EP0197641A1 - Decompression and toxic fume protection apparatus - Google Patents

Decompression and toxic fume protection apparatus Download PDF

Info

Publication number
EP0197641A1
EP0197641A1 EP86301282A EP86301282A EP0197641A1 EP 0197641 A1 EP0197641 A1 EP 0197641A1 EP 86301282 A EP86301282 A EP 86301282A EP 86301282 A EP86301282 A EP 86301282A EP 0197641 A1 EP0197641 A1 EP 0197641A1
Authority
EP
European Patent Office
Prior art keywords
removal means
breathing device
reservoir
breathing
wearer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP86301282A
Other languages
German (de)
French (fr)
Other versions
EP0197641B1 (en
Inventor
Bertil Werjefelt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cessione xenex Corp A Corporation Of S
Original Assignee
EI Du Pont de Nemours and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EI Du Pont de Nemours and Co filed Critical EI Du Pont de Nemours and Co
Publication of EP0197641A1 publication Critical patent/EP0197641A1/en
Application granted granted Critical
Publication of EP0197641B1 publication Critical patent/EP0197641B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62BDEVICES, APPARATUS OR METHODS FOR LIFE-SAVING
    • A62B7/00Respiratory apparatus
    • A62B7/08Respiratory apparatus containing chemicals producing oxygen
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62BDEVICES, APPARATUS OR METHODS FOR LIFE-SAVING
    • A62B17/00Protective clothing affording protection against heat or harmful chemical agents or for use at high altitudes
    • A62B17/04Hoods
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62BDEVICES, APPARATUS OR METHODS FOR LIFE-SAVING
    • A62B19/00Cartridges with absorbing substances for respiratory apparatus
    • A62B19/02Cartridges with absorbing substances for respiratory apparatus with oxidising agents
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62BDEVICES, APPARATUS OR METHODS FOR LIFE-SAVING
    • A62B7/00Respiratory apparatus
    • A62B7/14Respiratory apparatus for high-altitude aircraft

