EP0458140B1 - High power radiator - Google Patents

High power radiator Download PDF

Info

Publication number
EP0458140B1
EP0458140B1 EP91107572A EP91107572A EP0458140B1 EP 0458140 B1 EP0458140 B1 EP 0458140B1 EP 91107572 A EP91107572 A EP 91107572A EP 91107572 A EP91107572 A EP 91107572A EP 0458140 B1 EP0458140 B1 EP 0458140B1
Authority
EP
European Patent Office
Prior art keywords
radiating device
power radiating
discharge
tubes
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91107572A
Other languages
German (de)
French (fr)
Other versions
EP0458140A1 (en
Inventor
Ulrich Dr. Kogelschatz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heraeus Noblelight GmbH
Original Assignee
Heraeus Noblelight GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heraeus Noblelight GmbH filed Critical Heraeus Noblelight GmbH
Publication of EP0458140A1 publication Critical patent/EP0458140A1/en
Application granted granted Critical
Publication of EP0458140B1 publication Critical patent/EP0458140B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J65/00Lamps without any electrode inside the vessel; Lamps with at least one main electrode outside the vessel
    • H01J65/04Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels
    • H01J65/042Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field
    • H01J65/046Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field the field being produced by using capacitive means around the vessel

Definitions

  • the invention relates to a high-power radiator, in particular for ultraviolet light, with a discharge space filled with filling gas emitting radiation under discharge conditions, the walls of which are formed by an outer and an inner tubular dielectric, each having an inner and an outer surface on the surfaces facing away from the discharge space outer electrode are provided, and with an alternating current source connected to these electrodes for supplying the discharge.
  • the invention relates to a state of the art, such as that disclosed in EP-A 0 254 111, US-A-5 013 959, EP-A-0 385 205 or EP-A-0 324 953 results.
  • UV sources The industrial use of photochemical processes depends heavily on the availability of suitable UV sources.
  • the classic UV lamps deliver low to medium UV intensities at some discrete wavelengths, such as the mercury low-pressure lamps at 185 nm and especially at 254 nm.
  • Really high UV powers can only be obtained from high-pressure lamps (Xe, Hg), which then but distribute their radiation over a larger wavelength range.
  • the new excimer lasers have provided some new wavelengths for basic photochemical experiments, are currently for cost reasons for an industrial process probably only suitable in exceptional cases.
  • the high-performance radiators mentioned are characterized by high efficiency, economical structure and enable the creation of large area radiators, with the restriction that large-area flat radiators require a rather large technical effort.
  • a not inconsiderable portion of the radiation is not used due to the shadow effect of the inner electrode.
  • the emitters in EP-A-0 385 205 mentioned at the outset the inner dielectric tubes are very small compared to the outer dielectric tubes.
  • the invention has for its object to provide a high-performance radiator, in particular for UV or VUV radiation, which is characterized in particular by high efficiency, is economical to manufacture, enables the construction of very large area radiators and in which the UV radiation can be specifically focused on a radiation angle that can be selected within wide limits and the inner electrode can no longer cast a shadow.
  • the outer electrode extends only over a fraction of the outer circumference of the outer dielectric tube, in such a way that discharges form only in a discharge segment which is essentially defined by the outer electrode.
  • the radiation can be coupled out in a defined direction, which is particularly advantageous when irradiating flat or curved surfaces, since the electrical discharges can only form on the surface facing the material to be irradiated.
  • the outer electrodes in addition to those already in the relevant Wire networks or wire meshes described in the literature also serve electrically conductive, UV-transparent coatings, for example made of conductive lacquer or thin metal films. It is also possible to design the outer electrode in liquid form by only partially immersing the outer tube in a transparent electrolyte, preferably water. This arrangement is particularly suitable for irradiating temperature-sensitive substances (for example gluing LCD cells, irradiating thin foils) because water very effectively blocks any infrared radiation from the discharge.
  • the electrolyte can be circulated via a thermostat and thus kept at a constant low temperature.
  • a suitable filtering effect can additionally be achieved by suitable selection of the electrolyte.
  • the angular range of the ignited segment can be changed via the immersion depth of the outer tube in the electrolyte.
  • the inner electrode is preferably of classic design, i.e. consists of a metal coating applied to the inner surface of the inner dielectric tube, e.g. Aluminum vapor deposition. In this way, the inner electrode also acts as a reflector for the UV radiation. If cooling is desired, a flow of coolant (gas or liquid) can be passed through the inner tube.
  • a flow of coolant gas or liquid
  • the outer tubes are advantageously arranged in groove-shaped semi-cylindrical recesses in a support body made of an electrically insulating, but good heat-conducting material.
  • a support body made of an electrically insulating, but good heat-conducting material.
  • Such materials are available on a ceramic basis, for example aluminum nitride (AlN) or beryllium oxide (BeO) as well as on a plastic basis (casting compounds for transformers and electrical circuits).
  • AlN aluminum nitride
  • BeO beryllium oxide
  • plastic basis casting compounds for transformers and electrical circuits.
  • Al2O3 aluminum oxide
  • glass ceramics or heat-resistant plastics such as polytetrafluoroethylene are also suitable.
  • the supporting body and thus the outer pipes for example by providing cooling channels running in the longitudinal direction of the pipe in the supporting body.
  • the reflectivity of the semi-cylindrical recesses in the supporting body can be improved by a metallic mirror coating, for example an aluminum layer with a protective layer of magnesium fluoride (MgF2).
  • MgF2 magnesium fluoride
  • UV treatment in the absence of air is indicated.
  • the first reason is when the radiation is so short-wave that it is absorbed by air and thus weakened (wavelengths ⁇ 190 nm). This radiation leads to oxygen splitting and thus to undesired ozone formation.
  • the second reason is when the intended photochemical effect of UV radiation is hindered by the presence of oxygen (oxygen inhibition). This occurs, for example, in the photo crosslinking (UV polymerization, UV drying) of lacquers and paints.
  • an inner quartz tube 2 is arranged coaxially in an outer quartz tube 1 with a wall thickness of approximately 0.5 to 1.5 mm and an outer diameter of approximately 20 to 30 mm.
  • the inner surface of the inner quartz tube 2 is provided with an inner electrode 3, which is produced for example by coating with aluminum.
  • An outer electrode 4 in the form of a narrow strip of wire mesh extends only over a small part of the circumference of the outer quartz tube 1.
  • the quartz tubes 1 and 2 are closed at both ends.
  • the space between the two tubes 1 and 2, the discharge space 5, is filled with a gas / gas mixture which emits radiation under discharge conditions.
  • the two electrodes 3, 4 are connected to the two poles of an alternating current source 6.
  • the AC power source basically corresponds to those used to feed ozone generators.
  • the fill gas is e.g. Mercury, noble gas, noble gas-metal vapor mixture, noble gas-halogen mixture, optionally using an additional further noble gas, preferably Ar, He, Ne, as a buffer gas.
  • the electron energy distribution can be optimally adjusted by the thickness of the dielectrics and their properties, pressure and / or temperature in the discharge space.
  • two narrow outer electrodes 4a and 4b (FIG. 1b) spaced apart from one another or a wider wire mesh that extends approximately over a sixth of the tube circumference (FIG. 1c) can also be used.
  • a perforated metal foil or a UV-transparent, electrically conductive covering can also be used.
  • a transparent electrolyte can also be used.
  • three dielectric tubes 1 with internal dielectric tubes 2 provided with internal electrodes 3 dip into a quartz vessel 8 filled with water 4 '.
  • the size of the ignited segment can be varied via the immersion depth t.
  • an additional optical filter effect can be achieved: for example, water very effectively blocks any infrared radiation from the discharge. This is particularly important when irradiating very temperature-sensitive substances.
  • FIG. 3 illustrates the manner in which a plurality of cylinder radiators according to FIG. 1c can be combined to form a surface radiator.
  • the grooves 10 are adapted to the outer quartz tubes 1 and by coating with a UV-reflecting material, for example aluminum, which is provided with a protective layer of MgF2. Additional bores 11, which run in the direction of the tubes 1, serve to cool the individual radiators.
  • single emitters can be combined with different gas fillings and thus different (UV) wavelengths.
  • the support body 9 does not necessarily have to be plate-shaped. It can also have a hollow cylindrical cross section with axially parallel grooves distributed regularly over its inner circumference, into each of which a radiator element according to FIGS. 1a to 1c is inserted, analogously to FIG. 7 or FIG. 8 of the aforementioned EP-A-0 385 205.
  • the radiation device according to FIG. 4 basically corresponds to that according to FIG. 3. with additional channels 12 running in the longitudinal direction of the support body 9. These channels are connected to the outer space 13 via a multiplicity of bores or slots 14 in the support body 9.
  • the channels 12 are connected to an inert gas source, not shown, for example nitrogen or argon source.
  • the pressurized inert gas reaches the treatment room 13 from the channels 12 in the manner described.
  • FIG. 4 shows a particularly simple and economical embodiment for the outer electrode.
  • This outer electrode is common to all emitters. It consists of a continuous wire mesh or wire mesh 15 with in Pipe longitudinal direction extending semicircular bulges that nestle against the outer quartz tubes 1.

Abstract

In the case of UV high-power omnidirectional radiators, in order to be able to direct the radiation produced in only one preferred direction and in order to prevent shadowing by the inner dielectric tube (2), the outer electrodes (4) are arranged on only one part of the circumference of the outer dielectric tube (1). In this way, the object to be irradiated or the substance to be irradiated can thus be arranged directly in the radiation zone of the discharges (7). <IMAGE>

Description

Technisches GebietTechnical field

Die Erfindung bezieht sich auf einen Hochleistungsstrahler, insbesondere für ultraviolettes Licht, mit einem mit unter Entladungsbedingungen Strahlung aussendendem Füllgas gefüllten Entladungsraum, dessen Wandungen durch ein äusseres und ein inneres rohrförmiges Dielektrikum gebildet sind, welche jeweils auf den dem Entladungsraum abgewandten Oberflächen mit einer inneren und einer äusseren Elektrode versehen sind, und mit einer an diese Elektroden angeschlossenen Wechselstromquelle zur Speisung der Entladung.The invention relates to a high-power radiator, in particular for ultraviolet light, with a discharge space filled with filling gas emitting radiation under discharge conditions, the walls of which are formed by an outer and an inner tubular dielectric, each having an inner and an outer surface on the surfaces facing away from the discharge space outer electrode are provided, and with an alternating current source connected to these electrodes for supplying the discharge.

Die Erfindung nimmt dabei Bezug auf einen Stand der Technik, wie er sich etwa aus der EP-A 0 254 111, der US-A-5 013 959, der EP-A- 0 385 205 oder der EP-A- 0 324 953 ergibt.The invention relates to a state of the art, such as that disclosed in EP-A 0 254 111, US-A-5 013 959, EP-A-0 385 205 or EP-A-0 324 953 results.

Technologischer Hintergrund und Stand der TechnikTechnological background and state of the art

Der industrielle Einsatz photochemischer Verfahren hängt stark von der der Verfügbarkeit geeigneter UV-Quellen ab. Die klassischen UV-Strahler liefern niedrige bis mittlere UV-Intensitäten bei einigen diskreten Wellenlängen, wie z.B. die Quecksilber-Niederdrucklampen bei 185 nm und insbesondere bei 254 nm. Wirklich hohe UV-Leistungen erhält man nur aus Hochdrucklampen (Xe, Hg), die dann aber ihre Strahlung über einen grösseren Wellenlängenbereich verteilen. Die neuen Excimer-Laser haben einige neue Wellenlängen für photochemische Grundlagenexperimente bereitgestellt, sind z.Zt. aus Kostengründen für einen industriellen Prozess wohl nur in Ausnahmefällen geeignet.The industrial use of photochemical processes depends heavily on the availability of suitable UV sources. The classic UV lamps deliver low to medium UV intensities at some discrete wavelengths, such as the mercury low-pressure lamps at 185 nm and especially at 254 nm. Really high UV powers can only be obtained from high-pressure lamps (Xe, Hg), which then but distribute their radiation over a larger wavelength range. The new excimer lasers have provided some new wavelengths for basic photochemical experiments, are currently for cost reasons for an industrial process probably only suitable in exceptional cases.

In der eingangs genannten EP-Patentanmeldung oder auch in dem Konferenzdruck "Neue UV- und VUV Excimerstrahler" von U. Kogelschatz und B. Eliasson, verteilt an der 10. Vortragstagung der Gesellschaft Deutscher Chemiker, Fachgruppe Photochemie, in Würzburg (BRD) 18.-20. November 1987, wird ein neuer Excimerstrahler beschrieben. Dieser neue Strahlertyp basiert auf der Grundlage, dass man Excimerstrahlung auch in stillen elektrischen Entladungen erzeugen kann, einem Entladungstyp, der in der Ozonerzeugung grosstechnisch eingesetzt wird. In den nur kurzzeitig (< 1 Mikrosekunde) vorhandenen Stromfilamenten dieser Entladung werden durch Elektronenstoss Edelgasatome angeregt, die zu angeregten Molekülkomplexen (Excimeren) weiterreagieren. Diese Excimere leben nur einige 100 Nanosekunden und geben beim Zerfall ihre Bindungsenergie in Form von UV-Strahlung ab.In the EP patent application mentioned at the beginning or in the conference paper "New UV and VUV excimer emitters" by U. Kogelschatz and B. Eliasson, distributed at the 10th lecture conference of the Society of German Chemists, Photochemistry Group, in Würzburg (FRG) 18. -20. November 1987, a new excimer radiator is described. This new type of emitter is based on the fact that excimer radiation can also be generated in silent electrical discharges, a type of discharge that is used on a large scale in ozone generation. In the current filaments of this discharge, which exist only for a short time (<1 microsecond), noble gas atoms are excited by electron impact, which react further to excited molecular complexes (excimers). These excimers only live for a few 100 nanoseconds and release their binding energy in the form of UV radiation when they decay.

Der Aufbau eines derartigen Excimerstrahlers entspricht weitgehend dem eines klassichen Ozonerzeugers, mit dem wesentlichen Unterschied, dass mindestens eine der den Entladungsraum begrenzenden Elektroden und/oder Dielektrikumsschichten für die erzeugte Strahlung durchlässig ist.The construction of such an excimer radiator largely corresponds to that of a conventional ozone generator, with the essential difference that at least one of the electrodes and / or dielectric layers delimiting the discharge space is transparent to the radiation generated.

Die genannten Hochleistungsstrahler zeichnen sich durch hohe Effizienz, wirtschaftlichen Aufbau aus und ermöglichen die Schaffung grosser Flächenstrahler, mit der Einschränkung, dass grossflächige Flachstrahler einen eher grossen technischen Aufwand erfordern. Bei den bekannten Zylinderstrahlern hingegen wird ein nicht unbeachtlicher Anteil der Strahlung durch Schattenwirkung der Innenelektrode nicht ausgenützt. Um nun bei Zylinder-Strahlern die Ausbeute zu erhöhen, sind bei den Strahlern in der eingangsgenannten EP-A- 0 385 205 die inneren Dielektrikumsrohre im Vergleich zum den äusseren Dielektrikumsrohren sehr klein. Durch exzentrische Anordnung der inneren Dielektrika mit im Vergleich zum Durchmesser der äusseren Dielektrika kleinem Durchmesser und äusseren Elektroden nur auf der dem inneren Dielektrikum benachbarten Oberfläche und gleichzeitige Ausbildung der äusseren Elektrode als Reflektor wird eine Vorzugsrichtung der Abstrahlung erzielt.The high-performance radiators mentioned are characterized by high efficiency, economical structure and enable the creation of large area radiators, with the restriction that large-area flat radiators require a rather large technical effort. In the known cylindrical emitters, however, a not inconsiderable portion of the radiation is not used due to the shadow effect of the inner electrode. In order to increase the yield in the case of cylinder emitters, the emitters in EP-A-0 385 205 mentioned at the outset the inner dielectric tubes are very small compared to the outer dielectric tubes. By eccentric arrangement of the inner dielectrics with a small diameter compared to the diameter of the outer dielectrics and outer electrodes only on the surface adjacent to the inner dielectric and simultaneous formation of the outer electrode as a reflector, a preferred direction of radiation is achieved.

Darstellung der ErfindungPresentation of the invention

Ausgehend vom Stand der Technik liegt der Erfindung die Aufgabe zugrunde, einen Hochleistungsstrahler, insbesondere für UV- oder VUV-Strahlung, zu schaffen, der sich insbesondere durch hohe Effizienz auszeichnet, wirtschaftlich zu fertigen ist, den Aufbau sehr grosser Flächenstrahler ermöglicht und bei dem die UV-Strahlung gezielt auf einen in weiten Grenzen wählbaren Abstrahlwinkel konzentriert werden kann und die Innenelektrode keinen Schatten mehr werfen kann.Starting from the prior art, the invention has for its object to provide a high-performance radiator, in particular for UV or VUV radiation, which is characterized in particular by high efficiency, is economical to manufacture, enables the construction of very large area radiators and in which the UV radiation can be specifically focused on a radiation angle that can be selected within wide limits and the inner electrode can no longer cast a shadow.

Zur Lösung dieser Aufgabe ist bei einem Hochleistungsstrahler der eingangs genannten Gattung erfindungsgemäss vorgesehen, dass die äussere Elektrode sich nur über einen Bruchteil des Aussenumfangs des äusseren Dielektrikumsrohrs erstreckt, derart, dass sich sich Entladungen nur in einem im wesentlichen durch die äussere Elektrode definiertem Entladungssegment ausbilden.To achieve this object, it is provided according to the invention in a high-power radiator of the type mentioned at the outset that the outer electrode extends only over a fraction of the outer circumference of the outer dielectric tube, in such a way that discharges form only in a discharge segment which is essentially defined by the outer electrode.

Auf diese Weise kann die Strahlung in eine definierte Richtung ausgekoppelt werden, was insbesondere bei der Bestrahlung von ebenen oder gekrümmten Oberflächen vorteilhaft ist, da sich die elektrischen Entladungen nur auf der dem zu bestrahlenden Gut zugewandten Oberfläche ausbilden können. Als Aussenelektroden können neben den schon in der einschlägigen Literatur beschriebenen Drahtnetzen oder Drahtgeflechten auch elektrisch leitende, UV-transparente Beschichtungen, z.B. aus Leitlack oder dünnen Metallfilmen, dienen.
Auch ist es möglich, die Aussenelektrode in flüssiger Form auszubilden, indem das äussere Rohr nur teilweise in einen transparenten Elektrolyten, vorzugsweise Wasser, eintaucht. Diese Anordnung eignet sich insbesondere zur Bestrahlung temperaturempfindlicher Substanzen (z.B. Verkleben von LCD-Zellen, Bestrahlung dünner Folien), weil Wasser sehr effektiv eventuell vorhandene Infrarot-Strahlung aus der Entladung blockiert.
Der Elektrolyt kann über einen Thermostaten umgewalzt und auf diese Weise auf konstanter niedriger Temperatur gehalten werden. Durch geeignete Auswahl des Elektrolyten kann zusätzlich eine optische Filterwirkung erreicht werden. Darüber hinaus kann über die Eintauchtiefe des äusseren Rohres im Elektrolyten der Winkelbereich des gezündeten Segments verändert werden.
In this way, the radiation can be coupled out in a defined direction, which is particularly advantageous when irradiating flat or curved surfaces, since the electrical discharges can only form on the surface facing the material to be irradiated. As the outer electrodes, in addition to those already in the relevant Wire networks or wire meshes described in the literature also serve electrically conductive, UV-transparent coatings, for example made of conductive lacquer or thin metal films.
It is also possible to design the outer electrode in liquid form by only partially immersing the outer tube in a transparent electrolyte, preferably water. This arrangement is particularly suitable for irradiating temperature-sensitive substances (for example gluing LCD cells, irradiating thin foils) because water very effectively blocks any infrared radiation from the discharge.
The electrolyte can be circulated via a thermostat and thus kept at a constant low temperature. A suitable filtering effect can additionally be achieved by suitable selection of the electrolyte. In addition, the angular range of the ignited segment can be changed via the immersion depth of the outer tube in the electrolyte.

Die Innenelektrode ist vorzugsweise klassisch aufgebaut, d.h. besteht aus einer auf die Innenfläche des inneren Dielektrikumsrohres aufgebrachten Metallbelegung, z.B. Aluminium-Bedampfung. Auf diese Weise wirkt die Innenelektrode gleichzeitig als Reflektor für die UV-Strahlung. Falls eine Kühlung erwünscht wird, kann ein Kühlmittelstrom (Gas oder Flüssigkeit) durch das innere Rohr geführt werden.The inner electrode is preferably of classic design, i.e. consists of a metal coating applied to the inner surface of the inner dielectric tube, e.g. Aluminum vapor deposition. In this way, the inner electrode also acts as a reflector for the UV radiation. If cooling is desired, a flow of coolant (gas or liquid) can be passed through the inner tube.

Man kann leicht mehrere solcher Strahler zu Blöcken kombinieren, die zur Bestrahlung grosser Flächen geeignet sind. Vorteilhaft ordnet man zu diesem Zweck die äusseren Rohre in rillenförmigen halbzylindrischen Aussparungen in einem Tragkörper aus einem elektrisch isolierenden, jedoch gut wärmeleitendem Material an. Solche Materialen gibt es auf Keramik-Basis, z.B. Aluminiumnitrid (AlN) oder Berylliumoxid (BeO) als auch auf Kunststoff-Basis (Vergussmassen für Transformatoren und elektrische Schaltungen). Bei weniger extremen Anforderungen kommen auch gebräuchlichere Materialien wie Alumniumoxid (Al₂O₃), Glaskeramik oder hitzebeständige Kunststoffe wie Polytetrafluoräthylen, in Frage. Bei höheren Leistungen ist es möglich, den Tragkörper und damit die äusseren Rohre zu kühlen, z.B. indem man in Rohrlängsrichtung verlaufende Kühlkanäle im Tragkörper vorsieht.
Das Relexionsvermögen der halbzylindrischen Ausnehmungen im Tragkörper kann durch eine metallische Verspiegelung, z.B. eine Aluminiumschicht mit darüberliegender Schutzschicht aus Magnesiumfluorid (MgF₂), verbessern. Es kann sich aber auch als vorteilhaft erweisen, eine diffus reflektierende Schicht aufzubringen, wie sie in der Radiometrie in sogenannten Ulbricht-Kugel verwendet wird. In diesem Fall würde man eine Schicht aus Magnesiumoxid (MgO)oder Bariumsulfat (BaSO₄) verwenden.
You can easily combine several such emitters into blocks that are suitable for irradiating large areas. For this purpose, the outer tubes are advantageously arranged in groove-shaped semi-cylindrical recesses in a support body made of an electrically insulating, but good heat-conducting material. Such materials are available on a ceramic basis, for example aluminum nitride (AlN) or beryllium oxide (BeO) as well as on a plastic basis (casting compounds for transformers and electrical circuits). With less extreme requirements more common materials such as aluminum oxide (Al₂O₃), glass ceramics or heat-resistant plastics such as polytetrafluoroethylene are also suitable. At higher capacities, it is possible to cool the supporting body and thus the outer pipes, for example by providing cooling channels running in the longitudinal direction of the pipe in the supporting body.
The reflectivity of the semi-cylindrical recesses in the supporting body can be improved by a metallic mirror coating, for example an aluminum layer with a protective layer of magnesium fluoride (MgF₂). However, it can also prove to be advantageous to apply a diffusely reflecting layer such as is used in radiometry in what is known as an Ulbricht sphere. In this case, one would use a layer of magnesium oxide (MgO) or barium sulfate (BaSO₄).

Bei der UV-Behandlung von Oberflächen und der Aushärtung von UV-Farben und UV-Lacken ist es in bestimmten Fällen von Vorteil, nicht in Luft zu arbeiten. Es gibt mindestens zwei Gründe, die eine UV-Behandlung unter Ausschluss von Luft angezeigt erscheinen lassen. Der erste Grund liegt vor, wenn die Strahlung so kurzwellig ist, dass sie von Luft absorbiert und damit abgeschwächt wird (Wellenlängen < 190 nm). Diese Strahlung führt zur Sauerstoffspaltung und damit zur unerwünschten Ozonbildung. Der zweite Grund liegt vor, wenn die beabsichtigte photochemische Wirkung der UV-Strahlung durch die Anwesenheit von Sauerstoff behindert wird (oxygen inhibition). Dieser Fall tritt z.B. bei der Photovernetzung (UV-Polymerisation, UV-Trockung) von Lacken und Farben auf. Diese Vorgänge sind an sich bekannt und beispielsweise im Buch "U.V.and E.B. Curing Formulation for Printing Ink, Coatings and Paints", herausgegeben 1988 von SITA-Technology, 203 Gardiner House, Broomhill Road, London SW18, Seiten 89 - 91, beschrieben. In diesen Fällen ist vorgesehen, Mittel zur Spülung des Behandlungsraums mit einem inerten UV-transparenten Gas wie z.B. Stickstoff oder Argon vorzusehen. Insbesondere bei Konfigurationen, bei denen die ersten Rohre in einem mit Rillen versehenen Tragkörper angeordnet sind, lässt sich eine derartige Spülung ohne grossen technischen Aufwand verwirklichen, z.B. durch zusätzliche von einer Inertgasquelle gespeiste und gegen den Entladungsraum offene Kanäle. Das durch besagte Kanäle geleitete Inertgas kann darüber hinaus zur Kühlung des Strahlers herangezogen werden, so dass bei manchen Anwendungen auf separate Kühlkanäle verzichtet werden kann.When treating surfaces with UV and curing UV inks and varnishes, it is advantageous in certain cases not to work in air. There are at least two reasons why UV treatment in the absence of air is indicated. The first reason is when the radiation is so short-wave that it is absorbed by air and thus weakened (wavelengths <190 nm). This radiation leads to oxygen splitting and thus to undesired ozone formation. The second reason is when the intended photochemical effect of UV radiation is hindered by the presence of oxygen (oxygen inhibition). This occurs, for example, in the photo crosslinking (UV polymerization, UV drying) of lacquers and paints. These processes are known per se and are described, for example, in the book "UVand EB Curing Formulation for Printing Ink, Coatings and Paints", published in 1988 by SITA-Technology, 203 Gardiner House, Broomhill Road, London SW18, pages 89-91. In these cases, provision is made to provide means for purging the treatment room with an inert UV-transparent gas such as nitrogen or argon. Especially in configurations in which the first tubes are arranged in a support body provided with grooves, such a flushing can be implemented without great technical effort, for example by additional channels fed by an inert gas source and open to the discharge space. The inert gas passed through said channels can also be used to cool the radiator, so that in some applications there is no need for separate cooling channels.

Kurze Beschreibung der ZeichnungenBrief description of the drawings

In der Zeichnung sind Ausführungsbeispiele der Erfindung schematisch dargestellt; darin zeigt

Fig.1
Ein erstes Ausführungsbeispiel eines Zylinderstrahlers mit konzentrischer Anordnung des inneren Dielektrikumsrohres im Querschnitt mit verschiedenen Elektrodenanordnungen auf dem äusseren Dielektrikumsrohr;
Fig.2
einen UV-Strahler mit einer Aussenelektrode in flüssiger Form;
Fig. 3
eine Ausführungsform einer Bestrahlungseinrichtung mit drei nebeneinanderliegenden Zylinderstrahlern gemäss Fig.1c, welche auf einem Tragkörper aus Isoliermaterial angeordnet sind;
Fig.4
eine Ausführungsform einer Bestrahlungseinrichtung analog Fig. 3, jedoch mit einer die gesamte freie Oberfläche der äusseren Dielektrikumsrohre überdeckenden Aussenelektrode.
In the drawing, embodiments of the invention are shown schematically; in it shows
Fig. 1
A first embodiment of a cylinder radiator with a concentric arrangement of the inner dielectric tube in cross section with different electrode arrangements on the outer dielectric tube;
Fig. 2
a UV lamp with an outer electrode in liquid form;
Fig. 3
an embodiment of an irradiation device with three adjacent cylinder emitters according to Fig.1c, which are arranged on a support body made of insulating material;
Fig. 4
an embodiment of an irradiation device analogous to FIG. 3, but with an outer electrode covering the entire free surface of the outer dielectric tubes.

Wege zur Ausführung der ErfindungWays of Carrying Out the Invention

In Fig.1a bis 1c ist in einem äusseren Quarzrohr 1 mit einer Wandstärke von etwa 0,5 bis 1,5 mm und einem Aussendurchmesser von etwa 20 bis 30 mm ein inneres Quarzrohr 2 koaxial angeordnet. Die Innenfläche des inneren Quarzrohrs 2 ist mit einer Innenelektrode 3 versehen, die beispielsweise durch Beschichten mit Aluminium hergestellt ist. Eine Aussenelektrode 4 in Form eines schmalen Streifens aus Drahtnetz erstreckt sich nur über einen kleinen Teil des Umfangs des äusseres Quarzrohrs 1. Die Quarzrohre 1 und 2 sind an beiden Enden verschlossen. Der Raum zwischen den beiden Rohren 1 und 2, der Entladungsraum 5, ist mit einem unter Entladungsbedingungen Strahlung aussendendem Gas/Gasgemisch gefüllt. Die beiden Elektroden 3,4 sind mit den beiden Polen einer Wechselstromquelle 6 verbunden. Die Wechselstromquelle entspricht grundsätzlich jenen, wie sie zur Anspeisung von Ozonerzeugern verwendet werden. Typisch liefert sie eine einstellbare Wechselspannung in der Grössenordnung von mehreren 100 Volt bis 20000 Volt bei Frequenzen im Bereich des technischen Wechselstroms bis hin zu einigen 1000 kHz - abhängig von der Elektrodengeometrie, Druck im Entladungsraum und Zusammensetzung des Füllgases.1a to 1c, an inner quartz tube 2 is arranged coaxially in an outer quartz tube 1 with a wall thickness of approximately 0.5 to 1.5 mm and an outer diameter of approximately 20 to 30 mm. The inner surface of the inner quartz tube 2 is provided with an inner electrode 3, which is produced for example by coating with aluminum. An outer electrode 4 in the form of a narrow strip of wire mesh extends only over a small part of the circumference of the outer quartz tube 1. The quartz tubes 1 and 2 are closed at both ends. The space between the two tubes 1 and 2, the discharge space 5, is filled with a gas / gas mixture which emits radiation under discharge conditions. The two electrodes 3, 4 are connected to the two poles of an alternating current source 6. The AC power source basically corresponds to those used to feed ozone generators. It typically delivers an adjustable AC voltage in the order of magnitude of several 100 volts to 20,000 volts at frequencies in the range of technical alternating current up to a few 1000 kHz - depending on the electrode geometry, pressure in the discharge space and composition of the filler gas.

Das Füllgas ist, z.B. Quecksilber, Edelgas, Edelgas-Metalldampf-Gemisch, Edelgas-Halogen-Gemisch, gegebenenfalls unter Verwendung eines zusätzlichen weiteren Edelgases, vorzugsweise Ar, He, Ne, als Puffergas.The fill gas is e.g. Mercury, noble gas, noble gas-metal vapor mixture, noble gas-halogen mixture, optionally using an additional further noble gas, preferably Ar, He, Ne, as a buffer gas.

Je nach gewünschter spektraler Zusammensetzung der Strahlung kann dabei eine Substanz/Substanzgemisch gemäss nachfolgender Tabelle Verwendung finden:

Figure imgb0001
Depending on the desired spectral composition of the radiation, a substance / substance mixture according to the following table can be used:
Figure imgb0001

Daneben kommen eine ganze Reihe weiterer Füllgase in Frage:

  • Ein Edelgas (Ar, He, Kr, Ne, Xe) oder Hg mit einem Gas bzw. Dampf aus F₂, J₂, Br₂, Cl₂ oder eine Verbindung die in der Entladung ein oder mehrere Atome F, J, Br oder Cl abspaltet;
  • ein Edelgas (Ar, He, Kr, Ne, Xe) oder Hg mit O₂ oder einer Verbindung, die in der Entladung ein oder mehrere 0-Atome abspaltet;
  • ein Edelgas (Ar, He, Kr, Ne, Xe) mit Hg.
In addition, a whole series of other filling gases are possible:
  • A noble gas (Ar, He, Kr, Ne, Xe) or Hg with a gas or vapor from F₂, J₂, Br₂, Cl₂ or a compound that splits off one or more atoms F, J, Br or Cl in the discharge;
  • a noble gas (Ar, He, Kr, Ne, Xe) or Hg with O₂ or a compound that splits off one or more 0 atoms in the discharge;
  • an inert gas (Ar, He, Kr, Ne, Xe) with Hg.

In der sich bildenden stillen elektrischen Entladung (silent discharge) kann die Elektronenenergieverteilung durch Dicke der Dielektrika und deren Eigenschaften Druck und/oder Temperatur im Entladungsraum optimal eingestellt werden.In the silent discharge that forms, the electron energy distribution can be optimally adjusted by the thickness of the dielectrics and their properties, pressure and / or temperature in the discharge space.

Bei Anliegen einer Wechselspannung zwischen den Elektroden 3 und 4 bildet sich eine Vielzahl von Entladungskanälen 7 (Teilentladungen) im Entladungsraum 5 aus. Diese treten mit den Atomen/Molekülen des Füllgases in Wechselwirkung, was schlussendlich zur UV oder VUV-Strahlung führt.When an alternating voltage is applied between the electrodes 3 and 4, a plurality of discharge channels 7 (partial discharges) form in the discharge space 5. These interact with the atoms / molecules of the filling gas, which ultimately leads to UV or VUV radiation.

Anstelle eines schmalen Drahtnetzes als Aussenlektrode 4 können auch zwei voneinander distanzierte schmale Aussenelektroden 4a und 4b (Fig.1b) oder ein breiteres Drahtnetz, das sich etwa über ein Sechstel des Rohrumfangs erstreckt (Fig.1c), verwendet werden. Statt eines Drahtnetzes kann auch eine perforierte Metallfolie oder ein UV-transparenter, elektrisch leitfähiger Belag benutzt werden.
Neben den vorstehend genannten festen Aussenelektroden kann auch ein transparenter Elektrolyt verwendet werden. In der Ausführungsform nach Fig.2 tauchen drei Dielektrikumsrohre 1 mit innenliegenden mit Innenelektroden 3 versehenen inneren Dielektrikumsrohren 2 in ein mit Wasser 4′ gefülltes Quarzgefäss 8 ein. Ueber die Eintauchtiefe t kann die Grösse des gezündeten Segments variiert werden. Durch entsprechende Auswahl des Elektrolyten kann darüber hinaus eine zusätzliche optische Filterwirkung erreicht werden: so blockiert z.B. Wasser sehr effektiv eventuell vorhandene Infrarotstrahlung aus der Entladung. Dies ist insbesondere bei der Bestrahlung sehr temperaturempfindlicher Substanzen von Wichtigkeit.
Instead of a narrow wire mesh as the outer electrode 4, two narrow outer electrodes 4a and 4b (FIG. 1b) spaced apart from one another or a wider wire mesh that extends approximately over a sixth of the tube circumference (FIG. 1c) can also be used. Instead of a wire mesh, a perforated metal foil or a UV-transparent, electrically conductive covering can also be used.
In addition to the fixed outer electrodes mentioned above, a transparent electrolyte can also be used. In the embodiment according to FIG. 2, three dielectric tubes 1 with internal dielectric tubes 2 provided with internal electrodes 3 dip into a quartz vessel 8 filled with water 4 '. The size of the ignited segment can be varied via the immersion depth t. By selecting the appropriate electrolyte, an additional optical filter effect can be achieved: for example, water very effectively blocks any infrared radiation from the discharge. This is particularly important when irradiating very temperature-sensitive substances.

In Fig.3 ist veranschaulicht, auf welche Weise eine Mehrzahl von Zylinderstrahlern gemäss Fig.1c zu einem Flächenstrahler zusammengefasst werden können. Ein Tragkörper 9 aus einem elektrisch isolierendem Material, jedoch mit guter thermischer Leitfähigkeit, z.B. auf Keramik-Basis, ist zu diesem Zweck mit einer parallelen Rillen 10 mit halbkreisförmigem Querschnitt versehen, die um mehr als einen Aussenrohrdurchmesser voneinander beabstandet sind. Die Rillen 10 sind den äusseren Quarzrohren 1 angepasst und durch Beschichten mit einem UV-reflektierenden Material, z.B. Aluminium, das mit einer Schutzschicht aus MgF₂ versehen ist. Zusätzlichen Bohrungen 11, die in Richtung der Rohre 1 verlaufen, dienen der Kühlung der Einzelstrahler.FIG. 3 illustrates the manner in which a plurality of cylinder radiators according to FIG. 1c can be combined to form a surface radiator. A support body 9 from a For this purpose, electrically insulating material, but with good thermal conductivity, for example on a ceramic basis, is provided with parallel grooves 10 with a semicircular cross section, which are spaced apart by more than one outer tube diameter. The grooves 10 are adapted to the outer quartz tubes 1 and by coating with a UV-reflecting material, for example aluminum, which is provided with a protective layer of MgF₂. Additional bores 11, which run in the direction of the tubes 1, serve to cool the individual radiators.

Für spezielle Anwendungen kann man Einzelstrahler mit verschiedenen Gasfüllungen und damit verschiedenen (UV-)Wellenlängen kombinieren.For special applications, single emitters can be combined with different gas fillings and thus different (UV) wavelengths.

Der Tragkörper 9 muss nicht unbedingt plattenförmig ausgebildet sein. Er kann auch einen hohlzylindrischen Querschnitt mit regelmässig über seinen Innenumfang verteilten achsparallelen Rillen aufweisen, in welche jeweils ein Strahlerelement nach Fig.1a bis 1c eingelegt ist analog zu Fig.7 oder Fig.8 der eingangs genannten EP-A-0 385 205.The support body 9 does not necessarily have to be plate-shaped. It can also have a hollow cylindrical cross section with axially parallel grooves distributed regularly over its inner circumference, into each of which a radiator element according to FIGS. 1a to 1c is inserted, analogously to FIG. 7 or FIG. 8 of the aforementioned EP-A-0 385 205.

Die Bestrahlungseinrichtung gemäss Fig.4 entspricht grundsätzlich derjenigen nach Fig.3. mit zusätzlichen in Längsrichtung des Tragkörpers 9 verlaufenden Kanälen 12. Diese Kanäle stehen mit dem Aussenraum 13 über eine Vielzahl von Bohrungen oder Schlitze 14 im Tragkörper 9 in Verbindung.Die Kanäle 12 sind an eine nicht dargestellte Inertgasquelle, z.B. Stickstoff- oder Argonquelle angeschlossen. Von den Kanälen 12 gelangt das unter Druck stehende Inertgas auf dem beschriebenen Wege in den Behandlungsraum 13. Zusätzlich ist in Fig.4 eine besonders einfache und wirtschaftliche Ausführung für die Aussenelektrode veranschaulicht. Diese Aussenelektrode ist allen Strahlern gemeinsam. Sie besteht aus einem durchgehenden Drahtnetz oder Drahtgeflecht 15 mit in Rohrlängsrichtung verlaufenden halbkreisförmigen Ausbuchtungen, die sich an die äusseren Quarzrohre 1 anschmiegen.The radiation device according to FIG. 4 basically corresponds to that according to FIG. 3. with additional channels 12 running in the longitudinal direction of the support body 9. These channels are connected to the outer space 13 via a multiplicity of bores or slots 14 in the support body 9. The channels 12 are connected to an inert gas source, not shown, for example nitrogen or argon source. The pressurized inert gas reaches the treatment room 13 from the channels 12 in the manner described. In addition, FIG. 4 shows a particularly simple and economical embodiment for the outer electrode. This outer electrode is common to all emitters. It consists of a continuous wire mesh or wire mesh 15 with in Pipe longitudinal direction extending semicircular bulges that nestle against the outer quartz tubes 1.

Claims (10)

  1. A high power radiating device, in particular for ultraviolet light, with a discharge chamber (5) filled with filling gas emitting radiation under discharge conditions, the walls of which are formed by a first (1) and a second tubular dielectric (2), which is provided in each case on the surfaces facing away from the discharge chamber (5) with an outer (4) and an inner electrode (3), and with an alternating current source (6) connected to these electrodes to supply the discharge, characterised in that the outer electrode (4;4a;4b;4′;15) only extends over a fraction of the circumference of the first dielectric tube (1), such that discharges (7) only form in a discharge segment substantially defined by the outer electrode (4).
  2. A high-power radiating device according to Claim 1, characterised in that the outer electrode(s) extend in strip form in the longitudinal direction of the tube.
  3. A high-power radiating device according to Claim 1, characterised in that the outer electrode is formed by an electrolyte (4′), into which the outer dielectric tube(s) immerse at the most partially.
  4. A high-power radiating device according to Claim 3, characterised in that the size of the effective radiating segment is able to be adjusted by the immersion depth (t) of the outer dielectric tube (1) in electrolyte (4′).
  5. A high-power radiating device according to Claim 4, characterised in that the outer tubes (1) are arranged partially in material recesses (10) in a carrier body (9) of insulating material with good thermal conductivity.
  6. A high-power radiating device according to Claim 5, characterised in that cooling bores (11) are provided in the support body (9), which do not intersect the material recesses (10).
  7. A high-power radiating device according to Claim 5, characterised in that the cross-section of the material recesses (10) are matched to the external diameter of the outer tubes (1) and the recess walls are constructed as UV reflectors.
  8. A high-power radiating device according to one of Claims 5 to 7, characterised in that means (11,14) are provided for the supply of inert gas into the chamber (13) outside the outer tubes (1).
  9. A high-power radiating device according to Claim 8, characterised in that channels (12) are provided in the support body, which are connected directly or indirectly with said chamber (13), through which channels (12) an inert gas, preferably nitrogen or argon, is able to be fed.
  10. A high-power radiating device according to Claim 9, characterised in that the channels (12) are arranged in each case between adjacent dielectric tubes (1) and communicate with said chamber via bores or slits (14).
EP91107572A 1990-05-22 1991-05-10 High power radiator Expired - Lifetime EP0458140B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH1738/90 1990-05-22
CH1738/90A CH680099A5 (en) 1990-05-22 1990-05-22

Publications (2)

Publication Number Publication Date
EP0458140A1 EP0458140A1 (en) 1991-11-27
EP0458140B1 true EP0458140B1 (en) 1995-09-06

Family

ID=4217429

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91107572A Expired - Lifetime EP0458140B1 (en) 1990-05-22 1991-05-10 High power radiator

Country Status (6)

Country Link
US (1) US5214344A (en)
EP (1) EP0458140B1 (en)
JP (1) JPH04229671A (en)
AT (1) ATE127617T1 (en)
CH (1) CH680099A5 (en)
DE (1) DE59106397D1 (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5681380A (en) 1995-06-05 1997-10-28 Kimberly-Clark Worldwide, Inc. Ink for ink jet printers
US5709955A (en) 1994-06-30 1998-01-20 Kimberly-Clark Corporation Adhesive composition curable upon exposure to radiation and applications therefor
US5733693A (en) 1993-08-05 1998-03-31 Kimberly-Clark Worldwide, Inc. Method for improving the readability of data processing forms
US5782963A (en) 1996-03-29 1998-07-21 Kimberly-Clark Worldwide, Inc. Colorant stabilizers
US5786132A (en) 1995-06-05 1998-07-28 Kimberly-Clark Corporation Pre-dyes, mutable dye compositions, and methods of developing a color
US5837429A (en) 1995-06-05 1998-11-17 Kimberly-Clark Worldwide Pre-dyes, pre-dye compositions, and methods of developing a color
US5855655A (en) 1996-03-29 1999-01-05 Kimberly-Clark Worldwide, Inc. Colorant stabilizers
US5858586A (en) 1993-08-05 1999-01-12 Kimberly-Clark Corporation Digital information recording media and method of using same
US5865471A (en) 1993-08-05 1999-02-02 Kimberly-Clark Worldwide, Inc. Photo-erasable data processing forms
US5885337A (en) 1995-11-28 1999-03-23 Nohr; Ronald Sinclair Colorant stabilizers
US6017661A (en) 1994-11-09 2000-01-25 Kimberly-Clark Corporation Temporary marking using photoerasable colorants
US6017471A (en) 1993-08-05 2000-01-25 Kimberly-Clark Worldwide, Inc. Colorants and colorant modifiers
US6033465A (en) 1995-06-28 2000-03-07 Kimberly-Clark Worldwide, Inc. Colorants and colorant modifiers
US6099628A (en) 1996-03-29 2000-08-08 Kimberly-Clark Worldwide, Inc. Colorant stabilizers
US6168654B1 (en) 1996-03-29 2001-01-02 Kimberly-Clark Worldwide, Inc. Colorant stabilizers
US6211383B1 (en) 1993-08-05 2001-04-03 Kimberly-Clark Worldwide, Inc. Nohr-McDonald elimination reaction
US6228157B1 (en) 1998-07-20 2001-05-08 Ronald S. Nohr Ink jet ink compositions
US6242057B1 (en) 1994-06-30 2001-06-05 Kimberly-Clark Worldwide, Inc. Photoreactor composition and applications therefor
US6265458B1 (en) 1998-09-28 2001-07-24 Kimberly-Clark Worldwide, Inc. Photoinitiators and applications therefor
US6277897B1 (en) 1998-06-03 2001-08-21 Kimberly-Clark Worldwide, Inc. Photoinitiators and applications therefor
US6294698B1 (en) 1999-04-16 2001-09-25 Kimberly-Clark Worldwide, Inc. Photoinitiators and applications therefor
US6331056B1 (en) 1999-02-25 2001-12-18 Kimberly-Clark Worldwide, Inc. Printing apparatus and applications therefor
US6368395B1 (en) 1999-05-24 2002-04-09 Kimberly-Clark Worldwide, Inc. Subphthalocyanine colorants, ink compositions, and method of making the same
US6368396B1 (en) 1999-01-19 2002-04-09 Kimberly-Clark Worldwide, Inc. Colorants, colorant stabilizers, ink compositions, and improved methods of making the same
US6503559B1 (en) 1998-06-03 2003-01-07 Kimberly-Clark Worldwide, Inc. Neonanoplasts and microemulsion technology for inks and ink jet printing
US6524379B2 (en) 1997-08-15 2003-02-25 Kimberly-Clark Worldwide, Inc. Colorants, colorant stabilizers, ink compositions, and improved methods of making the same
US7411349B2 (en) 2003-08-06 2008-08-12 Patent-Treuhand-Gesellschaft Fuer Elektrische Gluehlampen Mbh UV radiator having a tubular discharge vessel

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4140497C2 (en) * 1991-12-09 1996-05-02 Heraeus Noblelight Gmbh High-power radiation
US5504391A (en) * 1992-01-29 1996-04-02 Fusion Systems Corporation Excimer lamp with high pressure fill
DE4430300C1 (en) * 1994-08-26 1995-12-21 Abb Research Ltd Excimer emitters and their use
JP2775699B2 (en) * 1994-09-20 1998-07-16 ウシオ電機株式会社 Dielectric barrier discharge lamp
JP3025414B2 (en) * 1994-09-20 2000-03-27 ウシオ電機株式会社 Dielectric barrier discharge lamp device
JP3546610B2 (en) * 1996-09-20 2004-07-28 ウシオ電機株式会社 Dielectric barrier discharge device
US6015759A (en) * 1997-12-08 2000-01-18 Quester Technology, Inc. Surface modification of semiconductors using electromagnetic radiation
US6049086A (en) * 1998-02-12 2000-04-11 Quester Technology, Inc. Large area silent discharge excitation radiator
JP3521731B2 (en) 1998-02-13 2004-04-19 ウシオ電機株式会社 Dielectric barrier discharge lamp light source device
US5993278A (en) * 1998-02-27 1999-11-30 The Regents Of The University Of California Passivation of quartz for halogen-containing light sources
JP3346291B2 (en) * 1998-07-31 2002-11-18 ウシオ電機株式会社 Dielectric barrier discharge lamp and irradiation device
EP1059659A4 (en) * 1998-12-28 2002-03-13 Japan Storage Battery Co Ltd Silent discharge tube and its use method
US6567023B1 (en) 1999-09-17 2003-05-20 Kabushiki Kaisha Toshiba Analog to digital to analog converter for multi-valued current data using internal binary voltage
DE10145648B4 (en) * 2001-09-15 2006-08-24 Arccure Technologies Gmbh Irradiation device with variable spectrum
US6971939B2 (en) * 2003-05-29 2005-12-06 Ushio America, Inc. Non-oxidizing electrode arrangement for excimer lamps
WO2005104184A1 (en) * 2004-04-22 2005-11-03 Futaba Technology Corporation Ultraviolet ray irradiation device
DE102004030803A1 (en) * 2004-06-25 2006-01-19 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Highly reflective coated micromechanical mirror, process for its preparation and its use
DE102004048005A1 (en) * 2004-10-01 2006-04-13 Dr. Hönle AG A gas discharge lamp, system and method of curing UV light curable materials, and UV light cured material
US8022377B2 (en) * 2008-04-22 2011-09-20 Applied Materials, Inc. Method and apparatus for excimer curing
DE102010043215A1 (en) * 2010-11-02 2012-05-03 Osram Ag Spotlight with base for the irradiation of surfaces
DE102012219064A1 (en) 2012-10-19 2014-04-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. UV light source with combined ionization and formation of excimers
WO2015163948A1 (en) 2014-04-22 2015-10-29 Hoon Ahn Power amplifying radiator (par)
DE102014207688A1 (en) 2014-04-24 2015-10-29 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus for the photochemical treatment of contaminated water
DE102014207690A1 (en) 2014-04-24 2015-10-29 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus for the photochemical treatment or purification of a liquid medium
US20170082302A1 (en) * 2015-09-22 2017-03-23 Ribe Jern Holding A/S Radiator with heat insulation plate and radiator arrangement

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4038577A (en) * 1969-04-28 1977-07-26 Owens-Illinois, Inc. Gas discharge display device having offset electrodes
CH670171A5 (en) * 1986-07-22 1989-05-12 Bbc Brown Boveri & Cie
JPS63314753A (en) * 1987-06-17 1988-12-22 Matsushita Electric Works Ltd Electrodeless discharge lamp
CH675504A5 (en) * 1988-01-15 1990-09-28 Asea Brown Boveri
CH677292A5 (en) * 1989-02-27 1991-04-30 Asea Brown Boveri

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6060223A (en) 1993-08-05 2000-05-09 Kimberly-Clark Worldwide, Inc. Plastic article for colored printing and method for printing on a colored plastic article
US6060200A (en) 1993-08-05 2000-05-09 Kimberly-Clark Worldwide, Inc. Photo-erasable data processing forms and methods
US5908495A (en) 1993-08-05 1999-06-01 Nohr; Ronald Sinclair Ink for ink jet printers
US6120949A (en) 1993-08-05 2000-09-19 Kimberly-Clark Worldwide, Inc. Photoerasable paint and method for using photoerasable paint
US6066439A (en) 1993-08-05 2000-05-23 Kimberly-Clark Worldwide, Inc. Instrument for photoerasable marking
US6211383B1 (en) 1993-08-05 2001-04-03 Kimberly-Clark Worldwide, Inc. Nohr-McDonald elimination reaction
US6054256A (en) 1993-08-05 2000-04-25 Kimberly-Clark Worldwide, Inc. Method and apparatus for indicating ultraviolet light exposure
US5858586A (en) 1993-08-05 1999-01-12 Kimberly-Clark Corporation Digital information recording media and method of using same
US6017471A (en) 1993-08-05 2000-01-25 Kimberly-Clark Worldwide, Inc. Colorants and colorant modifiers
US5865471A (en) 1993-08-05 1999-02-02 Kimberly-Clark Worldwide, Inc. Photo-erasable data processing forms
US6127073A (en) 1993-08-05 2000-10-03 Kimberly-Clark Worldwide, Inc. Method for concealing information and document for securely communicating concealed information
US5733693A (en) 1993-08-05 1998-03-31 Kimberly-Clark Worldwide, Inc. Method for improving the readability of data processing forms
US6342305B1 (en) 1993-09-10 2002-01-29 Kimberly-Clark Corporation Colorants and colorant modifiers
US6242057B1 (en) 1994-06-30 2001-06-05 Kimberly-Clark Worldwide, Inc. Photoreactor composition and applications therefor
US5709955A (en) 1994-06-30 1998-01-20 Kimberly-Clark Corporation Adhesive composition curable upon exposure to radiation and applications therefor
US6017661A (en) 1994-11-09 2000-01-25 Kimberly-Clark Corporation Temporary marking using photoerasable colorants
US6235095B1 (en) 1994-12-20 2001-05-22 Ronald Sinclair Nohr Ink for inkjet printers
US5681380A (en) 1995-06-05 1997-10-28 Kimberly-Clark Worldwide, Inc. Ink for ink jet printers
US5837429A (en) 1995-06-05 1998-11-17 Kimberly-Clark Worldwide Pre-dyes, pre-dye compositions, and methods of developing a color
US6063551A (en) 1995-06-05 2000-05-16 Kimberly-Clark Worldwide, Inc. Mutable dye composition and method of developing a color
US5786132A (en) 1995-06-05 1998-07-28 Kimberly-Clark Corporation Pre-dyes, mutable dye compositions, and methods of developing a color
US6033465A (en) 1995-06-28 2000-03-07 Kimberly-Clark Worldwide, Inc. Colorants and colorant modifiers
US5885337A (en) 1995-11-28 1999-03-23 Nohr; Ronald Sinclair Colorant stabilizers
US6099628A (en) 1996-03-29 2000-08-08 Kimberly-Clark Worldwide, Inc. Colorant stabilizers
US5855655A (en) 1996-03-29 1999-01-05 Kimberly-Clark Worldwide, Inc. Colorant stabilizers
US6168654B1 (en) 1996-03-29 2001-01-02 Kimberly-Clark Worldwide, Inc. Colorant stabilizers
US5782963A (en) 1996-03-29 1998-07-21 Kimberly-Clark Worldwide, Inc. Colorant stabilizers
US6524379B2 (en) 1997-08-15 2003-02-25 Kimberly-Clark Worldwide, Inc. Colorants, colorant stabilizers, ink compositions, and improved methods of making the same
US6503559B1 (en) 1998-06-03 2003-01-07 Kimberly-Clark Worldwide, Inc. Neonanoplasts and microemulsion technology for inks and ink jet printing
US6277897B1 (en) 1998-06-03 2001-08-21 Kimberly-Clark Worldwide, Inc. Photoinitiators and applications therefor
US6228157B1 (en) 1998-07-20 2001-05-08 Ronald S. Nohr Ink jet ink compositions
US6265458B1 (en) 1998-09-28 2001-07-24 Kimberly-Clark Worldwide, Inc. Photoinitiators and applications therefor
US6368396B1 (en) 1999-01-19 2002-04-09 Kimberly-Clark Worldwide, Inc. Colorants, colorant stabilizers, ink compositions, and improved methods of making the same
US6331056B1 (en) 1999-02-25 2001-12-18 Kimberly-Clark Worldwide, Inc. Printing apparatus and applications therefor
US6294698B1 (en) 1999-04-16 2001-09-25 Kimberly-Clark Worldwide, Inc. Photoinitiators and applications therefor
US6368395B1 (en) 1999-05-24 2002-04-09 Kimberly-Clark Worldwide, Inc. Subphthalocyanine colorants, ink compositions, and method of making the same
US7411349B2 (en) 2003-08-06 2008-08-12 Patent-Treuhand-Gesellschaft Fuer Elektrische Gluehlampen Mbh UV radiator having a tubular discharge vessel

Also Published As

Publication number Publication date
DE59106397D1 (en) 1995-10-12
US5214344A (en) 1993-05-25
JPH04229671A (en) 1992-08-19
ATE127617T1 (en) 1995-09-15
EP0458140A1 (en) 1991-11-27
CH680099A5 (en) 1992-06-15

Similar Documents

Publication Publication Date Title
EP0458140B1 (en) High power radiator
EP0385205B1 (en) High-power radiation device
EP0389980B1 (en) High power radiation device
DE4140497C2 (en) High-power radiation
EP0363832B1 (en) Radiating device having a high output
EP0254111B1 (en) Ultraviolett radiation device
EP0371304B1 (en) High-power radiation device
EP0449018A2 (en) Irradiation device
EP0312732B1 (en) High power radiator
EP0509110B1 (en) Irradation device
DE4302555C2 (en) Electrodeless discharge lamp
EP0578953B1 (en) High power emitting device
EP0517929B1 (en) Irradiation device with a high power radiator
EP0482230A1 (en) High power radiation device
DE4302465C1 (en) Appts. for producing dielectrically-hindered discharge - comprises gas-filled discharge space between two ignition voltage-admitted electrodes
EP0489184B1 (en) High power radiation device
DE4010809A1 (en) High power esp. ultraviolet emitter - with electrode arrangement providing high efficiency
DE2502649A1 (en) IMPROVED ELECTRODE STRUCTURE FOR HIGH CURRENT, LOW PRESSURE DISCHARGE DEVICES
DE4022279A1 (en) Irradiating non-electrolytes from gas - filled discharge chamber by applying high potential electric source to electrodes using cylindrical electrode connected by dielectric layer
DE102005007370B3 (en) Ultraviolet light source for e.g. ultraviolet microscopy, has dielectric arranged between two electrodes, where one electrode includes tip directed to another electrode, such that shortest distance is defined between electrodes
DE4036122A1 (en) CORON DISCHARGE LIGHT SOURCE CELL
DE4203345A1 (en) High performance emitter, esp. for UV light - comprises discharge chamber filled with gas, and metallic outer electrodes coated with UV-transparent layer
DE4235743A1 (en) High power emitter esp. UV excimer laser with coated internal electrode - in transparent dielectric tube and external electrode grid, which has long life and can be made easily and economically
EP0515711A1 (en) High power radiator
DE2354341B2 (en) Gas laser

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB LI NL

17P Request for examination filed

Effective date: 19920418

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HERAEUS NOBLELIGHT GMBH

17Q First examination report despatched

Effective date: 19950112

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB LI NL

REF Corresponds to:

Ref document number: 127617

Country of ref document: AT

Date of ref document: 19950915

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59106397

Country of ref document: DE

Date of ref document: 19951012

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19951002

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19960430

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19960531

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19960612

Year of fee payment: 6

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19970510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19970531

BERE Be: lapsed

Owner name: HERAEUS NOBLELIGHT G.M.B.H.

Effective date: 19970531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980130

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19990817

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000531

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20020430

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020502

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20020511

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031202

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20030510

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20031201