EP0062273A1 - Method of controlling a stepping motor - Google Patents

Method of controlling a stepping motor Download PDF

Info

Publication number
EP0062273A1
EP0062273A1 EP82102626A EP82102626A EP0062273A1 EP 0062273 A1 EP0062273 A1 EP 0062273A1 EP 82102626 A EP82102626 A EP 82102626A EP 82102626 A EP82102626 A EP 82102626A EP 0062273 A1 EP0062273 A1 EP 0062273A1
Authority
EP
European Patent Office
Prior art keywords
duration
pulses
pulse
motor
period
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP82102626A
Other languages
German (de)
French (fr)
Other versions
EP0062273B1 (en
Inventor
Mai Tu Xuan
Michel Grosjean
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omega SA
Original Assignee
Omega SA
Omega Louis Brandt and Frere SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omega SA, Omega Louis Brandt and Frere SA filed Critical Omega SA
Publication of EP0062273A1 publication Critical patent/EP0062273A1/en
Application granted granted Critical
Publication of EP0062273B1 publication Critical patent/EP0062273B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04CELECTROMECHANICAL CLOCKS OR WATCHES
    • G04C3/00Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means
    • G04C3/14Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means incorporating a stepping motor
    • G04C3/143Means to reduce power consumption by reducing pulse width or amplitude and related problems, e.g. detection of unwanted or missing step

Abstract

Le procédé pour asservir le moteur pas à pas propose plusieurs niveaux de largeur d'impulsions de commande U pour adapter le couple fourni par le moteur aux contraintes qui lui sont imposées. Le procédé consiste à mesurer la tension induite Ui dans un intervalle TUI, situé immédiatement avant la fin de l'impulsion de commande U si la durée de ladite impulsion ne dépasse pas une durée prédéterminée Tn (fig. 8) ou dans une fenêtre Tx ouverte dans l'impulsion de commande U si ladite impulsion dépasse ladite durée Tn (fig. 11).The method for controlling the stepping motor proposes several levels of width of control pulses U to adapt the torque supplied by the motor to the constraints which are imposed on it. The method consists in measuring the induced voltage Ui in an interval T UI , located immediately before the end of the control pulse U if the duration of said pulse does not exceed a predetermined duration T n (fig. 8) or in a window T x open in the control pulse U if said pulse exceeds said duration T n (fig. 11).

Le procédé trouve son application pour asservir des moteurs pas à pas dont le stator présente des entrefers ou des zones saturables.

Figure imgaf001
The method finds its application to control stepper motors whose stator has air gaps or saturable zones.
Figure imgaf001

Description

La présente invention est relative à un procédé pour asservir un moteur pas à pas monophasé alimenté par un train d'impulsions bipolaires à la charge présentée par le mécanisme d'une pièce d'horlogerie. Elle propose diverses améliorations au système d'asservissement qui a été décrit dans la demande de brevet EP 0 022 270.The present invention relates to a method for controlling a single-phase stepping motor supplied by a train of bipolar pulses with the load presented by the mechanism of a timepiece. It offers various improvements to the servo system which has been described in patent application EP 0 022 270.

Dans la demande citée, il est exposé un dispositif d'alimentation permettant de détecter la position du rotor d'un moteur pas à pas par rapport à la polarité des impulsions motrices et d'envoyer audit moteur un train d'impulsions de longue durée si cette polarité est jugée incorrecte. En d'autres termes, si le rotor ne progresse pas d'un pas après que lui ait été envoyée une impulsion motrice de polarité correcte, il recevra un laps de temps prédéterminé plus tard (une seconde par exemple) une nouvelle impulsion de polarité incorrecte et c'est à partir de ce moment-là que le système entre en fonction, la correction ou le rattrapage s'opérant en envoyant au moteur deux impulsions rapprochées de longue durée suivies d'un train d'impulsions de grande largeur. Aucun des documents cités comme antériorités dans la demande en question ne décrit une telle disposition.In the cited application, there is disclosed a supply device making it possible to detect the position of the rotor of a stepping motor relative to the polarity of the driving pulses and to send to said motor a train of long pulses if this polarity is considered incorrect. In other words, if the rotor does not advance one step after having sent a motor pulse of correct polarity, it will receive a predetermined period of time later (a second for example) a new pulse of incorrect polarity and it is from this moment that the system comes into operation, the correction or the catching up taking place by sending to the motor two close pulses of long duration followed by a train of pulses of great width. None of the documents cited as prior art in the application in question describes such a provision.

On s'est rendu compte cependant que le détecteur exposé dans cette demande présente plusieurs inconvénients qui vont être passés en revue maintenant.It has been realized, however, that the detector exposed in this application has several drawbacks which will now be reviewed.

D'abord, 1e système proposé dans la demande citée n'envisage que deux types d'impulsions : des impulsions étroites quand le couple exercé sur le moteur est faible et des impulsions larges quand ce couple a augmenté au-delà d'une certaine limite. Dans la pratique, on constate cependant que ce couple peut prendre des valeurs très diverses dues, par exemple, à l'un des évènements suivants ou la combinaison de certains de ces évènements : changement du calendrier, frottement dans les paliers et leur usure, vieillissement des huiles, baisse de la température, influence d'un champ magnétique extérieur, chocs linéaires ou angulaires, tolérances de fabrication, etc.. Dans la demande citée, avec un choix limité à deux largeurs d'impulsions seulement, il faudra ou bien choisir un premier type d'impulsions à durée très faible avec le risque de voir l'asservissement fonctionner très souvent lorsque survient le moindre des évènements cités ou bien choisir un premier type d'impulsions à durée plus grande pour ne faire intervenir l'asservissement qu'occasionnellement lorsque survient un couple important, celui du changement de calendrier par exemple. Quelle que soit la solution choisie, on comprendra que le système proposé, bien que consommant moins d'énergie qu'un système sans asservissement, n'est pas apte à réagir finement, c'est-à-dire à adapter 1a consommation de courant à la charge réelle qui se présente sur le moteur de la montre.First, the system proposed in the cited application envisages only two types of pulses: narrow pulses when the torque exerted on the motor is low and broad pulses when this torque has increased beyond a certain limit . In practice, however, it can be seen that this couple can take very diverse values due, for example, to one of the following events or the combination of some of these events: change of calendar, friction in the bearings and their wear, aging oils, drop in temperature, influence of an external magnetic field, linear or angular shocks, manufacturing tolerances, etc. In the cited request, with a choice limited to only two pulse widths, it will either be necessary to choose a first type of pulse of very short duration with the risk of seeing the servo function very often when the least of the events mentioned occurs, or choose a first type of pulse with a longer duration so that the servo only intervenes occasionally when a significant torque occurs, that of the change of calendar for example. Whichever solution is chosen, it will be understood that the proposed system, although consuming less energy than a system without servo-control, is not capable of reacting finely, that is to say of adapting the current consumption to the actual load on the watch motor.

Ensuite, si le système de la demande citée est bien adapté à un moteur pas à pas dont les pôles du stator sont séparés par un entrefer, il l'est beaucoup moins à un moteur dit à zones saturables dont les pôles se rejoignent par des isthmes de faible largeur. La figure 1 du présent exposé montre schématiquement un moteur dont les pôles du stator sont séparés par des entrefers 1. Dans ce cas, tout le flux JSab issu du rotor aimanté 2 traverse le noyau de la bobine 3 pour produire aux bornes de cette bobine une tension induite Ui lorsque le rotor est en mouvement. Dans la demande EP 0 022 270, il est prévu de mesurer la tension induite Ui immédiatement après la fin de l'impulsion motrice, la bobine étant mise en circuit ouvert. Si le moteur à entrefers reçoit une impulsion de polarité correcte, la tension Ui recueillie aux bornes de sa bobine sera d'une amplitude suffisamment élevée pour décider qu'on doit continuer à l'alimenter avec des impulsions de faible largeur. Il en va autrement si l'on applique le système décrit dans la demande citée à un moteur à zones saturables. La figure 2 montre schématiquement un tel moteur où les pôles du stator sont réunis par des isthmes 4. Dans ce cas, on voit que le flux créé par l'aimant se partage en un flux if passant par les isthmes et en un flux φab passant par le noyau de la bobine. Il ressort de ceci que si l'on applique le système de la demande citée (c'est-à-dire qu'on mesure 1a tension Ui aux bornes d'unebobine mise à circuit ouvert) à un moteur à zones saturables, on recueillera une tension induite de faible amplitude, ce qui n'est évidemment pas favorable au bon fonctionnement de l'électronique de commande.Then, if the system of the cited request is well suited to a stepping motor whose poles of the stator are separated by an air gap, it is much less so to a motor known as with saturable zones whose poles are joined by isthmus narrow. Figure 1 of this presentation schematically shows a motor whose stator poles are separated by air gaps 1. In this case, all of the JSab flux from the magnetic rotor 2 passes through the core of the coil 3 to produce at the terminals of this coil a induced voltage Ui when the rotor is moving. In application EP 0 022 270, provision is made to measure the induced voltage Ui immediately after the end of the driving pulse, the coil being placed in open circuit. If the air-gap motor receives a pulse of correct polarity, the voltage Ui collected across its coil will be of a sufficiently high amplitude to decide that it must continue to supply it with pulses of small width. It is a different matter if the system described in the cited application is applied to an engine with saturable zones. Figure 2 shows schematically such a motor where the poles of the stator are joined by isthmus 4. In this case, we see that the flux created by the magnet is divided into a flux i f passing through the isthmus and into a flux φ ab passing through the coil core. It follows from this that if we apply the quoted demand system (that is to say that we measure the voltage Ui at the terminals of an open circuit coil) to a motor with saturable zones, we will collect a low amplitude induced voltage, which is obviously not favorable to the proper functioning of the control electronics.

