EP0234989A1 - Method of manufacturing an imaging device using field emission cathodoluminescence - Google Patents

Method of manufacturing an imaging device using field emission cathodoluminescence Download PDF

Info

Publication number
EP0234989A1
EP0234989A1 EP87400140A EP87400140A EP0234989A1 EP 0234989 A1 EP0234989 A1 EP 0234989A1 EP 87400140 A EP87400140 A EP 87400140A EP 87400140 A EP87400140 A EP 87400140A EP 0234989 A1 EP0234989 A1 EP 0234989A1
Authority
EP
European Patent Office
Prior art keywords
layer
manufacturing
holes
etching
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP87400140A
Other languages
German (de)
French (fr)
Other versions
EP0234989B1 (en
Inventor
Michel Borel
Jean-François Boronat
Robert Meyer
Philippe Rambaud
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP0234989A1 publication Critical patent/EP0234989A1/en
Application granted granted Critical
Publication of EP0234989B1 publication Critical patent/EP0234989B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/022Manufacture of electrodes or electrode systems of cold cathodes
    • H01J9/025Manufacture of electrodes or electrode systems of cold cathodes of field emission cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J31/00Cathode ray tubes; Electron beam tubes
    • H01J31/08Cathode ray tubes; Electron beam tubes having a screen on or from which an image or pattern is formed, picked up, converted, or stored
    • H01J31/10Image or pattern display tubes, i.e. having electrical input and optical output; Flying-spot tubes for scanning purposes
    • H01J31/12Image or pattern display tubes, i.e. having electrical input and optical output; Flying-spot tubes for scanning purposes with luminescent screen
    • H01J31/123Flat display tubes
    • H01J31/125Flat display tubes provided with control means permitting the electron beam to reach selected parts of the screen, e.g. digital selection
    • H01J31/127Flat display tubes provided with control means permitting the electron beam to reach selected parts of the screen, e.g. digital selection using large area or array sources, i.e. essentially a source for each pixel group

Definitions

  • the present invention relates to a method of manufacturing a display device by cathodoluminescence excited by field emission or light emission. It applies in particular to the production of simple matrix displays, allowing the visualization of fixed images, and to the production of complex multiplexed screens, allowing the visualization of animated images, of the television image type.
  • FIG. 1 shows an exploded perspective view of the display device described in this document.
  • This display device comprises a display cell 2, sealed and evacuated, comprising two glass walls 4 and 6, located opposite one another.
  • the lower wall 6 of the cell 2 is equipped with a first series of conductive strips 8, mutually parallel, playing the role of cathodes and a second series of conductive strips 10, parallel to each other, playing the role of grids.
  • the conductive strips 10 are oriented perpendicular to the conductive strips 8 and isolated from the conductive strips 8 by an insulating and continuous layer 12, in particular made of silica.
  • the conductive strips 8 and 10 respectively represent columns and rows. Each crossing of a row and a column corresponds to an elementary display point 14.
  • the conductive strips or grids 10 and the insulating layer 12 are pierced with a large number of holes 16 in which are housed microemitters or electron microchannels.
  • Each elementary display point 14 corresponds to a multitude of micro-transmitters.
  • microemitters each consist of a metal cone 18 emitting electrons when a suitable electric field is applied to them.
  • These metal cones 18 rest by their base directly on the cathodes 8 and the top of these cones is substantially at the level of the conductive strips 10.
  • the base diameter of the cones and their height are for example of the order of 1 ⁇ m.
  • the upper wall 4 of the cell 2, as shown in FIG. 1, is provided with a continuous conductive layer 20 acting as an anode.
  • This anode 20 is covered with a layer 22 made of a material emitting light when it is subjected to an electronic bombardment coming from the microemitters 18.
  • the emission of electrons by a microemitter 18 can be achieved by simultaneously polarizing the cathode 8 and the grids 10 located opposite, as well as the anode 20.
  • the anode 20 can in particular be brought to ground, the grids 10 are , either brought to the potential of the anode, or negatively polarized with respect to the latter using a voltage source 24.
  • the cathodes 8 are negatively polarized with respect to the grid using a source of tension 26.
  • the cathodes 8 and the grids 10 can be polarized sequentially in order to make appear a point by point image on the display cell 2. The image is observed on the side of the upper wall 4 of the cell.
  • the number of microemitters 18 per display point 14, that is to say by crossing a cathode and a grid, is generally high, which makes it possible to have a more uniform emission characteristic of one display point to another (average effect); this gives a certain redundancy of the microemitters making it possible to tolerate a certain proportion of microemitters not functioning.
  • the number of microemitters is between 104 and 105 transmitters per mm2. Consequently, traditional manufacturing, requiring precise positioning of the microemitters facing the cathodes and grids, would be complex and would increase the cost of the display device.
  • the object of the present invention is precisely a relatively simple and inexpensive method for manufacturing a display device operating by cathodoluminescence excited by field effect as described above.
  • the subject of the invention is a method for manufacturing a cathodoluminescence display device, characterized in that it comprises the following successive steps: - deposit of a first conductive layer on an insulating substrate, - etching of the first layer to form first parallel conductive strips playing the role of cathodes, - deposit of a second insulating layer on the structure obtained, - deposit of a third conductive layer on the second layer, - Hole openings opening into the third and second layers, these holes being distributed over the entire surface of the third and second layers.
  • This method has the advantage of simple implementation. In particular, it allows the production of electron microemitters in the holes formed in the second and third layers, distributed over the entire display device, without requiring precise positioning with respect to the cathodes and grids. Only microemitters located at an intersection of a cathode and a grid are effectively active.
  • the first conductive layer In order to minimize the resistance to access to the microemitters, the first conductive layer must be made of a material that conducts electricity well. Furthermore, this first conductive layer must have good compatibility with the second insulating layer and in particular good adhesion and must be inert with respect to the etching method of this second insulating layer.
  • the first conductive layer is made of a material chosen from indium oxide, tin oxide and aluminum.
  • Indium oxide and tin oxide are preferably used for producing screens of small dimensions and of low complexity such as screens used for viewing still images.
  • aluminum is preferably used when producing complex multiplexed screens of large dimensions, used in particular for viewing animated images of the television image type.
  • the second insulating layer In order to minimize the capacitances between the cathodes and the grids, and therefore to minimize the response time of the microemitters, the second insulating layer must have as low a dielectric constant as possible. To this end, this second insulating layer is preferably made of silicon oxide (SiO2) or silica.
  • This silicon oxide layer can be deposited by the chemical vapor deposition (CVD) technique, by sputtering or by vacuum evaporation.
  • CVD chemical vapor deposition
  • the chemical phase deposition technique is preferably used.
  • steam a technique allowing an oxide layer of uniform quality and constant thickness to be obtained.
  • the opening of the holes in the insulating layer in particular of silicon oxide, can be carried out by dry or wet etching techniques well known to those skilled in the art.
  • the third conductive layer in which the grids are formed must be made of a material having good adhesion to the second insulating layer, for example made of silicon oxide, as well as good chemical resistance to the various products used to make the microemitters.
  • the third conductive layer is preferably made of a metal chosen from niobium, tantalum and aluminum.
  • this third conductive layer of a size close to one micron, the formation of these holes is advantageously carried out by an anisotropic dry etching technique.
  • the fourth layer playing the role of mask for the deposition of the fifth layer is made of metal and in particular nickel.
  • the deposition of this fourth layer of nickel is advantageously carried out by evaporation under vacuum at a grazing incidence so as not to cover the holes made in the second and third layers.
  • the elimination of this metallic layer is advantageously carried out by electrochemical dissolution.
  • the choice of the material of the fifth layer is essentially dictated by these properties with respect to the emission by field effect or cold emission as well as its chemical resistance to the techniques of deposition and elimination of the fourth layer used for the production of microemitters.
  • the electron-emitting material can be hafnium, niobium, molybdenum, zirconium, lanthanum hexaboride (LaB6), titanium carbide, tantalum carbide, hafnium carbide, carbide of zirconium, etc. We choose for example molybdenum.
  • the cleaning of the lower substrate 6 is first of all carried out in order to obtain good flatness and a good surface condition to allow optimized production of the microemitters.
  • the substrate 6 can be a glass or ceramic plate.
  • an oxide layer is then deposited by sputtering silicon (SiO2) 7 of about 100 nm.
  • the insulating layer 7 is then covered with a conductive layer 8a of indium oxide in which the cathodes 8 will be produced.
  • This layer of indium oxide has a thickness of 160 nm and can be deposited by sputtering.
  • a positive resin mask 11 representing the image of the cathodes to be produced.
  • the layer of indium oxide 8a is etched to form, as shown in FIG. 4, cathodes 8 0.7 mm wide at a pitch P of 1 mm.
  • the etching of the layer 8a is carried out by chemical attack with orthophosphoric acid brought to 110 ° C.
  • the etching of the indium oxide layer 8a is carried out over the entire thickness of the layer.
  • the resin mask is then removed by chemical dissolution.
  • the silicon oxide layer 12 is then deposited, as shown in FIG. 5, by the technique chemical vapor deposition from silane, phosphine and oxygen gases.
  • This oxide layer 12 has a thickness of 1 ⁇ m.
  • the oxide layer 12 is then completely covered with a conductive layer 10a in which the grids will be produced subsequently.
  • This layer 10a is deposited by vacuum evaporation. It has a thickness of 0.4 ⁇ m and is made of niobium.
  • This resin mask 13 represents the image positive holes to be made in the grid layer 10a and the insulating layer 12.
  • a resin mask 13 is therefore produced, comprising openings 15 distributed over the entire surface of the mask, and in particular in regions 17 situated outside the zones 14 reserved for display (elementary display points defined at the intersection). cathodes and grids). This facilitates the production of the photomask 19 used for the exposure 21 of the resin 13 as well as its positioning above the structure.
  • the holes 16 are made in the layer of grid material 10a and the insulating layer 12. These holes 16 pass right through the layers 10a and 12.
  • the etchings of layers 10a and 12 are carried out successively.
  • the etching of the layer 10a is carried out by a reactive ion etching (GIR) process using a sulfur hexafluoride plasma (SF6).
  • GIR reactive ion etching
  • SF6 sulfur hexafluoride plasma
  • the holes 16 made in the conductive layer 10a have a diameter equal to 1.3 ⁇ m to ⁇ 0.1 ⁇ m.
  • the holes in the silica layer 12 are produced, for example by chemical attack by immersing the structure in an attack solution of hydrofluoric acid and ammonium fluoride. Then, the resin mask 13 is chemically removed.
  • the profile of the holes 16 thus produced is illustrated in FIG. 7.
  • a nickel layer 23 is first deposited by evaporation under vacuum at a grazing incidence relative to the surface of the structure; the angle ⁇ formed between the axis of evaporation and the surface of layer 10a is close to 15 °.
  • the nickel layer 23 has a thickness of 150 nm. This deposition technique makes it possible not to plug the holes 16.
  • a layer of molybdenum 18a is deposited on the entire structure.
  • This layer 18a has a thickness of 1.8 ⁇ m. It is deposited under normal incidence relative to the surface of the structure; this deposition technique makes it possible to obtain cones 18 of molybdenum housed in the holes 16 having a height of 1.2 to 1.5 ⁇ m.
  • Selective dissolution of the nickel layer 23 is then carried out by an electrochemical process so as to release, as shown in FIG. 9, the perforated niobium layer 10a and to reveal the microtips 18 emitting electrons.
  • an etching of the layer 10a and an etching of the insulating layer 12 is carried out in order to free the ends 9 of the cathodes 8 so as to subsequently allow electrical contact to be made on these cathodes.
  • This etching is carried out through a resin mask (not shown), obtained according to conventional photolithography methods, the resin forming the mask must have a sufficiently high viscosity in order to cover all the holes 16 formed in the niobium layer 10a and the silicon oxide layer 12.
  • the etching of the niobium layer 10a is carried out as previously by a reactive ion etching process and the etching of the silica layer 12 by chemical attack.
  • a resin mask 25 is then produced on the structure obtained representing the image of the grids 10 to be produced in the niobium layer 10a.
  • This resin mask is produced according to the processes photolithography classics. Then carried out, through the mask 25, a dry etching of the reactive ionic type with SF6 so as to release the conductive strips 10 perpendicular to the conductive strips 8. The resin mask 25 is then removed by chemical attack.
  • the structure obtained after elimination of the mask 25 is that shown in FIG. 11.
  • a conductive layer 20 made of indium oxide (In2O3) or tin oxide (SnO2) is deposited by sputtering corresponding to the anode of the display cell 2.
  • This layer 20 has a thickness of the order of 100 nm.
  • the anode 20 is then covered with a cathodoluminescent layer 22 by sputtering.
  • This layer 22 is made of zinc oxide and has a thickness of 1 ⁇ m.
  • the substrate 4 covered with the anode 20 and the cathodoluminescent material 22 is then presented above the grids 10.
  • a space of 30 to 50 ⁇ m is maintained between the cathodoluminescent material 22 and the grids 10 by means of glass spacers 27 randomly distributed.
  • the periphery of the anode 20 is hermetically welded to the lower part of the cell, by means of a fusible glass 29. The assembly obtained is then placed under vacuum.

