer surfaces
EP1734327A1 (en) * 2005-06-17 2006-12-20 Behr GmbH & Co. KG Heat exchanger in particular sorption, or reaction heat exchanger and/or heat pipe.
EP2554292A1 (en) * 2011-08-05 2013-02-06 Witzenmann GmbH Conduit element with surface structure and method for production and use of such a conduit element

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19612470A1 (en) * 1996-03-28 1997-10-02 Km Europa Metal Ag Exchanger tube
US5785088A (en) * 1997-05-08 1998-07-28 Wuh Choung Industrial Co., Ltd. Fiber pore structure incorporate with a v-shaped micro-groove for use with heat pipes
US6182743B1 (en) 1998-11-02 2001-02-06 Outokumpu Cooper Franklin Inc. Polyhedral array heat transfer tube
US6176301B1 (en) 1998-12-04 2001-01-23 Outokumpu Copper Franklin, Inc. Heat transfer tube with crack-like cavities to enhance performance thereof
AU6563500A (en) * 1999-07-14 2001-01-30 Fitr Gesellschaft Fur Innovation Im Tief- Und Rohrleitungsbau Weimar M.b.H. Conduits and conduit elements for transporting flowable media
US6254631B1 (en) 1999-09-23 2001-07-03 Intratherapeutics, Inc. Stent with enhanced friction
FR2837270B1 (en) * 2002-03-12 2004-10-01 Trefimetaux GROOVED TUBES FOR REVERSIBLE USE FOR HEAT EXCHANGERS
US8573022B2 (en) * 2002-06-10 2013-11-05 Wieland-Werke Ag Method for making enhanced heat transfer surfaces
ATE378567T1 (en) * 2002-06-10 2007-11-15 Wolverine Tube Inc HEAT EXCHANGER TUBE AND METHOD AND TOOL FOR PRODUCING IT
US7311137B2 (en) * 2002-06-10 2007-12-25 Wolverine Tube, Inc. Heat transfer tube including enhanced heat transfer surfaces
US20040099409A1 (en) * 2002-11-25 2004-05-27 Bennett Donald L. Polyhedral array heat transfer tube
US20040244958A1 (en) * 2003-06-04 2004-12-09 Roland Dilley Multi-spiral upset heat exchanger tube
US20060112535A1 (en) * 2004-05-13 2006-06-01 Petur Thors Retractable finning tool and method of using
WO2006105002A2 (en) * 2005-03-25 2006-10-05 Wolverine Tube, Inc. Tool for making enhanced heat transfer surfaces
JP4554557B2 (en) * 2006-06-13 2010-09-29 トヨタ自動車株式会社 Cooler
CN100547339C (en) * 2008-03-12 2009-10-07 江苏萃隆精密铜管股份有限公司 A kind of intensify heat transfer pipe and preparation method thereof
FR2960815B1 (en) * 2010-06-02 2012-05-25 Jean Pierre Darlet COOLING ASSEMBLY OF A FILM OF SYNTHETIC MATERIAL
CN103851945B (en) * 2012-12-07 2017-05-24 诺而达奥托铜业(中山)有限公司 Internal threaded pipe with rough internal surface
US20140251573A1 (en) * 2013-03-07 2014-09-11 Alfredo A. Ciotola Mechanical seal cooler
US9638413B2 (en) 2014-03-05 2017-05-02 Progreen Labs, Llc Treatment device of a heating system
US9488373B2 (en) 2014-03-06 2016-11-08 Progreen Labs, Llc Treatment device of a heating system
US9593857B2 (en) 2014-03-07 2017-03-14 ProGreen Labs, LLC. Heating system
USD1009227S1 (en) 2016-08-05 2023-12-26 Rls Llc Crimp fitting for joining tubing
JP6663899B2 (en) * 2017-11-29 2020-03-13 本田技研工業株式会社 Cooling system
DE102019112213A1 (en) * 2019-05-10 2020-11-12 Norma Germany Gmbh Fluid line for a cooling water system of electric vehicles, electric vehicle and use of a fluid line

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57104095A (en) * 1980-11-26 1982-06-28 Furukawa Electric Co Ltd:The Heat transfer tube with groove on inner face
JPS5941795A (en) * 1982-09-01 1984-03-08 Toshiba Corp Heat transfer tube and its manufacture
US4733698A (en) * 1985-09-13 1988-03-29 Kabushiki Kaisha Kobe Seiko Sho Heat transfer pipe
JPH0313202A (en) * 1989-06-09 1991-01-22 Furukawa Electric Co Ltd:The Formation of fin and rugged surface of welded heat transfer pipe
US5036909A (en) * 1989-06-22 1991-08-06 General Motors Corporation Multiple serpentine tube heat exchanger
US5070937A (en) * 1991-02-21 1991-12-10 American Standard Inc. Internally enhanced heat transfer tube
JPH05141890A (en) * 1991-11-15 1993-06-08 Kobe Steel Ltd Heat transfer tube with inner surface groove
EP0603108A1 (en) * 1992-12-16 1994-06-22 Carrier Corporation Heat exchanger tube

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3825064A (en) * 1961-12-26 1974-07-23 K Inoue Heat exchanger
US3885622A (en) * 1971-12-30 1975-05-27 Olin Corp Heat exchanger tube
DE2808080C2 (en) * 1977-02-25 1982-12-30 Furukawa Metals Co., Ltd., Tokyo Heat transfer tube for boiling heat exchangers and process for its manufacture
JPS5465865A (en) * 1977-11-05 1979-05-26 Ishikawajima Harima Heavy Ind Co Ltd Heat conducting pipe for condenser
JPS5813837B2 (en) * 1978-05-15 1983-03-16 古河電気工業株式会社 condensing heat transfer tube
DE3010450A1 (en) * 1980-03-19 1981-09-24 Kabel- und Metallwerke Gutehoffnungshütte AG, 3000 Hannover PIPE FOR HEAT EXCHANGER PURPOSES, ESPECIALLY FOR EVAPORATORS
JPS5758092A (en) * 1980-09-25 1982-04-07 Agency Of Ind Science & Technol Condensing heat transfer pipe
JP2524983B2 (en) * 1986-09-01 1996-08-14 古河電気工業株式会社 Small diameter heat transfer tube
US4819719A (en) * 1987-01-20 1989-04-11 Mcdonnell Douglas Corporation Enhanced evaporator surface

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57104095A (en) * 1980-11-26 1982-06-28 Furukawa Electric Co Ltd:The Heat transfer tube with groove on inner face
JPS5941795A (en) * 1982-09-01 1984-03-08 Toshiba Corp Heat transfer tube and its manufacture
US4733698A (en) * 1985-09-13 1988-03-29 Kabushiki Kaisha Kobe Seiko Sho Heat transfer pipe
JPH0313202A (en) * 1989-06-09 1991-01-22 Furukawa Electric Co Ltd:The Formation of fin and rugged surface of welded heat transfer pipe
US5036909A (en) * 1989-06-22 1991-08-06 General Motors Corporation Multiple serpentine tube heat exchanger
US5070937A (en) * 1991-02-21 1991-12-10 American Standard Inc. Internally enhanced heat transfer tube
JPH05141890A (en) * 1991-11-15 1993-06-08 Kobe Steel Ltd Heat transfer tube with inner surface groove
EP0603108A1 (en) * 1992-12-16 1994-06-22 Carrier Corporation Heat exchanger tube
US5332034A (en) * 1992-12-16 1994-07-26 Carrier Corporation Heat exchanger tube

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 15, no. 124 (M - 1097) 26 March 1991 (1991-03-26) *
PATENT ABSTRACTS OF JAPAN vol. 17, no. 534 (M - 1486) 27 September 1993 (1993-09-27) *
PATENT ABSTRACTS OF JAPAN vol. 6, no. 199 (M - 162)<1077> 8 October 1982 (1982-10-08) *
PATENT ABSTRACTS OF JAPAN vol. 8, no. 146 (M - 307)<1583> 7 July 1984 (1984-07-07) *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0819908A3 (en) * 1996-07-19 1999-06-09 Alcan Alluminio S.p.A. Rolled section for the realization of heat exchangers and relevant production method
EP1202018A3 (en) * 2000-10-27 2004-04-07 Alcoa Inc. Micro-textured heat transfer surfaces
US6925711B2 (en) 2000-10-27 2005-08-09 Alcoa Inc. Micro-textured heat transfer surfaces
EP1734327A1 (en) * 2005-06-17 2006-12-20 Behr GmbH & Co. KG Heat exchanger in particular sorption, or reaction heat exchanger and/or heat pipe.
EP2554292A1 (en) * 2011-08-05 2013-02-06 Witzenmann GmbH Conduit element with surface structure and method for production and use of such a conduit element

Also Published As

Publication number Publication date
ES2143102T3 (en) 2000-05-01
GR3033193T3 (en) 2000-08-31
DE19510124A1 (en) 1996-09-26
EP0733871B1 (en) 2000-02-02
PT733871E (en) 2000-06-30
ATE189518T1 (en) 2000-02-15
DE59604338D1 (en) 2000-03-09
US5682946A (en) 1997-11-04
DK0733871T3 (en) 2000-07-24
JPH08327273A (en) 1996-12-13

Similar Documents

Publication Publication Date Title
EP0733871B1 (en) Heat transfer tube for a heat exchanger
EP0798529B1 (en) Heat transfer tube
DE60219538T2 (en) heat exchangers
DE19628280C2 (en) Heat transfer tube with a grooved inner surface
DE60209994T2 (en) heat exchanger tube
EP1223400B1 (en) Tube for heat exchanger and process for making same
DE4404357C1 (en) Heat exchange core for condensing vapour (steam)
DE4340378C2 (en) Heat exchangers and methods of making the same
EP0672882B1 (en) Heat exchanger fin
DE102006008083B4 (en) Structured heat exchanger tube and method for its production
DE102004045018B4 (en) Method for producing a flat tube for a heat exchanger of a motor vehicle, flat tube, method for producing a heat exchanger and heat exchangers
EP0990828A2 (en) Flat pipe with multichannel arrangement
DE2209325A1 (en) HEAT EXCHANGE TUBE WITH INTERNAL RIBS AND METHOD OF ITS MANUFACTURING
DE19963353A1 (en) Heat exchanger tube structured on both sides and process for its production
EP1179167B1 (en) Heat exchanger and method for producing a heat exchanger
DE102006002932B4 (en) Heat exchangers and manufacturing processes for heat exchangers
DE60015701T2 (en) Bent tube for heat exchangers and its manufacture
EP1148312B1 (en) Radiator for vehicles
EP0268831B1 (en) Plate fin
DE10210016B9 (en) Heat exchange tube with a ribbed inner surface
CH661584A5 (en) HEAT EXCHANGER AND METHOD FOR PRODUCING THE SAME.
DE202004013882U1 (en) Heat transfer unit for use in heat exchanger of motor vehicle, has turbulence producing units that are squamously formed and having larger widths at transmission areas, where widths gradually decrease from areas in direction of flow axis
DE2335306C3 (en) Finned tube for heat exchangers and process for its manufacture
DE2720756A1 (en) Tube and fin heat exchanger - whose fins bear turbulence inducing ribs of specific dimension
EP0947795A1 (en) Heat exchanger with a plurality of tubes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17P Request for examination filed

Effective date: 19970306

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19990330

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

REF Corresponds to:

Ref document number: 189518

Country of ref document: AT

Date of ref document: 20000215

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59604338

Country of ref document: DE

Date of ref document: 20000309

ITF It: translation for a ep patent filed

Owner name: STUDIO TORTA S.R.L.

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: PA ALDO ROEMPLER

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2143102

Country of ref document: ES

Kind code of ref document: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20000411

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20000331

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

26 Opposition filed

Opponent name: WIELAND-WERKE AG

Effective date: 20001031

NLR1 Nl: opposition has been filed with the epo

Opponent name: WIELAND-WERKE AG

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PLBO Opposition rejected

Free format text: ORIGINAL CODE: EPIDOS REJO

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 20020727

NLR2 Nl: decision of opposition

Effective date: 20020727

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: KME GERMANY AG

Free format text: KM EUROPA METAL AKTIENGESELLSCHAFT#POSTFACH 3320#D-49023 OSNABRUECK (DE) -TRANSFER TO- KME GERMANY AG#KLOSTERSTRASSE 29#49074 OSNABRUECK (DE)

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: ALDO ROEMPLER PATENTANWALT;BRENDENWEG 11 POSTFACH 154;9424 RHEINECK (CH)

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Ref country code: FR

Ref legal event code: CD

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20110325

Year of fee payment: 16

Ref country code: MC

Payment date: 20110329

Year of fee payment: 16

Ref country code: IE

Payment date: 20110323

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20110209

Year of fee payment: 16

Ref country code: SE

Payment date: 20110329

Year of fee payment: 16

Ref country code: AT

Payment date: 20110325

Year of fee payment: 16

Ref country code: CH

Payment date: 20110330

Year of fee payment: 16

Ref country code: IT

Payment date: 20110323

Year of fee payment: 16

Ref country code: LU

Payment date: 20110330

Year of fee payment: 16

Ref country code: FI

Payment date: 20110323

Year of fee payment: 16

Ref country code: NL

Payment date: 20110330

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20110323

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20110428

Year of fee payment: 16

Ref country code: FR

Payment date: 20110414

Year of fee payment: 16

Ref country code: GB

Payment date: 20110331

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20110419

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20110526

Year of fee payment: 16

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20120905

BERE Be: lapsed

Owner name: *KM EUROPA METAL A.G.

Effective date: 20120331

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20121001

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120306

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120331

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120305

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120905

REG Reference to a national code

Ref country code: GR

Ref legal event code: ML

Ref document number: 20000400887

Country of ref document: GR

Effective date: 20121008

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 189518

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120305

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20121130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120402

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120331

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120305

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120305

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120305

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120331

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59604338

Country of ref document: DE

Effective date: 20121002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120305

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121008

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120331

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20130710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120306

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121002