Enfin, puisque la demande citée n'envisage une détection de tension induite qu'après les seules impulsions de faible largeur où on peut détecter une tension d'amplitude confortable, on ne sait rien du procédé qu'il faudrait mettre en oeuvre si l'on voulait détecter une tension encore suffisante produite après une impulsion de plus longue durée, tant il est vrai, comme cela apparaîtra par la suite, que la tension induite diminue rapidement lorsque l'impulsion de commande s'allonge.Finally, since the cited request envisages an induced voltage detection only after the only pulses of small width where it is possible to detect a voltage of comfortable amplitude, nothing is known of the process which should be implemented if the we wanted to detect a still sufficient voltage produced after a longer pulse, as it is true, as will appear later, that the induced voltage decreases rapidly when the control pulse is extended.

C'est le but de la présente invention de remédier aux inconvénients qui viennent d'être cités en proposant un procédé et un dispositif pour la mise en oeuvre de ce procédé qui apparaissent dans les revendications.It is the object of the present invention to remedy the drawbacks which have just been mentioned by proposing a method and a device for implementing this method which appear in the claims.

L'invention sera mieux comprise maintenant à la lumière de la description qui suit et pour l'intelligence de laquelle on se référera, à titre d'exemple, au dessin dans lequel :

  • La figure 1 est une représentation schématique d'un moteur connu dont les pôles du stator sont séparés par des entrefers.
  • La figure 2 est une représentation schématique d'un moteur connu dont les pôles du stator sont séparés par des isthmes.
  • La figure 3 est un diagramme représentant les diverses impulsions appliquées au moteur selon une première variante de l'invention.
  • La figure 4 est un diagramme représentant les diverses impulsions appliquées au moteur selon une seconde variante de l'invention.
  • La figure 5 est un graphique représentant les couples mutuel et de positionnement du moteur en fonction de la position 0{ de son rotor.
  • La figure 6 est un diagramme montrant comment est alimenté le moteur par des impulsions de sécurité selon l'invention.
  • La figure 7 montre le dispositif permettant de mettre en oeuvre le procédé selon l'invention.
  • La figure 8 est un graphique qui représente les diverses tensions que l'on trouve aux bornes de la bobine du moteur de même que le courant qui la traverse.
  • La figure 9 est une représentation schématique d'un moteur dont les pôles du stator sont séparés par des isthmes auquel est appliqué le dispositif selon l'invention.
  • La figure 10 est un graphique qui montre comment évolue l'amplitude de la tension induite quand l'impulsion motrice s'allonge.
  • La figure 11 est un graphique qui montre comment on procède pour mesurer la tension induite quand l'impulsion de commande dépasse une durée déterminée.
  • La figure 12 est un diagramme illustrant les diverses durées d'impulsion qui se présentent dans l'alimentation du moteur selon l'invention.
The invention will now be better understood in the light of the following description and for the understanding of which reference will be made, by way of example, to the drawing in which:
  • Figure 1 is a schematic representation of a known motor whose poles of the stator are separated by air gaps.
  • Figure 2 is a schematic representation of a known motor whose poles of the stator are separated by isthmus.
  • FIG. 3 is a diagram representing the various pulses applied to the motor according to a first variant of the invention.
  • FIG. 4 is a diagram representing the various pulses applied to the motor according to a second variant of the invention.
  • FIG. 5 is a graph showing the mutual and positioning torques of the motor as a function of the position 0 {of its rotor.
  • FIG. 6 is a diagram showing how the motor is supplied with safety pulses according to the invention.
  • Figure 7 shows the device for implementing the method according to the invention.
  • Figure 8 is a graph showing the various voltages found across the motor coil as well as the current flowing through it.
  • Figure 9 is a schematic representation of a motor whose poles of the stator are separated by isthmus to which the device according to the invention is applied.
  • FIG. 10 is a graph which shows how the amplitude of the induced voltage changes when the driving pulse lengthens.
  • FIG. 11 is a graph which shows how one proceeds to measure the induced voltage when the control pulse exceeds a determined duration.
  • FIG. 12 is a diagram illustrating the various pulse durations which occur in the supply of the motor according to the invention.

On se reportera d'abord au diagramme de la figure 3 pour comprendre comment on procède pour asservir le moteur pas à pas selon une première variante de l'invention. Les impulsions référencées n - 2 à n + 4 sont les impulsions de commande que reçoit la bobine du moteur. Le début de chacune d'elles est séparé par un laps de temps constant, par exemple une seconde, ce qui fait progresser l'aiguille des secondes de la montre par pas de une seconde. Ce signal d'horloge provient de la sortie d'une chaîne de diviseurs de fréquence alimentée elle-même par un oscillateur formant base de temps selon une disposition désormais bien connue.We will first refer to the diagram in FIG. 3 to understand how we proceed to control the stepping motor according to a first variant of the invention. The pulses referenced n - 2 to n + 4 are the control pulses received by the motor coil. The start of each of them is separated by a constant period of time, for example one second, which advances the seconds hand of the watch in steps of one second. This clock signal comes from the output of a chain of frequency dividers which is itself supplied by a time base oscillator according to an arrangement which is now well known.

Dans les conditions de marche optimum, c'est-à-dire lorsque les évènements contraignants dont il a été parlé plus haut ne se présentent pas, le moteur travaille pratiquement à vide et une impulsion de très faible largeur Tl, telle celle représentée en n - 2 sur le diagramme, suffit à faire avancer normalement l'aiguille des secondes. On va supposer maintenant qu'après l'impulsion n - 2, à laquelle le moteur a encore répondu, le couple mécanique augmente subitement dû au concours conjugué de plusieurs événements contraignants. Le rotor ne réagira donc pas à l'impulsion n - 1 et lors de l'arrivée de 1a prochaine impulsion n, il ne réagira pas non plus puisque pour le faire progresser il lui faudrait recevoir à ce moment-là une impulsion de signe négatif. Ainsi, le rotor a perdu deux pas qu'il s'agit de rattraper. Selon l'idée déjà exprimée dans la demande EP 0 022 270, on envoie au moteur pour rattraper ce retard deux impulsions de rattrapage de grande largeur Ta un court laps de temps après la fin de l'impulsion n. Comme on le voit sur la figure 3, la première impulsion de rattrapage se présente dans le même sens que l'impulsion n-1 et la seconde dans le sens opposé de telle sorte que les impulsions de grande largeur Ta se substituent en quelque sorte aux impulsions de commande n - 1 et n de largeur Tl qui n'ont pas été à même de faire progresser le rotor du moteur. La durée Ta est choisie naturellement assez longue pour provoquer à coup sûr la progression du rotor dans les conditions de charge les plus défavorables. Le graphique de la figure 3 exagère cependant cette durée Ta par rapport à la durée Tl dans le but de bien faire ressortir le fonctionnement du système. L'invention présente l'originalité, par rapport à l'invention revendiquée dans la demande déjà citée, de ne pas poursuivre avec un train d'impulsions fixes de grande largeur sitôt après les impulsions de rattrapage, mais d'allonger quelque peu l'impulsion de commande de durée Tl en durée T2 et d'essayer si cette nouvelle impulsion pourrait être de durée suffisamment longue pour faire tourner le rotor. Si tel n'est pas le cas, on fait suivre les nouvelles impulsions n+1 et n + 2 de durée T2 par deux nouvelles impulsions de rattrapage de durée Ta comme cela est illustré en figure 3. A leur tour, les impulsions de rattrapage sont suivies par de nouvelles impulsions de commande n + 3, n + 4 de durée T3 légèrement supérieure à la durée T2. Si elles sont capables de mettre le moteur en rotation, on poursuit avec les impulsions de durée T3, sinon on envoie les impulsions de rattrapage pour procéder ensuite avec des impulsions de largeur T4 ou T3 < T4 et ainsi de suite.In optimum operating conditions, that is to say when the constraining events of which we have spoken above do not occur, the motor works practically at no load and a very small width pulse T l , such as that shown in n - 2 on the diagram, is enough to advance the second hand normally. We will now assume that after the impulse n - 2, to which the motor has responded again, the mechanical torque suddenly increases due to the combined effect of several constraining events. The rotor will therefore not react to impulse n - 1 and when the next impulse n arrives, it will not react either since to make it progress it would have to receive at this time a negative sign impulse . Thus, the rotor has lost two steps that need to be caught. According to the idea already expressed in the application EP 0 022 270, two very large catch-up pulses T are sent to the motor to make up for this delay at a short time after the end of the pulse n. As seen in Figure 3, the first catch-up pulse is in the same direction as the n-1 pulse and the second in the opposite direction so that the wide width pulses T a are somehow substituted to the control pulses n - 1 and n of width T l which were not able to advance the rotor of the motor. The duration T a is naturally chosen to be long enough to cause the rotor to progress under the most unfavorable load conditions. The graph in Figure 3 exaggerates however this duration T a compared to the duration T l in order to clearly highlight the functioning of the system. The invention has the originality, compared to the invention claimed in the application already cited, not to continue with a train of fixed pulses of large width immediately after the catching pulses, but to lengthen somewhat the control pulse of duration T l in duration T 2 and of trying if this new pulse could be of duration long enough to turn the rotor. If this is not the case, the new pulses n + 1 and n + 2 of duration T 2 are followed by two new catch-up pulses of duration T a as illustrated in FIG. 3. In turn, the pulses take-up are followed by new control pulses n + 3, n + 4 of duration T 3 slightly greater than the duration T 2 . If they are able to put the motor in rotation, we continue with the pulses of duration T 3 , otherwise we send the catch-up pulses to then proceed with pulses of width T 4 or T 3 <T 4 and so on.