Abstract

Procédé de fabrication d'un dispositif de visualisation par cathodoluminescence, excité par émission de champ.Method for manufacturing a cathodoluminescence display device, excited by field emission.

Ce procédé consiste à former des cathodes parallèles (8) sur un substrat en verre (6), déposer une couche en silice (12) sur les cathodes, puis une couche conductrice, réaliser une matrice de trous (16) dans la couche conductrice et la couche de silice, déposer sur la couche conductrice percée une quatrième couche (23) ne recouvrant pas les trous, puis déposer sur l'ensemble de la structure une couche en matériau émetteur d'électrons, éliminer la quatrième couche afin de mettre à nu les microémetteurs (18), former dans la couche conductrice des grilles (10) croisant les cathodes et disposer au-dessus des grilles une anode (20) recouverte d'une couche (22) cathodolumi­nescente.

Figure imgaf001
This process consists in forming parallel cathodes (8) on a glass substrate (6), depositing a silica layer (12) on the cathodes, then a conductive layer, making a matrix of holes (16) in the conductive layer and the silica layer, deposit a fourth layer (23) not covering the holes on the conductive layer pierced, then deposit a layer of electron-emitting material on the entire structure, remove the fourth layer in order to expose microemitters (18), form in the conductive layer of the grids (10) crossing the cathodes and have above the grids an anode (20) covered with a cathodoluminescent layer (22).
Figure imgaf001

Description

La présente invention a pour objet un procédé de fabrication d'un dispositif de visualisation par cathodoluminescence excitée par émission de champ ou émission foide. Elle s'applique notamment à la réali­sation d'afficheurs matriciels simples, permettant la visualisation d'images fixes, et à la réalisation d'écrans complexes multiplexés, permettant la visua­lisation d'images animées, du type images de télévision.The present invention relates to a method of manufacturing a display device by cathodoluminescence excited by field emission or light emission. It applies in particular to the production of simple matrix displays, allowing the visualization of fixed images, and to the production of complex multiplexed screens, allowing the visualization of animated images, of the television image type.

Un dispositif de visualisation par cathodo­luminescence excitée par émission de champ a été décrit dans la demande de brevet n° 84 11986 du 27 Juillet 1984, déposée au nom du demandeur. Sur la figure 1, on a représenté une vue en perspective éclatée du dispositif de visualisation décrit dans ce document.A display device by cathodoluminescence excited by field emission was described in patent application No. 84 11986 of July 27, 1984, filed in the name of the applicant. FIG. 1 shows an exploded perspective view of the display device described in this document.

Ce dispositif de visualisation comprend une cellule d'affichage 2, étanche et mise sous vide, com­portant deux parois en verre 4 et 6, situées en regard l'une de l'autre. La paroi inférieure 6 de la cellule 2 est équipée d'une première série de bandes conductrices 8, parallèles entre elles, jouant le rôle de cathodes et d'une seconde série de bandes conductrices 10, paral­lèles entre elles, jouant le rôle de grilles. Les bandes conductrices 10 sont orientées perpendiculairement aux bandes conductrices 8 et isolées des bandes conductrices 8 par une couche 12 isolante et continue, notamment en silice.This display device comprises a display cell 2, sealed and evacuated, comprising two glass walls 4 and 6, located opposite one another. The lower wall 6 of the cell 2 is equipped with a first series of conductive strips 8, mutually parallel, playing the role of cathodes and a second series of conductive strips 10, parallel to each other, playing the role of grids. The conductive strips 10 are oriented perpendicular to the conductive strips 8 and isolated from the conductive strips 8 by an insulating and continuous layer 12, in particular made of silica.

Les régions extrêmes 9 des cathodes 8 , non recouvertes d'isolant et n'interceptant pas les grilles 10, permettent la prise de contact électrique sur les cathodes.The extreme regions 9 of the cathodes 8, not covered with insulation and not intercepting the grids 10, allow electrical contact to be made on the cathodes.

Les bandes conductrices 8 et 10 représentent respectivement des colonnes et des lignes. A chaque croisement d'une ligne et d'une colonne correspond un point élémentaire d'affichage 14.The conductive strips 8 and 10 respectively represent columns and rows. Each crossing of a row and a column corresponds to an elementary display point 14.

Les bandes conductrices ou grilles 10 et la couche d'isolant 12 sont percées d'un grand nombre de trous 16 dans lesquels sont logés des microémetteurs ou microcanons à électrons. A chaque point élémentaire d'affichage 14 correspond une multitude de micro­émetteurs.The conductive strips or grids 10 and the insulating layer 12 are pierced with a large number of holes 16 in which are housed microemitters or electron microchannels. Each elementary display point 14 corresponds to a multitude of micro-transmitters.

Ces microémetteurs, comme représentés sur la figure 2, sont constitués chacun d'un cône métallique 18 émettant des électrons lorsqu'on leur applique un champ électrique convenable. Ces cônes métalliques 18 reposent par leur base directement sur les cathodes 8 et le sommet de ces cônes est sensiblement au niveau des bandes conductrices 10. Le diamètre de base des cônes et leur hauteur sont par exemple de l'ordre de 1 µm.These microemitters, as shown in FIG. 2, each consist of a metal cone 18 emitting electrons when a suitable electric field is applied to them. These metal cones 18 rest by their base directly on the cathodes 8 and the top of these cones is substantially at the level of the conductive strips 10. The base diameter of the cones and their height are for example of the order of 1 μm.

La paroi supérieure 4 de la cellule 2, comme représentée sur la figure 1, est pourvue d'une couche conductrice continue 20 jouant le rôle d'anode. Cette anode 20 est recouverte d'une couche 22 réalisée en un matériau émettant de la lumière lorsqu'il est soumis à un bombardement électronique provenant des microémetteurs 18.The upper wall 4 of the cell 2, as shown in FIG. 1, is provided with a continuous conductive layer 20 acting as an anode. This anode 20 is covered with a layer 22 made of a material emitting light when it is subjected to an electronic bombardment coming from the microemitters 18.

L'émission d'électrons par un microémetteur 18 peut être réalisée en polarisant simultanément la cathode 8 et les grilles 10 situées en regard, ainsi que l'anode 20. L'anode 20 peut notamment être portée à la masse, les grilles 10 sont, soit portées au potentiel de l'anode, soit polarisées négativement par rapport à celle-ci à l'aide d'une source de tension 24. Les cathodes 8 sont polarisées négativement par rapport à la grille à l'aide d'une source de tension 26. Les cathodes 8 et les grilles 10 peuvent être polarisées séquentiellement afin de faire apparaître une image point par point sur la cellule d'affichage 2. L'image est observée du côté de la paroi supérieure 4 de la cellule.The emission of electrons by a microemitter 18 can be achieved by simultaneously polarizing the cathode 8 and the grids 10 located opposite, as well as the anode 20. The anode 20 can in particular be brought to ground, the grids 10 are , either brought to the potential of the anode, or negatively polarized with respect to the latter using a voltage source 24. The cathodes 8 are negatively polarized with respect to the grid using a source of tension 26. The cathodes 8 and the grids 10 can be polarized sequentially in order to make appear a point by point image on the display cell 2. The image is observed on the side of the upper wall 4 of the cell.

Le nombre de microémetteurs 18 par point d'affichage 14, c'est-à-dire par croisement d'une cathode et d'une grille, est généralement élevé, ce qui permet d'avoir une caractéristique d'émission plus uniforme d'un point d'affichage à l'autre (effet de moyenne) ; ceci donne une certaine redondance des micro­émetteurs permettant de tolérer une certaine proportion de microémetteurs ne fonctionnant pas.The number of microemitters 18 per display point 14, that is to say by crossing a cathode and a grid, is generally high, which makes it possible to have a more uniform emission characteristic of one display point to another (average effect); this gives a certain redundancy of the microemitters making it possible to tolerate a certain proportion of microemitters not functioning.

En pratique, le nombre de microémetteurs est compris entre 10⁴ et 10⁵ émetteurs par mm². En consé­quence, une fabrication traditionnelle, nécessitant un positionnement précis des microémetteurs en regard des cathodes et des grilles, serait complexe et augmen­terait le coût du dispositif de visualisation.In practice, the number of microemitters is between 10⁴ and 10⁵ transmitters per mm². Consequently, traditional manufacturing, requiring precise positioning of the microemitters facing the cathodes and grids, would be complex and would increase the cost of the display device.

La présente invention a justement pour objet un procédé relativement simple et peu onéreux permettant de fabriquer un dispositif de visualisation fonctionnant par cathodoluminescence excitée par effet de champ tel que décrit précédemment.The object of the present invention is precisely a relatively simple and inexpensive method for manufacturing a display device operating by cathodoluminescence excited by field effect as described above.

