EP0591305B1 - Cermets based on transition metal borides, their production and use - Google Patents

Cermets based on transition metal borides, their production and use Download PDF

Info

Publication number
EP0591305B1
EP0591305B1 EP92912846A EP92912846A EP0591305B1 EP 0591305 B1 EP0591305 B1 EP 0591305B1 EP 92912846 A EP92912846 A EP 92912846A EP 92912846 A EP92912846 A EP 92912846A EP 0591305 B1 EP0591305 B1 EP 0591305B1
Authority
EP
European Patent Office
Prior art keywords
metal
powder
boride
metals
cermet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92912846A
Other languages
German (de)
French (fr)
Other versions
EP0591305A1 (en
Inventor
Henri Pastor
Colette Allibert
Laurent Ottavi
Manuel Albajar
Francisco Castro-Fernandez
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BONASTRE SA
Sandvik Hard Materials SA
Original Assignee
BONASTRE SA
Sandvik Hard Materials SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BONASTRE SA, Sandvik Hard Materials SA filed Critical BONASTRE SA
Publication of EP0591305A1 publication Critical patent/EP0591305A1/en
Application granted granted Critical
Publication of EP0591305B1 publication Critical patent/EP0591305B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • B22F3/15Hot isostatic pressing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/14Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on borides

Definitions

  • the subject of the invention is cermets based on borides of transition metals, in particular titanium diboride, having in particular improved toughness.
  • Cermets are hard materials used in particular to make cutting or drilling tools and wearing parts. They generally consist, as their name suggests, of a predominantly hard but fragile ceramic phase and a much less hard but tenacious metallic binder phase, which gives them an interesting and rare combination of hardness and tenacity.
  • ceramic is taken here in the broad sense, including in particular the oxides, nitrides, carbides and borides of the transition metals, or even their combinations.
  • the inventors have observed these facts experimentally, for example on TiB2-Fe cermets.
  • To prepare these cermets they mixed titanium diboride powder TiB2 (average grain diameter: 1 to a few ⁇ m) with iron powder (average grain diameter 1 to a few ⁇ m) by conventional means (mixer, ball mill, attrition mill, etc.). The mixture was then compressed under 100 to 200 MPa of pressure. The sintering was carried out for 1 to 4 hours, at a temperature between 1450 and 1550 ° C., depending on the volume iron content of the cermet (10 to 20% by volume).
  • the object of the present invention is to find conditions making it possible to manufacture cermets based on transition metal borides which do not have the drawbacks of cermets of the same type obtained according to the prior art and allowing their use in the envisaged applications, in particular due to their high tenacity.
  • Patent application DE-A-28 46 889 relates to an alloy powder, its preparation and its use for manufacturing sintered parts.
  • the alloy powder consists essentially of a boride or a complex boride phase as a support for hardness and a metal or an alloy as a binding phase.
  • the iron boride is partially replaced by at least one boride of another metal such as for example a transition metal (see, for example, page 5, lines 16 to 24).
  • the borides used in Example 3 contain 70.32% by weight of iron for the boride of structure MB which is used in an amount of 43% by weight to form the sintered product, and 76.77% by weight of iron for the boride of structure M2B which is used at a rate of 16% by weight to form the sintered product.
  • Comparable proportions of iron-based borides are used in the other examples.
  • the sintered products disclosed in patent application DE-A-28 46 889 therefore all contain a high proportion of iron boride.
  • the object of the present invention is to avoid the presence of metal boride of the binder phase (iron in particular).
  • patent application DE-A-28 46 889 teaches that the presence of aluminum as an impurity in the alloy powder plays an unfavorable role, which should have dissuaded the person skilled in the art from adding this item.
  • Patent application FR-A-2 514 788 teaches a sintered hard alloy very similar to that taught by document DE-A-28 46 889, in which the hard phase composed of "multiple borides” contains at least 10% by weight of iron, which goes against the object pursued according to the present invention.
  • the inventors have found that the interaction between the hard transition metal boride and the metal binder which causes a drop in toughness, can be prevented or at least greatly reduced by adding certain elements to the binder.
  • metal type in the form of simple or compound bodies, during the preparation of the mixture of the boride and the metal binder, that is to say before the sintering of this mixture.
  • the elements in question are essentially the transition metal entering into the composition of the transition metal boride constituting the hard phase, mainly present in this boride and a metal X chosen from aluminum, alkaline earth metals, Sc, Y, lanthanides, actinides and alloys consisting of iron and ceric metals, or a mixture of at least two of these metals X.
  • the added transition metal is transformed into oxide in which part of the oxygen can be replaced by nitrogen and / or carbon and the metal X is transformed into oxide.
  • oxides precipitate in the form of dispersions of separate oxide particles, or combined in the form of complex oxides.
  • the carbon possibly present in the oxide of the transition metal is due to the presence of this element, as an impurity, in the boride of the hard phase.
  • the ratios x / y and x '/ y', identical or different, are equal to 1/2 or 2/5, or close to these values.
  • the alkaline earth metals X preferably used according to the invention are Mg and Ca.
  • the other metals X preferably used according to the invention are Ce, Pr, Nd, Gd, Dy, Th, U as well as an alloy, consisting of iron and ceric metals, such as for example that known under the name of Mischmetall ®.
  • the cermet according to the invention comprises between 20 and 99%, preferably between 50 and 97% by weight of hard phase 1).
  • the transition metal T or T '(added according to the invention) can be added in elementary form, that is to say not combined with the mixture of the other powders.
  • it is advantageously used in the form of its THz type hydride, z being an integer or decimal, or one of its alloys of type (T, L), L being l '' one of the binding metals used according to the invention, namely Fe, Ni, Co or Cr, or one of its mixed hydrides of type (T, L) Hz, z being an integer or decimal number, because these compounds or alloys are generally more easily grindable than pure metal.
  • the metal X can also be added in elementary form, that is to say not combined, to the mixture of the other powders.
  • it is advantageously used in the form an alloy XaLb or XcTd, and / or a corresponding mixed hydride (X, L) Hz or (X, T) Hz ', and / or a mixed boride XaLbBt (L being preferably Fe, Ni or Co) because these alloys, hydrides or borides are generally more easily grindable and less reactive with respect to the environment than pure metal X.
  • a, b, c, d, t, z and z ' are numbers whole or decimal.
  • Mixing with grinding can be carried out according to any process known to those skilled in the art. It is advantageously carried out by attrition in a ball mill.
  • the duration of the grinding is preferably from 2 to 48 hours.
  • the compression is advantageously carried out under a pressure of 50 to 300 MPa.
  • the sintering is advantageously carried out at a temperature of 1300 to 1700 ° C, for 1 to 3 hours, under pressure of 1 to 104 Pa of argon, or under pressure of 105 Pa of hydrogen, or under vacuum of 10 ⁇ 2 to 10 Pa, or by hot isostastic compression under 100 to 200 MPa of argon (HIP press: ASEA Q1H-6 for example).
  • HIP press ASEA Q1H-6 for example.
  • the cermets obtained according to the invention can be used in particular for manufacturing cutting tools, drilling tools or Wear parts.
  • Example 1 can be considered typical of the prior art, in order to concretize the improvements linked to the invention, the inventors have carried out Example 2 which follows.
  • Example 1 The grinding is carried out as in Example 1, with the only difference that the grinding time is reduced to 2 hours.
  • the compression and dewaxing are carried out as in Example 1.
  • the sintering is carried out at 1500 ° C., under pressure of 103Pa of argon, for one hour.
  • the total porosity measured on the sintered test pieces is 2%.
  • the binder consists essentially of an iron-nickel alloy.
  • neodymium oxide particles Nd303
  • titanium oxycarbonitride particles Ti
  • Example 3 (according to the invention):
  • the ground mixture is separated from the beads by sieving.
  • test pieces (5 g per test piece) is carried out at 70 MPa, the matrix (in hardened steel) being lubricated with zinc stearate.
  • test pieces are encapsulated and sintered by hot isostatic compression (HIP ASEA Q1H-6 press) according to the following cycle: TEMPERATURE (° C) PRESSURE (Argon MPa) BEGINNING END SPEED ° C / min BEGINNING END SPEED MPa / min Min duration 20 430 10 empty* empty* - 43 450 450 - empty* empty* - 30 450 820 10 empty* empty* - 37 820 820 - empty* 0.5 - 0.017 820 1000 10 0.5 0.5 - 18 1000 1350 8.75 0.5 150 3.75 40 1350 1350 - 150 150 - 30 1350 300 - 35 150 70 - 2.7 30 300 270 - 15 70 1 - 35 2 * empty: 1 Pa
  • the binder phase is essentially iron: there does not appear any boride phase Fe2B or FeB, while this phase is predominant in the FN, FNMo and FNW alloys developed according to the prior art.
  • This absence of iron boride phase in the alloys according to the invention is confirmed by the increase in ductility of the binder phase, quantified by the measurement of the stress intensity factor K IC by the PALMQVIST indentation method.
  • the alloys according to the invention exhibit a fine dispersion of alumina particles (Al2O3).
  • the mixture of powders is produced in a ball mill (of stainless steel) under the conditions described in Example 3.
  • the crude mixture is separated from the beads by sieving.
  • test pieces are done under 100 MPa, in a hardened steel matrix, lubricated with zinc stearate.
  • test pieces are encapsulated and sintered by hot isostatic compression (HIP ASEA Q1H-6 press), according to the cycle described in Example 3.
  • the alloys according to the invention exhibit, in addition to the hard phase TiB2 and the binder Fe / Ni / Cr or stainless steel 316L, a fine dispersion of alumina and oxycarbonitride particles of titanium.
  • the hardness decreases only by 3% while the toughness increases by around 40%.
  • Example 5 (according to the invention):
  • Example 2 The grinding is carried out as in Example 2.
  • the compression and the dewaxing are carried out as in Example 1.
  • the sintering is carried out at 1600 ° C. under argon pressure of 103Pa, for two hours.
  • the total porosity measured on the sintered test pieces is less than 0.5%.
  • the hard phase consists of the solid solution (Ti, Cr) B2 and the binder is essentially an Fe / Ni alloy. Note the presence of a fine dispersion of particles of neodymium oxide (Nd2O3) and titanium oxycarbonitride [Ti (O, C, N)].
  • VICKERS hardness under load of 30 kg (294 N) of the sintered test pieces is 14,900 ⁇ 500 MPa, i.e. 6% higher than that of the test pieces of Example 2 (without substitution of TiB2 by CrB2) which is 14000 ⁇ 500 MPa.