Ainsi, le procédé qui vient d'être décrit montre qu'on adapte la durée des impulsions de commande à la charge imposée au moteur par niveaux successifs montants lorsque la charge augmente. Le procédé permet donc d'économiser de l'énergie et ceci dans des proportions encore plus importantes que si l'on n'avait à disposition que deux types d'impulsions seulement, comme cela était prévu dans la demande citée. Dans une réalisation particulière, on a choisi six impulsions différentes dont les durées motrices s'étendent de 3 à 9 ms par niveaux successifs montants de 0,5 ms pour les trois premières, de 1,5 ms pour les quatrième et cinquième et de 2 ms pour la sixième. Dans cette même réalisation, la durée de l'impulsion de rattrapage a été choisie à 8 ms. Ceci apparaîtra plus en détail lorsqu'on expliquera le diagramme représenté en figure 12.Thus, the process which has just been described shows that the duration of the control pulses is adapted to the load imposed on the motor by successive rising levels when the load increases. The process therefore makes it possible to save energy and this in even greater proportions than if only two types of pulses were available, as provided for in the cited application. In a particular embodiment, six different pulses have been chosen whose motor durations range from 3 to 9 ms in successive levels of 0.5 ms for the first three, 1.5 ms for the fourth and fifth and 2 ms for the sixth. In this same embodiment, the duration of the catch-up pulse was chosen at 8 ms. This will appear in more detail when the diagram shown in Figure 12 is explained.

On va supposer maintenant que, pour des impulsions n + 3, n + 4, etc., de durée T3, le moteur progresse normalement sans détection d'absence de pas. On peut penser qu'au bout d'une période prédéterminée les évènements contraignants qui avaient fait passer la durée des impulsions de Tl à T3 ont cessé. On va donc faire descendre la durée des impulsions de commande de T3 à T2. Si le résultat est satisfaisant pendant une même période prédéterminée, on pourra encore baisser d'un niveau et passer de la durée T2 à la durée Tl. Ladite période prédéterminée sera choisie à la suite d'observations qui auront été conduites sur la marche de la pièce d'horlogerie en fonction des diverses circonstances qui peuvent se présenter. Elle a été choisie dans la réalisation particulière dont il a été question plus haut à 512 secondes. En résumé, on adapte la durée des impulsions de commande à la charge imposée au moteur par niveaux successifs descendants lorsque la charge diminue.We will now assume that, for pulses n + 3, n + 4, etc., of duration T 3 , the motor progresses normally without detecting the absence of steps. One can think that at the end of a predetermined period the constraining events which had made pass the duration of the impulses from T l to T 3 stopped. We will therefore lower the duration of the control pulses from T 3 to T 2 . If the result is satisfactory during the same predetermined period, it will be possible to further decrease by one level and go from the duration T 2 to the duration T l . Said period predetermined will be chosen following observations that have been conducted on the running of the timepiece depending on the various circumstances that may arise. It was chosen in the particular realization which was mentioned above at 512 seconds. In summary, the duration of the control pulses is adapted to the load imposed on the motor by successive descending levels when the load decreases.

La figure 4 présente une seconde variante du procédé selon l'invention où, après l'envoi de deux impulsions de rattrapage, on alimente encore le moteur par une paire d'impulsions de même durée que celle qui existait avant la correction. Dans la figure, les impulsions de commande n + 1 et n + 2 ont la même durée Tl que celle des impulsions n - 1 et n. On peut penser en effet qu'en certaines circonstances les évènements contraignants ont un caractère fugitif tel qu'ils disparaissent très rapidement. Une tentative de réalimenter le moteur une seconde fois par des impulsions dont la durée n'a pas fait progresser son rotor une première fois peut être fructueuse.car,si la tentative aboutit, on aura évité une augmentation de consommation due à un élargissement inutile des impulsions de commande. Si la tentative n'aboutit pas, on alimente le moteur avec des impulsions de durée plus longue T2 après lui avoir envoyé les deux impulsions de rattrapage.FIG. 4 presents a second variant of the method according to the invention where, after sending two catch-up pulses, the motor is still supplied with a pair of pulses of the same duration as that which existed before the correction. In the figure, the control pulses n + 1 and n + 2 have the same duration T l as that of the pulses n - 1 and n. One might think, in fact, that in certain circumstances, binding events are of a fleeting nature such that they disappear very quickly. An attempt to refuel the motor a second time with pulses the duration of which did not advance its rotor the first time can be fruitful. For, if the attempt succeeds, an increase in consumption will have been avoided due to an unnecessary widening of the control pulses. If the attempt is unsuccessful, the motor is supplied with pulses of longer duration T 2 after having sent the two catch-up pulses.

Cette seconde variante n'est pas limitée à l'envoi renouvelé d'une seule paire d'impulsions de même durée Tl et on comprendra que des moyens peuvent être mis en oeuvre pour continuer à alimenter le moteur avec les impulsions Tl tant qu'un nombre donné d'impulsions de rattrapage n'aura pas été compté dans un intervalle prédéterminé. Ainsi, par exemple, on peut décider que si le rotor a manqué quatre fois son pas pendant 60 secondes, ces pas manqués ayant été suivis par quatre impulsions de rattrapage, on alimente alors le moteur par des impulsions de durée T2.This second variant is not limited to the renewed sending of a single pair of pulses of the same duration T l and it will be understood that means can be used to continue supplying the motor with the pulses T l as long as a given number of catch-up pulses will not have been counted in a predetermined interval. Thus, for example, it can be decided that if the rotor has missed its pitch four times for 60 seconds, these missed steps having been followed by four catch-up pulses, the motor is then supplied with pulses of duration T 2 .

Puisque dans le procédé décrit, on fait en sorte que la durée des impulsions de commande soit juste suffisante pour entraîner le mécanisme, on s'est rendu compte que dans certains cas, assez rares il est vrai, le rotor, après avoir démarré normalement à la suite d'une impulsion de polarité correcte, s'arrête après avoir parcouru un demi-pas seulement.Since in the process described, we make sure that the duration of the control pulses is just sufficient to drive the mechanism, we have realized that in some cases, quite rare it is true, the rotor, after starting normally at following a pulse of correct polarity, stops after having traveled only half a step.