Definitions

  • a continuing concern for the aircraft industry is apparatus for the protection of passengers against either decompression in flight or toxic fumes resulting from on-board fires.
  • oxygen masks and other apparatus have been provided for passenger use.
  • previous apparatus do not satisfy the need for individual smoke protection of 30 minutes or more, and the size and weight of apparatus previously available has limited its use in aircraft.
  • the ratio of equipment poundage to minutes of protection was on the order of 1:0.5 to 1:3.
  • much of the equipment previously available for decompression or toxic fume protection is complicated to use and might be of limited value to an aircraft passenger in an emergency situation.
  • a continuing need exists for an uncomplicated, light-weight apparatus that will provide extended protection against toxic fumes in an aircraft environment.
  • a need exists for such an apparatus in a variety of other applications such as hotels and hospitals in which it may be necessary to escape from a smoke-filled environment with an apparatus that provides at least about 30 minutes of breathable air for the user.
  • the present invention provides an improved apparatus for protection against decompression and toxic fumes, particularly in an aircraft environment, which permits more complete utilization of available oxygen.
  • the instant invention provides a breathing device having an inner chamber and an inflatable outer chamber concentric with and surrounding the inner chamber, the inner and outer chambers being adapted to surround the head of a wearer:
  • the present invention provides a breathing device having concentric inner and outer chambers.
  • the outer chamber is inflatable to a rigidity sufficient to maintain a substantially constant volume of the inner chamber while the wearer is breathing.
  • the device also includes a reservoir connected to the inner chamber by way of a carbon dioxide removal means.
  • C0 2 removal A wide variety of materials can be used for C0 2 removal. These include, for example, alkali metal hydroxides and oxides and sodium carbonate. Of these, the lithium and sodium salts are preferred, and lithium hydroxide in particulate form is particularly preferred.
  • CO 2 absorbants in liquid or gel form can be used. The quantity of CO 2 absorbant used will vary according to the absorbant selected and the capacity of the hood. In general, about from 50 to 500 grams can be used in the present invention. It has been shown that about from 3 to 4 grams of lithium hydroxide are required for removal of carbon dioxide during each minute of closed circuit breathing in an environment of substantially pure oxygen. Preferably, about from 75 to 150 grams of C0 2 absorbant are used in the present devices.
  • the CO 2 removal means can be integrated into the present breathing device in a wide variety of configurations.
  • the CO 2 removal means can be contained in a separate chamber positioned, for example, as a ring around the neck of the wearer.
  • the C0 2 removal means can be exterior to the remainder of the hood structure, for example, in a compartment, canister or hose adjacent to the inlet. The positioning of the C0 2 removal means exterior to the hood permits the replacement or renewal of the C0 2 removal means for reuse of the hood.
  • a breathing device which consists of three concentric chambers, the chambers being designated as an inner chamber, an inflatable outer chamber and a reservoir.
  • the inner chamber is nested within the inflatable chamber which is nested within the reservoir.
  • gas is passed from an outside source, such as the fresh air and/or oxygen supply on an aircraft, to the inflatable outer chamber of the breathing device.
  • the outer chamber is inflatable to a rigidity sufficient to maintain substantially constant volume of the inner chamber within the breathing device while the wearer is breathing.
  • a valved mechanism is provided to permit passage of the gas, whether fresh air, oxygen enriched air. or pure oxygen, from the outer chamber to the reservoir.
  • a passage is also provided from the reservoir, through a C0 2 removal means, to the inner chamber. Accordingly, with the breathing of the wearer, oxygen and/or air is drawn only.from the reservoir. In this manner, the inflatable outer chamber is kept at substantially constant volume while the wearer is breathing.
  • inhalation by the wearer draws air from the reservoir. through the C0 2 removal means, and into the inner chamber.
  • the exhaling pressure of the wearer forces exhaust air through the carbon dioxide absorber, and back to the reservoir.
  • gas is supplied through inlet 1, from a source, not shown, of fresh air, oxygen, or both, to inflatable outer chamber 2, surrounding the head of the wearer.
  • inflatable outer chamber 2 When the inflatable outer chamber is substantially fully inflated, the gas passes through valve 3 into reservoir 4, here shown as an additional outer concentric chamber.
  • Inhaling of the wearer causes flow from the reservoir through CO 2 removal means 5 to inner chamber 6. Exhaling by the wearer causes passage of exhaust breath back through the CO 2 removal means and to the reservoir.
  • the C0 2 removal means is here illustrated as an annular ring, containing C0 2 absorbant 7, through which the air is circulated in its passage between the reservoir and the inner chamber.
  • the hood is also provided with annular neck seal 8.
  • FIG. 2 Another embodiment of the invention is illustrated in Figure 2, in which the C0 2 removal means is exterior to the inner, outer and reservoir elements surrounding the head of the wearer, and is in the form of canister 21 containing C0 2 absorbant 22.
  • the outer chamber' is inflatable to a rigidity sufficient to maintain substantially constant internal volume while the wearer is breathing.
  • a typical construction which can be used for this function is illustrated in Figure 3, in which the reservoir is fabricated from two layers of thermoplastic material 31 and 32, the two layers being heat sealed at seams 33 to provide a plurality of pockets 34 having upper and lower portions 34A and 34B. Alternatively, the sheets can be adhesively bonded as required. The area between the upper and lower portions is sealed together to provide visibility band 35. The visibility band is interrupted by full length air pockets 36 which increase the rigidity of the structure when inflated.
  • a wide variety of construction materials can be used for the breathing devices of the present invention. Particularly satisfactory are polymeric films, such as polyethylene, polypropylene, nylon. polyvinyl chloride, polyurethane, fluoropolymers and polyethylene terephthalate. Such films are particularly useful in forming the inflatable outer chamber. Heat resistant materials such as polyimide films are preferably used for the exterior wall of the breathing device. Those films commercially available from E. 1. du Pont de Nemours and Company as Kapton polyimide films have been found to be particularly satisfactory.
  • the exterior surface of the breathing device can be metalized for further heat reflectivity, using techniques well known in the art.
  • the breathing devices of the present invention provide several advantages over similar devices previously known in the art.
  • the present devices permit, through the inflatable outer chamber, a constant volume while the wearer is breathing.
  • carbon dioxide removal means integrated into the breathing device upon disconnecting the device from the gas supply, maximum utilization of the oxygen in the gas contained within the hood can be obtained. Without the Co 2 removal means, the available oxygen can be utilized to a substantially lesser extent, with increasing build-up of carbon dioxide.
  • the breathing devices of the present invention can be used in a wide variety of applications, including aircraft cabin interiors, hospitals, and residential and commercial interiors.
  • a gas source such as those available on an aircraft
  • the user can breathe in a toxic fume environment or in a decompression situation for virtually unlimited periods of time.
  • Upon disconnection from a gas source up to about 45 minutes of breathable and usable air, with the carbon dioxide removal means, are available.
  • the present hoods can be safely stored for extended periods without deterioration of their operating capabilities. However, it is preferred that the hoods be stored in a sealed container to insulate the devices from changes in environmental conditions.
  • the present apparatus makes more effective use of the oxygen supply systems currently in place on commercial aircraft for decompression protection.
  • the oxygen masks previously provided on aircraft provide the user with a mixture of oxygen and ambient air, while the present devices provide the user with a substantially pure oxygen for decompression as well as smoke protection.
  • the present invention does not require a pump or pressure source for operation of the CO 2 removal means once the hood has been fitted.