De façon plus précise, l'invention a pour objet un procédé de fabrication d'un dispositif de visualisation par cathodoluminescence se caractérisant en ce qu'il comprend les étapes successives suivantes :
    - dépôt d'une première couche conductrice sur un substrat isolant,
    - gravure de la première couche pour former des premières bandes conductrices parallèles jouant le rôle de cathodes,
    - dépôt d'une seconde couche isolante sur la structure obtenue,
    - dépôt d'une troisième couche conductrice sur la seconde couche,
    - ouvertures de trous débouchant dans les troisième et seconde couches, ces trous étant répartis sur l'en­semble de la surface des troisième et seconde couches.
    - dépôt sur la troisième couche gravée d'une quatrième couche ne recouvrant pas les trous,
    - dépôt sur l'ensemble de la structure obtenu d'une cinquième couche d'un matériau émetteur d'électrons,
    - élimination de la quatrième couche entraînant l'élimination du matériau émetteur d'électrons sur­montant ladite quatrième couche et le maintien dudit matériau émetteur dans les trous,
    - gravure des troisième et seconde couches pour mettre à nu au moins une des extrémités des premières bandes conductrices,
    - gravure de la troisième couche pour former des secondes bandes conductrices parallèles jouant le rôle de grilles, les première et seconde bandes étant croisées, et
    - réalisation d'une anode et d'un matériau cathodoluminescent en regard des secondes bandes conductrices.
More specifically, the subject of the invention is a method for manufacturing a cathodoluminescence display device, characterized in that it comprises the following successive steps:
- deposit of a first conductive layer on an insulating substrate,
- etching of the first layer to form first parallel conductive strips playing the role of cathodes,
- deposit of a second insulating layer on the structure obtained,
- deposit of a third conductive layer on the second layer,
- Hole openings opening into the third and second layers, these holes being distributed over the entire surface of the third and second layers.
- deposit on the third etched layer of a fourth layer not covering the holes,
- deposit on the entire structure obtained with a fifth layer of an electron emitting material,
elimination of the fourth layer resulting in the elimination of the electron-emitting material surmounting said fourth layer and the retention of said emitter material in the holes,
- etching of the third and second layers to expose at least one of the ends of the first conductive strips,
- etching of the third layer to form second parallel conductive strips acting as grids, the first and second strips being crossed, and
- Production of an anode and a cathodoluminescent material opposite the second conductive strips.

Par "trous répartis sur l'ensemble de la surfa­ce", il faut comprendre des trous réalisés en regard des cathodes ainsi qu'en regard des espaces intercathodes.By “holes distributed over the entire surface”, it is necessary to understand holes made opposite the cathodes as well as opposite the intercathode spaces.

Ce procédé présente l'avantage d'une mise en oeuvre simple. En particulier, il permet la réalisation de microémetteurs d'électrons dans les trous formés dans les seconde et troisième couches, répartis sur l'ensemble du dispositif de visualisation, sans nécessiter un positionne­ment précis vis-à-vis des cathodes et des grilles. Seuls les microémetteurs situés à une intersection d'une cathode et d'une grille sont effectivement actifs.This method has the advantage of simple implementation. In particular, it allows the production of electron microemitters in the holes formed in the second and third layers, distributed over the entire display device, without requiring precise positioning with respect to the cathodes and grids. Only microemitters located at an intersection of a cathode and a grid are effectively active.

Afin d'améliorer l'adhérence des conducteurs cathodiques sur le substrat isolant, on intercale avantageusement entre le substrat et la première couche conductrice, dans laquelle sont réalisées les cathodes, une couche intermédiaire isolante.To improve the grip of the conductors cathode on the insulating substrate, there is advantageously interposed between the substrate and the first conductive layer, in which the cathodes are made, an insulating intermediate layer.

Afin de minimiser les résistances d'accès aux microémetteurs, la première couche conductrice doit être réalisée en un matériau bon conducteur de l'électricité. Par ailleurs, cette première couche conductrice doit présenter une bonne compatibilité avec la seconde couche isolante et en particulier une bonne adhérence et doit être inerte vis-à-vis de la méthode de gravure de cette seconde couche isolante. De façon avantageuse, la première couche conductrice est réalisée en un matériau choisi parmi l'oxyde d'indium, l'oxyde d'étain et l'aluminium.In order to minimize the resistance to access to the microemitters, the first conductive layer must be made of a material that conducts electricity well. Furthermore, this first conductive layer must have good compatibility with the second insulating layer and in particular good adhesion and must be inert with respect to the etching method of this second insulating layer. Advantageously, the first conductive layer is made of a material chosen from indium oxide, tin oxide and aluminum.

L'oxyde d'indium et l'oxyde d'étain sont de préférence utilisés pour la réalisation d'écrans de petites dimensions et de faible complexité tels que les écrans servant à la visualisation d'images fixes. En revanche, l'aluminium est utilisé de préférence lors de la réalisation d'écrans complexes multiplexés et de grandes dimensions servant notamment à la visua­lisation d'images animées du type images de télévision.Indium oxide and tin oxide are preferably used for producing screens of small dimensions and of low complexity such as screens used for viewing still images. On the other hand, aluminum is preferably used when producing complex multiplexed screens of large dimensions, used in particular for viewing animated images of the television image type.

Afin de minimiser les capacités entre les cathodes et les grilles, et donc de minimiser le temps de réponse des microémetteurs, la seconde couche isolante doit présenter une constante diélectrique aussi faible que possible. A cet effet, cette seconde couche isolante est réalisée de préférence en oxyde de silicium (SiO₂) ou silice.In order to minimize the capacitances between the cathodes and the grids, and therefore to minimize the response time of the microemitters, the second insulating layer must have as low a dielectric constant as possible. To this end, this second insulating layer is preferably made of silicon oxide (SiO₂) or silica.

Cette couche d'oxyde de silicium peut être déposée par la technique de dépôt chimique en phase vapeur (CVD), par pulvérisation cathodique ou par évaporation sous vide. Toutefois, on utilise de préférence la technique de dépôt chimique en phase vapeur, technique permettant d'obtenir une couche d'oxyde de qualité homogène et d'épaisseur constante.This silicon oxide layer can be deposited by the chemical vapor deposition (CVD) technique, by sputtering or by vacuum evaporation. However, the chemical phase deposition technique is preferably used. steam, a technique allowing an oxide layer of uniform quality and constant thickness to be obtained.

L'ouverture des trous dans la couche isolante notamment en oxyde de silicium peut être réalisée par des techniques de gravure sèche ou humide bien connues de l'homme du métier.The opening of the holes in the insulating layer, in particular of silicon oxide, can be carried out by dry or wet etching techniques well known to those skilled in the art.

La troisième couche conductrice dans laquelle sont formées les grilles doit être réalisée en un matériau présentant une bonne adhérence sur la seconde couche isolante, par exemple en oxyde de silicium, ainsi qu'une bonne résistance chimique aux différents produits utilisés pour réaliser les microémetteurs. A cet effet, la troisième couche conductrice est réalisée de préférence en un métal choisi parmi le niobium, le tantale et l'aluminium.The third conductive layer in which the grids are formed must be made of a material having good adhesion to the second insulating layer, for example made of silicon oxide, as well as good chemical resistance to the various products used to make the microemitters. To this end, the third conductive layer is preferably made of a metal chosen from niobium, tantalum and aluminum.

Afin d'obtenir de façon reproductible des trous dans cette troisième couche conductrice, d'une dimension voisine du micron, la formation de ces trous est réalisée avantageusement par une technique de gravure sèche anisotrope.In order to reproducibly obtain holes in this third conductive layer, of a size close to one micron, the formation of these holes is advantageously carried out by an anisotropic dry etching technique.

Afin d'assurer une bonne définition des microémetteurs, la quatrième couche jouant le rôle de masque pour le dépôt de la cinquième couche est réalisée en métal et en particulier en nickel. Le dépôt de cette quatrième couche de nickel est réalisé avantageusement par évaporation sous vide sous une incidence rasante afin de ne pas recouvrir les trous pratiqués dans les seconde et troisième couches. Par ailleurs, l'élimination de cette couche métallique est réalisée avantageusement par dissolution électro­chimique.In order to ensure a good definition of the microemitters, the fourth layer playing the role of mask for the deposition of the fifth layer is made of metal and in particular nickel. The deposition of this fourth layer of nickel is advantageously carried out by evaporation under vacuum at a grazing incidence so as not to cover the holes made in the second and third layers. Furthermore, the elimination of this metallic layer is advantageously carried out by electrochemical dissolution.

Le choix du matériau de la cinquième couche est essentiellement dicté par ces propriétés vis-à-vis de l'émission par effet de champ ou émission froide ainsi que par sa résistance chimique aux techniques de dépôt et d'élimination de la quatrième couche servant à la réalisation des microémetteurs. En particulier, le matériau émetteur d'électrons peut être le hafnium, le niobium, le molybdène, le zirconium, l'hexaborure de lanthane (LaB₆), le carbure de titane, le carbure de tantale, le carbure de hafnium, le carbure de zirconium, etc. On choisit par exemple le molybdène.The choice of the material of the fifth layer is essentially dictated by these properties with respect to the emission by field effect or cold emission as well as its chemical resistance to the techniques of deposition and elimination of the fourth layer used for the production of microemitters. In particular, the electron-emitting material can be hafnium, niobium, molybdenum, zirconium, lanthanum hexaboride (LaB₆), titanium carbide, tantalum carbide, hafnium carbide, carbide of zirconium, etc. We choose for example molybdenum.

D'autres caractéristiques et avantages de l'invention ressortiront mieux de la description qui va suivre donnée à titre illustratif et non limitatif.Other characteristics and advantages of the invention will emerge more clearly from the description which follows, given by way of illustration and without limitation.

La description se réfère aux figures annexées dans lesquelles :

  • - la figure 1, déjà décrite, représente schématiquement, en perspective et vue éclatée, un dispositif de visualisation par cathodoluminescence,
  • - la figure 2 déjà décrite, représente une partie agrandie de la figure 1, montrant un micro­émetteur,
  • - les figures 3 à 12 illustrent les différentes étapes du procédé selon l'invention, les figures 3 à 6 et 10 à 12 sont des vues générales et les figures 7 à 9 des vues agrandies montrant un microémetteur.
The description refers to the appended figures in which:
  • FIG. 1, already described, schematically represents, in perspective and exploded view, a display device by cathodoluminescence,
  • FIG. 2, already described, represents an enlarged part of FIG. 1, showing a microemitter,
  • - Figures 3 to 12 illustrate the different steps of the method according to the invention, Figures 3 to 6 and 10 to 12 are general views and Figures 7 to 9 enlarged views showing a micro-transmitter.

En référence à la figure 3, on réalise tout d'abord le nettoyage du substrat inférieur 6 afin d'obtenir une bonne planéité et un bon état de surface pour permettre une réalisation optimisée des micro­émetteurs. Le substrat 6 peut être une plaque de verre ou de céramique. Sur le substrat 6, on dépose ensuite par pulvérisation cathodique une couche d'oxyde de silicium (SiO₂) 7 de 100 nm environ. On recouvre ensuite la couche isolante 7 d'une couche conductrice 8a en oxyde d'indium dans laquelle on va réaliser les cathodes 8. Cette couche d'oxyde d'indium présente une épaisseur de 160 nm et peut être déposée par pul­vérisation cathodique.With reference to FIG. 3, the cleaning of the lower substrate 6 is first of all carried out in order to obtain good flatness and a good surface condition to allow optimized production of the microemitters. The substrate 6 can be a glass or ceramic plate. On the substrate 6, an oxide layer is then deposited by sputtering silicon (SiO₂) 7 of about 100 nm. The insulating layer 7 is then covered with a conductive layer 8a of indium oxide in which the cathodes 8 will be produced. This layer of indium oxide has a thickness of 160 nm and can be deposited by sputtering.