La figure 5 montre l'évolution du couple de positionnement Ca et du couple mutuel Cab-tels qu'on les trouve dans un moteur pas à pas. Les positions angulaires S'2, S1 et S2 sont les positions d'équilibre stable du rotor et les positions I'1 et Il sont les positions d'équilibre instable de ce rotor. Normalement si le rotor franchit son pas en réponse à une impulsion positive, il passe de la position S1 à la position S2. Dans le cas particulier qui vient d'être évoqué, il se peut donc que le rotor s'arrête en position Il qui ne représente qu'une course d'un demi-pas. Bien que cette position soit instable, il est possible que le rotor s'y maintienne par les frottements qui agissent sur lui. Si avant que ne survienne la prochaine impulsion de commande une perturbation quelconque est appliquée à la montre, le rotor soit reculera en position Sl, soit avancera en position 52. Dans le premier cas, la nouvelle impulsion de commande présentera une polarité incorrecte et les impulsions de rattrapage Ta feront rattraper les deux pas perdus. Dans le second cas, le rotor aura rat- trappé lui-même le pas perdu et aucune impulsion de rattrapage ne lui sera envoyée. La situation se présente différemment si le rotor reste fixé sur la position Il quand survient la prochaine impulsion. En effet, cette prochaine impulsion négative développe le couple mutuel -Cab qui se trouve être dans le même sens que le couple négatif de positionnement -Ca. Si le couple -Cab est très élevé, il est possible alors que, conjugué au couple -Ca, il développe assez d'énergie pour déplacer le rotor de la position Il à la position S'2 sans s'arrêter à la position S1, ce déplacement s'opérant sans qu'il y ait eu détection de polarité incorrecte. Le rotor se fixe de façon stable en position S'2. A partir de ce moment-là, la prochaine impulsion, dirigée dans le sens positif, développera le couple mutuel Cab dessiné en traits interrompus et le rotor progressera normalement. On tire de ce raisonnement que le rotor a perdu définitivement deux pas qu'il ne sera pas possible de rattraper.FIG. 5 shows the evolution of the positioning torque Ca and of the mutual torque Cab-such as they are found in a stepping motor. The angular positions S ' 2 , S 1 and S 2 are the stable equilibrium positions of the rotor and the positions I' 1 and Il are the unstable equilibrium positions of this rotor. Normally if the rotor takes its step in response to a positive impulse, it goes from position S 1 to position S 2 . In the particular case which has just been mentioned, it is therefore possible for the rotor to stop in position II, which represents only a half-step stroke. Although this position is unstable, it is possible that the rotor is maintained there by the friction which acts on it. If before the next command pulse occurs any disturbance is applied to the watch, the rotor will either move back to position S l or move to position 5 2 . In the first case, the new control pulse will have an incorrect polarity and the catch-up pulses T a will make up for the two lost steps. In the second case, the rotor will have caught the lost step itself and no catch-up pulse will be sent to it. The situation is different if the rotor remains fixed in position II when the next pulse occurs. Indeed, this next negative impulse develops the mutual torque -Cab which happens to be in the same direction as the negative positioning torque -Ca. If the torque -Cab is very high, it is possible then that, combined with the torque -Ca, it develops enough energy to move the rotor from position Il to position S ' 2 without stopping at position S 1 , this movement taking place without having detected an incorrect polarity. The rotor is fixed stably in position S ' 2 . From this moment, the next impulse, directed in the positive direction, will develop the mutual torque Cab drawn in broken lines and the rotor will progress normally. We draw from this reasoning that the rotor has definitely lost two steps that it will not be possible to catch up with.

La figure 6 montre un arrangement qui palie l'inconvénient cité en proposant selon l'invention d'envoyer à la bobine du moteur un laps de temps prédéterminé après la fin de l'impulsion de commande de durée Tt, une impulsion de sécurité de durée Ts. Si l'on se reporte de nouveau à la figure 5, on comprendra que,si le rotor est bloqué en position I1, il suffira d'une impulsion de durée très courte pour le faire parvenir soit en S1 soit en S2. Une impulsion de sécurité négative le ramènera en S1 et la prochaine impulsion de commande normale se présentera comme incorrecte, ce qui déclenchera les deux impulsions de rattrapage comme cela a été expliqué plus haut. Une impulsion de sécurité positive amènera le rotor en S2; dans ce cas, la prochaine impulsion de commande se présentera comme correcte et aucun rattrapage n'aura lieu. Dans la pratique, on préférera une impulsion de sécurité négative car il faut moins d'énergie pour amener le rotor de la position Il à la position S1 que de la position Il à la position S2. Dans un exemple de réalisation de l'invention, on choisit pour Ts une durée comprise entre 0,2 et 0,5 ms et pour le laps de temps séparant la fin de l'impulsion de commande de l'impulsion de sécurité une durée de l'ordre de 50 ms.FIG. 6 shows an arrangement which overcomes the disadvantage cited by proposing according to the invention to send to the motor coil a predetermined period of time after the end of the duration control pulse Tt, a safety pulse of duration T s . Referring again to FIG. 5, it will be understood that, if the rotor is locked in position I 1 , a pulse of very short duration will suffice for the send either in S 1 or in S 2 . A negative safety pulse will bring it back to S 1 and the next normal command pulse will show up as incorrect, which will trigger the two catch-up pulses as explained above. A positive safety pulse will bring the rotor to S 2 ; in this case, the next command pulse will appear to be correct and no catch-up will take place. In practice, a negative safety pulse will be preferred since it takes less energy to bring the rotor from position Il to position S 1 than from position Il to position S 2 . In an exemplary embodiment of the invention, a duration between 0.2 and 0.5 ms is chosen for T s and for the period of time separating the end of the control pulse from the safety pulse a duration of the order of 50 ms.

On vient d'expliquer comment les diverses impulsions de commande sont arrangées les unes par rapport aux autres, comment leurs durées s'adaptent à la charge présentée par le mécanisme et comment il convient de rattraper les pas perdus. Ceci présuppose naturellement qu'on dispose de moyens pour détecter les pas qui n'ont pas été franchis. Dans la demande EP 0 022 270, on base cette détection sur la polarité de l'impulsion de commande par rapport à la position du rotor et, si le moteur est du type à entrefer, on mesure la tension induite Ui recueillie aux bornes de la bobine, cette dernière étant mise en circuit ouvert. Si le moteur reçoit une impulsion dirigée dans le bon sens, on mesure une tension induite Ui de grande amplitude alors que cette tension est nulle, voire négative si l'impulsion est dirigée dans le mauvais sens. On a exposé dans le préambule l'inconvénient qu'il y avait à mesurer cette tension à circuit ouvert pour un moteur qui présente des zones saturables puisque l'amplitude de ladite tension est relativement faible.We have just explained how the various control pulses are arranged with respect to each other, how their durations adapt to the load presented by the mechanism and how it is necessary to make up for lost steps. This naturally presupposes that we have means to detect the steps that have not been taken. In application EP 0 022 270, this detection is based on the polarity of the control pulse relative to the position of the rotor and, if the motor is of the air gap type, the induced voltage Ui collected at the terminals of the coil, the latter being placed in open circuit. If the motor receives a pulse directed in the right direction, a large amplitude induced voltage Ui is measured while this voltage is zero, or even negative if the pulse is directed in the wrong direction. We have explained in the preamble the drawback that there was in measuring this open circuit voltage for a motor which has saturable zones since the amplitude of said voltage is relatively low.

La figure 7 montre le dispositif mis en oeuvre pour obtenir une tension Ui très confortable même si le moteur est du type à zones saturables. Le schéma présenté ne se distingue de l'état de la technique que par l'adjonction d'une résistance 40 branchée en série avec la bobine 15 du moteur, résistance qui peut être court-circuitée lorsqu'on ferme l'interrupteur 35. Dans ce schéma, on trouve entre les bornes référencées 41 et 42 des impulsions de commande alternées d'amplitude U en provenance de la source d'alimentation continue Uplivrée par la pile lorsque les interrupteurs 31-32, respectivement 33-34 sont fermés. Si l'on définit par TRB la durée pendant laquelle la seule bobine 15 est branchée aux bornes 41 et 42, par Tx la durée pendant laquelle l'ensemble bobine 15 - résistance 40 est branché auxdites bornes et par Tcc la durée pendant laquelle la bobine 15 est mise en court-circuit, la séquence de commande des interrupteurs s'établit selon le tableau ci-après pour une impulsion positive :

Figure imgb0001
FIG. 7 shows the device used to obtain a very comfortable voltage Ui even if the motor is of the type with saturable zones. The diagram presented differs from the prior art only by the addition of a resistor 40 connected in series with the coil 15 of the motor, which resistor can be short-circuited when the switch 35 is closed. this diagram, there are between the terminals referenced 41 and 42 alternating control pulses of amplitude U coming from the continuous power source Uplivré by the battery when the switches 31-32, respectively 33-34 are closed. If we define by T RB the duration during which the only coil 15 is connected to terminals 41 and 42, by T x the duration during which the coil 15 - resistor 40 assembly is connected to said terminals and by T cc the duration during which the coil 15 is short-circuited, the switch control sequence is established according to the table below for a positive pulse:
Figure imgb0001

Dans les techniques actuelles, se sont des transistors qui jouent le rôle des interrupteurs. Ils reçoivent leurs signaux d'un circuit de mise en forme classique.In current techniques, they are transistors which play the role of switches. They receive their signals from a conventional shaping circuit.