Abstract

Apparatus comprising an inner chamber (6) adapted to surround the head of the wearer, an inflatable and concentric outer chamber (2), a gas reservoir (4), means for removal of carbon dioxide (5) and passageways for the circulation of gas through the apparatus.

Description

    Backqround of the Invention
  • A continuing concern for the aircraft industry is apparatus for the protection of passengers against either decompression in flight or toxic fumes resulting from on-board fires. Previously, oxygen masks and other apparatus have been provided for passenger use. However, previous apparatus do not satisfy the need for individual smoke protection of 30 minutes or more, and the size and weight of apparatus previously available has limited its use in aircraft. Typically the ratio of equipment poundage to minutes of protection was on the order of 1:0.5 to 1:3. In addition, much of the equipment previously available for decompression or toxic fume protection is complicated to use and might be of limited value to an aircraft passenger in an emergency situation. Accordingly, a continuing need exists for an uncomplicated, light-weight apparatus that will provide extended protection against toxic fumes in an aircraft environment. Similarly, a need exists for such an apparatus in a variety of other applications such as hotels and hospitals in which it may be necessary to escape from a smoke-filled environment with an apparatus that provides at least about 30 minutes of breathable air for the user.
  • Summary of the Invention
  • The present invention provides an improved apparatus for protection against decompression and toxic fumes, particularly in an aircraft environment, which permits more complete utilization of available oxygen.
  • Specifically, the instant invention provides a breathing device having an inner chamber and an inflatable outer chamber concentric with and surrounding the inner chamber, the inner and outer chambers being adapted to surround the head of a wearer:
    • a gas reservoir:
    • a gas inlet leading to the outer chamber and a valve permitting gas to flow from the outer chamber to the reservoir; and
    • a passageway to permit gas to flow between the reservoir and the inner chamber through a CO2 removal means,

    the outer chamber being inflatable to a rigidity sufficient to maintain substantially constant volume of the inner chamber while the wearer is breathing. Brief Description of the Drawings
    • Fig. 1 is a cross-sectional view of a breathing device of the present invention having a CO2 removal means in a circumferential configuration surrounding the neck of the wearer.
    • Fig. 2 is a cross-sectional view of a breathing device of a present invention wherein the CO2 removal means is positioned adjacent to the gas inlet.
    • Fig. 3 is a planar view of the details of construction that can be used for the inflatable outer chamber of the present devices.
    Detailed Description of the Invention
  • The present invention provides a breathing device having concentric inner and outer chambers. The outer chamber is inflatable to a rigidity sufficient to maintain a substantially constant volume of the inner chamber while the wearer is breathing. The device also includes a reservoir connected to the inner chamber by way of a carbon dioxide removal means.
  • A wide variety of materials can be used for C02 removal. These include, for example, alkali metal hydroxides and oxides and sodium carbonate. Of these, the lithium and sodium salts are preferred, and lithium hydroxide in particulate form is particularly preferred. In addition, CO2 absorbants in liquid or gel form can be used. The quantity of CO2 absorbant used will vary according to the absorbant selected and the capacity of the hood. In general, about from 50 to 500 grams can be used in the present invention. It has been shown that about from 3 to 4 grams of lithium hydroxide are required for removal of carbon dioxide during each minute of closed circuit breathing in an environment of substantially pure oxygen. Preferably, about from 75 to 150 grams of C02 absorbant are used in the present devices.
  • The CO2 removal means can be integrated into the present breathing device in a wide variety of configurations. The CO2 removal means can be contained in a separate chamber positioned, for example, as a ring around the neck of the wearer. In another embodiment, the C02 removal means can be exterior to the remainder of the hood structure, for example, in a compartment, canister or hose adjacent to the inlet. The positioning of the C02 removal means exterior to the hood permits the replacement or renewal of the C02 removal means for reuse of the hood.
  • In accordance with a preferred embodiment of the present invention, a breathing device is provided which consists of three concentric chambers, the chambers being designated as an inner chamber, an inflatable outer chamber and a reservoir. The inner chamber is nested within the inflatable chamber which is nested within the reservoir. In the operation of the breathing device, gas is passed from an outside source, such as the fresh air and/or oxygen supply on an aircraft, to the inflatable outer chamber of the breathing device. The outer chamber is inflatable to a rigidity sufficient to maintain substantially constant volume of the inner chamber within the breathing device while the wearer is breathing.
  • A valved mechanism is provided to permit passage of the gas, whether fresh air, oxygen enriched air. or pure oxygen, from the outer chamber to the reservoir. A passage is also provided from the reservoir, through a C02 removal means, to the inner chamber. Accordingly, with the breathing of the wearer, oxygen and/or air is drawn only.from the reservoir. In this manner, the inflatable outer chamber is kept at substantially constant volume while the wearer is breathing.
  • In the breathing cycle, inhalation by the wearer draws air from the reservoir. through the C02 removal means, and into the inner chamber. The exhaling pressure of the wearer forces exhaust air through the carbon dioxide absorber, and back to the reservoir.
  • The invention can be more clearly understood by reference to the drawings, in which like numbers are used for like elements in the figures.
  • In Figure 1, gas is supplied through inlet 1, from a source, not shown, of fresh air, oxygen, or both, to inflatable outer chamber 2, surrounding the head of the wearer. When the inflatable outer chamber is substantially fully inflated, the gas passes through valve 3 into reservoir 4, here shown as an additional outer concentric chamber. Inhaling of the wearer causes flow from the reservoir through CO2 removal means 5 to inner chamber 6. Exhaling by the wearer causes passage of exhaust breath back through the CO2 removal means and to the reservoir. The C02 removal means is here illustrated as an annular ring, containing C02 absorbant 7, through which the air is circulated in its passage between the reservoir and the inner chamber. The hood is also provided with annular neck seal 8.
  • Another embodiment of the invention is illustrated in Figure 2, in which the C02 removal means is exterior to the inner, outer and reservoir elements surrounding the head of the wearer, and is in the form of canister 21 containing C02 absorbant 22.
  • The outer chamber'is inflatable to a rigidity sufficient to maintain substantially constant internal volume while the wearer is breathing. A typical construction which can be used for this function is illustrated in Figure 3, in which the reservoir is fabricated from two layers of thermoplastic material 31 and 32, the two layers being heat sealed at seams 33 to provide a plurality of pockets 34 having upper and lower portions 34A and 34B. Alternatively, the sheets can be adhesively bonded as required. The area between the upper and lower portions is sealed together to provide visibility band 35. The visibility band is interrupted by full length air pockets 36 which increase the rigidity of the structure when inflated.
  • A wide variety of construction materials can be used for the breathing devices of the present invention. Particularly satisfactory are polymeric films, such as polyethylene, polypropylene, nylon. polyvinyl chloride, polyurethane, fluoropolymers and polyethylene terephthalate. Such films are particularly useful in forming the inflatable outer chamber. Heat resistant materials such as polyimide films are preferably used for the exterior wall of the breathing device. Those films commercially available from E. 1. du Pont de Nemours and Company as Kapton polyimide films have been found to be particularly satisfactory. The exterior surface of the breathing device can be metalized for further heat reflectivity, using techniques well known in the art.
  • The breathing devices of the present invention provide several advantages over similar devices previously known in the art. The present devices permit, through the inflatable outer chamber, a constant volume while the wearer is breathing. Moreover, with the carbon dioxide removal means integrated into the breathing device, upon disconnecting the device from the gas supply, maximum utilization of the oxygen in the gas contained within the hood can be obtained. Without the Co2 removal means, the available oxygen can be utilized to a substantially lesser extent, with increasing build-up of carbon dioxide.
  • The breathing devices of the present invention can be used in a wide variety of applications, including aircraft cabin interiors, hospitals, and residential and commercial interiors. When used in conjunction with a gas source, such as those available on an aircraft, the user can breathe in a toxic fume environment or in a decompression situation for virtually unlimited periods of time. Upon disconnection from a gas source, up to about 45 minutes of breathable and usable air, with the carbon dioxide removal means, are available.
  • The present hoods can be safely stored for extended periods without deterioration of their operating capabilities. However, it is preferred that the hoods be stored in a sealed container to insulate the devices from changes in environmental conditions.
  • The present apparatus makes more effective use of the oxygen supply systems currently in place on commercial aircraft for decompression protection. The oxygen masks previously provided on aircraft provide the user with a mixture of oxygen and ambient air, while the present devices provide the user with a substantially pure oxygen for decompression as well as smoke protection. Moreover, the present invention does not require a pump or pressure source for operation of the CO2 removal means once the hood has been fitted.

Claims (7)

1. A breathing device, comprising an inflatable outer member surrounding and defining an inner chamber, a gas reservoir, a gas inlet to the outer member and a valve permitting gas to flow from the outer member to the reservoir, and a passageway to permit gas to flow between the reservoir and the inner chamber through a C02 removal means, the outer member being inflatable to a rigidity sufficient to maintain substantially constant the volume of the inner chamber while the wearer is breathing.
2. A breathing device according to claim 1, wherein the C02 removal means is disposed within a ring around the neck of the wearer.
3. A breathing device according'to claim 1, wherein the C02 removal means is in a container exterior to the body of the breathing device.
4. A breathing device according to claim 1 or 2, comprising 50 to 500 grams of C02 removal means selected from alkalai metal hydroxides and oxides and sodium carbonate.
5. A breathing device according to claim 4, wherein the C02 removal means comprises lithium hydroxide.
6. A breathing device according to claim 4 or 5, comprising 75-150 grams of particulate C02 removal means.
7. A breathing device according to any preceding claim, wherein the reservoir comprises a chamber at least partially surrounding the inflatable outer member.
EP19860301282 1985-03-12 1986-02-21 Decompression and toxic fume protection apparatus Expired EP0197641B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US71067185A 1985-03-12 1985-03-12
US710671 1985-03-12

Publications (2)

Publication Number Publication Date
EP0197641A1 true EP0197641A1 (en) 1986-10-15
EP0197641B1 EP0197641B1 (en) 1989-11-23

Family

ID=24855031

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19860301282 Expired EP0197641B1 (en) 1985-03-12 1986-02-21 Decompression and toxic fume protection apparatus

Country Status (4)

Country Link
EP (1) EP0197641B1 (en)
JP (1) JPS61206465A (en)
CA (1) CA1276857C (en)
DE (1) DE3667028D1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0348052A2 (en) * 1988-06-22 1989-12-27 The British Petroleum Company p.l.c. Fire and smoke protective hood
WO1994019055A1 (en) * 1991-09-12 1994-09-01 Richards Brian J Breathing apparatus for respiratory protection
WO2014085505A2 (en) * 2012-11-30 2014-06-05 B/E Aerospace, Inc. Improved protective breathing apparatus inhalation duct
KR101894203B1 (en) * 2018-01-25 2018-08-31 이일형 Air inflatable type hood for respiratory

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2582524B1 (en) * 1985-05-31 1989-01-13 Air Liquide PROTECTIVE HOOD AGAINST FUMES AND HYPOXIA
KR102320157B1 (en) * 2020-07-21 2021-11-01 박해영 Neck pillow positive pressure head shield

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE647560C (en) * 1937-07-07 Jean Marie Guy Giraudet De Bou Gas protection hood
FR1599791A (en) * 1968-10-16 1970-07-20
US3565068A (en) * 1969-02-07 1971-02-23 Automatic Sprinkler Corp Breathing apparatus
US3895625A (en) * 1973-03-01 1975-07-22 Ulmer Aeronautique Sa Head protection enclosure
US3906945A (en) * 1974-04-29 1975-09-23 Ato Inc Endothermal carbon dioxide absorption
US3976063A (en) * 1974-09-16 1976-08-24 The Bendix Corporation Escape breathing apparatus
US4164218A (en) * 1977-12-09 1979-08-14 Midori Anzen Company, Ltd. Personal escape breathing apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE647560C (en) * 1937-07-07 Jean Marie Guy Giraudet De Bou Gas protection hood
FR1599791A (en) * 1968-10-16 1970-07-20
US3565068A (en) * 1969-02-07 1971-02-23 Automatic Sprinkler Corp Breathing apparatus
US3895625A (en) * 1973-03-01 1975-07-22 Ulmer Aeronautique Sa Head protection enclosure
US3906945A (en) * 1974-04-29 1975-09-23 Ato Inc Endothermal carbon dioxide absorption
US3976063A (en) * 1974-09-16 1976-08-24 The Bendix Corporation Escape breathing apparatus
US4164218A (en) * 1977-12-09 1979-08-14 Midori Anzen Company, Ltd. Personal escape breathing apparatus

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0348052A2 (en) * 1988-06-22 1989-12-27 The British Petroleum Company p.l.c. Fire and smoke protective hood
EP0348052A3 (en) * 1988-06-22 1992-06-10 The British Petroleum Company p.l.c. Fire and smoke protective hood
WO1994019055A1 (en) * 1991-09-12 1994-09-01 Richards Brian J Breathing apparatus for respiratory protection
AU679900B2 (en) * 1991-09-12 1997-07-17 Brian John Richards Breathing apparatus for respiratory protection
WO2014085505A2 (en) * 2012-11-30 2014-06-05 B/E Aerospace, Inc. Improved protective breathing apparatus inhalation duct
WO2014085505A3 (en) * 2012-11-30 2014-10-09 B/E Aerospace, Inc. Improved protective breathing apparatus inhalation duct
CN104918663A (en) * 2012-11-30 2015-09-16 Be航天公司 Improved protective breathing apparatus inhalation duct
US9636527B2 (en) 2012-11-30 2017-05-02 B/E Aerospace, Inc. Protective breathing apparatus inhalation duct
CN104918663B (en) * 2012-11-30 2018-03-16 Be 航天公司 Improved respiratory protection equipment intake line
KR101894203B1 (en) * 2018-01-25 2018-08-31 이일형 Air inflatable type hood for respiratory
WO2019146915A1 (en) * 2018-01-25 2019-08-01 이일형 Air inflatable type hood for respiration
CN111629791A (en) * 2018-01-25 2020-09-04 李一珩 Inflatable cover for breathing
US20210076767A1 (en) * 2018-01-25 2021-03-18 Il Hyung LEE Air inflatable type hood for respiration
JP2021511190A (en) * 2018-01-25 2021-05-06 リ・イル ヒュンLEE, Il Hyung Inflatable hood for breathing
EP3744403A4 (en) * 2018-01-25 2021-11-03 Il Hyung Lee Air inflatable type hood for respiration

Also Published As

Publication number Publication date
DE3667028D1 (en) 1989-12-28
EP0197641B1 (en) 1989-11-23
CA1276857C (en) 1990-11-27
JPS61206465A (en) 1986-09-12

Similar Documents

Publication Publication Date Title
US6796304B2 (en) Personal containment system with sealed passthrough
US3565068A (en) Breathing apparatus
EP0194657B1 (en) Protective hood with co2 absorbent
US5113854A (en) Quick-donning protective hood assembly
US3208449A (en) Compact walk-around rebreathing device
US5115804A (en) Protective hood and oral-nasal mask
US4637383A (en) Toxic environmental breathing hood
US4440164A (en) Life support system and method of providing fresh air to enclosed areas
US6279571B1 (en) Emergency breathing apparatus
JP2016019747A (en) Emergency breathing apparatus
US6041778A (en) Personal oxygen and filtered air evacuation system
WO1998005370A1 (en) Method and apparatus for revitalizing exhaled air
US4998529A (en) Decompression and toxic fume protection apparatus
US9956440B2 (en) Oxygen supply with carbon dioxide scrubber for emergency use
EP0197641B1 (en) Decompression and toxic fume protection apparatus
GB2233905A (en) Emergency escape breathing apparatus
GB2191950A (en) Emergency escape breathing apparatus
GB2189152A (en) Emergency escape breathing apparatus
US20030192536A1 (en) Personal containment system with isolated blower
JPH0191872A (en) Container of oxygen-generating type protector means for respiration
EP0301732A2 (en) Breathing apparatus
US642057A (en) Fireman's respirator.
GB2214431A (en) Respiratory protective apparatus
CA1326805C (en) Protective hood and oral-nasal mask
Werjefelt et al. Protective hood with CO 2 absorbent

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19870403

17Q First examination report despatched

Effective date: 19880816

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

ITF It: translation for a ep patent filed

Owner name: ING. C. GREGORJ S.P.A.

REF Corresponds to:

Ref document number: 3667028

Country of ref document: DE

Date of ref document: 19891228

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: 732

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19910205

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19910226

Year of fee payment: 6

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19910228

Year of fee payment: 6

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19920221

ITPR It: changes in ownership of a european patent

Owner name: CESSIONE;XENEX CORPORATION. A CORPORATION OF THE S

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19921030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19921103

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050221