On forme ensuite par les procédés classiques de photolithographie (dépôt, irradiation, développement) un masque de résine positive 11 représentant l'image des cathodes à réaliser. A travers ce masque 11, on grave la couche d'oxyde d'indium 8a pour former, comme représenté sur la figure 4, des cathodes 8 de 0,7 mm de large au pas P de 1 mm. La gravure de la couche 8a est réalisée par attaque chimique avec de l'acide orthophosphorique porté à 110°C. La gravure de la couche d'oxyde d'indium 8a est réalisée sur toute l'épaisseur de la couche. On élimine ensuite le masque de résine par une dissolution chimique.Then formed by conventional photolithography processes (deposition, irradiation, development) a positive resin mask 11 representing the image of the cathodes to be produced. Through this mask 11, the layer of indium oxide 8a is etched to form, as shown in FIG. 4, cathodes 8 0.7 mm wide at a pitch P of 1 mm. The etching of the layer 8a is carried out by chemical attack with orthophosphoric acid brought to 110 ° C. The etching of the indium oxide layer 8a is carried out over the entire thickness of the layer. The resin mask is then removed by chemical dissolution.

Sur la structure obtenue, c'est-à-dire sur les cathodes 8 et les régions mises à nu de la couche isolante 7 , on dépose ensuite, comme représenté sur la figure 5, la couche d'oxyde de silicium 12 par la technique de dépôt chimique en phase vapeur à partir des gaz de silane, de phosphine et d'oxygène. Cette couche d'oxyde 12 présente une épaisseur de 1 µm. La couche d'oxyde 12 est ensuite totalement recouverte d'une couche conductrice 10a dans laquelle seront réalisées ultérieurement les grilles. Cette couche 10a est déposée par évaporation sous vide. Elle présente une épaisseur de 0,4 µm et est réalisée en niobium.On the structure obtained, that is to say on the cathodes 8 and the exposed regions of the insulating layer 7, the silicon oxide layer 12 is then deposited, as shown in FIG. 5, by the technique chemical vapor deposition from silane, phosphine and oxygen gases. This oxide layer 12 has a thickness of 1 μm. The oxide layer 12 is then completely covered with a conductive layer 10a in which the grids will be produced subsequently. This layer 10a is deposited by vacuum evaporation. It has a thickness of 0.4 µm and is made of niobium.

On forme ensuite sur la couche conductrice 10a un masque de résine 13 par les procédés classiques de photolithographie (dépôt de résine, irradiation, déve­loppement). Ce masque de résine 13 représente l'image en positif des trous à réaliser dans la couche de grille 10a et la couche isolante 12.Then formed on the conductive layer 10a a resin mask 13 by conventional photolithography methods (resin deposition, irradiation, development). This resin mask 13 represents the image positive holes to be made in the grid layer 10a and the insulating layer 12.

Selon l'invention, aucun positionnement précis de ces trous n'est nécessaire compte tenu de leur nombre élevé. Aussi réalise-t-on un masque de résine 13 com­portant des ouvertures 15 réparties sur toute la surface du masque, et en particulier dans des régions 17 situées en dehors des zones 14 réservées à l'affichage (points élémentaires d'affichage définis au croisement des cathodes et des grilles).Ceci facilite la réalisation du photomasque 19 servant à l'insolation 21 de la résine 13 ainsi que son positionnement au-dessus de la structure.According to the invention, no precise positioning of these holes is necessary given their high number. A resin mask 13 is therefore produced, comprising openings 15 distributed over the entire surface of the mask, and in particular in regions 17 situated outside the zones 14 reserved for display (elementary display points defined at the intersection). cathodes and grids). This facilitates the production of the photomask 19 used for the exposure 21 of the resin 13 as well as its positioning above the structure.

On réalise ensuite, à travers le masque de résine 13 sur la figure 6, les trous 16 dans la couche de matériau de grille 10a et la couche d'isolant 12. Ces trous 16 traversent de part en part les couches 10a et 12. Les gravures des couches 10a et 12 sont réalisées successivement. La gravure de la couche 10a est réalisée par un procédé de gravure ionique réactive (GIR) en utilisant un plasma d'hexafluorure de soufre (SF₆). Les trous 16 pratiqués dans la couche conductrice 10a présentent un diamètre égal à 1,3µm à ± 0,1 µm. La réalisation des trous dans la couche de silice 12 est réalisée par exemple par attaque chimique en immergeant la structure dans une solution d'attaque d'acide fluo­rhydrique et de fluorure d'ammonium. Ensuite, on élimine chimiquement le masque de résine 13. Le profil des trous 16 ainsi réalisés est illustré sur la figure 7.Next, through the resin mask 13 in FIG. 6, the holes 16 are made in the layer of grid material 10a and the insulating layer 12. These holes 16 pass right through the layers 10a and 12. The etchings of layers 10a and 12 are carried out successively. The etching of the layer 10a is carried out by a reactive ion etching (GIR) process using a sulfur hexafluoride plasma (SF₆). The holes 16 made in the conductive layer 10a have a diameter equal to 1.3 μm to ± 0.1 μm. The holes in the silica layer 12 are produced, for example by chemical attack by immersing the structure in an attack solution of hydrofluoric acid and ammonium fluoride. Then, the resin mask 13 is chemically removed. The profile of the holes 16 thus produced is illustrated in FIG. 7.

On va maintenant décrire le procédé de fabri­cation d'un microémetteur. Sur la couche 10a, percée des trous 16, on dépose tout d'abord une couche de nickel 23 par évaporation sous vide sous une incidence rasante par rapport à la surface de la structure ; l'angle α formé entre l'axe d'évaporation et la surface de la couche 10a est voisin de 15°. La couche de nickel 23 présente une épaisseur de 150 nm. Cette technique de dépôt permet de ne pas boucher les trous 16.We will now describe the process for manufacturing a microemitter. On the layer 10a, pierced with the holes 16, a nickel layer 23 is first deposited by evaporation under vacuum at a grazing incidence relative to the surface of the structure; the angle α formed between the axis of evaporation and the surface of layer 10a is close to 15 °. The nickel layer 23 has a thickness of 150 nm. This deposition technique makes it possible not to plug the holes 16.

On réalise ensuite, comme représenté sur la figure 8, le dépôt d'une couche en molybdène 18a, sur l'ensemble de la structure. Cette couche 18a présente une épaisseur de 1,8 µm. Elle est déposée sous incidence normale par rapport à la surface de la structure ; cette technique de dépôt permet d'obtenir des cônes 18 en molybdène logés dans les trous 16 ayant une hauteur de 1,2 à 1,5 µm. On réalise ensuite la dissolution sélective de la couche de nickel 23 par un procédé électrochimique de façon à dégager, comme représenté sur la figure 9, la couche de niobium 10a perforée et à faire apparaître les micropointes 18 émettrices d'électrons.Next, as shown in FIG. 8, a layer of molybdenum 18a is deposited on the entire structure. This layer 18a has a thickness of 1.8 μm. It is deposited under normal incidence relative to the surface of the structure; this deposition technique makes it possible to obtain cones 18 of molybdenum housed in the holes 16 having a height of 1.2 to 1.5 μm. Selective dissolution of the nickel layer 23 is then carried out by an electrochemical process so as to release, as shown in FIG. 9, the perforated niobium layer 10a and to reveal the microtips 18 emitting electrons.

On effectue ensuite comme représenté sur la figure 10 une gravure de la couche 10a et une gravure de la couche d'isolant 12 afin de dégager les extrémités 9 des cathodes 8 pour permettre ultérieurement la prise de contact électrique sur ces cathodes. Cette gravure est réalisée à travers un masque de résine (non repré­senté), obtenu selon les procédés classiques de photo­lithographie, la résine formant le masque doit présenter une viscosité suffisamment élevée afin de recouvrir tous les trous 16 formés dans la couche de niobium 10a et la couche d'oxyde de silicium 12. La gravure de la couche de niobium 10a est réalisée comme précédemment par un procédé de gravure ionique réactive et la gravure de la couche de silice 12 par attaque chimique.Then, as shown in FIG. 10, an etching of the layer 10a and an etching of the insulating layer 12 is carried out in order to free the ends 9 of the cathodes 8 so as to subsequently allow electrical contact to be made on these cathodes. This etching is carried out through a resin mask (not shown), obtained according to conventional photolithography methods, the resin forming the mask must have a sufficiently high viscosity in order to cover all the holes 16 formed in the niobium layer 10a and the silicon oxide layer 12. The etching of the niobium layer 10a is carried out as previously by a reactive ion etching process and the etching of the silica layer 12 by chemical attack.

On réalise ensuite un masque de résine 25 sur la structure obtenue représentant l'image des grilles 10 à réaliser dans la couche de niobium 10a. Ce masque de résine est réalisé selon les procédés classiques de photolithographie. On effectue ensuite, à travers le masque 25, une gravure sèche du type ionique réactive avec du SF₆ de façon à dégager les bandes conductrices 10 perpendiculaires aux bandes conductrices 8. On élimine ensuite le masque de résine 25 par attaque chimique. La structure obtenue après élimi­nation du masque 25 est celle représentée sur la figure 11.A resin mask 25 is then produced on the structure obtained representing the image of the grids 10 to be produced in the niobium layer 10a. This resin mask is produced according to the processes photolithography classics. Then carried out, through the mask 25, a dry etching of the reactive ionic type with SF₆ so as to release the conductive strips 10 perpendicular to the conductive strips 8. The resin mask 25 is then removed by chemical attack. The structure obtained after elimination of the mask 25 is that shown in FIG. 11.

D'autre part, on réalise sur un substrat en verre 4, comme illustré sur la figure 12, le dépôt d'une couche conductrice 20 en oxyde d'indium (In₂O₃) ou oxyde d'étain (SnO₂) par pulvérisation cathodique correspondant à l'anode de la cellule de visualisation 2. Cette couche 20 présente une épaisseur de l'ordre de 100 nm. On recouvre ensuite l'anode 20 d'une couche catho­doluminescente 22 par pulvérisation cathodique. Cette couche 22 est réalisée en oxyde de zinc et présente une épaisseur de 1 µm.On the other hand, on a glass substrate 4, as illustrated in FIG. 12, a conductive layer 20 made of indium oxide (In₂O₃) or tin oxide (SnO₂) is deposited by sputtering corresponding to the anode of the display cell 2. This layer 20 has a thickness of the order of 100 nm. The anode 20 is then covered with a cathodoluminescent layer 22 by sputtering. This layer 22 is made of zinc oxide and has a thickness of 1 μm.

Le substrat 4 recouvert de l'anode 20 et du matériau cathodoluminescent 22 est ensuite présenté au-dessus des grilles 10. Un espace de 30 à 50 µm est maintenu entre le matériau cathodoluminescent 22 et les grilles 10 au moyen d'espaceurs en verre 27 répartis au hasard. La périphérie de l'anode 20 est soudée hermétiquement sur la partie basse de la cellule, au moyen d'un verre fusible 29. L'ensemble obtenu est ensuite mis sous vide.The substrate 4 covered with the anode 20 and the cathodoluminescent material 22 is then presented above the grids 10. A space of 30 to 50 μm is maintained between the cathodoluminescent material 22 and the grids 10 by means of glass spacers 27 randomly distributed. The periphery of the anode 20 is hermetically welded to the lower part of the cell, by means of a fusible glass 29. The assembly obtained is then placed under vacuum.

La description donnée précédemment n'a bien entendu été donnée qu'à titre indicatif, toute modi­fication, sans pour autant sortir du cadre de l'inven­tion, pouvant être envisagée. En particulier, l'épaisseur et la nature des couches peuvent être modifiées. Par ailleurs, certaines gravures et techniques de dépôt peuvent être changées.The description given above has of course been given for information only, any modification, without departing from the scope of the invention, which may be envisaged. In particular, the thickness and the nature of the layers can be modified. In addition, some engravings and deposition techniques can be changed.