On se reportera maintenant à la figure 8 pour comprendre le rôle joué par la résistance additionnelle 40. Dans ce graphique, on a représenté en trait plein l'impulsion de commande U qu'on trouve aux bornes 41 et 42 (voir figure 7). Cette impulsion de commande est présente tant que les interrupteurs 31 et 32 sont fermés, c'est-à-dire pendant la période TRB et la période Tx (voir tableau ci-dessus). On désigne la durée de cette impulsion par Tn. Pendant la période TRB, la résistance 40 est court-circuitée et la bobine 15 reçoit une tension UB, représentée en traits interrompus, identique à la tension U si l'on fait abstraction de la faible chute de tension qui existe aux bornes de l'interrupteur 35. Cette tension UB est aussi à peu de chose près celle que l'on trouve aux bornes de la pile (Up). UB est la tension motrice seule utile à entraîner le rotor. Pendant la période Tx, la résistance 40 est branchée en série avec la bobine 15, l'interrupteur 35 est ouvert. C'est la période de mesure destinée à prélever aux bornes de la bobine la tension induite Ui développée par le moteur.We will now refer to FIG. 8 to understand the role played by the additional resistor 40. In this graph, we have shown in solid lines the control pulse U which is found at terminals 41 and 42 (see FIG. 7). This control pulse is present as long as the switches 31 and 32 are closed, that is to say during the period T RB and the period T x (see table above). The duration of this pulse is designated by T n . During the period T RB , the resistor 40 is short-circuited and the coil 15 receives a voltage U B , shown in broken lines, identical to the voltage U if we disregard the low voltage drop which exists across the terminals of the switch 35. This voltage U B is also about the same as that found at the terminals of the battery (Up). U B is the only driving voltage useful to drive the rotor. During the period T x , the resistor 40 is connected in series with the coil 15, the switch 35 is open. It is the period of measurement intended to take at the terminals of the coil the induced voltage Ui developed by the motor.

La figure 9 représente le comportement du moteur pendant la période de mesure Tx. On s'y référera en même temps qu'aux figures 7 et 8. On l'a déjà dit, dès le début de la période Tx, la tension de commande U est appliquée aux bornes 41 et 42 du circuit qui comprend la bobine 3 et la résistance 40 connectées en série. On choisit la valeur de la résistance 40 de manière à engendrer dans la bobine 3 un courant LSAT qui, à son tour, va produire un flux φb suffisant pour saturer les isthmes 4 du stator. Dès l'instant où ces isthmes sont saturés, la quasi totalité du flux φab créé par l'aimant passe par le noyau de la bobine 3. Le flux Èab produit aux bornes de la bobine une tension induite

Figure imgb0002
où Nb représente le nombre de spires de la bobine. On se retrouve ainsi dans des conditions semblables a celles qui ont été décrites dans la demande EP 0 022 270 dans laquelle à une tension Ui importante correspond l'application d'une impulsion de polarité correcte au moteur. Cette situation est illustrée sur la figure 8 qui montre qu'à un moment prédéterminé tx de la période Tx, la tension Ui, représentée en traits interrompus, est de grande amplitude en suite de quoi on continuera à alimenter le moteur avec les mêmes impulsions de commande de largeur Tn. En pratique, on mesurera la tension induite Ui dans un intervalle TUi compris dans la période Tx, intervalle qui peut embrasser, par exemple, les deux derniers tiers de la période Tx. La figure 8 montre aussi que le courant
Figure imgb0003
SAT pendant la période de mesure Tx est de faible amplitude bien que suffisante cependant pour saturer les isthmes. Cet artifice qui consiste à brancher une résistance en série avec la bobine du moteur ne consomme donc qu'une énergie négligeable puisque le courant nécessaire est très faible et que la durée pendant laquelle ce courant est développé est réduite à une faible fraction de la durée totale de l'impulsion de commande. Enfin, pendant le temps qui sépare la fin de l'impulsion de commande et l'arrivée d'une nouvelle impulsion, la bobine est court-circuitée, comme c'est l'usage habituellement pour amortir le mouvement du rotor.FIG. 9 shows the behavior of the motor during the measurement period T x . We will refer to it at the same time as in FIGS. 7 and 8. As already said, from the start of the period T x , the control voltage U is applied to the terminals 41 and 42 of the circuit which includes the coil 3 and the resistor 40 connected in series. The value of the resistor 40 is chosen so as to generate in the coil 3 a current LS AT which, in turn, will produce a flux φb sufficient to saturate the isthmus 4 of the stator. As soon as these isthmus are saturated, almost all of the flux φab created by the magnet passes through the core of the coil 3. The flux Èab produces an induced voltage across the coil
Figure imgb0002
where N b represents the number of turns of the coil. We thus find ourselves in conditions similar to those which have been described in application EP 0 022 270 in which a high voltage Ui corresponds to the application of a pulse of correct polarity to the motor. This situation is illustrated in FIG. 8 which shows that at a predetermined time t x of the period T x , the voltage Ui, shown in dashed lines, is of large amplitude as a result of which the motor will continue to be supplied with the same width control pulses T n . In practice, the induced voltage Ui will be measured in an interval T U i included in the period T x , an interval which may embrace, for example, the last two thirds of the period T x . Figure 8 also shows that the current
Figure imgb0003
SAT during the measurement period T x is of low amplitude although sufficient however to saturate the isthmus. This device which consists in connecting a resistor in series with the motor coil therefore consumes only negligible energy since the necessary current is very low and the time during which this current is developed is reduced to a small fraction of the total time of the command pulse. Finally, during the time between the end of the control pulse and the arrival of a new pulse, the coil is short-circuited, as is customary to dampen the movement of the rotor.

Comme on le verra plus loin, la méthode qui vient d'être décrite ne convient que pour des impulsions de commande dont la durée Tn est relativement courte. Ceci étant, on peut résumer ce qui vient d'être dit en affirmant que, pour des impulsions de commande dont la largeur est égale ou inférieure à la durée Tn, on branche une résistance en série avec la bobine du moteur pendant une période Tx située immédiatement avant la fin de l'impulsion de commande U et qu'on mesure durant ladite période Tx pendant un intervalle prédéterminé TUi la tension induite aux bornes de la bobine du moteur.As will be seen below, the method which has just been described is only suitable for control pulses whose duration T n is relatively short. That said, we can summarize what has just been said by asserting that, for control pulses whose width is equal to or less than the duration T n , a resistor is connected in series with the motor coil during a period T x located immediately before the end of the control pulse U and that during said period T x is measured during a predetermined interval T U i the voltage induced across the terminals of the motor coil.

Pour donner un exemple pratique, on choisit pour la période TRB la plus courte une durée de 3 ms et pour la période Tx une durée de 1 ms tandis que la valeur de la résistance 40 est de 15 kΩ pour une résistance de la bobine de 3 kt2.To give a practical example, we choose for the shortest period T RB a duration of 3 ms and for the period T x a duration of 1 ms while the value of the resistance 40 is 15 kΩ for a resistance of the coil 3 kt2.

Si le procédé qui vient d'être décrit a spécialement été développé pour un moteur à zones saturables, il pourrait aussi être appliqué à un moteur à entrefers bien que cela pourrait être ressenti comme un luxe inutile puisqu'il suffit, comme on l'a dit, de mesurer pour ce dernier type de moteur la tension Ui immédiatement après la fin de l'impulsion Ug, la bobine étant disposée à circuit ouvert. Cependant l'universalité du procédé permettrait d'utiliser le même circuit électronique de commande pour les deux types de moteur, ce qui irait dans le sens d'une simplification et d'une diminution de prix de revient.If the process which has just been described has been specially developed for an engine with saturable zones, it could also be applied to an engine with air gaps although this could be felt as an unnecessary luxury since it suffices, as we have said, to measure for this latter type of motor the voltage Ui immediately after the end of the pulse Ug, the coil being arranged in open circuit. However, the universality of the process would make it possible to use the same electronic control circuit for the two types of engine, which would go in the direction of a simplification and a reduction in cost price.