Abstract

PCT No. PCT/FR92/00595 Sec. 371 Date Feb. 26, 1993 Sec. 102(e) Date Feb. 26, 1993 PCT Filed Jun. 26, 1992 PCT Pub. No. WO93/00452 PCT Pub. Date Jan. 7, 1993.A cermet useful in the fabrication of metal cutting, rockdrilling and mineral tools, as well as wear parts. The cermet comprises (i) a hard phase of a simple boride of a transition metal, a mixture of simple borides of transition metals, or a mixed boride of transition metals; (ii) a binder phase of Fe, Ni, Co, Cr, or alloys thereof; (iii) a dispersion of particles of oxides of transition metals in which the oxygen can be replaced by nitrogen and/or carbon; and (iv) a dispersion of oxides of metals chosen from aluminum and Group IIA and IIIA metals.

Description

L'invention a pour objet des cermets à base de borures des métaux de transition, notamment de diborure de titane, présentant notamment une ténacité améliorée.The subject of the invention is cermets based on borides of transition metals, in particular titanium diboride, having in particular improved toughness.

Les cermets sont des matériaux durs utilisés notamment pour fabriquer des outils de coupe ou de forage et des pièces d'usure. Ils sont généralement constitués, comme leur nom l'indique, d'une phase céramique majoritaire dure mais fragile et d'une phase liante métallique beaucoup moins dure mais tenace, ce qui leur confère une conjugaison intéressante et rare de dureté et de ténacité. Le terme céramique est pris ici au sens large, incluant en particulier les oxydes, nitrures, carbures et borures des métaux de transition, voire aussi leurs combinaisons.Cermets are hard materials used in particular to make cutting or drilling tools and wearing parts. They generally consist, as their name suggests, of a predominantly hard but fragile ceramic phase and a much less hard but tenacious metallic binder phase, which gives them an interesting and rare combination of hardness and tenacity. The term ceramic is taken here in the broad sense, including in particular the oxides, nitrides, carbides and borides of the transition metals, or even their combinations.

Il est connu que certains métaux (fer, nickel, cobalt, chrome, cuivre, etc...) ou leurs alliages ont été utilisés comme liants dans la fabrication de cermets à base de borures des métaux de transition, le plus souvent de diborures des métaux de transition et notamment de diborure de titane TiB₂. Ces métaux ou alliages ont en principe une double fonction :

  • assurer la formation d'une phase fusible liquide (le plus souvent avec dissolution d'une certaine quantité de borure dans le métal liquide) mouillant aussi parfaitement que possible le composant solide ce qui, en principe, facilite le frittage et permet une densification totale ;
  • apporter une certaine ténacité au cermet fritté qui est donc ainsi formé d'une phase dure mais fragile (le borure) et d'un liant métallique moins dur mais ductile (le métal ou alliage liant).
It is known that certain metals (iron, nickel, cobalt, chromium, copper, etc.) or their alloys have been used as binders in the manufacture of cermets based on borides of transition metals, most often diborides of transition metals and in particular of titanium diboride TiB₂. These metals or alloys have in principle a double function:
  • ensuring the formation of a liquid fusible phase (most often with the dissolution of a certain amount of boride in the liquid metal) wetting the solid component as perfectly as possible which, in principle, facilitates sintering and allows total densification;
  • bring a certain tenacity to the sintered cermet which is thus thus formed of a hard but fragile phase (the boride) and of a less hard but ductile metallic binder (the metal or alloy binder).

En réalité, l'examen de la littérature montre qu'expérimentalement la densification par frittage en présence de phase liquide de tels cermets n'est pas parfaite et même souvent insuffisante : la porosité ouverte reste importante (de 4 à 30 % en volume) et le liant métallique se transforme le plus souvent, au moins partiellement, en borure par réaction chimique avec la phase dure ; il en résulte une chute considérable de la ténacité du cermet, ce qui en restreint le champ d'applications.In reality, a review of the literature shows that experimentally densification by sintering in the presence of the liquid phase of such cermets is not perfect and even often insufficient: the open porosity remains high (from 4 to 30% by volume) and the metallic binder most often, at least partially, transforms into boride by chemical reaction with the hard phase; this results in a considerable drop in the toughness of the cermet, which restricts its field of application.

Les inventeurs ont pu constater ces faits expérimentalement, par exemple sur les cermets TiB₂-Fe. Pour préparer ces cermets, ils ont mélangé de la poudre de diborure de titane TiB₂ (diamètre de grain moyen : 1 à quelques µm) à de la poudre de fer (diamètre de grain moyen 1 à quelques µm) par des moyens classiques (mélangeur, broyeur à billes, broyeur par attrition, etc). Le mélange a été ensuite comprimé sous 100 à 200 MPa de pression. Le frittage a été effectué pendant 1 à 4 heures, à température comprise entre 1450 et 1550°C, selon la teneur volumique en fer du cermet (10 à 20 % en vol.). Ils ont alors constaté que la densification était très mauvaise (la porosité résiduelle variant entre 10 et 20 %) et que la majeure partie du métal liant fer s'était transformée en borure Fe₂B ou/et FeB fragile, entraînant ainsi une chute de la ténacité, ce qui rend l'utilisation d'un tel matériau pratiquement impossible dans les applications envisagées.The inventors have observed these facts experimentally, for example on TiB₂-Fe cermets. To prepare these cermets, they mixed titanium diboride powder TiB₂ (average grain diameter: 1 to a few µm) with iron powder (average grain diameter 1 to a few µm) by conventional means (mixer, ball mill, attrition mill, etc.). The mixture was then compressed under 100 to 200 MPa of pressure. The sintering was carried out for 1 to 4 hours, at a temperature between 1450 and 1550 ° C., depending on the volume iron content of the cermet (10 to 20% by volume). They then found that the densification was very poor (the residual porosity varying between 10 and 20%) and that the major part of the iron-binding metal had transformed into boride Fe₂B or / and fragile FeB, thus causing a drop in toughness , which makes the use of such a material practically impossible in the envisaged applications.

En conclusion, l'obtention d'un cermet borure-métal (ou alliage) dur et tenace apparaît pratiquement irréalisable du fait de l'interaction, au frittage, du liant métallique avec le borure dur, avec boruration concomitante au moins partielle de ce liant métallique.In conclusion, obtaining a hard and tenacious boride-metal (or alloy) cermet appears practically impracticable due to the interaction, during sintering, of the metal binder with the hard boride, with at least partial concomitant boriding of this binder. metallic.

Le but de la présente invention est de trouver des conditions permettant de fabriquer des cermets à base de borures des métaux de transition ne présentant pas les inconvénients des cermets du même type obtenus selon l'art antérieur et permettant leur utilisation dans les applications envisagées, notamment en raison de leur ténacité élevée.The object of the present invention is to find conditions making it possible to manufacture cermets based on transition metal borides which do not have the drawbacks of cermets of the same type obtained according to the prior art and allowing their use in the envisaged applications, in particular due to their high tenacity.

La demande de brevet DE-A-28 46 889 concerne une poudre d'alliage, sa préparation et son utilisation pour fabriquer des pièces frittées.Patent application DE-A-28 46 889 relates to an alloy powder, its preparation and its use for manufacturing sintered parts.

La poudre d'alliage est constituée essentiellement d'un borure ou d'une phase borure complexe en tant que support de la dureté et d'un métal ou d'un alliage en tant que phase liante.The alloy powder consists essentially of a boride or a complex boride phase as a support for hardness and a metal or an alloy as a binding phase.

Il résulte du préambule et de l'exposé du but poursuivi que l'invention décrite dans ce document concerne le remplacement partiel du fer dans la phase dure de type borure selon l'art antérieur par d'autres éléments formant des borures.It follows from the preamble and the statement of the aim pursued that the invention described in this document relates to the partial replacement of iron in the hard phase of boride type according to the prior art by other elements forming borides.

De fait, dans le support de dureté le borure de fer est remplacé en partie par au moins un borure d'un autre métal tel que par exemple un métal de transition (voir, par exemple, page 5, lignes 16 à 24).In fact, in the hardness support the iron boride is partially replaced by at least one boride of another metal such as for example a transition metal (see, for example, page 5, lines 16 to 24).

Les borures utilisés dans l'exemple 3 contiennent 70,32% en poids de fer pour le borure de structure MB qui est utilisé à raison de 43% en poids pour former le produit fritté, et 76,77% en poids de fer pour le borure de structure M₂B qui est utilisé à raison de 16% en poids pour former le produit fritté.The borides used in Example 3 contain 70.32% by weight of iron for the boride of structure MB which is used in an amount of 43% by weight to form the sintered product, and 76.77% by weight of iron for the boride of structure M₂B which is used at a rate of 16% by weight to form the sintered product.

Des proportions comparables de borures à base de fer sont utilisées dans les autres exemples. Les produits frittés divulgués dans la demande de brevet DE-A-28 46 889 contiennent donc tous une forte proportion de borure de fer. Or, le but de la présente invention est d'éviter la présence de borure de métal de la phase liante (fer notamment).Comparable proportions of iron-based borides are used in the other examples. The sintered products disclosed in patent application DE-A-28 46 889 therefore all contain a high proportion of iron boride. However, the object of the present invention is to avoid the presence of metal boride of the binder phase (iron in particular).

Par ailleurs, la demande de brevet DE-A-28 46 889 enseigne que la présence d'aluminium en tant qu'impureté dans la poudre d'alliage joue un rôle défavorable, ce qui aurait dû dissuader l'homme du métier d'ajouter cet élément.Furthermore, patent application DE-A-28 46 889 teaches that the presence of aluminum as an impurity in the alloy powder plays an unfavorable role, which should have dissuaded the person skilled in the art from adding this item.

La demande de brevet FR-A-2 514 788 enseigne un alliage dur fritté très similaire de celui enseigné par le document DE-A-28 46 889, dans lequel la phase dure composée de "borures multiples" contient au moins 10% en poids de fer, ce qui va à l'encontre du but poursuivi selon la présente invention.Patent application FR-A-2 514 788 teaches a sintered hard alloy very similar to that taught by document DE-A-28 46 889, in which the hard phase composed of "multiple borides" contains at least 10% by weight of iron, which goes against the object pursued according to the present invention.

Grâce à des recherches approfondies, les inventeurs ont trouvé que l'interaction entre le borure dur de métal de transition et le liant métallique qui entraîne une chute de ténacité, peut être empêchée ou au moins fortement réduite par addition au liant de certains éléments de type métal, sous forme de corps simples ou composés, lors de la préparation du mélange du borure et du liant métallique, c'est-à-dire avant le frittage de ce mélange.Thanks to extensive research, the inventors have found that the interaction between the hard transition metal boride and the metal binder which causes a drop in toughness, can be prevented or at least greatly reduced by adding certain elements to the binder. of metal type, in the form of simple or compound bodies, during the preparation of the mixture of the boride and the metal binder, that is to say before the sintering of this mixture.

Les éléments en question sont essentiellement le métal de transition entrant dans la composition du borure de métal de transition constituant la phase dure, majoritairement présent dans ce borure et un métal X choisi parmi l'aluminium, les métaux alcalino-terreux, Sc, Y, les lanthanides, les actinides et les alliages constitués de fer et de métaux cériques, ou un mélange d'au moins deux de ces métaux X.The elements in question are essentially the transition metal entering into the composition of the transition metal boride constituting the hard phase, mainly present in this boride and a metal X chosen from aluminum, alkaline earth metals, Sc, Y, lanthanides, actinides and alloys consisting of iron and ceric metals, or a mixture of at least two of these metals X.

Lors du frittage, le métal de transition ajouté se transforme en oxyde dans lequel une partie de l'oxygène peut être remplacée par de l'azote et/ou du carbone et le métal X est transformé en oxyde. Ces oxydes précipitent sous forme de dispersions de particules d'oxydes séparés, ou combinés sous forme d'oxydes complexes.During sintering, the added transition metal is transformed into oxide in which part of the oxygen can be replaced by nitrogen and / or carbon and the metal X is transformed into oxide. These oxides precipitate in the form of dispersions of separate oxide particles, or combined in the form of complex oxides.

Le carbone éventuellement présent dans l'oxyde du métal de transition est dû à la présence de cet élément, en tant qu'impureté, dans le borure de la phase dure.The carbon possibly present in the oxide of the transition metal is due to the presence of this element, as an impurity, in the boride of the hard phase.

L' invention a donc pour objet un cermet comprenant:

  • 1) une phase dure de type borure ;
  • 2) une phase liante constituée d'un métal liant pur L, ou d'un alliage d'au moins deux métaux (L,L'...) où :
    • . L est un métal choisi dans le groupe constitué par Fe, Ni, Co et Cr, et
    • . L' est au moins un élément métallique d'alliage pour L, qui ne dégrade pas substantiellement sa ténacité, caractérisé en ce que la phase dure 1) est constituée d'un borure simple TxBy, d'un mélange de borures simples TxBy + T'x'By' ou d'un borure mixte (T,T')xBy où :
    • . T et T' sont des métaux de transition choisis dans le groupe constitué par Ti, Zr, Hf, V, Nb, Ta, Cr, Mo et W, et
    • . x, x', y et y' sont des nombres entiers ou décimaux, de préférence des nombres entiers, identiques ou différents ;
    et en ce que ledit cermet comprend en outre :
  • 3) une fine dispersion de particules d'oxyde du métal de transition T ou T', majoritaire dans la composition de la phase dure 1), oxyde dans lequel une partie de l'oxygène peut être remplacée par de l'azote et/ou du carbone, cet oxyde étant notamment un oxycarbonitrure, et
  • 4) une fine dispersion de particules d'oxyde d'un métal X choisi dans le groupe constitué par l'aluminium, les métaux alcalino-terreux, Sc, Y, les lanthanides, les actinides et les alliages constitués de fer et de métaux cériques,
    étant entendu que les oxydes formant les fines dispersions 3) et 4) peuvent être combinés sous forme d'oxydes complexes.
The subject of the invention is therefore a cermet comprising:
  • 1) a hard phase of boride type;
  • 2) a binder phase consisting of a pure binder metal L, or an alloy of at least two metals (L, L '...) where:
    • . L is a metal chosen from the group consisting of Fe, Ni, Co and Cr, and
    • . L 'is at least one metallic element of alloy for L, which does not substantially degrade its toughness, characterized in that the hard phase 1) consists of a simple boride TxBy, of a mixture of simple borides TxBy + T 'x'By' or a mixed boride (T, T ') xBy where:
    • . T and T 'are transition metals selected from the group consisting of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo and W, and
    • . x, x ', y and y' are whole or decimal numbers, preferably whole, identical or different numbers;
    and in that said cermet further comprises:
  • 3) a fine dispersion of oxide particles of the transition metal T or T ', predominant in the composition of the hard phase 1), oxide in which part of the oxygen can be replaced by nitrogen and / or carbon, this oxide being in particular an oxycarbonitride, and
  • 4) a fine dispersion of oxide particles of a metal X chosen from the group consisting of aluminum, alkaline earth metals, Sc, Y, lanthanides, actinides and alloys consisting of iron and ceric metals ,
    it being understood that the oxides forming the fine dispersions 3) and 4) can be combined in the form of complex oxides.

Avantageusement, les rapports x/y et x'/y', identiques ou différents, sont égaux à 1/2 ou 2/5, ou proches de ces valeurs.Advantageously, the ratios x / y and x '/ y', identical or different, are equal to 1/2 or 2/5, or close to these values.

Les métaux X alcalino-terreux utilisés de préférence selon l'invention sont Mg et Ca.The alkaline earth metals X preferably used according to the invention are Mg and Ca.

Les autres métaux X utilisés de préférence selon l'invention sont Ce, Pr, Nd, Gd, Dy, Th, U ainsi qu'un alliage, constitué de fer et de métaux cériques, tel que par exemple celui connu sous le nom de Mischmetall®.The other metals X preferably used according to the invention are Ce, Pr, Nd, Gd, Dy, Th, U as well as an alloy, consisting of iron and ceric metals, such as for example that known under the name of Mischmetall ®.

Selon un mode préféré de réalisation, le cermet selon l'invention comprend entre 20 et 99 %, de préférence entre 50 et 97% en poids de phase dure 1).According to a preferred embodiment, the cermet according to the invention comprises between 20 and 99%, preferably between 50 and 97% by weight of hard phase 1).

Selon un autre aspect, l'invention a pour objet un procédé de fabrication du cermet défini ci-dessus, comprenant :

  • 1. le mélange avec broyage :
    • d'une poudre de phase dure de type borure,
    • d'une poudre de métal liant L défini comme ci-dessus, pur et/ou d'un préalliage dans lequel L est majoritaire,
    • éventuellement d'au moins une poudre d'un élément métallique L' d'alliage pour L ou d'un alliage de L' qui ne dégrade pas susbstantiellement la ténacité de L, et
    • d'une poudre de métal de transition T ou T', sous forme de métal pur, d'alliage et/ou de composé, caractérisé en ce que la phase dure de type borure est constituée d'un borure simple TxBy, d'un mélange de borures simples TxBy + T'x'By' ou d'un borure mixte (T,T')xBy, T,T', x, x', y et y' étant définis comme ci-dessus, le métal de transition T ou T' est le métal majoritaire dans la poudre de la phase dure de type borure, et on mélange simultanément avec broyage :
    • une poudre d'un métal X choisi dans le groupe constitué par l'aluminium, les métaux alcalino-terreux, Sc, Y, les lanthanides, les actinides et les alliages constitués de fer et de métaux cériques, sous forme élémentaire, d'alliage et/ou de composé,
      étant entendu que le métal de transition T ou T' et le métal X peuvent être introduits sous forme d'une poudre d'un alliage ou d'une combinaison de ces deux éléments, ce procédé étant en outre caractérisé en ce qu'il comprend de plus :
  • 2. la granulation du mélange obtenu en 1.,
  • 3. la compression des granulés obtenus en 2.,
  • 4. le frittage et/ou le frittage sous pression gazeuse modérée (sinter-HiP) et/ou la compression isostatique à chaud (HIP) du produit comprimé obtenu en 3.
According to another aspect, the invention relates to a process for manufacturing the cermet defined above, comprising:
  • 1. mixing with grinding:
    • a hard phase powder of boride type,
    • of a powder of metal binder L defined as above, pure and / or of a pre-alloy in which L is predominant,
    • optionally at least one powder of a metallic element L ′ of alloy for L or of an alloy of L ′ which does not significantly degrade the toughness of L, and
    • a transition metal powder T or T ', in the form of pure metal, of alloy and / or of compound, characterized in that the hard phase of boride type consists of a simple boride TxBy, of a mixture of simple borides TxBy + T'x'By 'or of a mixed boride (T, T ') xBy, T, T', x, x ', y and y' being defined as above, the transition metal T or T 'is the majority metal in the powder of the hard phase of boride type, and the following are mixed simultaneously with grinding:
    • a powder of a metal X chosen from the group consisting of aluminum, alkaline earth metals, Sc, Y, lanthanides, actinides and alloys consisting of iron and ceric metals, in elementary form, of alloy and / or compound,
      it being understood that the transition metal T or T ′ and the metal X can be introduced in the form of a powder of an alloy or of a combination of these two elements, this method being further characterized in that it comprises Furthermore :
  • 2. the granulation of the mixture obtained in 1.,
  • 3. compression of the granules obtained in 2.,
  • 4. sintering and / or sintering under moderate gas pressure (sinter-HiP) and / or hot isostatic compression (HIP) of the compressed product obtained in 3.

Le métal de transition T ou T' (ajouté selon l'invention) peut être ajouté sous forme élémentaire, c'est-à-dire non combinée au mélange des autres poudres. Toutefois, pour faciliter son introduction dans ce mélange, on l'utilise avantageusement sous forme de son hydrure de type THz, z étant un nombre entier ou décimal, ou d'un de ses alliages de type (T,L), L étant l'un des métaux liants utilisés selon l'invention, à savoir Fe, Ni, Co ou Cr, ou d'un de ses hydrures mixtes de type (T,L)Hz, z étant un nombre entier ou décimal, car ces composés ou alliages sont généralement plus facilement broyables que le métal pur.The transition metal T or T '(added according to the invention) can be added in elementary form, that is to say not combined with the mixture of the other powders. However, to facilitate its introduction into this mixture, it is advantageously used in the form of its THz type hydride, z being an integer or decimal, or one of its alloys of type (T, L), L being l '' one of the binding metals used according to the invention, namely Fe, Ni, Co or Cr, or one of its mixed hydrides of type (T, L) Hz, z being an integer or decimal number, because these compounds or alloys are generally more easily grindable than pure metal.

Le métal X peut également être ajouté sous forme élémentaire, c'est-à-dire non combinée, au mélange des autres poudres. Toutefois, pour faciliter son introduction dans ce mélange, on l'utilise avantageusement sous forme d'un alliage XaLb ou XcTd, et/ou d'un hydrure mixte correspondant (X,L)Hz ou (X,T)Hz', et/ou d'un borure mixte XaLbBt (L étant de préférence Fe, Ni ou Co) car ces alliages, hydrures ou borures sont généralement plus facilement broyables et moins réactifs vis-à-vis de l'environnement que le métal X pur. Dans ces alliages ou composés du métal X, a, b, c, d, t, z et z' sont des nombres entiers ou décimaux.The metal X can also be added in elementary form, that is to say not combined, to the mixture of the other powders. However, to facilitate its introduction into this mixture, it is advantageously used in the form an alloy XaLb or XcTd, and / or a corresponding mixed hydride (X, L) Hz or (X, T) Hz ', and / or a mixed boride XaLbBt (L being preferably Fe, Ni or Co) because these alloys, hydrides or borides are generally more easily grindable and less reactive with respect to the environment than pure metal X. In these alloys or compounds of the metal X, a, b, c, d, t, z and z 'are numbers whole or decimal.

On peut également utiliser avantageusement son hydrure XHz broyé, dans lequel z est un nombre entier ou décimal.One can also advantageously use its grounded hydride XHz, in which z is an integer or decimal.

Le mélange traité selon l'invention pour fabriquer des cermets est avantageusement constitué de :

  • 50 à 97 % en poids de poudre de type borure,
  • 3 à 50 % en poids de poudre de métal liant L pur, ou d'un préalliage dans lequel L est majoritaire,
  • 0 à 25 % en poids de poudre d'au moins un élément métallique L' d'alliage pour L qui ne dégrade pas substantiellement sa ténacité,
  • 0,1 à 20 % en poids de poudre de métal X ou de l'un de ses alliages et/ou composés et
  • 1 à 15 % en poids de poudre du métal T ou T' ou de l'un de ses alliages et/ou composés.
The mixture treated according to the invention for manufacturing cermets advantageously consists of:
  • 50 to 97% by weight of boride type powder,
  • 3 to 50% by weight of metal powder binding pure L, or of a pre-alloy in which L is predominant,
  • 0 to 25% by weight of powder of at least one metallic element L 'of alloy for L which does not substantially degrade its toughness,
  • 0.1 to 20% by weight of metal powder X or of one of its alloys and / or compounds and
  • 1 to 15% by weight of powder of the metal T or T 'or of one of its alloys and / or compounds.

Le mélange avec broyage peut être effectué selon tout procédé connu de l'homme du métier. Il est avantageusement effectué par attrition dans un broyeur à billes.Mixing with grinding can be carried out according to any process known to those skilled in the art. It is advantageously carried out by attrition in a ball mill.

La durée du broyage est de préférence de 2 à 48 heures.The duration of the grinding is preferably from 2 to 48 hours.

La compression est avantageusement effectuée sous une pression de 50 à 300 MPa.The compression is advantageously carried out under a pressure of 50 to 300 MPa.

Le frittage est avantageusement effectué à une température de 1300 à 1700°C, pendant 1 à 3 heures, sous pression de 1 à 10⁴ Pa d'argon, ou sous pression de 10⁵ Pa d'hydrogène, ous sous vide de 10⁻² à 10 Pa, ou par compression isostastique à chaud sous 100 à 200 MPa d'argon (presse HIP : ASEA Q1H-6 par exemple). On peut aussi pratiquer dans un même four, en une seule opération (sinter-HIP), le frittage suivi d'une compression isostatique à chaud sous pression modérée (par exemple 5 à 10 MPa d'argon).The sintering is advantageously carried out at a temperature of 1300 to 1700 ° C, for 1 to 3 hours, under pressure of 1 to 10⁴ Pa of argon, or under pressure of 10⁵ Pa of hydrogen, or under vacuum of 10⁻² to 10 Pa, or by hot isostastic compression under 100 to 200 MPa of argon (HIP press: ASEA Q1H-6 for example). One can also practice in the same oven, in a single operation (sinter-HIP), sintering followed by hot isostatic compression under moderate pressure (for example 5 to 10 MPa of argon).

Compte tenu de leurs propriétés remarquables, notamment de leur ténacité, les cermets obtenus selon l'invention peuvent être utilisés en particulier pour fabriquer des outils de coupe, des outils de forage ou des pièces d'usure.Given their remarkable properties, in particular their toughness, the cermets obtained according to the invention can be used in particular for manufacturing cutting tools, drilling tools or Wear parts.

L'invention est expliquée plus en détail et ses avantages sont mis en évidence dans les exemples non limitatifs qui suivent.The invention is explained in more detail and its advantages are highlighted in the nonlimiting examples which follow.

Exemple 1 (comparatif) : Example 1 (comparative) :

On réalise le mélange suivant :

  • · 139,2 g de poudre de diborure de titane (surface spécifique BET : 1,5 m²/g ; diamètre de grain moyen FISHER : 4,3µm) ;
  • · 60,8 g de poudre de fer ex-carbonyle (diamètre de grain moyen FISHER : 4,3 µm),
par broyage par attrition, dans les conditions suivantes : 200 g de mélange + 10 g de paraffine + 1750 g de billes d'acier (4 mm de diamètre), pendant 4 heures, en présence de 200 ml d'acétone. Le mélange homogène, broyé et séché est comprimé sous forme d'éprouvettes parallélépipédiques ISO B (Norme ISO 3327) en matrice et poinçons, sous 200 MPa, en compression uniaxiale bidirectionnelle. Après déparaffinage, le frittage des éprouvettes est effectué à 1450°C, sous pression de 10³ Pa d'argon, pendant 1 heure. La porosité ouverte, mesurée sur les éprouvettes frittées, est de 20 %. Elle peut être ramenée à 12 % par frittage d'une heure à 1520°C.The following mixture is produced:
  • 139.2 g of titanium diboride powder (BET specific surface: 1.5 m² / g; average FISHER grain diameter: 4.3 µm);
  • 60.8 g of ex-carbonyl iron powder (average FISHER grain diameter: 4.3 µm),
by grinding by attrition, under the following conditions: 200 g of mixture + 10 g of paraffin + 1750 g of steel balls (4 mm in diameter), for 4 hours, in the presence of 200 ml of acetone. The homogeneous mixture, ground and dried, is compressed in the form of ISO B parallelepipedic test pieces (Standard ISO 3327) in matrix and punches, at 200 MPa, in bidirectional uniaxial compression. After dewaxing, the sintering of the test pieces is carried out at 1450 ° C, under pressure of 10³ Pa of argon, for 1 hour. The open porosity, measured on the sintered test pieces, is 20%. It can be reduced to 12% by sintering for one hour at 1520 ° C.

Les examens métallographiques et radiocristallographiques montrent que le liant est constitué essentiellement de borures de fer Fe₂B et FeB.Metallographic and radiocrystallographic examinations show that the binder consists essentially of iron borides Fe₂B and FeB.

L'exemple 1 pouvant être considéré comme typique de l'art antérieur, pour concrétiser les améliorations liées à l'invention, les inventeurs ont réalisé l'exemple 2 qui suit.Since Example 1 can be considered typical of the prior art, in order to concretize the improvements linked to the invention, the inventors have carried out Example 2 which follows.

Exemple 2 (selon l'invention) : Example 2 (according to the invention) :

On réalise le mélange suivant :

  • · 136,0 g de poudre de diborure de titane (surface spécifique BET : 0,52 m²/g ; diamètre de grain moyen FISHER : 4,6 µm) ;
  • · 51,5 g de poudre de fer ex-carbonyle (diamètre de grain moyen FISHER : 2,0 µm) ;
  • · 10,3 g de poudre d'alliage NdNi₅ ;
  • · 2,2 g de poudre d'alliage TiFe₂.
The following mixture is produced:
  • 136.0 g of titanium diboride powder (BET specific surface: 0.52 m² / g; FISHER average grain diameter: 4.6 µm);
  • 51.5 g of ex-carbonyl iron powder (average FISHER grain diameter: 2.0 µm);
  • · 10.3 g of NdNi₅ alloy powder;
  • 2.2 g of TiFe₂ alloy powder.

Le broyage est effectué comme dans l'exemple 1, à la seule différence que la durée de broyage est réduite à 2 heures. La compression et le déparaffinage sont effectués comme dans l'exemple 1. Le frittage est effectué à 1500°C, sous pression de 10³Pa d'argon, pendant une heure. La porosité totale mesurée sur les éprouvettes frittées est de 2 %.The grinding is carried out as in Example 1, with the only difference that the grinding time is reduced to 2 hours. The compression and dewaxing are carried out as in Example 1. The sintering is carried out at 1500 ° C., under pressure of 10³Pa of argon, for one hour. The total porosity measured on the sintered test pieces is 2%.

Les examens métallographiques et radiocristallographiques montrent que le liant est essentiellement constitué d'un alliage fer-nickel. On note la présence d'une fine dispersion de particules d'oxyde de néodyme (Nd₂0₃), ainsi que de particules d'oxycarbonitrure de titane Ti(O,C,N).Metallographic and radiocrystallographic examinations show that the binder consists essentially of an iron-nickel alloy. We note the presence of a fine dispersion of neodymium oxide particles (Nd₃0₃), as well as titanium oxycarbonitride particles Ti (O, C, N).

La dureté VICKERS des éprouvettes, sous charge de 30 kg (294 N) est de HV₃₀ = 14000 ± 500 MPa.The VICKERS hardness of the test pieces, under a load of 30 kg (294 N) is HV₃₀ = 14000 ± 500 MPa.

Exemple 3 (selon l'invention) : Example 3 (according to the invention) :

Toute une série de cermets a été réalisée. Les compositions des mélanges de départ sont données dans le tableau I qui suit.

Figure imgb0001
A whole series of cermets has been produced. The compositions of the starting mixtures are given in Table I which follows.
Figure imgb0001

Pour chaque produit le mélange des poudres (d'un poids total de 50 g) est réalisé par broyage en broyeur à billes, avec les caractéristiques opératoires suivantes :

  • · conteneur en polyéthylène de 500 cm³
  • · billes en acier inoxydable austénitique (100 cm³) de 5 mm (30 cm³) et 20 mm (70 cm³)
  • · vitesse de rotation : 45 tr/min
  • · durée de broyage : 48 h
For each product, the mixture of powders (with a total weight of 50 g) is produced by grinding in a ball mill, with the following operating characteristics:
  • · 500 cm³ polyethylene container
  • · Austenitic stainless steel balls (100 cm³) of 5 mm (30 cm³) and 20 mm (70 cm³)
  • · Rotation speed: 45 rpm
  • · Grinding time: 48 h

Le mélange broyé est séparé des billes par tamisage.The ground mixture is separated from the beads by sieving.

La compression d'éprouvettes (5 g par éprouvette) est faite sous 70 MPa, la matrice (en acier durci) étant lubrifiée au stéarate de zinc.The compression of test pieces (5 g per test piece) is carried out at 70 MPa, the matrix (in hardened steel) being lubricated with zinc stearate.

Les éprouvettes sont encapsulées et frittées par compression isostatique à chaud (presse HIP ASEA Q1H-6) selon le cycle ci-après : TEMPERATURE (°C) PRESSION (Argon MPa) DEBUT FIN VITESSE °C/min DEBUT FIN VITESSE MPa/min Durée min 20 430 10 vide* vide* - 43 450 450 - vide* vide* - 30 450 820 10 vide* vide* - 37 820 820 - vide* 0,5 - 0,017 820 1000 10 0,5 0,5 - 18 1000 1350 8,75 0,5 150 3,75 40 1350 1350 - 150 150 - 30 1350 300 - 35 150 70 - 2,7 30 300 270 - 15 70 1 - 35 2 * vide : 1 Pa The test pieces are encapsulated and sintered by hot isostatic compression (HIP ASEA Q1H-6 press) according to the following cycle: TEMPERATURE (° C) PRESSURE (Argon MPa) BEGINNING END SPEED ° C / min BEGINNING END SPEED MPa / min Min duration 20 430 10 empty* empty* - 43 450 450 - empty* empty* - 30 450 820 10 empty* empty* - 37 820 820 - empty* 0.5 - 0.017 820 1000 10 0.5 0.5 - 18 1000 1350 8.75 0.5 150 3.75 40 1350 1350 - 150 150 - 30 1350 300 - 35 150 70 - 2.7 30 300 270 - 15 70 1 - 35 2 * empty: 1 Pa

Les caractéristiques mesurées sur les éprouvettes densifiées sont consignées dans le tableau II.

Figure imgb0002
The characteristics measured on the densified specimens are recorded in Table II.
Figure imgb0002

Dans les cermets selon l'invention, on constate que la densité théorique est pratiquement atteinte et les examens métallographique et radiocristallographique montrent que la phase liante est essentiellement le fer : il n'apparaît pas de phase borure Fe₂B ou FeB, alors que cette phase est prédominante dans les alliages FN, FNMo et FNW élaborés selon l'art antérieur. Cette absence de phase borure de fer dans les alliages selon l'invention est confirmée par l'accroissement de ductilité de la phase liante, quantifiée par la mesure du facteur d'intensité de contrainte KIC par la méthode d'indentation de PALMQVIST.In the cermets according to the invention, it is found that the theoretical density is practically reached and the metallographic and radiocrystallographic examinations show that the binder phase is essentially iron: there does not appear any boride phase Fe₂B or FeB, while this phase is predominant in the FN, FNMo and FNW alloys developed according to the prior art. This absence of iron boride phase in the alloys according to the invention is confirmed by the increase in ductility of the binder phase, quantified by the measurement of the stress intensity factor K IC by the PALMQVIST indentation method.

A l'examen métallographique, les alliages selon l'invention présentent une fine dispersion de particules d'alumine (Al₂O₃).On metallographic examination, the alloys according to the invention exhibit a fine dispersion of alumina particles (Al₂O₃).

Exemple 4 (selon l'invention) : Example 4 (according to the invention) :

Une série de cermets a été réalisée. Les compositions des mélanges de départ sont données dans le tableau III qui suit.

Figure imgb0003
A series of cermets has been produced. The compositions of the starting mixtures are given in Table III below.
Figure imgb0003

Pour chaque composition, le mélange des poudres est réalisé en broyeur à billes (d'acier inoxydable) dans les conditions décrites dans l'exemple 3.For each composition, the mixture of powders is produced in a ball mill (of stainless steel) under the conditions described in Example 3.

Le mélange brut est séparé des billes par tamisage.The crude mixture is separated from the beads by sieving.

La compression d'éprouvettes est faite sous 100 MPa, en matrice d'acier durci, lubrifiée au stéarate de zinc.The compression of test pieces is done under 100 MPa, in a hardened steel matrix, lubricated with zinc stearate.

Les éprouvettes sont encapsulées et frittées par compression isostatique à chaud (presse HIP ASEA Q1H-6), selon le cycle décrit dans l'exemple 3.The test pieces are encapsulated and sintered by hot isostatic compression (HIP ASEA Q1H-6 press), according to the cycle described in Example 3.

Les caractéristiques mesurées sur les éprouvettes totalement densifiées sont données dans le tableau suivant :

Figure imgb0004
The characteristics measured on the fully densified test pieces are given in the following table:
Figure imgb0004

A l'examen métallographique, les alliages selon l'invention, avec addition de TiAl₃, présentent, outre la phase dure TiB₂ et le liant Fe/Ni/Cr ou inox 316L, une fine dispersion de particules d'alumine et d'oxycarbonitrure de titane. On notera l'influence de l'ajout de TiAl₃ dans les alliages à liant acier inox 316L : la dureté diminue seulement de 3% tandis que la ténacité augmente d'environ 40%.On metallographic examination, the alloys according to the invention, with the addition of TiAl₃, exhibit, in addition to the hard phase TiB₂ and the binder Fe / Ni / Cr or stainless steel 316L, a fine dispersion of alumina and oxycarbonitride particles of titanium. Note the influence of the addition of TiAl₃ in alloys with 316L stainless steel binder: the hardness decreases only by 3% while the toughness increases by around 40%.

Exemple 5 (selon l'invention) : Example 5 (according to the invention) :

On réalise le mélange suivant :

  • · 129,2 g de poudre de diborure de titane (surface spécifique BET : 0,52 m²/g ; diamètre de grain moyen FISHER : 4,6 µm)
  • · 6,8 g de poudre de diborure de chrome (diamètre de grain moyen FISHER : 4 µm)
  • · 51,5 g de poudre de fer ex-carbonyle (diamètre de grain moyen FISHER : 2,0 µm)
  • · 10,3 g de poudre d'allïage NdNi₅
  • · 2,2 g de poudre d'alliage TiFe₂.
The following mixture is produced:
  • 129.2 g of titanium diboride powder (BET specific surface: 0.52 m² / g; FISHER average grain diameter: 4.6 µm)
  • 6.8 g chromium diboride powder (FISHER medium grain diameter: 4 µm)
  • 51.5 g of ex-carbonyl iron powder (FISHER average grain diameter: 2.0 µm)
  • 10.3 g of NdNi₅ alloy powder
  • 2.2 g of TiFe₂ alloy powder.

Le broyage est effectué comme dans l'exemple 2. La compression et le déparaffinage sont effectués comme dans l'exemple 1. Le frittage est effectué à 1600°C sous pression d'argon de 10³Pa, pendant deux heures. La porosité totale mesurée sur les éprouvettes frittées est inférieure à 0,5 %.The grinding is carried out as in Example 2. The compression and the dewaxing are carried out as in Example 1. The sintering is carried out at 1600 ° C. under argon pressure of 10³Pa, for two hours. The total porosity measured on the sintered test pieces is less than 0.5%.

Les examens métallographiques et radiocristallographiques montrent que la phase dure est constituée de la solution solide (Ti,Cr)B₂ et le liant est essentiellement un alliage Fe/Ni. On note la présence d'une fine dispersion de particules d'oxyde de néodyme (Nd₂O₃) et d'oxycarbonitrure de titane [Ti(O,C,N)].Metallographic and radiocrystallographic examinations show that the hard phase consists of the solid solution (Ti, Cr) B₂ and the binder is essentially an Fe / Ni alloy. Note the presence of a fine dispersion of particles of neodymium oxide (Nd₂O₃) and titanium oxycarbonitride [Ti (O, C, N)].

La dureté VICKERS sous charge de 30 kg (294 N) des éprouvettes frittées est de 14900 ± 500 MPa, soit supérieure de 6% à celle des éprouvettes de l'exemple 2 (sans substitution de TiB₂ par CrB₂ ) qui est de 14000 ± 500 MPa.The VICKERS hardness under load of 30 kg (294 N) of the sintered test pieces is 14,900 ± 500 MPa, i.e. 6% higher than that of the test pieces of Example 2 (without substitution of TiB₂ by CrB₂) which is 14000 ± 500 MPa.

Claims (13)

  1. Cermet including:
    1) a hard phase of boride type:
    2) a binding phase consisting of a pure binding metal L or of an alloy of at least two metals (L, L'), where:
    - L is a metal chosen from the group consisting of Fe, Ni, Co and Cr, and
    - L' is at least one metallic element alloying with L, which does not substantially damage its toughness, characterized in that the hard phase 1) consists of a simple boride TxBy, of a mixture of simple borides TxBy + T'x'By' or of a mixed boride (T, T')xBy, where:
    - T and T' are transition metals chosen from the group consisting of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo and W, and
    - x, x', y and y' are integral or decimal numbers, preferably integral numbers, which are identical or different,
    and in that the said cermet additionally includes:
    3) a fine dispersion of particles of oxide of the transition metal T or T', predominant in the composition of the hard phase 1), in which oxide a proportion of the oxygen may be replaced with nitrogen and/or carbon, this oxide being especially an oxycarbonitride, and
    4) a fine dispersion of particles of oxide of a metal X chosen from the group consisting of aluminium, alkaline-earth metals, Sc, Y, the lanthanides, the actinides and the alloys consisting of iron and of ceric metals,
    it being understood that the oxides forming the fine dispersions 3) and 4) may be combined in the form of complex oxides.
  2. Cermet according to Claim 1, in which the ratios x/y and x'/y', which are identical or different, are equal to 1/2 or 2/5 or close to these values.
  3. Cermet according to Claim 1 or 2, characterized in that the alkaline-earth metal is Mg or Ca.
  4. Cermet according to Claim 1 or 2, characterized in that the metal X is chosen from the group consisting of Ce, Pr, Nd, Gd, Dy, Th, U and the alloys consisting of iron and of ceric metals.
  5. Cermet according to any one of Claims 1 to 4, characterized in that it includes between 20 and 99 %, preferably between 50 and 97 % by weight of hard phase 1).
  6. Process for the manufacture of the cermet according to any one of Claims 1 to 5, including:
    1. mixing with grinding:
    - of a powder of hard phase of boride type,
    - of a powder of binding metal L defined as in Claim 1, pure, and/or of a prealloy in which L is predominant,
    - optionally of at least one powder of a metallic element L' alloying with L or of an alloy of L' which does not substantially damage the toughness of L, and
    - of a powder of transition metal T or T', in the form of pure metal, of alloy and/or of compound,
    characterized in that the hard phase of boride type consists of a simple boride TxBy, of a mixture of simple borides TxBy + T'x'By' or of a mixed boride (T, T')xBy, T, T', x, x', y and y' being defined as in Claim 1, the transition metal T or T' is the predominant metal in the powder of the hard phase of boride type, and the following is mixed simultaneously with grinding:
    - a powder of a metal X chosen from the group consisting of aluminium, alkaline-earth metals, Sc, Y, the lanthanides, the actinides and the alloys consisting of iron and of ceric metals, in the form of element, of alloy and/or of compound,
    it being understood that the transition metal T or T' and the metal X may be introduced in the form of a powder of an alloy or of a combination of these two elements, this process being moreover characterized in that it additionally includes:
    2. the granulation of the mixture obtained in 1.,
    3. the compression of the granules obtained in 2.,
    4. the sintering and/or the sintering under moderate gas pressure (HiP-sinter) and/or the isostatic compression with heating (HIP) of the compressed product obtained in 3.
  7. Process according to Claim 6, characterized in that the transition metal T or T', added in the form of powder, is in the form of its hydride of THz type, z being an integral or decimal number, or of one of its alloys of (T, L) type, L being Fe, Ni, Co or Cr, or of one of its mixed hydrides of (T, L)Hz type, z being an integral or decimal number.
  8. Process according to Claim 6 or 7, characterized in that the metal X is added in the form of an alloy XaLb or XcTd and/or of a corresponding mixed hydride (X, L)Hz or (X, T)Hz' and/or of a mixed boride XaLbBt in which L is preferably Fe, Ni or Co, and/or of its hydride XHz, a, b, c, d, t, z and z' being integral or decimal numbers.
  9. Process according to any one of Claims 6 to 8, characterized in that the treated mixture consists of:
    - 50 to 97 % by weight of powder of boride type,
    - 3 to 50 % by weight of powder of pure binding metal L or of a prealloy in which L is predominant,
    - 0 to 25 % by weight of powder of at least one metallic element L' alloying with L which does not substantially damage its toughness,
    - 0.1 to 20 % by weight of powder of metal X or of one of its alloys and/or compounds and
    - 1 to 15 % by weight of powder of the metal T or T' or of one of its alloys and/or compounds.
  10. Process according to any one of Claims 6 to 9, characterized in that the duration of the grinding is from 2 to 48 hours.
  11. Process according to any one of Claims 6 to 10, characterized in that the compression is performed at a pressure of 50 to 300 MPa.
  12. Process according to any one of Claims 6 to 11, characterized in that the sintering is performed at a temperature of 1300 to 1700°C, for 1 to 3 hours, at a pressure of 1 to 10⁴ Pa of argon or at a pressure of 10⁵ Pa of hydrogen or in a vacuum of 10⁻² to 10 Pa, or by isostatic compression with heating at 100 to 200 MPa of argon, or, in the same furnace, in a single operation, by sintering followed by an isostatic compression with heating at moderate pressure (HIP-sinter).
  13. Use of the cermet according to any one of Claims 1 to 5, or such as obtained by making use of the process according to any one of Claims 6 to 12, for manufacturing cutting tools, drilling tools or wear components.
EP92912846A 1991-06-28 1992-06-26 Cermets based on transition metal borides, their production and use Expired - Lifetime EP0591305B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9108030 1991-06-28
FR919108030A FR2678286B1 (en) 1991-06-28 1991-06-28 CERMETS BASED ON TRANSITIONAL METALS, THEIR MANUFACTURE AND THEIR APPLICATIONS.
PCT/FR1992/000595 WO1993000452A1 (en) 1991-06-28 1992-06-26 Cermets based on transition metal borides, their production and use

Publications (2)

Publication Number Publication Date
EP0591305A1 EP0591305A1 (en) 1994-04-13
EP0591305B1 true EP0591305B1 (en) 1995-11-15

Family

ID=9414434

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92912846A Expired - Lifetime EP0591305B1 (en) 1991-06-28 1992-06-26 Cermets based on transition metal borides, their production and use

Country Status (8)

Country Link
US (1) US5439499A (en)
EP (1) EP0591305B1 (en)
JP (1) JPH06511516A (en)
AT (1) ATE130375T1 (en)
DE (1) DE69206148T2 (en)
ES (1) ES2081617T3 (en)
FR (1) FR2678286B1 (en)
WO (1) WO1993000452A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5427987A (en) * 1993-05-10 1995-06-27 Kennametal Inc. Group IVB boride based cutting tools for machining group IVB based materials
JP2765814B2 (en) * 1995-11-24 1998-06-18 コナミ株式会社 Video game device and play character growth control method for video game
DE10117657B4 (en) * 2001-04-09 2011-06-09 Widia Gmbh Complex boride cermet body and use of this body
US7175687B2 (en) * 2003-05-20 2007-02-13 Exxonmobil Research And Engineering Company Advanced erosion-corrosion resistant boride cermets
US7316724B2 (en) * 2003-05-20 2008-01-08 Exxonmobil Research And Engineering Company Multi-scale cermets for high temperature erosion-corrosion service
US7731776B2 (en) * 2005-12-02 2010-06-08 Exxonmobil Research And Engineering Company Bimodal and multimodal dense boride cermets with superior erosion performance
DE102007017306A1 (en) * 2007-04-11 2008-10-16 H.C. Starck Gmbh Elongated carbide tool with iron-based binder
CN110340813B (en) * 2019-05-30 2021-09-07 合肥工业大学 Grinding tool for processing single crystal sapphire and preparation method thereof
CN111941293B (en) * 2020-08-20 2021-12-17 河南联合精密材料股份有限公司 Metal bonding agent for edge grinding wheel, edge grinding wheel for processing plate glass and preparation method thereof

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4022584A (en) * 1976-05-11 1977-05-10 Erwin Rudy Sintered cermets for tool and wear applications
JPS53140209A (en) * 1977-05-13 1978-12-07 Yoshizaki Kozo Production of sintered hard alloy
DE2846889C2 (en) * 1978-10-27 1985-07-18 Toyo Kohan Co., Ltd., Tokio/Tokyo Alloy powder, process for its manufacture and its use for the manufacture of sintered molded parts
US4246027A (en) * 1979-03-23 1981-01-20 Director-General Of The Agency Of Industrial Science And Technology High-density sintered bodies with high mechanical strengths
AT377784B (en) * 1980-02-20 1985-04-25 Inst Khim Fiz An Sssr TUNGSTEN-FREE HARD ALLOY AND METHOD FOR THEIR PRODUCTION
JPS6057499B2 (en) * 1981-10-19 1985-12-16 東洋鋼鈑株式会社 hard sintered alloy
US4880600A (en) * 1983-05-27 1989-11-14 Ford Motor Company Method of making and using a titanium diboride comprising body
US4610726A (en) * 1984-06-29 1986-09-09 Eltech Systems Corporation Dense cermets containing fine grained ceramics and their manufacture
CA1256457A (en) * 1985-05-20 1989-06-27 Michel Chevigne Production of reaction-sintered articles and reaction- sintered articles
JPS627673A (en) * 1985-06-19 1987-01-14 旭硝子株式会社 Zrb2 base sintered body
US4961902A (en) * 1986-02-03 1990-10-09 Eltech Systems Corporation Method of manufacturing a ceramic/metal or ceramic/ceramic composite article
US4770701A (en) * 1986-04-30 1988-09-13 The Standard Oil Company Metal-ceramic composites and method of making
US4873053A (en) * 1987-02-20 1989-10-10 Stk Ceramics Laboratory Corp. Method for manufacturing a metal boride ceramic material
JP2668955B2 (en) * 1988-07-08 1997-10-27 旭硝子株式会社 Double boride-based sintered body and method for producing the same
DE3941536A1 (en) * 1989-12-15 1991-06-20 Kempten Elektroschmelz Gmbh HARD METAL MIXING MATERIALS BASED ON BORIDES, NITRIDES AND IRON BINDING METALS
US5089047A (en) * 1990-08-31 1992-02-18 Gte Laboratories Incorporated Ceramic-metal articles and methods of manufacture

Also Published As

Publication number Publication date
WO1993000452A1 (en) 1993-01-07
FR2678286B1 (en) 1994-06-17
ATE130375T1 (en) 1995-12-15
US5439499A (en) 1995-08-08
FR2678286A1 (en) 1992-12-31
DE69206148T2 (en) 1996-05-02
DE69206148D1 (en) 1995-12-21
EP0591305A1 (en) 1994-04-13
JPH06511516A (en) 1994-12-22
ES2081617T3 (en) 1996-03-16

Similar Documents

Publication Publication Date Title
US7070643B2 (en) Compositionally graded sintered alloy and method of producing the same
JP5051168B2 (en) Nitride-dispersed Ti-Al target and method for producing the same
US20040018108A1 (en) Method of producing an abrasive product containing cubic boron nitride
JP6290872B2 (en) Method for producing cBN material
WO2010008004A1 (en) Hard powder, method for producing hard powder and sintered hard alloy
KR20000029801A (en) Hard sintered alloy
EP0591305B1 (en) Cermets based on transition metal borides, their production and use
FR2514788A1 (en) FRITTE DURABLE ALLOY
JP2668955B2 (en) Double boride-based sintered body and method for producing the same
JPH05271842A (en) Cermet alloy and its production
EP0480636B1 (en) High hardness, wear resistant materials
US4432795A (en) Sintered powdered titanium alloy and method of producing same
JP2502322B2 (en) High toughness cermet
KR101410490B1 (en) Injection molding method using powder
JPS6059195B2 (en) Manufacturing method of hard sintered material with excellent wear resistance and toughness
EP1206585B1 (en) High density tungsten material sintered at low temperature
JPS63286549A (en) Nitrogen-containing titanium carbide-base sintered alloy having excellent resistance to plastic deformation
JPH10310840A (en) Superhard composite member and its production
KR101525095B1 (en) Injection molding method using powder
US4092156A (en) Process for preparing titanium carbide base powder for cemented carbide alloys
JP2796011B2 (en) Whisker reinforced cemented carbide
JPS60131867A (en) High abrasion resistance superhard material
Dematte et al. Influence of Milling and Use of Ni and Al Containing Metal Binder in NbC-Based Cermets
JP2534159B2 (en) Ni-Mo-W system double boride cermet sintered body and method for producing the same
JPH08120352A (en) Method for reproducing cemented carbide composition and production of cemented carbide

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19931213

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT DE ES FR GB IT SE

17Q First examination report despatched

Effective date: 19940913

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE ES FR GB IT SE

REF Corresponds to:

Ref document number: 130375

Country of ref document: AT

Date of ref document: 19951215

Kind code of ref document: T

REF Corresponds to:

Ref document number: 69206148

Country of ref document: DE

Date of ref document: 19951221

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960106

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2081617

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20040604

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20040608

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20040611

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20040621

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20040623

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20040708

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050626

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050626

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050627

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060103

EUG Se: european patent has lapsed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060228

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20050626

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20060228

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20050627