Les différentes étapes du procédé de l'in­vention ont l'avantage d'être simples à mettre en oeuvre et sont bien maîtrisées par l'homme du métier, ce qui permet une bonne reproductibilité et homogénéité dans l'obtention des dispositifs de visualisation. Par ailleurs, le fait de réaliser les émetteurs sur l'en­semble de la cellule sans positionnement précis vis-à-vis des cathodes et des grilles, rend particulièrement aisée la fabrication du dispositif de visualisation.The various stages of the process of the invention have the advantage of being simple to implement and are well mastered by those skilled in the art, which allows good reproducibility and homogeneity in obtaining display devices. Furthermore, the fact of producing the transmitters on the whole of the cell without precise positioning with respect to the cathodes and the grids, makes the manufacture of the display device particularly easy.

Claims (11)

1. Procédé de fabrication d'un dispositif de visualisation par cathodoluminescence, caractérisé en ce qu'il comprend les étapes successives suivantes :
    - dépôt d'une première couche conductrice (8a) sur un substrat isolant (6),
    - gravure de la première couche (8a) pour former des premières bandes conductrices parallèles (8) jouant le rôle de cathodes,
    - dépôt d'une seconde couche isolante (12) sur la structure obtenue,
    - dépôt d'une troisième couche conductrice (10a) sur la seconde couche (12),
    - ouvertures de trous (16) débouchant dans les troisième (10a) et seconde (12) couches, ces trous (16) étant répartis sur l'ensemble de la surface des troisième et seconde couches,
    - dépôt sur la troisième couche gravée (10a) d'une quatrième couche (23) ne recouvrant pas les trous,
    - dépôt sur l'ensemble de la structure obtenu d'une cinquième couche (18a) d'un matériau émetteur d'électrons,
    - élimination de la quatrième couche (23) entraînant l'élimination du matériau émetteur d'électrons surmontant ladite quatrième couche et le maintien dudit matériau émetteur dans les trous,
    - gravure des troisième (10a) et seconde couches (12) pour mettre à nu une au moins des extré­mités (9) des premières bandes conductrices (8),
    - gravure de la troisième couche (10a) pour former des secondes bandes conductrices parallèles jouant le rôle de grilles (10), les première et seconde bandes étant croisées, et
    - réalisation d'une anode (20) et d'un matériau cathodoluminescent (22) en regard des secondes bandes conductrices (10).
1. Method for manufacturing a cathodoluminescence display device, characterized in that it comprises the following successive steps:
- depositing a first conductive layer (8a) on an insulating substrate (6),
- etching the first layer (8a) to form first parallel conductive strips (8) playing the role of cathodes,
- deposition of a second insulating layer (12) on the structure obtained,
- deposit of a third conductive layer (10a) on the second layer (12),
- hole openings (16) opening into the third (10a) and second (12) layers, these holes (16) being distributed over the entire surface of the third and second layers,
- deposition on the third etched layer (10a) of a fourth layer (23) not covering the holes,
- deposition on the entire structure obtained of a fifth layer (18a) of an electron-emitting material,
- elimination of the fourth layer (23) resulting in the elimination of the electron-emitting material surmounting said fourth layer and the retention of said emitting material in the holes,
- etching of the third (10a) and second layers (12) to expose at least one of the ends (9) of the first conductive strips (8),
- etching of the third layer (10a) to form second parallel conductive strips playing the role of grids (10), the first and second strips being crossed, and
- Production of an anode (20) and of a cathodoluminescent material (22) opposite the second conductive strips (10).
2. Procédé de fabrication selon la reven­dication 1, caractérisé en ce que l'on intercale entre le substrat (6) et la première couche (18a) une couche intermédiaire isolante (7).2. Manufacturing method according to claim 1, characterized in that one inserts between the substrate (6) and the first layer (18a) an insulating intermediate layer (7). 3. Procédé de fabrication selon la reven­dication 1 ou 2, caractérisé en ce que la première couche (18a) est réalisée en un matériau choisi parmi l'oxyde d'indium, l'oxyde d'étain et l'aluminium.3. The manufacturing method according to claim 1 or 2, characterized in that the first layer (18a) is made of a material chosen from indium oxide, tin oxide and aluminum. 4. Procédé de fabrication selon l'une quelconque des revendications 1 à 3, caractérisé en ce que la seconde couche (12) est de l'oxyde de silicium (SiO₂).4. Manufacturing process according to any one of claims 1 to 3, characterized in that the second layer (12) is silicon oxide (SiO₂). 5. Procédé de fabrication selon l'une quelconque des revendications 1 à 4, caractérisé en ce que la seconde couche (12) est déposée par la technique de dépôt chimique en phase vapeur.5. Manufacturing method according to any one of claims 1 to 4, characterized in that the second layer (12) is deposited by the chemical vapor deposition technique. 6. Procédé de fabrication selon l'une quelconque des revendications 1 à 5, caractérisé en ce que la troisième couche (10a) est réalisée en un métal choisi parmi le niobium, le tantale et l'alu­minium.6. Manufacturing method according to any one of claims 1 to 5, characterized in that the third layer (10a) is made of a metal chosen from niobium, tantalum and aluminum. 7. Procédé de fabrication selon l'une quelconque des revendications 1 à 6, caractérisé en ce que l'on forme les trous (16) dans la troisième (10a) couche par une technique de gravure sèche anisotrope.7. The manufacturing method according to any one of claims 1 to 6, characterized in that the holes (16) are formed in the third (10a) layer by an anisotropic dry etching technique. 8. Procédé de fabrication selon l'une quelconque des revendications 1 à 7, caractérisé en ce que la quatrième couche (23) est réalisée en nickel et en ce que l'élimination de cette quatrième couche (23) est réalisée par dissolution électro­chimique.8. Manufacturing process according to any one of claims 1 to 7, characterized in that the fourth layer (23) is made of nickel and in that the elimination of this fourth layer (23) is carried out by electrochemical dissolution. 9. Procédé de fabrication selon l'une quelconque des revendications 1 à 8, caractérisé en ce que la quatrième couche (23) est déposée par eva­poration sous vide sous une incidence (α) rasante par rapport à la surface de la structure.9. Manufacturing method according to any one of claims 1 to 8, characterized in that the fourth layer (23) is deposited by evaporation under vacuum at a grazing incidence (α) relative to the surface of the structure. 10. Procédé de fabrication selon l'une quelconque des revendications 1 à 9, caractérisé en ce que la cinquième couche (18a) est obtenue par éva­poration sous vide de molybdène.10. The manufacturing method according to any one of claims 1 to 9, characterized in that the fifth layer (18a) is obtained by evaporation of molybdenum under vacuum. 11. Procédé de fabrication selon l'une quelconque des revendications 1 à 10, caractérisé en ce que l'anode (20) est formée d'une couche continue conductrice, recouverte d'une couche continue en matériau cathodoluminescent (22), l'anode (20) étant déposée sur un support transparent isolant (4).11. The manufacturing method according to any one of claims 1 to 10, characterized in that the anode (20) is formed of a continuous conductive layer, covered with a continuous layer of cathodoluminescent material (22), the anode (20) being deposited on a transparent insulating support (4).
EP87400140A 1986-01-24 1987-01-21 Method of manufacturing an imaging device using field emission cathodoluminescence Expired - Lifetime EP0234989B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8601024 1986-01-24
FR8601024A FR2593953B1 (en) 1986-01-24 1986-01-24 METHOD FOR MANUFACTURING A DEVICE FOR VIEWING BY CATHODOLUMINESCENCE EXCITED BY FIELD EMISSION

Publications (2)

Publication Number Publication Date
EP0234989A1 true EP0234989A1 (en) 1987-09-02
EP0234989B1 EP0234989B1 (en) 1990-09-05

Family

ID=9331463

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87400140A Expired - Lifetime EP0234989B1 (en) 1986-01-24 1987-01-21 Method of manufacturing an imaging device using field emission cathodoluminescence

Country Status (5)

Country Link
US (1) US4857161A (en)
EP (1) EP0234989B1 (en)
JP (1) JPH07111869B2 (en)
DE (1) DE3764668D1 (en)
FR (1) FR2593953B1 (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2209432A (en) * 1987-09-04 1989-05-10 Gen Electric Co Plc Field emission devices
FR2623013A1 (en) * 1987-11-06 1989-05-12 Commissariat Energie Atomique ELECTRO SOURCE WITH EMISSIVE MICROPOINT CATHODES AND FIELD EMISSION-INDUCED CATHODOLUMINESCENCE VISUALIZATION DEVICE USING THE SOURCE
EP0350378A1 (en) * 1988-07-08 1990-01-10 Thomson-Csf Electronic micro component self-sealed under vacuum, especially a diode or triode, and its manufacturing process
FR2637123A1 (en) * 1988-09-26 1990-03-30 Commissariat Energie Atomique Flat vidicon with matrix reading by microtip cathode
FR2647580A1 (en) * 1989-05-24 1990-11-30 Clerc Jean Electroluminescent display device using guided electrons and its method of control
EP0404022A2 (en) * 1989-06-19 1990-12-27 Matsushita Electric Industrial Co., Ltd. Flat configuration image display apparatus and manufacturing method thereof
EP0479425A1 (en) * 1990-09-05 1992-04-08 Raytheon Company Field emission apparatus
EP0518612A1 (en) * 1991-06-10 1992-12-16 Motorola, Inc. Display for electronic devices
EP0520780A1 (en) * 1991-06-27 1992-12-30 Raytheon Company Fabrication method for field emission arrays
WO1993004496A1 (en) * 1991-08-16 1993-03-04 Amoco Corporation Recessed gate field emission device
EP0572777A1 (en) * 1992-06-01 1993-12-08 Motorola, Inc. Cathodoluminescent display apparatus and method for realization
EP0585081A1 (en) * 1992-08-25 1994-03-02 Sharp Kabushiki Kaisha Electron emitting device
EP0668604A1 (en) * 1994-02-22 1995-08-23 Pixel International S.A. Method of manufacturing a cathode of a microtip fluorescent display and its product
FR2718269A1 (en) * 1994-03-31 1995-10-06 Pixel Int Sa Method to improve conductivity of row conductors of flat micropoint screens
FR2719155A1 (en) * 1994-04-25 1995-10-27 Commissariat Energie Atomique Micro-tip field emitter cathode for flat screen
EP0689222A2 (en) * 1994-04-25 1995-12-27 Commissariat A L'energie Atomique Method of manufacturing micropoint electron source and electron source obtained thereby
EP0707237A1 (en) 1994-10-10 1996-04-17 Commissariat A L'energie Atomique Process for the fabrication of holes in photoresist layers, use for the fabrication of electron sources comprising emissive cathodes with microtips and flat display screens
EP0708473A1 (en) * 1994-10-19 1996-04-24 Commissariat A L'energie Atomique Manufacturing method for micropoint electron source
FR2726688A1 (en) * 1994-11-08 1996-05-10 Commissariat Energie Atomique FIELD EFFECT ELECTRON SOURCE AND PROCESS FOR PRODUCING SOURCE, APPLICATION TO CATHODOLUMINESCENCE VISUALIZATION DEVICES
FR2726689A1 (en) * 1994-11-08 1996-05-10 Commissariat Energie Atomique FIELD EFFECT ELECTRON SOURCE AND PROCESS FOR PRODUCING SOURCE, APPLICATION TO CATHODOLUMINESCENCE VISUALIZATION DEVICES
WO1997033297A1 (en) * 1996-03-05 1997-09-12 Candescent Technologies Corporation Electrochemical removal of material, particularly excess emitter material in electron-emitting device
EP0851451A1 (en) * 1996-12-30 1998-07-01 Commissariat A L'energie Atomique Process for self-aligning, usable in microelectronics and the use for the production of a focussing grid for a microtip flat display panel
US5893967A (en) * 1996-03-05 1999-04-13 Candescent Technologies Corporation Impedance-assisted electrochemical removal of material, particularly excess emitter material in electron-emitting device
US6007695A (en) * 1997-09-30 1999-12-28 Candescent Technologies Corporation Selective removal of material using self-initiated galvanic activity in electrolytic bath
US6027632A (en) * 1996-03-05 2000-02-22 Candescent Technologies Corporation Multi-step removal of excess emitter material in fabricating electron-emitting device
US6120674A (en) * 1997-06-30 2000-09-19 Candescent Technologies Corporation Electrochemical removal of material in electron-emitting device

Families Citing this family (130)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8908871D0 (en) * 1989-04-19 1989-06-07 Hugle William B Manufacture of flat panel displays
US5007873A (en) * 1990-02-09 1991-04-16 Motorola, Inc. Non-planar field emission device having an emitter formed with a substantially normal vapor deposition process
US5047830A (en) * 1990-05-22 1991-09-10 Amp Incorporated Field emitter array integrated circuit chip interconnection
FR2663462B1 (en) * 1990-06-13 1992-09-11 Commissariat Energie Atomique SOURCE OF ELECTRON WITH EMISSIVE MICROPOINT CATHODES.
JP2656851B2 (en) * 1990-09-27 1997-09-24 工業技術院長 Image display device
US5332627A (en) * 1990-10-30 1994-07-26 Sony Corporation Field emission type emitter and a method of manufacturing thereof
GB9027618D0 (en) * 1990-12-20 1991-02-13 Smiths Industries Plc Displays
US5245248A (en) * 1991-04-09 1993-09-14 Northeastern University Micro-emitter-based low-contact-force interconnection device
US5660570A (en) * 1991-04-09 1997-08-26 Northeastern University Micro emitter based low contact force interconnection device
US5220725A (en) * 1991-04-09 1993-06-22 Northeastern University Micro-emitter-based low-contact-force interconnection device
FR2679653B1 (en) * 1991-07-23 1993-09-24 Commissariat Energie Atomique IONIZATION VACUMETER.
US5536193A (en) * 1991-11-07 1996-07-16 Microelectronics And Computer Technology Corporation Method of making wide band gap field emitter
US5696028A (en) * 1992-02-14 1997-12-09 Micron Technology, Inc. Method to form an insulative barrier useful in field emission displays for reducing surface leakage
US5675216A (en) * 1992-03-16 1997-10-07 Microelectronics And Computer Technololgy Corp. Amorphic diamond film flat field emission cathode
US5543684A (en) * 1992-03-16 1996-08-06 Microelectronics And Computer Technology Corporation Flat panel display based on diamond thin films
US5679043A (en) * 1992-03-16 1997-10-21 Microelectronics And Computer Technology Corporation Method of making a field emitter
US6127773A (en) * 1992-03-16 2000-10-03 Si Diamond Technology, Inc. Amorphic diamond film flat field emission cathode
US5449970A (en) * 1992-03-16 1995-09-12 Microelectronics And Computer Technology Corporation Diode structure flat panel display
US5686791A (en) * 1992-03-16 1997-11-11 Microelectronics And Computer Technology Corp. Amorphic diamond film flat field emission cathode
US5548185A (en) * 1992-03-16 1996-08-20 Microelectronics And Computer Technology Corporation Triode structure flat panel display employing flat field emission cathode
US5763997A (en) * 1992-03-16 1998-06-09 Si Diamond Technology, Inc. Field emission display device
US5344352A (en) * 1992-04-02 1994-09-06 U.S. Philips Corporation Method of manufacturing a pointed electrode, and device for using said method
EP0589523B1 (en) * 1992-09-25 1997-12-17 Koninklijke Philips Electronics N.V. Display device
US5347292A (en) * 1992-10-28 1994-09-13 Panocorp Display Systems Super high resolution cold cathode fluorescent display
CA2112180C (en) * 1992-12-28 1999-06-01 Yoshikazu Banno Electron source and manufacture method of same, and image forming device and manufacture method of same
US5717285A (en) * 1993-03-17 1998-02-10 Commissariat A L 'energie Atomique Microtip display device having a current limiting layer and a charge avoiding layer
FR2707795B1 (en) * 1993-07-12 1995-08-11 Commissariat Energie Atomique Improvement to a manufacturing process of a microtip electron source.
US5378182A (en) * 1993-07-22 1995-01-03 Industrial Technology Research Institute Self-aligned process for gated field emitters
US5814367A (en) 1993-08-13 1998-09-29 General Atomics Broadband infrared and signature control materials and methods of producing the same
US5462467A (en) * 1993-09-08 1995-10-31 Silicon Video Corporation Fabrication of filamentary field-emission device, including self-aligned gate
US5404070A (en) * 1993-10-04 1995-04-04 Industrial Technology Research Institute Low capacitance field emission display by gate-cathode dielectric
FR2711450B1 (en) * 1993-10-18 1996-01-05 Pixel Int Sa Installation and method for manufacturing flat display screens.
JP3726117B2 (en) * 1993-11-04 2005-12-14 ナノ・プラプライアテリ、インク Method for manufacturing flat panel display system and components
US5461009A (en) * 1993-12-08 1995-10-24 Industrial Technology Research Institute Method of fabricating high uniformity field emission display
US5445550A (en) * 1993-12-22 1995-08-29 Xie; Chenggang Lateral field emitter device and method of manufacturing same
US5394006A (en) * 1994-01-04 1995-02-28 Industrial Technology Research Institute Narrow gate opening manufacturing of gated fluid emitters
US5451830A (en) * 1994-01-24 1995-09-19 Industrial Technology Research Institute Single tip redundancy method with resistive base and resultant flat panel display
FR2717304B1 (en) * 1994-03-09 1996-04-05 Commissariat Energie Atomique Electron source with microtip emissive cathodes.
US5538450A (en) * 1994-04-29 1996-07-23 Texas Instruments Incorporated Method of forming a size-arrayed emitter matrix for use in a flat panel display
US5629583A (en) * 1994-07-25 1997-05-13 Fed Corporation Flat panel display assembly comprising photoformed spacer structure, and method of making the same
US5504385A (en) * 1994-08-31 1996-04-02 At&T Corp. Spaced-gate emission device and method for making same
FR2724264B1 (en) * 1994-09-06 1996-10-18 Commissariat Energie Atomique CYLINDRICAL ANTENNA FOR USE IN GENERATING A PLASMA UNDER ELECTRONIC CYCLOTRONIC RESONANCE CONDITIONS
EP0706164A1 (en) 1994-10-03 1996-04-10 Texas Instruments Incorporated Power management for display devices
US5541466A (en) * 1994-11-18 1996-07-30 Texas Instruments Incorporated Cluster arrangement of field emission microtips on ballast layer
EP0713236A1 (en) 1994-11-18 1996-05-22 Texas Instruments Incorporated Electron emission apparatus
US5557159A (en) * 1994-11-18 1996-09-17 Texas Instruments Incorporated Field emission microtip clusters adjacent stripe conductors
US5569975A (en) * 1994-11-18 1996-10-29 Texas Instruments Incorporated Cluster arrangement of field emission microtips
US5536993A (en) * 1994-11-18 1996-07-16 Texas Instruments Incorporated Clustered field emission microtips adjacent stripe conductors
US5608286A (en) * 1994-11-30 1997-03-04 Texas Instruments Incorporated Ambient light absorbing face plate for flat panel display
US6235105B1 (en) 1994-12-06 2001-05-22 General Atomics Thin film pigmented optical coating compositions
US5566011A (en) * 1994-12-08 1996-10-15 Luncent Technologies Inc. Antiflector black matrix having successively a chromium oxide layer, a molybdenum layer and a second chromium oxide layer
KR100343222B1 (en) * 1995-01-28 2002-11-23 삼성에스디아이 주식회사 Method for fabricating field emission display
US5537738A (en) * 1995-02-10 1996-07-23 Micron Display Technology Inc. Methods of mechanical and electrical substrate connection
US5766053A (en) 1995-02-10 1998-06-16 Micron Technology, Inc. Internal plate flat-panel field emission display
US5612256A (en) * 1995-02-10 1997-03-18 Micron Display Technology, Inc. Multi-layer electrical interconnection structures and fabrication methods
US5601466A (en) * 1995-04-19 1997-02-11 Texas Instruments Incorporated Method for fabricating field emission device metallization
US5594297A (en) * 1995-04-19 1997-01-14 Texas Instruments Incorporated Field emission device metallization including titanium tungsten and aluminum
US6296740B1 (en) 1995-04-24 2001-10-02 Si Diamond Technology, Inc. Pretreatment process for a surface texturing process
US5628659A (en) * 1995-04-24 1997-05-13 Microelectronics And Computer Corporation Method of making a field emission electron source with random micro-tip structures
FR2733253B1 (en) 1995-04-24 1997-06-13 Commissariat Energie Atomique DEVICE FOR DEPOSITING MATERIAL BY EVAPORATION ON LARGE SURFACE SUBSTRATES
US5630741A (en) * 1995-05-08 1997-05-20 Advanced Vision Technologies, Inc. Fabrication process for a field emission display cell structure
US5644188A (en) * 1995-05-08 1997-07-01 Advanced Vision Technologies, Inc. Field emission display cell structure
US5543691A (en) * 1995-05-11 1996-08-06 Raytheon Company Field emission display with focus grid and method of operating same
US5759078A (en) * 1995-05-30 1998-06-02 Texas Instruments Incorporated Field emission device with close-packed microtip array
US5589728A (en) * 1995-05-30 1996-12-31 Texas Instruments Incorporated Field emission device with lattice vacancy post-supported gate
US5621272A (en) * 1995-05-30 1997-04-15 Texas Instruments Incorporated Field emission device with over-etched gate dielectric
US5686782A (en) * 1995-05-30 1997-11-11 Texas Instruments Incorporated Field emission device with suspended gate
US5811929A (en) * 1995-06-02 1998-09-22 Advanced Vision Technologies, Inc. Lateral-emitter field-emission device with simplified anode
US5666024A (en) * 1995-06-23 1997-09-09 Texas Instruments Incorporated Low capacitance field emission device with circular microtip array
FR2737928B1 (en) * 1995-08-17 1997-09-12 Commissariat Energie Atomique DEVICE FOR INSOLATING MICROMETRIC AND / OR SUBMICROMETRIC ZONES IN A PHOTOSENSITIVE LAYER AND METHOD FOR PRODUCING PATTERNS IN SUCH A LAYER
FR2737927B1 (en) * 1995-08-17 1997-09-12 Commissariat Energie Atomique METHOD AND DEVICE FOR FORMING HOLES IN A LAYER OF PHOTOSENSITIVE MATERIAL, PARTICULARLY FOR THE MANUFACTURE OF ELECTRON SOURCES
US5635791A (en) * 1995-08-24 1997-06-03 Texas Instruments Incorporated Field emission device with circular microtip array
US5818165A (en) * 1995-10-27 1998-10-06 Texas Instruments Incorporated Flexible fed display
US5831384A (en) * 1995-10-30 1998-11-03 Advanced Vision Technologies, Inc. Dual carrier display device
US5672933A (en) * 1995-10-30 1997-09-30 Texas Instruments Incorporated Column-to-column isolation in fed display
US5669802A (en) * 1995-10-30 1997-09-23 Advanced Vision Technologies, Inc. Fabrication process for dual carrier display device
US6031250A (en) * 1995-12-20 2000-02-29 Advanced Technology Materials, Inc. Integrated circuit devices and methods employing amorphous silicon carbide resistor materials
US6680489B1 (en) 1995-12-20 2004-01-20 Advanced Technology Materials, Inc. Amorphous silicon carbide thin film coating
US6252347B1 (en) 1996-01-16 2001-06-26 Raytheon Company Field emission display with suspended focusing conductive sheet
US20010045794A1 (en) * 1996-01-19 2001-11-29 Alwan James J. Cap layer on glass panels for improving tip uniformity in cold cathode field emission technology
FR2751785A1 (en) * 1996-07-29 1998-01-30 Commissariat Energie Atomique METHOD AND DEVICE FOR FORMING PATTERNS IN A PHOTOSENSITIVE RESIN LAYER BY CONTINUOUS LASER INSOLATION, APPLICATION TO THE MANUFACTURE OF EMISSIVE MICROPOINT CATHODE ELECTRON SOURCES AND FLAT SCREENS
DE69621017T2 (en) 1996-10-04 2002-10-31 St Microelectronics Srl Manufacturing method of a flat field emission display and display manufactured by this method
US6022256A (en) 1996-11-06 2000-02-08 Micron Display Technology, Inc. Field emission display and method of making same
US5836799A (en) * 1996-12-06 1998-11-17 Texas Instruments Incorporated Self-aligned method of micro-machining field emission display microtips
US5780960A (en) * 1996-12-18 1998-07-14 Texas Instruments Incorporated Micro-machined field emission microtips
US5938493A (en) * 1996-12-18 1999-08-17 Texas Instruments Incorporated Method for increasing field emission tip efficiency through micro-milling techniques
DE19811899A1 (en) * 1997-03-19 1998-09-24 Furukawa Electric Co Ltd Current distribution system and current supply for motor vehicle
US6215243B1 (en) 1997-05-06 2001-04-10 St. Clair Intellectual Property Consultants, Inc. Radioactive cathode emitter for use in field emission display devices
US5982082A (en) * 1997-05-06 1999-11-09 St. Clair Intellectual Property Consultants, Inc. Field emission display devices
US6323594B1 (en) 1997-05-06 2001-11-27 St. Clair Intellectual Property Consultants, Inc. Electron amplification channel structure for use in field emission display devices
FR2769751B1 (en) 1997-10-14 1999-11-12 Commissariat Energie Atomique ELECTRON SOURCE WITH MICROPOINTS, WITH FOCUSING GRID AND HIGH DENSITY OF MICROPOINTS, AND FLAT SCREEN USING SUCH A SOURCE
US5949185A (en) * 1997-10-22 1999-09-07 St. Clair Intellectual Property Consultants, Inc. Field emission display devices
US6255772B1 (en) 1998-02-27 2001-07-03 Micron Technology, Inc. Large-area FED apparatus and method for making same
US6174449B1 (en) 1998-05-14 2001-01-16 Micron Technology, Inc. Magnetically patterned etch mask
FR2779243B1 (en) 1998-05-26 2000-07-07 Commissariat Energie Atomique PROCESS FOR PRODUCING SELF-ALIGNED OPENINGS ON A STRUCTURE BY PHOTOLITHOGRAPHY, PARTICULARLY FOR MICROPOINT FLAT SCREEN
US7002287B1 (en) * 1998-05-29 2006-02-21 Candescent Intellectual Property Services, Inc. Protected substrate structure for a field emission display device
US6710538B1 (en) 1998-08-26 2004-03-23 Micron Technology, Inc. Field emission display having reduced power requirements and method
US6391670B1 (en) 1999-04-29 2002-05-21 Micron Technology, Inc. Method of forming a self-aligned field extraction grid
JP3600126B2 (en) * 1999-07-29 2004-12-08 シャープ株式会社 Electron source array and method of driving electron source array
US7052350B1 (en) * 1999-08-26 2006-05-30 Micron Technology, Inc. Field emission device having insulated column lines and method manufacture
US6384520B1 (en) * 1999-11-24 2002-05-07 Sony Corporation Cathode structure for planar emitter field emission displays
US6989631B2 (en) * 2001-06-08 2006-01-24 Sony Corporation Carbon cathode of a field emission display with in-laid isolation barrier and support
EP1266321A4 (en) * 2000-02-25 2003-05-21 Telecomm Systems Inc Prepaid short messaging
US6849856B1 (en) * 2001-04-17 2005-02-01 Si Diamond Technology, Inc. Electron beam duplication lithography method and apparatus
US7002290B2 (en) * 2001-06-08 2006-02-21 Sony Corporation Carbon cathode of a field emission display with integrated isolation barrier and support on substrate
US6682382B2 (en) * 2001-06-08 2004-01-27 Sony Corporation Method for making wires with a specific cross section for a field emission display
US6756730B2 (en) * 2001-06-08 2004-06-29 Sony Corporation Field emission display utilizing a cathode frame-type gate and anode with alignment method
US6873118B2 (en) * 2002-04-16 2005-03-29 Sony Corporation Field emission cathode structure using perforated gate
US6791278B2 (en) * 2002-04-16 2004-09-14 Sony Corporation Field emission display using line cathode structure
US7012582B2 (en) * 2002-11-27 2006-03-14 Sony Corporation Spacer-less field emission display
US20040145299A1 (en) * 2003-01-24 2004-07-29 Sony Corporation Line patterned gate structure for a field emission display
US20040189552A1 (en) * 2003-03-31 2004-09-30 Sony Corporation Image display device incorporating driver circuits on active substrate to reduce interconnects
US7071629B2 (en) * 2003-03-31 2006-07-04 Sony Corporation Image display device incorporating driver circuits on active substrate and other methods to reduce interconnects
US20050246493A1 (en) * 2004-04-29 2005-11-03 International Business Machines Corporation Detachable programmable memory card for a computer controlled instrument with an indicator on the memory card displaying that a predetermined level of the card memory has been used
FR2886284B1 (en) 2005-05-30 2007-06-29 Commissariat Energie Atomique METHOD FOR PRODUCING NANOSTRUCTURES
US20070226705A1 (en) * 2006-02-15 2007-09-27 Microsoft Corporation Wrap-up reads for logless persistent components
FR2897718B1 (en) 2006-02-22 2008-10-17 Commissariat Energie Atomique NANOTUBE CATHODE STRUCTURE FOR EMISSIVE SCREEN
JP4303308B2 (en) 2007-11-20 2009-07-29 シャープ株式会社 Electron-emitting device, electron-emitting device, self-luminous device, image display device, air blower, cooling device, charging device, image forming device, electron beam curing device, and method for manufacturing electron-emitting device
JP4314307B1 (en) * 2008-02-21 2009-08-12 シャープ株式会社 Heat exchanger
US8299700B2 (en) 2009-02-05 2012-10-30 Sharp Kabushiki Kaisha Electron emitting element having an electron acceleration layer, electron emitting device, light emitting device, image display device, cooling device, and charging device
CN101814405B (en) 2009-02-24 2012-04-25 夏普株式会社 Electron emitting element, method for producing electron emitting element and each device using the same
JP4732533B2 (en) * 2009-05-19 2011-07-27 シャープ株式会社 Electron-emitting device and manufacturing method thereof, and electron-emitting device, charging device, image forming device, electron beam curing device, self-luminous device, image display device, blower, and cooling device
JP4777448B2 (en) 2009-05-19 2011-09-21 シャープ株式会社 Electron emitting device, electron emitting device, self-luminous device, image display device, blower device, cooling device, charging device, image forming device, and electron beam curing device
JP5073721B2 (en) * 2009-05-19 2012-11-14 シャープ株式会社 Electron-emitting device, electron-emitting device, self-luminous device, image display device, air blower, cooling device, charging device, image forming device, electron beam curing device, and electron-emitting device manufacturing method
JP4932873B2 (en) * 2009-05-19 2012-05-16 シャープ株式会社 Self-light-emitting element, self-light-emitting device, image display device, self-light-emitting element driving method, and method of manufacturing self-light-emitting element
JP4732534B2 (en) * 2009-05-19 2011-07-27 シャープ株式会社 Electron emitting element, electron emitting device, charging device, image forming device, electron beam curing device, self-luminous device, image display device, blower, cooling device
CN101930884B (en) * 2009-06-25 2012-04-18 夏普株式会社 Electron emitting element and method for producing electron emitting element, electron emitting device, self luminescence device and image display device
JP4927152B2 (en) * 2009-11-09 2012-05-09 シャープ株式会社 Heat exchanger
JP4880740B2 (en) * 2009-12-01 2012-02-22 シャープ株式会社 Electron-emitting device and manufacturing method thereof, and electron-emitting device, charging device, image forming device, electron beam curing device, self-luminous device, image display device, blower, and cooling device
CN104078293B (en) * 2013-03-26 2017-11-24 上海联影医疗科技有限公司 A kind of field emitting electronic source and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3998678A (en) * 1973-03-22 1976-12-21 Hitachi, Ltd. Method of manufacturing thin-film field-emission electron source
FR2536889A1 (en) * 1982-11-25 1984-06-01 Maschf Augsburg Nuernberg Ag METHOD AND DEVICE FOR TRANSMITTING IMAGES ON A SCREEN
DE3340777A1 (en) * 1983-11-11 1985-05-23 M.A.N. Maschinenfabrik Augsburg-Nürnberg AG, 8000 München Method of producing thin-film field-effect cathodes

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3453478A (en) * 1966-05-31 1969-07-01 Stanford Research Inst Needle-type electron source
US3755704A (en) * 1970-02-06 1973-08-28 Stanford Research Inst Field emission cathode structures and devices utilizing such structures
JPS5436828B2 (en) * 1974-08-16 1979-11-12
US4513308A (en) * 1982-09-23 1985-04-23 The United States Of America As Represented By The Secretary Of The Navy p-n Junction controlled field emitter array cathode
US4485158A (en) * 1983-10-17 1984-11-27 Rca Corporation Method for preparing a mosaic luminescent screen using a mosaic precoating
EP0163538B1 (en) * 1984-05-30 1989-11-23 Fujitsu Limited Pattern-forming material and its production and use
FR2568394B1 (en) * 1984-07-27 1988-02-12 Commissariat Energie Atomique DEVICE FOR VIEWING BY CATHODOLUMINESCENCE EXCITED BY FIELD EMISSION

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3998678A (en) * 1973-03-22 1976-12-21 Hitachi, Ltd. Method of manufacturing thin-film field-emission electron source
FR2536889A1 (en) * 1982-11-25 1984-06-01 Maschf Augsburg Nuernberg Ag METHOD AND DEVICE FOR TRANSMITTING IMAGES ON A SCREEN
DE3340777A1 (en) * 1983-11-11 1985-05-23 M.A.N. Maschinenfabrik Augsburg-Nürnberg AG, 8000 München Method of producing thin-film field-effect cathodes

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2209432B (en) * 1987-09-04 1992-04-22 Gen Electric Co Plc Field emission devices
EP0306173B1 (en) * 1987-09-04 1993-04-28 THE GENERAL ELECTRIC COMPANY, p.l.c. Field emission devices
US4983878A (en) * 1987-09-04 1991-01-08 The General Electric Company, P.L.C. Field induced emission devices and method of forming same
GB2209432A (en) * 1987-09-04 1989-05-10 Gen Electric Co Plc Field emission devices
FR2623013A1 (en) * 1987-11-06 1989-05-12 Commissariat Energie Atomique ELECTRO SOURCE WITH EMISSIVE MICROPOINT CATHODES AND FIELD EMISSION-INDUCED CATHODOLUMINESCENCE VISUALIZATION DEVICE USING THE SOURCE
EP0316214A1 (en) * 1987-11-06 1989-05-17 Commissariat A L'energie Atomique Electron source comprising emissive cathodes with microtips, and display device working by cathodoluminescence excited by field emission using this source
US4940916A (en) * 1987-11-06 1990-07-10 Commissariat A L'energie Atomique Electron source with micropoint emissive cathodes and display means by cathodoluminescence excited by field emission using said source
EP0350378A1 (en) * 1988-07-08 1990-01-10 Thomson-Csf Electronic micro component self-sealed under vacuum, especially a diode or triode, and its manufacturing process
FR2634059A1 (en) * 1988-07-08 1990-01-12 Thomson Csf VACUUM AUTOSCELLE ELECTRONIC MICROCOMPONENT, IN PARTICULAR DIODE, OR TRIODE, AND PROCESS FOR MANUFACTURING SAME
US5127990A (en) * 1988-07-08 1992-07-07 Thomson-Csf Method of fabricating an electronic micro-component self-sealed under vacuum, notably diode or triode
FR2637123A1 (en) * 1988-09-26 1990-03-30 Commissariat Energie Atomique Flat vidicon with matrix reading by microtip cathode
FR2647580A1 (en) * 1989-05-24 1990-11-30 Clerc Jean Electroluminescent display device using guided electrons and its method of control
EP0404022A3 (en) * 1989-06-19 1991-11-13 Matsushita Electric Industrial Co., Ltd. Flat configuration image display apparatus and manufacturing method thereof
US5160871A (en) * 1989-06-19 1992-11-03 Matsushita Electric Industrial Co., Ltd. Flat configuration image display apparatus and manufacturing method thereof
EP0404022A2 (en) * 1989-06-19 1990-12-27 Matsushita Electric Industrial Co., Ltd. Flat configuration image display apparatus and manufacturing method thereof
EP0479425A1 (en) * 1990-09-05 1992-04-08 Raytheon Company Field emission apparatus
EP0518612A1 (en) * 1991-06-10 1992-12-16 Motorola, Inc. Display for electronic devices
EP0520780A1 (en) * 1991-06-27 1992-12-30 Raytheon Company Fabrication method for field emission arrays
WO1993004496A1 (en) * 1991-08-16 1993-03-04 Amoco Corporation Recessed gate field emission device
EP0572777A1 (en) * 1992-06-01 1993-12-08 Motorola, Inc. Cathodoluminescent display apparatus and method for realization
EP0585081A1 (en) * 1992-08-25 1994-03-02 Sharp Kabushiki Kaisha Electron emitting device
US5442255A (en) * 1992-08-25 1995-08-15 Sharp Kabushiki Kaisha Electron emitting device
EP0668604A1 (en) * 1994-02-22 1995-08-23 Pixel International S.A. Method of manufacturing a cathode of a microtip fluorescent display and its product
FR2716571A1 (en) * 1994-02-22 1995-08-25 Pixel Int Sa A process for manufacturing a microtip fluorescent screen cathode and the product obtained by this process.
FR2718269A1 (en) * 1994-03-31 1995-10-06 Pixel Int Sa Method to improve conductivity of row conductors of flat micropoint screens
US5635790A (en) * 1994-04-25 1997-06-03 Commissariat A L'energie Atomique Process for the production of a microtip electron source and microtip electron source obtained by this process
FR2719155A1 (en) * 1994-04-25 1995-10-27 Commissariat Energie Atomique Micro-tip field emitter cathode for flat screen
EP0689222A2 (en) * 1994-04-25 1995-12-27 Commissariat A L'energie Atomique Method of manufacturing micropoint electron source and electron source obtained thereby
EP0689222A3 (en) * 1994-04-25 1996-02-07 Commissariat Energie Atomique Method of manufacturing micropoint electron source and electron source obtained thereby
EP0707237A1 (en) 1994-10-10 1996-04-17 Commissariat A L'energie Atomique Process for the fabrication of holes in photoresist layers, use for the fabrication of electron sources comprising emissive cathodes with microtips and flat display screens
EP0708473A1 (en) * 1994-10-19 1996-04-24 Commissariat A L'energie Atomique Manufacturing method for micropoint electron source
FR2726122A1 (en) * 1994-10-19 1996-04-26 Commissariat Energie Atomique METHOD FOR MANUFACTURING A MICROPOINT ELECTRON SOURCE
US5679044A (en) * 1994-10-19 1997-10-21 Commissariat A L'energie Atomique Process for the production of a microtip electron source
FR2726689A1 (en) * 1994-11-08 1996-05-10 Commissariat Energie Atomique FIELD EFFECT ELECTRON SOURCE AND PROCESS FOR PRODUCING SOURCE, APPLICATION TO CATHODOLUMINESCENCE VISUALIZATION DEVICES
EP0712147A1 (en) 1994-11-08 1996-05-15 Commissariat A L'energie Atomique Field-effect electron source and manufacturing method; application in display devices with cathodoluminescence
EP0712146A1 (en) * 1994-11-08 1996-05-15 Commissariat A L'energie Atomique Field effect electron source and method for producing same application in display devices working by cathodoluminescence
FR2726688A1 (en) * 1994-11-08 1996-05-10 Commissariat Energie Atomique FIELD EFFECT ELECTRON SOURCE AND PROCESS FOR PRODUCING SOURCE, APPLICATION TO CATHODOLUMINESCENCE VISUALIZATION DEVICES
US5836796A (en) * 1994-11-08 1998-11-17 Commissariat A L'energie Atomique Field effect electron source, associated display device and the method of production thereof
US5893967A (en) * 1996-03-05 1999-04-13 Candescent Technologies Corporation Impedance-assisted electrochemical removal of material, particularly excess emitter material in electron-emitting device
WO1997033297A1 (en) * 1996-03-05 1997-09-12 Candescent Technologies Corporation Electrochemical removal of material, particularly excess emitter material in electron-emitting device
US5766446A (en) * 1996-03-05 1998-06-16 Candescent Technologies Corporation Electrochemical removal of material, particularly excess emitter material in electron-emitting device
US6027632A (en) * 1996-03-05 2000-02-22 Candescent Technologies Corporation Multi-step removal of excess emitter material in fabricating electron-emitting device
EP0851451A1 (en) * 1996-12-30 1998-07-01 Commissariat A L'energie Atomique Process for self-aligning, usable in microelectronics and the use for the production of a focussing grid for a microtip flat display panel
US5981304A (en) * 1996-12-30 1999-11-09 Commissariat A L'energie Atomique Self-alignment process usable in microelectronics, and application to creating a focusing grid for micropoint flat screens
FR2757999A1 (en) * 1996-12-30 1998-07-03 Commissariat Energie Atomique SELF-ALIGNMENT PROCESS THAT CAN BE USED IN MICRO-ELECTRONICS AND APPLICATION TO THE REALIZATION OF A FOCUSING GRID FOR FLAT SCREEN WITH MICROPOINTS
US6120674A (en) * 1997-06-30 2000-09-19 Candescent Technologies Corporation Electrochemical removal of material in electron-emitting device
US6007695A (en) * 1997-09-30 1999-12-28 Candescent Technologies Corporation Selective removal of material using self-initiated galvanic activity in electrolytic bath

Also Published As

Publication number Publication date
EP0234989B1 (en) 1990-09-05
FR2593953B1 (en) 1988-04-29
JPH07111869B2 (en) 1995-11-29
JPS62172631A (en) 1987-07-29
FR2593953A1 (en) 1987-08-07
DE3764668D1 (en) 1990-10-11
US4857161A (en) 1989-08-15

Similar Documents

Publication Publication Date Title
EP0234989B1 (en) Method of manufacturing an imaging device using field emission cathodoluminescence
EP0461990B1 (en) Micropoint cathode electron source
EP1801897B1 (en) Improved method of producing PMC type memory cells
EP0222668B1 (en) Method of producing by stepwise etching a thin-film transistor with a self-aligned gate in regard to source and drain, and transistor so obtained
EP1885649A2 (en) Method for making an emissive cathode
EP0200599B1 (en) Method of producing non-linear control elements for an electro-optical, flat image screen, and flat screen produced by this method
EP0696045B1 (en) Cathode of a flat display screen with constant access resistance
FR2634059A1 (en) VACUUM AUTOSCELLE ELECTRONIC MICROCOMPONENT, IN PARTICULAR DIODE, OR TRIODE, AND PROCESS FOR MANUFACTURING SAME
FR2713394A1 (en) Field emission electron source for fluorescent display
EP0202150B1 (en) Non-linear control element for an electro-optical visible flat screen, and method for its manufacture
EP0246945A1 (en) Electrooptic screen display and method for its manufacture
FR2723255A1 (en) Field emission display device
FR2748847A1 (en) Field emitting cold cathode manufacturing method for flat display panel
FR2742578A1 (en) Manufacturing field emission cathode
FR2733253A1 (en) DEVICE FOR DEPOSITING MATERIAL BY EVAPORATION ON SUBSTRATES OF LARGE SURFACE
FR2518788A1 (en) Voltage dependent resistor for LCD screen control - uses two semiconductor diodes opposed in series between supply terminals and formed of amorphous silicon
EP0708473B1 (en) Manufacturing method for micropoint electron source
EP0697710B1 (en) Manufacturing method for a micropoint-electron source
WO1998025291A1 (en) Display screen comprising a source of electrons with microtips, capable of being observed through the microtip support, and method for making this source
EP0616356B1 (en) Micropoint display device and method of fabrication
EP0668604A1 (en) Method of manufacturing a cathode of a microtip fluorescent display and its product
EP0884753A1 (en) Method for making spacers for a flat panel display
EP1023741B1 (en) Electron source with microtips, with focusing grid and high microtip density, and flat screen using same
EP0709741B1 (en) Photolithographic process for circular dense patterns
EP0253727B1 (en) Liquid crystal display panel with an active matrix using amorphous hydrogenated silicon carbide, and manufacturing method thereof

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE GB IT LI NL

17P Request for examination filed

Effective date: 19880204

17Q First examination report despatched

Effective date: 19891123

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE GB IT LI NL

REF Corresponds to:

Ref document number: 3764668

Country of ref document: DE

Date of ref document: 19901011

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19970110

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19970129

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980801

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19980801

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20060118

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20060123

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060131

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20070120

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20