On vient d'expliquer comment on mesure la tension induite Ui aux bornes de la bobine du moteur en saturant préalablement ses isthmes si l'on a affaire à un moteur à zones saturables. On a rappelé également l'enseignement de la demande EP 0 022 270 où cette tension induite est mesurée immédiatement après l'impulsion motrice, la bobine étant disposée à circuit ouvert. On a expliqué dans la demande citée que la tension Ui est égale à

Figure imgb0004
où Ω est la vitesse angulaire du rotor et Cab/i est le facteur de couplage. Si l'on se reporte encore une fois à la figure 5, on se rend compte qu'au-delà d'une certaine position angulaire correspondant à une durée d'impulsion limite la tension Ui se situera au-dessous d'une valeur exploitable puisque le facteur de couplage Cab/i diminue. Or, comme il est nécessaire d'augmenter la durée des impulsions de commande si l'on désire augmenter le couple mécanique que pourra fournir le moteur, il arrivera bien un moment où la durée de l'impulsion de commande sera trop longue pour que la bobine puisse fournir une tension de détection qui soit encore exploitable.We have just explained how the induced voltage Ui is measured across the motor coil by saturating its isthmus beforehand if we are dealing with a motor with saturable zones. The teaching of application EP 0 022 270 was also recalled, where this induced voltage is measured immediately after the driving pulse, the coil being arranged in open circuit. It was explained in the cited application that the voltage Ui is equal to
Figure imgb0004
where Ω is the angular speed of the rotor and Cab / i is the coupling factor. If we refer again to Figure 5, we realize that beyond a certain angular position corresponding to a pulse duration limit the voltage Ui will be below an exploitable value since the Cab / i coupling factor decreases. However, as it is necessary to increase the duration of the control pulses if it is desired to increase the mechanical torque that will be able to supply the motor, there will come a time when the duration of the control pulse will be too long for the coil to be able to supply a detection voltage which is still usable.

La figure 10 illustre le phénomène qui vient d'être expliqué et montre comment diminue l'amplitude de la tension Ui lorsque l'impulsion UB s'allonge. On constate qu'aux impulsions motrices de durée croissante UB1, UB2 et UB3 correspondent respectivement les tensions induites Uil, Ui2 et Ui3, le maximum desdites tensions se situant sur une enveloppe dont l'allure est représentative du facteur de couplage Cab/i, à la vitesse près. Pour l'impulsion UB4, la figure montre qu'aucune tension induite n'est détectée. Si l'on admet que la tension induite Ui3 suivant l'impulsion UB3 est déjà impropre à faire fonctionner correctement 1e circuit de réglage puisqu'elle présente une faible amplitude, il faudra avoir recours à un artifice qui permette une détection sûre pour toutes les impulsions de commande dont la largeur dépasse la durée limite Tn.FIG. 10 illustrates the phenomenon which has just been explained and shows how the amplitude of the voltage Ui decreases when the pulse U B lengthens. It can be seen that the driving pulses of increasing duration U B1 , U B2 and U B3 correspond respectively to the induced voltages Ui l , Ui 2 and Ui 3 , the maximum of said voltages being located on an envelope whose shape is representative of the factor of Cab / i coupling, to the nearest speed. For the pulse U B4 , the figure shows that no induced voltage is detected. If it is admitted that the induced voltage Ui 3 following the pulse U B3 is already unsuitable for making the regulation circuit work correctly since it has a low amplitude, it will be necessary to have recourse to a device which allows safe detection for all control pulses whose width exceeds the limit duration T n .

La figure 11 montre comment on procède selon l'invention pour palier l'inconvénient cité. Dans ce graphique, l'impulsion de commande U est composée de deux impulsions motrices UB et Uc séparées par une période Tx pendant laquelle on mesure la tension induite selon le procédé qui a été expliqué plus haut. Ainsi, si la largeur Tt de l'impulsion de commande U est supérieure à la durée Tn à partir de laquelle l'amplitude de la tension induite Ui serait insuffisante ou nulle, on mesure ladite tension induite Ui pendant un intervalle TUi compris dans la période Tx précédant immédiatement la fin de la période Tn. En d'autres termes, si la durée Tt de l'impulsion U nécessaire à faire progresser le rotor est trop longue pour qu'on puisse détecter une tension induite d'amplitude suffisante, comme cela a été expliqué plus haut, on ouvre une fenêtre dans ladite impulsion U et on mesure dans cette fenêtre la tension induite. Il va de soi que l'emplacement de cette fenêtre est choisi en un endroit où l'amplitude de la tension induite est encore importante. Cette fenêtre est réalisée en branchant une résistance en série avec la bobine pendant la période Tx (résistance 40 de la figure 7) s'il s'agit d'unmoteur à zones saturables (figure 2). Dans ce cas, la séquence de.commande des interrupteurs montrés en figure 7 s'établit selon le tableau ci-dessous :

Figure imgb0005
Il faut mentionner que la méthode avec fenêtre convient aussi parfaitement si on l'applique à un moteur avec entrefers (voir figure 1) où le phénomène d'extinction de la tension induite existe également quand l'impulsion de commande s'allonge. Dans ce cas, on peut très bien ne rien changer au schéma de la figure 7 et à la séquence du tableau ci-dessus si l'on veut utiliser une électronique de commande commune aux deux types de moteur. Mais on peut aussi disposer la bobine du moteur à circuit ouvert, comme cela est préconisé dans la demande EP 0 022 270, quand on veut mesurer la tension induite. Si tel est le cas, on supprimera la résistance 40 et l'interrupteur 35 représentés en figure 7 et on ouvrira tous les interrupteurs 31 à 34 pendant la fenêtre de mesure de durée Tx. Il faut dire encore que si on mesure la tension Ui à circuit ouvert dans le moteur à entrefers, le graphique de la figure 11 reste le même sauf en ce qui concerne le courant i qui s'annule pendant la période Tx.Figure 11 shows how one proceeds according to the invention to overcome the aforementioned drawback. In this graph, the control pulse U is composed of two driving pulses U B and U c separated by a period T x during which the induced voltage is measured according to the method which has been explained above. Thus, if the width T t of the control pulse U is greater than the duration T n from which the amplitude of the induced voltage Ui would be insufficient or zero, said induced voltage Ui is measured during an interval T U i included in the period T x immediately preceding the end of the period T n . In other words, if the duration Tt of the pulse U necessary for advancing the rotor is too long for an induced voltage of sufficient amplitude to be detected, as has been explained above, a window is opened in said pulse U and the induced voltage is measured in this window. It goes without saying that the location of this window is chosen in a place where the amplitude of the induced voltage is still large. This window is produced by connecting a resistor in series with the coil during the period T x (resistor 40 in FIG. 7) if it is a motor with saturable zones (FIG. 2). In this case, the command sequence of the switches shown in Figure 7 is established according to the table below:
Figure imgb0005
It should be mentioned that the window method is also perfectly suitable if it is applied to a motor with air gaps (see Figure 1) where the phenomenon of extinction of the induced voltage also exists when the control pulse lengthens. In this case, we can very well not change anything in the diagram in Figure 7 and in the sequence of the table above if we want to use control electronics common to both types of engine. However, the coil of the motor with an open circuit can also be placed, as recommended in application EP 0 022 270, when it is desired to measure the induced voltage. If this is the case, the resistor 40 and the switch 35 shown in FIG. 7 will be deleted and all the switches 31 to 34 will be opened during the duration measurement window T x . It must also be said that if the open circuit voltage Ui is measured in the air gap motor, the graph in FIG. 11 remains the same except for the current i which is canceled out during the period T x .

La figure 12 illustre de façon exemplaire comment on adapte la largeur de l'impulsion de commande à la charge imposée au moteur et à quel moment on mesure la tension induite. Pour la construction donnée en exemple, il a été établi que cette tension induite est encore suffisante si on la mesure pendant une période Tx = 1 ms précédant immédiatement la fin de l'impulsion de commande dont la durée est égale ou inférieure à Tn = 5 ms. Du niveau 1 où la charge est la plus faible au niveau 3 où elle est légèrement plus élevée, la durée de l'impulsion de commande passe de 4 à 5 ms. La mesure de la tension induite se fait immédiatement avant la fin de l'impulsion de commande puisque la durée de ladite impulsion est égale (niveau 3) ou inférieure (niveaux 1 et 2) à la durée Tn. On voit que pour les mêmes niveaux, la durée TRB de l'impulsion motrice UB passe de 3 à 4 ms. A partir du niveau 4 adapté à une charge plus importante et jusqu'au niveau 6 correspondant à la charge maximum que peuvent présenter toutes les contraintes réunies ensemble, la durée de l'impulsion de commande passe de 6,5 à 10 ms. La mesure de la tension induite doit se faire dans une fenêtre Tx car, à partir du niveau 4, la largeur de l'impulsion de commande est supérieure à la durée prédéterminée Tn. Dans ces trois derniers niveaux, la fenêtre sépare les deux impulsions motrices UB et Uc dont la première est de durée constante TRB = 4 ms et dont la seconde Tc est de 1,5, 3 et 5 ms quand ont passe du niveau 4 au niveau 6. La figure 12 montre aussi l'impulsion de rattrapage de durée Ta dont la largeur est choisie à 8 ms.FIG. 12 illustrates in an exemplary manner how the width of the control pulse is adapted to the load imposed on the motor and when the induced voltage is measured. For the example construction, it has been established that this induced voltage is still sufficient if it is measured for a period T x = 1 ms immediately preceding the end of the control pulse whose duration is equal to or less than T n = 5 ms. From level 1 where the load is weakest to level 3 where it is slightly higher, the duration of the control pulse goes from 4 to 5 ms. The measurement of the induced voltage is made immediately before the end of the control pulse since the duration of said pulse is equal (level 3) or less (levels 1 and 2) to the duration T n . We see that for the same levels, the duration T RB of the driving pulse U B goes from 3 to 4 ms. From the level 4 adapted to a higher load and up to level 6 corresponding to the maximum load that all the constraints put together can present, the duration of the control pulse goes from 6.5 to 10 ms. The measurement of the induced voltage must be done in a window T x because, from level 4, the width of the control pulse is greater than the predetermined duration T n . In these last three levels, the window separates the two driving pulses U B and U c , the first of which is of constant duration T RB = 4 ms and the second of which T c is 1.5, 3 and 5 ms when the level 4 to level 6. FIG. 12 also shows the catch-up pulse of duration T a , the width of which is chosen at 8 ms.

L'invention qui vient d'être décrite poursuit le même but que celui qui a été expliqué dans la demande EP 0 022 270, à savoir proposer une méthode qui détecte un signal de tension induite de grande amplitude lorsque la bobine du moteur reçoit une impulsion de polarité correcte. Cette méthode conduit à un fonctionnement très sûr du système d'asservissement qui répond par oui ou non, comme c'est le cas dans un système logique.The invention which has just been described pursues the same aim as that which was explained in application EP 0 022 270, namely to propose a method which detects a signal of induced voltage of large amplitude when the motor coil receives a pulse. of correct polarity. This method leads to a very safe operation of the servo system which responds with yes or no, as is the case in a logic system.

Par ailleurs, comme cela a été exposé à propos de la demande citée, la tension Ui est comparée à une tension de référence dans un comparateur. Si Ui est plus grand que ladite référence, c'est une impulsion de polarité correcte qui a été envoyée au moteur et il n'ap- parait aucun signal à la sortie du comparateur. Le circuit de commande continue à envoyer des impulsions de même durée. Si, au contraire, Ui est plus petit que la référence, c'est une impulsion de polarité incorrecte qui a été envoyée au moteur et il apparaît un signal à la sortie du comparateur qui oblige le circuit de commande à envoyer deux impulsions de rattrapage puis un train d'impulsions de commande, comme cela a été expliqué ci-dessus.Furthermore, as has been explained with respect to the cited request, the voltage Ui is compared with a reference voltage in a comparator. If Ui is greater than said reference, a pulse of correct polarity has been sent to the motor and there is no signal at the output of the comparator. The control circuit continues to send pulses of the same duration. If, on the contrary, Ui is smaller than the reference, an incorrect polarity pulse has been sent to the motor and a signal appears at the output of the comparator which forces the control circuit to send two catching pulses then a control pulse train, as explained above.

Claims (9)

1. Procédé pour asservir un moteur pas à pas alimenté par un train d'impulsions bipolaires à la charge présentée par le mécanisme d'une pièce d'horlogerie, caractérisé par le fait qu'on mesure aux bornes de la bobine du moteur la tension induite Ui engendrée par la rotation du rotor en réponse à une impulsion de commande n de durée Tl, que, si cette tension est inférieure à un seuil prédéterminé, on envoie au moteur, après ladite impulsion n, deux impulsions de rattrapage de grande largeur de durée Ta, après quoi on alimente le moteur dès l'impulsion n + 1 par des impulsions de plus longue durée T2, qu'on mesure la tension induite Ui engendrée par la rotation du rotor en réponse à l'impulsion n + 2, que, si cette tension est inférieure audit seuil prédéterminé, on envoie au moteur, après ladite impulsion n + 2, deux impulsions de rattrapage de ladite durée Ta, après quoi on alimente le moteur dès l'impulsion n + 3 par des impulsions de plus longue durée T3 et qu'on procède ainsi de suite, le début des impulsions de commande n, n + 1, n + 2, n + 3, etc., étant séparé par un laps de temps constant et la durée des impulsions étant arrangée pour avoir Ti <T2 <T3 <etc..1. Method for slaving a stepping motor supplied by a train of bipolar pulses to the load presented by the mechanism of a timepiece, characterized in that the voltage across the motor is measured induced Ui generated by the rotation of the rotor in response to a control pulse n of duration T l , that, if this voltage is less than a predetermined threshold, two very large catch-up pulses are sent to the motor, after said pulse n of duration T a , after which the motor is supplied from the pulse n + 1 with pulses of longer duration T 2 , that the induced voltage Ui generated by the rotation of the rotor in response to the pulse n + is measured 2, that, if this voltage is lower than said predetermined threshold, two pulses of catch-up of said duration T a are sent to the motor, after said pulse n + 2, after which the motor is supplied from pulse n + 3 by pulses of longer duration T 3 and we proceed in this way if immediately, the start of the control pulses n, n + 1, n + 2, n + 3, etc., being separated by a constant period of time and the duration of the pulses being arranged to have Ti <T 2 <T 3 <etc .. 2. Procédé selon la revendication 1, caractérisé par le fait qu'après les deux impulsions de rattrapage de durée Ta on alimente encore le moteur par des impulsions de commande de durée égale à celle qui existait avant l'application des deux impulsions de rattrapage tant qu'un nombre donné d'impulsions de rattrapage n'aura pas été compté dans un laps de temps prédéterminé.2. Method according to claim 1, characterized in that after the two catch-up pulses of duration T a the motor is still supplied with control pulses of duration equal to that which existed before the application of the two catch-up pulses until a given number of catch-up pulses have been counted within a predetermined period of time. 3. Procédé selon la revendication 1, caractérisé par le fait que l'on envoie à la bobine du moteur, un laps de temps prédéterminé après la fin de l'impulsion de commande, une impulsion de sécurité de durée Ts qui, si le rotor s'est arrêté à mi-course sur une position d'équilibre instable, amène ledit rotorsurl'une de ses positions d'équilibre stable immédiatement voisine.3. Method according to claim 1, characterized in that one sends to the motor coil, a predetermined period of time after the end of the control pulse, a safety pulse of duration T s which, if the rotor stopped halfway on an unstable equilibrium position, brings said rotor onto one of its immediately adjacent stable equilibrium positions. 4. Procédé selon la revendication 3, caractérisé par le fait que l'impulsion de sécurité de durée Ts est de polarité inverse à la polarité de l'impulsion de commande qui la précède.4. Method according to claim 3, characterized in that the safety pulse of duration T s is of opposite polarity to the polarity of the control pulse which precedes it. 5. Procédé selon la revendication 1, caractérisé par le fait que, si la largeur de l'impulsion de commande est égale ou inférieure à une durée prédéterminée Tn, on branche une résistance en série avec la bobine du moteur pendant une période Tx située immédiatement avant la fin de ladite impulsion de commande et on mesure durant ladite période Tx oendant un intervalle prédéterminé TUi la tension induite Ui aux bornes de la bobine du moteur.5. Method according to claim 1, characterized in that, if the width of the control pulse is equal to or less than a predetermined duration T n , a resistor is connected in series with the motor coil during a period T x situated immediately before the end of said control pulse and during this period T x during a predetermined interval T U i the induced voltage Ui is measured at the terminals of the motor coil. 6. Procédé selon la revendication 1, caractérisé par le fait que, si la largeur de l'impulsion de commande est supérieure à une durée prédéterminée Tn, on branche une résistance en série avec la bobine du moteur pendant une période Tx située immédiatement avant la fin de la période Tn et on mesure durant ladite période Tx pendant un intervalle prédéterminé TUi la tension induite Ui aux bornes de la bobine du moteur.6. Method according to claim 1, characterized in that, if the width of the control pulse is greater than a predetermined duration T n , a resistor is connected in series with the motor coil during a period T x located immediately before the end of the period T n and the induced voltage Ui at the terminals of the motor coil is measured during said period T x during a predetermined interval T U i. 7. Procédé selon la revendication 1, caractérisé par le fait qu'on adapte la durée des impulsions de commande à la charge imposée au moteur par niveaux successifs montants lorsque la charge augmente et par niveaux successifs descendants lorsque la charge diminue.7. Method according to claim 1, characterized in that the duration of the control pulses is adapted to the load imposed on the motor by successive rising levels when the load increases and by successive falling levels when the load decreases. 8. Procédé selon la revendication 7, caractérisé par le fait que, si, consécutivement à la présence d'une tension induite Ui supérieure au seuil prédéterminé, aucune absence de rotation du rotor n'est détectée pendant une période prédéterminée, on fait descendre la durée des impulsions de commande d'un niveau et ainsi de suite.8. Method according to claim 7, characterized in that, if, following the presence of an induced voltage Ui greater than the predetermined threshold, no absence of rotation of the rotor is detected for a predetermined period, the duration of level control pulses and so on. 9. Dispositif d'alimentation d'un moteur pas à pas pour la mise en oeuvre du procédé selon l'une quelconque des revendications précédentes, caractérisé par le fait qu'il comporte une résistance branchée en série avec la bobine du moteur, que ladite résistance est pontée par un dispositif interrupteur et que des moyens sont mis en action pour ouvrir ledit dispositif interrupteur quand la tension induite Ui doit être mesurée aux bornes de la bobine du moteur.9. Device for supplying a stepping motor for implementing the method according to any one of the preceding claims, characterized in that it comprises a resistor connected in series with the motor coil, that said resistance is bridged by a switch device and means are put into action to open said switch device when the induced voltage Ui must be measured across the motor coil.
EP82102626A 1981-03-31 1982-03-29 Method of controlling a stepping motor Expired EP0062273B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH2165/81 1981-03-31
CH216581A CH644983GA3 (en) 1981-03-31 1981-03-31

Publications (2)

Publication Number Publication Date
EP0062273A1 true EP0062273A1 (en) 1982-10-13
EP0062273B1 EP0062273B1 (en) 1986-07-23

Family

ID=4227396

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82102626A Expired EP0062273B1 (en) 1981-03-31 1982-03-29 Method of controlling a stepping motor

Country Status (6)

Country Link
US (1) US4456866A (en)
EP (1) EP0062273B1 (en)
JP (1) JPS57177296A (en)
CA (1) CA1174060A (en)
CH (1) CH644983GA3 (en)
DE (1) DE3272080D1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0108711A1 (en) * 1982-10-13 1984-05-16 Eta SA Fabriques d'Ebauches Method and device for controlling a step motor
EP0182490A1 (en) * 1984-10-16 1986-05-28 Seiko Instruments Inc. Improvements in or relating to stepping motor driven electronic timepieces
EP0679967A1 (en) * 1993-01-18 1995-11-02 Seiko Instruments Inc. Electronic timepiece

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5980147A (en) * 1982-10-29 1984-05-09 Rhythm Watch Co Ltd Small motor for timepiece

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2388326A1 (en) * 1977-04-23 1978-11-17 Seiko Instr & Electronics DEVICE FOR DETECTION OF CONDITIONS OF ROTATION OF THE MOTOR OF AN ELECTRONIC WATCH
US4158287A (en) * 1976-08-12 1979-06-19 Citizen Watch Company Limited Driver circuit for electro-mechanical transducer
DE2854084A1 (en) * 1977-12-20 1979-06-21 Ebauches Electroniques Sa ARRANGEMENT FOR FOLLOWING UP STEPS NOT TAKEN BY THE STEPPER MOTOR OF A TIMING DEVICE
FR2410843A1 (en) * 1977-12-02 1979-06-29 Seiko Instr & Electronics ELECTRONIC WATCH
EP0022270A1 (en) * 1979-07-09 1981-01-14 Societe Suisse Pour L'industrie Horlogere Management Services S.A. Position detector for a stepping motor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5385467A (en) * 1976-12-30 1978-07-27 Seiko Epson Corp Electronic wristwatch

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4158287A (en) * 1976-08-12 1979-06-19 Citizen Watch Company Limited Driver circuit for electro-mechanical transducer
FR2388326A1 (en) * 1977-04-23 1978-11-17 Seiko Instr & Electronics DEVICE FOR DETECTION OF CONDITIONS OF ROTATION OF THE MOTOR OF AN ELECTRONIC WATCH
FR2410843A1 (en) * 1977-12-02 1979-06-29 Seiko Instr & Electronics ELECTRONIC WATCH
DE2854084A1 (en) * 1977-12-20 1979-06-21 Ebauches Electroniques Sa ARRANGEMENT FOR FOLLOWING UP STEPS NOT TAKEN BY THE STEPPER MOTOR OF A TIMING DEVICE
EP0022270A1 (en) * 1979-07-09 1981-01-14 Societe Suisse Pour L'industrie Horlogere Management Services S.A. Position detector for a stepping motor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
10e CONGRES INTERNATIONAL DE CHRONOMETRIE, no. 3, 11-14 Sept. 1979, Geneve, CH, M. UEDA et al.: "Adaptive controlled drive system of stepping motor for analog quartz watch", pages 67-72 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0108711A1 (en) * 1982-10-13 1984-05-16 Eta SA Fabriques d'Ebauches Method and device for controlling a step motor
US4507599A (en) * 1982-10-13 1985-03-26 Eta S.A., Fabriques D'ebauches Method and device for controlling a stepping motor
CH649187GA3 (en) * 1982-10-13 1985-05-15
EP0182490A1 (en) * 1984-10-16 1986-05-28 Seiko Instruments Inc. Improvements in or relating to stepping motor driven electronic timepieces
EP0679967A1 (en) * 1993-01-18 1995-11-02 Seiko Instruments Inc. Electronic timepiece
EP0679967A4 (en) * 1993-01-18 1997-02-26 Seiko Instr Inc Electronic timepiece.

Also Published As

Publication number Publication date
DE3272080D1 (en) 1986-08-28
US4456866A (en) 1984-06-26
JPS57177296A (en) 1982-10-30
EP0062273B1 (en) 1986-07-23
CH644983GA3 (en) 1984-09-14
CA1174060A (en) 1984-09-11

Similar Documents

Publication Publication Date Title
EP0679968B1 (en) Timepiece driven by a mechanical power source and regulated by an electronic circuit
EP0097350B1 (en) Method of feeding a single phase stepping motor of a time piece
EP0822470B1 (en) Electronic timepiece comprising a generator driven by a barrel spring
EP0171635B1 (en) Method and apparatus to recognise the position of the rotor of a stepping motor
EP0161582A1 (en) Stepping motor assembly
EP0060806B1 (en) Method of reducing the power consumption of a stepping motor, and device for carrying out this method
EP0062273B1 (en) Method of controlling a stepping motor
EP0443294B1 (en) Method for feeding a monophase stepping motor
EP0022270B1 (en) Position detector for a stepping motor
EP0077293B1 (en) Process and device for controlling a stepping motor in a clock mechanism
EP0024737B1 (en) Detector for the movement of a stepping motor
EP0253153B1 (en) Method and device for controlling a stepping motor
EP0087387B1 (en) Method and means for controlling a bidirectional step-motor
FR2478400A1 (en) DEVICE FOR CONTROLLING AN ELECTRIC MOTOR
EP0135104B1 (en) Method and device for the control of a stepping motor
EP0345224B1 (en) Power supply method for a monophased stepping motor for a time piece
EP0026002B1 (en) Bipolar single-phase stepping motor with two directions of rotation
EP0250862B1 (en) Method and device for controlling a stepper motor
FR2476409A1 (en) CLUTCH PIECE WITH MOTOR CONTROL DEVICE STEP BY STEP
EP0108711B1 (en) Method and device for controlling a step motor
EP0140089B1 (en) Process for feeding a stepping motor
EP0155661B1 (en) Control circuit for a stepping motor
EP0875807B1 (en) Electronic timepiece powered by a generator driven by a mechanical energy source
EP0190591A1 (en) Motor assembly capable of functioning at a high speed
EP0484770B1 (en) Step by step motor control method and device for carrying out this method

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19830411

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: OMEGA SA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19860723

REF Corresponds to:

Ref document number: 3272080

Country of ref document: DE

Date of ref document: 19860828

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19910225

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19910315

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19910321

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19920329

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19921130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19921201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST