DE69733282T2 - Überwachung der Hybridisierung während PCR - Google Patents

Überwachung der Hybridisierung während PCR Download PDF

Info

Publication number
DE69733282T2
DE69733282T2 DE69733282T DE69733282T DE69733282T2 DE 69733282 T2 DE69733282 T2 DE 69733282T2 DE 69733282 T DE69733282 T DE 69733282T DE 69733282 T DE69733282 T DE 69733282T DE 69733282 T2 DE69733282 T2 DE 69733282T2
Authority
DE
Germany
Prior art keywords
amplification
fluorescence
temperature
sample
sybr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
DE69733282T
Other languages
English (en)
Other versions
DE69733282D1 (de
Inventor
Carl T. Wittwer
Kirk M. Ririe
Randy P. Rasmussen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Utah Research Foundation UURF
Original Assignee
University of Utah Research Foundation UURF
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27097737&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=DE69733282(T2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by University of Utah Research Foundation UURF filed Critical University of Utah Research Foundation UURF
Application granted granted Critical
Publication of DE69733282D1 publication Critical patent/DE69733282D1/de
Publication of DE69733282T2 publication Critical patent/DE69733282T2/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/508Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above
    • B01L3/5082Test tubes per se
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • B01L7/52Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means
    • C12Q1/6818Hybridisation assays characterised by the detection means involving interaction of two or more labels, e.g. resonant energy transfer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means
    • C12Q1/6823Release of bound markers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/251Colorimeters; Construction thereof
    • G01N21/253Colorimeters; Construction thereof for batch operation, i.e. multisample apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6452Individual samples arranged in a regular 2D-array, e.g. multiwell plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0654Lenses; Optical fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0832Geometry, shape and general structure cylindrical, tube shaped
    • B01L2300/0838Capillaries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/18Means for temperature control
    • B01L2300/1838Means for temperature control using fluid heat transfer medium
    • B01L2300/1844Means for temperature control using fluid heat transfer medium using fans
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N2021/6417Spectrofluorimetric devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N2021/6482Sample cells, cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00178Special arrangements of analysers
    • G01N2035/00237Handling microquantities of analyte, e.g. microvalves, capillary networks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/0303Optical path conditioning in cuvettes, e.g. windows; adapted optical elements or systems; path modifying or adjustment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/07Centrifugal type cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/025Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations having a carousel or turntable for reaction cells or cuvettes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/14Heterocyclic carbon compound [i.e., O, S, N, Se, Te, as only ring hetero atom]
    • Y10T436/142222Hetero-O [e.g., ascorbic acid, etc.]
    • Y10T436/143333Saccharide [e.g., DNA, etc.]

Description

  • Diese Europäische Anmeldung ist eine Teilanmeldung der EP 97931089 .
  • Die Erfindung betrifft allgemein das Monitoring von Fluoreszenzsignalen, die bei einer Hybridisierung in Verbindung mit einer Polymerase-Kettenreaktion entstehen. Die vorliegende Erfindung betrifft insbesondere das Monitoring einer Hybridisierung mittels Fluoreszenz während und/oder unmittelbar nach der PCR und die Verwendung dieser Informationen zur Produktbestimmung, zum Nachweis einer Sequenzänderung und zur Quantifizierung.
  • Die Polymerase-Kettenreaktion (PCR) ist für die Molekularbiologie von grundlegender Bedeutung und stellt die erste praktische molekulare Methode für klinische Laborarbeit dar. Trotz ihrer Nützlichkeit und Beliebtheit macht man mit dem derzeitigen Verständnis der PCR keine großen Fortschritte. Geeignete Bedingungen für eine erfolgreiche Amplifikation müssen durch Ausprobieren herausgefunden werden und eine Optimierung erfolgt empirisch. Sogar Fachleute müssen eine leistungsstarke Methode verwenden, ohne die Theorie für ihren Ablauf zu verstehen oder vorhersagen zu können.
  • Die PCR erfolgt dadurch, dass eine Probe verschiedene Temperaturzyklen durchläuft, wodurch die DNA denaturiert (aufgetrennt) wird, sich spezifische Primer anlagern (Annealing oder Assoziation) und eine Replikation erfolgt (Extension oder Verlängerung). Ein PCR-Zyklus dauert üblicherweise 2 bis 8 min, so dass eine 30 Zyklen lange Amplifikation 1 bis 4 Stunden benötigt. Das Ansprechen der Proben auf die Temperatur ist bei den meisten PCR-Geräten im Vergleich zu der für die Denaturierung, das Annealing und die Extension benötigte Zeit sehr langsam. Die physikalischen (Denaturierung und Annealing) und enzymatischen (Extension) Reaktionen bei der PCR laufen sehr schnell ab. Die Amplifikationszeiten bei der PCR können von einigen Stunden auf weniger als 15 min gesenkt werden.
  • Schnelle Thermocycling-Techniken werden durch das schnelle Ansprechen auf die Temperatur und eine Temperaturhomogenität ermöglicht, die in Probenbehältern mit hohem Verhältnis von Oberfläche/Volumen möglich sind, beispielsweise Kapillarröhrchen, Für weitere Informationen siehe auch: C.T. Wittwer, G.B. Reed und K.M. Ririe, Rapid cycle DNA amplification, in K.B. Mullis, F. Ferre und R.A. Gibbs, The polymerase chain reaction, Birkhauser, Boston, 174-181 (1994). Eine bessere Temperaturhomogenität ermöglicht, dass Zeit- und Temperaturerfordernisse der PCR besser definiert und verstanden werden können. Eine bessere Temperaturhomogenität erhöht auch die Genauigkeit jeder analytischen Methode, die zum Monitoring der PCR bei der Amplifikation verwendet wird.
  • Die Fluorimetrie ist eine empfindliche und vielseitige Methode mit vielen Anwendungsmöglichkeiten in der Molekularbiologie. Viele Jahre lang wurde Ethidiumbromid verwendet, um die Größenverteilung von durch Gelelektrophorese aufgetrennten Nukleinsäuren sichtbar zu machen. Das Gel wird gewöhnlich mit Ultraviolettlicht durchleuchtet und die rote Fluoreszenz der doppelsträngigen Nukleinsäure beobachtet. Im Einzelnen wird Ethidiumbromid gewöhnlich verwendet, um die PCR-Produkte nach Beendigung der Amplifikation zu analysieren. Die EP 0 640 828 A1 von Higuchi & Watson offenbart zudem die Verwendung von Ethidiumbromid bei der Amplifikation zum Monitoring der Menge doppelsträngiger DNA, indem die Fluoreszenz bei jedem Zyklus gemessen wird. Es wurde festgestellt, dass die Fluoreszenz umgekehrt zur Temperatur ansteigt und abfällt und bei der Annealing/Extensionstemperatur (50°C) am stärksten und bei der Denaturierungstemperatur (94°C) am schwächsten war. Die bei jedem Zyklus aufgenommene maximale Fluoreszenz diente als Maß für die DNA-Menge. Die Anmeldung von Higuchi & Watson lehrt keine Verwendung von Fluoreszenz zum Monitoring von Hybridisierungen und sie schlägt auch keine Fluoreszenzerfassung über verschiedene Temperaturen vor, um das Ausmaß der Hybridisierung zu verfolgen. Außerdem machen Higuchi & Watson keine Angaben oder Vorschläge, wie man die Temperaturabhängigkeit der Hybridisierung von PCR-Produkten ausnützen könnte, um PCR-Produkt zu identifizieren oder zu quantifizieren.
  • In der Anmeldung von Higuchi & Watson wird jedoch die Verwendung anderer Fluorophore, einschließlich zweifachmarkierter Sondensysteme, erwähnt, die Fluoreszenz erzeugen, wenn sie durch die 5'-Exonukleaseaktivität bestimmter DNA-Polymerasen hydrolysiert werden, wie in dem U.S. Patent-Nr. 5,210,015 von Gelfand et al. offenbart ist. Die bei diesen Sonden beobachtete Fluoreszenz hängt in erster Linie von der Hydrolyse der Sonden zwischen den beiden Fluorophoren ab. Die Menge an PCR-Produkt wird durch Erfassung der Fluoreszenz einmal pro Zyklus abgeschätzt. Obwohl eine Hybridisierung der Sonden für das Auftreten einer Hydrolyse notwendig zu sein scheint, kommt das Fluoreszenzsignal in erster Linie durch die Hydrolyse der Sonden zustande und nicht durch die Hybridisierung, wobei eine Oligonukleotidsonde mit Fluoreszenzfarbstoffen an gegenüberliegenden Enden ein zum Nachweis des PCR-Produkts und der Nukleinsäurehybridisierung nützliches, gequenchtes Sondensystem liefert, K.J. Livak et al., 4 PCR Meth. Appl. 357-362 (1995). Es findet sich kein Vorschlag, die Temperaturabhängigkeit der Sondenhybridisierung mittels Fluoreszenz zu verfolgen, um Änderungen in der Sequenz der PCR-Produkte zu identifizieren.
  • Die spezifische Hybridisierung einer Nukleinsäure an einen komplementären Strang zu Identifizierungszwecken wurde in vielen verschiedenen Formaten genutzt. Beispielsweise kann genomische DNA nach dem Verdau mit Restriktionsenzymen, nach Größe aufgetrennt und durch Southern Blotting mit Sonden hybridisiert werden. Als weiteres Beispiel können einzelne Basenmutationen durch "Dot Blots" mit allelspezifischen Oligonukleotiden nachgewiesen werden. Um die notwendige Trennschärfe zu erreichen, wird eine Hybridisierung üblicherweise über Minuten bis Stunden bei einer einzelnen Temperatur durchgeführt. Abwechselnd kann das Ausmaß der Hybridisierung während der Temperaturwechsel dynamisch mit Fluoreszenzmethoden verfolgt werden. Beispielsweise wurden Fluoreszenzschmelzkurven zum Monitoring der Hybridisierung verwendet. L.E. Morrison & L.M. Stols, Sensitive fluorescence-based thermodynamic and kinetic measurements of DNA hybridization in solution, 32 Biochemistry 3095-3104, 1993. Die Geschwindigkeit des Temperaturscans beträgt gewöhnlich 10°C/Stunde oder weniger, zum Teil wegen der großen thermischen Masse der Fluorimeterküvette.
  • Die augenblicklichen Verfahren zum Monitoring der Hybridisierung brauchen viel Zeit. Falls das Monitoring einer Hybridisierung innerhalb von Sekunden anstatt von Stunden erfolgen könnte, könnte das Monitoring der Hybridisierung während der PCR-Amplifikation und sogar bei einer PCR mit schnellem Thermocycling erfolgen. Die zahlreichen Anwendungsmöglichkeiten für ein Monitoring der Hybridisierung während der PCR, wie sie hier umfassend offenbart sind, beinhalten Produktidentifizierung und -quantifizierung, Nachweis von Sequenzänderungen und automatische Kontrolle der Parameter für das Thermocycling durch Fluoreszenz-Feedback.
  • Wie oben beschrieben, werden die Temperaturzyklen im Stand der Technik langsam und empirisch durchgeführt. Wenn eine Analyse der PCR-Produkte durch Hybridisierung notwendig ist, werden zusätzliche zeitintensive Schritte nötig. Es wäre daher ein großer Fortschritt auf diesem Gebiet, Verfahren zum Monitoring der Hybridisierung während einer PCR bereitstellen zu können und die Reaktion ohne Probenmanipulation zu analysieren, während sie stattfindet, d.h. während oder unmittelbar nach dem Thermocycling. Durch ein Monitoring der Hybridisierung während der PCR können die grundlegenden Prinzipien, die den Ablauf einer PCR ermöglichen, verfolgt und zur Analyse und Optimierung der Reaktion bei der Amplifikation verwendet werden.
  • Die EP 0 640 828 A offenbart eine Vorrichtung zum gleichzeitigen Monitoring mehrerer Nukleinsäurereaktionen. Sie verwendet einen Thermocycler und einen Sensor zum Nachweis von Licht, das von Vertiefungen im Thermocycler emittiert wird.
  • Aufgabe der vorliegenden Erfindung ist es, einen doppelstrangspezifischen DNA-Farbstoff zum Monitoring von Produkthybridisierung während einer PCR bereitzustellen.
  • Eine weitere Aufgabe der Erfindung ist es, ein System zur Identifizierung von mit PCR amplifizierten Produkten mit Hilfe ihrer Fluoreszenzschmelzkurven bereitzustellen.
  • Eine weitere Aufgabe der Erfindung ist es, ein Verfahren zur Verbesserung der Empfindlichkeit der PCR-Quantifizierung mit doppelstrangspezifischen DNA-Farbstoffen bereitzustellen.
  • Ein weiteres Ziel der Erfindung ist es, die Menge an spezifischem Produkt, das durch PCR amplifiziert wurde, mittels Schmelzkurven zu bestimmen, um auf unspezifische Amplifikation, die mit dem doppelstrangspezifischen DNA-Farbstoff erfasst wurde, zu korrigieren.
  • Eine weitere Aufgabe der Erfindung ist es, ein Verfahren zur relativen Quantifizierung verschiedener PCR-Produkte mit doppelstrangspezifischen Farbstoffen zur Verfügung zu stellen.
  • Noch eine weitere Aufgabe der Erfindung ist es, ein Verfahren zur Produktquantifizierung mit Hilfe der Reassoziationskinetik (Reannealing-Kinetik) des Produkts in Gegenwart eines doppelstrangspezifischen DNA-Farbstoffs bereitzustellen.
  • Eine weitere Aufgabe der vorliegenden Erfindung ist es, ein Verfahren zur Bestimmung der anfänglichen Kopienzahl des Templats bereitzustellen, indem man die Fluoreszenz einer Hybridisierungssonde oder von Hybridisierungssonden in jedem Zyklus während der PCR-Amplifikation verfolgt.
  • Eine weitere Aufgabe der Erfindung ist es, ein System zur relativen Quantifizierung verschiedener PCR-Produkte mit Hilfe von Sondenschmelzkurven bereitzustellen.
  • Eine weitere Aufgabe der Erfindung ist es, Verfahren zur Bestimmung der anfänglichen Kopienzahl des Templats mit Hilfe einer Kurvenanpassung der Messkurve von Fluoreszenz gegen Zyklenzahl bereitzustellen.
  • Eine weitere Aufgabe der Erfindung ist es, ein System und ein Verfahren zur schnellen Durchführung einer PCR und zum gleichzeitigen kontinuierlichen Monitoring der Reaktion und zum Anpassen der Reaktionsparameter während der laufenden Reaktion bereitzustellen.
  • Eine weitere Aufgabe der Erfindung ist es, die Nukleinsäuresonden durch synthetische Nukleinsäureanaloga oder -derivate, z.B. Peptidnukleinsäuren (PNA), zu ersetzen, vorausgesetzt, dass diese auch mit fluoreszierenden Verbindungen markiert werden können.
  • Diese und andere Aufgeben und Vorteile der Erfindung ergeben sich deutlicher aus der folgenden Beschreibung und den Ansprüchen oder lassen sich bei der Ausführung der Erfindung feststellen.
  • Die vorliegende Erfindung stellt ein Verfahren zum Echtzeit-Monitoring der Amplifikation einer Target-Nukleinsäuresequenz in einer biologischen Probe bereit, wobei das Verfahren die Schritte umfasst:
    Amplifizieren der Targetsequenz durch Polymerase-Kettenreaktion in Gegenwart einer Menge SYBRTM Green I, wobei die Polymerase-Kettenreaktion die Schritte Hinzufügen von SYBRTM Green I, einer thermostabilen Polymerase und von Primern für die Target-Nukleinsäuresequenz zu der biologischen Probe zur Bildung einer Amplifikationsmischung und Thermocycling der Amplifikationsmischung zwischen wenigstens einer Denaturierungstemperatur und einer Elongationstemperatur über eine Vielzahl von Amplifikationszyklen umfasst; und
    entweder Bestrahlen der Mischung mit Licht einer von SYBRTM Green I absorbierten Wellenlänge bei wenigstens einem Teil der Vielzahl von Amplifikationszyklen und Nachweisen einer Fluoreszenzemission des SYBRTM Green I nach Probenbestrahlung, wobei die Fluoreszenzemission mit der Menge amplifizierter Target-Nukleinsäure in der Probe in Beziehung steht,
    oder Bestrahlen der Probe mit Licht einer von SYBRTM Green I absorbierten Wellenlänge im Anschluß an wenigstens einen Teil der Vielzahl von Amplifikationszyklen und Monitoring der Fluoreszenzemission des SYBRTM Green I in der Probe als Funktion der Probentemperatur zum Erstellen einer Schmelzkurve für die amplifizierte Targetsequenz.
  • Die vorliegende Erfindung stellt auch eine PCR-Reaktionsmischung zur Amplifikation der Target-Nukleotidsequenz bereit, wobei die Mischung umfasst: eine DNA-Probe, die die Oligonukleotidprimer für die Targetsequenz in einer zur PCR-Amplifikation ausreichenden Menge enthält, eine thermostabile Polymerase und SYBRTM Green I in einer Menge, die ein Fluoreszenzsignal liefern kann, das die Konzentration der Targetsequenz in der Mischung anzeigt.
  • Die Erfindung ist vorzugsweise gekennzeichnet durch Bestrahlen der Mischung mit Licht einer von SYBRTM Green I absorbierten Wellenlänge bei wenigstens einem Teil der Vielzahl von Amplifikationszyklen und Nachweisen einer Fluoreszenzemission des SYBRTM Green I nach Probenbestrahlung, wobei die Fluoreszenzemission mit der Menge amplifizierter Target-Nukleinsäure in der Probe in Beziehung steht, und ferner gekennzeichnet durch Bestrahlen der Probe mit Licht einer von SYBRTM Green I absorbierten Wellenlänge im Anschluß an wenigstens einen Teil der Vielzahl von Amplifikationszyklen und Monitoring der Fluoreszenzemission des SYBRTM Green I in der Probe als Funktion der Probentemperatur zum Erstellen einer Schmelzkurve für die amplifizierte Targetsequenz.
  • Das Verfahren kann zur Bestimmung einer Target-Nukleinsäuresequenz in einer biologischen Probe während der Amplifikation mit einem schnellen Temperaturwechselprofil verwendet werden.
  • Das Temperaturwechselprofil hat vorzugsweise eine Dauer von weniger als 2 Minuten. Die Probe wird bestrahlt und die Fluoreszenz wird zum Erstellen einer Schmelzkurve erfasst, wenn die Temperatur ansteigt.
  • Die vorliegende Erfindung verringert gegenüber den Methoden des Standes der Technik insbesondere die Gesamtzeit, die für die PCR-Amplifikation und die Analyse benötigt wird, wobei sie gleichzeitig die Möglichkeit bietet, die Qualität der Reaktion durch Optimierung der Amplifikationsbedingungen erheblich zu steigern.
  • Die vorliegende Erfindung stellt Verfahren und Anwendungsmöglichkeiten zum kontinuierlichen Fluoreszenz-Monitoring einer DNA-Amplifikation bereit. Die benötigte Apparatur kombiniert optische Komponenten mit Elementen für ein schnelles Thermocycling zum kontinuierlichen Monitoring der DNA-Amplifikation mit Hilfe einer Vielzahl verschiedener Fluoreszenzmethoden. In einer veranschaulichenden Ausführungsform wird die Fluoreszenz kontinuierlich von einer einzelnen Probe oder abwechselnd von mehreren Proben auf einem rotierenden Karussell erfasst, wobei alle Proben gleichzeitig einem schnellen Thermocycling unterzogen werden. Weitere Informationen über die zugehörige Geräteausstattung sind in den oben angegebenen US-Patentanmeldungen zu finden.
  • Gemäß der vorliegenden Erfindung erfolgte das Fluoreszenz-Monitoring während der DNA-Amplifikation mit dem doppelstrangspezifischen Farbstoff SYBR Green I. Die einmal pro Zyklus erfassten Fluoreszenzdaten ermöglichen eine Quantifizierung der anfänglichen Kopienzahl des Templats.
  • Im Gegensatz zur einmaligen Messung der Fluoreszenz pro Zyklus werden außerdem erfindungsgemäße Ausführungsformen offenbart, die Temperatur, Zeit und Fluoreszenz kontinuierlich über jeden Zyklus hinweg überwachen und so eine 3-dimensionale Spirale erzeugen. Diese 3-dimensionale Spirale kann auf Diagramme von Temperatur gegen Zeit, Fluoreszenz gegen Zeit und Fluoreszenz gegen Temperatur reduziert werden. Diagramme von Fluoreszenz gegen Temperatur mit der Fluoreszenz von Hybridisierungssonden können zum Nachweis von Sequenzänderungen im Produkt verwendet werden. Diese Sequenzänderungen können natürlichen Ursprungs sein, wie bei Mutationen oder Polymorphismen, oder künstlich, wie bei einem künstlich konstruierten alternativen Templat zur quantitativen PCR.
  • Gemäß einem bevorzugten Aspekt der vorliegenden Erfindung erfolgt das Fluoreszenz-Monitoring zur Aufnahme von Produktschmelzkurven während der PCR durch Fluoreszenz-Monitoring mit SYBRTM Green I. Das Auftragen der Fluoreszenz als Funktion der Temperatur, wenn der Thermocycler durch die Dissoziationstemperatur des Produkts aufheizt, ergibt die Schmelzkurve des PCR-Produkts. Form und Lage dieser DNA-Schmelzkurve sind eine Funktion von GC/AT-Verhältnis, Länge und Sequenz und können zur Unterscheidung von Amplifikationsprodukten verwendet werden, deren Schmelztemperaturen sich um weniger als 2°C unterscheiden. Gewünschte Produkte lassen sich von unerwünschten Produkten, einschließlich Primerdimeren, unterscheiden. Eine Analyse der Schmelzkurven kann verwendet werden, um den dynamischen Bereich der quantitativen PCR zu erweitern und die verschiedenen Produkte bei einer Multiplex-Amplifikation zu unterscheiden. Mit dem Farbstoff können Produktdenaturierung, Reannealing und Extension innerhalb eines jeden Zyklus verfolgt werden. Ein kontinuierliches Fluoreszenz-Monitoring ermöglicht das Erstellen von Schmelzkurven und Annealingkurven des Produkts während der Temperaturzyklen.
  • Die vorliegende Erfindung stellt Reagenzien und Verfahren für eine PCR mit schnellen Zyklen und kombinierter Amplifikation und Analyse mit Hilfe von Fluoreszenz-Monitoring in weniger als dreißig Minuten, vorzugsweise weniger als fünfzehn Minuten und besonders bevorzugt weniger als zehn Minuten bereit.
  • Ein Verfahren zum Echtzeit-Monitoring einer Amplifikation einer Target-Nukleinsäuresequenz mittels Polymerase-Kettenreaktion in einer biologischen Probe umfasst das Amplifizieren der Targetsequenz durch Polymerase-Kettenreaktion in Gegenwart einer Menge SYBRTM Green I, wobei die Polymerase-Kettenreaktion die Schritte Hinzufügen von SYBRTM Green I, einer thermostabilen Polymerase und von Primern für die Target-Nukleinsäuresequenz zu der biologischen Probe zur Bildung einer Amplifikationsmischung und Thermocycling der Amplifikationsmischung zwischen wenigstens einer Denaturierungstemperatur und einer Elongationstemperatur über eine Vielzahl von Amplifikationszyklen umfasst; und
    entweder Bestrahlen der Mischung mit Licht einer von SYBRTM Green I absorbierten Wellenlänge bei wenigstens einem Teil der Vielzahl von Amplifikationszyklen und Nachweisen einer Fluoreszenzemission des SYBRTM Green I nach Probenbestrahlung, wobei die Fluoreszenzemission mit der Menge amplifizierter Target-Nukleinsäure in der Probe in Beziehung steht, oder Bestrahlen der Probe mit Licht einer von SYBRTM Green I absorbierten Wellenlänge im Anschluß an wenigstens einen Teil der Vielzahl von Amplifikationszyklen und Monitoring der Fluoreszenzemission des SYBRTM Green I in der Probe als Funktion der Probentemperatur zum Erstellen einer Schmelzkurve für die amplifizierte Targetsequenz.
  • Eine PCR-Reaktionsmischung zur Amplifikation einer Target-Nukleotidsequenz umfasst: eine DNA-Probe, die die Oligonukleotidprimer für die Targetsequenz in einer zur PCR-Amplifikation ausreichenden Menge enthält, eine thermostabile Polymerase und SYBRTM Green I in einer Menge, die ein Fluoreszenzsignal liefern kann, das die Konzentration der Targetsequenz in der Mischung anzeigt.
  • Ein Verfahren zur Analyse einer Target-DNA-Sequenz einer biologischen Probe umfasst:
    Amplifizieren der Targetsequenz durch Polymerase-Kettenreaktion in Gegenwart einer nukleinsäurebindenden fluoreszierenden Einheit, wobei die Polymerase-Kettenreaktion die Schritte Hinzufügen einer thermostabilen Polymerase und von Primern für die Target-Nukleinsäuresequenz zu der biologischen Probe und Thermocycling der biologischen Probe zwischen wenigstens einer Denaturierungstemperatur und einer Elongationstemperatur umfasst;
    Anregen der Probe mit Licht einer von der nukleinsäurebindenden fluoreszierenden Einheit absorbierten Wellenlänge; und
    Monitoring der temperaturabhängigen Fluoreszenz von der nukleinsäurebindenden fluoreszierenden Einheit, wenn sich die Temperatur der Probe ändert, wobei die nukleinsäurebindende fluoreszierende Einheit den doppelsträngige Nukleinsäure bindenden Fluoreszenzfarbstoff SYBRTM Green I umfasst.
  • Die temperaturabhängige Fluoreszenz kann zur Identifizierung der amplifizierten Produkte verwendet werden, vorzugsweise durch Analyse der Schmelzkurven. Die relativen Mengen von zwei oder mehreren amplifizierten Produkten können durch Analyse der Schmelzkurven bestimmt werden. Die Flächen unter den Schmelzkurven kann man beispielsweise durch eine nichtlineare Regression der Summe verschiedener Gaußkurven nach der Methode der Abweichung der kleinsten Quadrate (least-squares regression) bestimmen.
  • Kurze Beschreibung der verschiedenen Zeichnungsansichten
  • Die ursprünglichen 6-14, 16-18, 33-36 und 46-48 wurden gestrichen.
  • 1A & B zeigen Graphen, die ein Gleichgewichts-PCR-Paradigma (A) und ein kinetisches PCR-Paradigma (B) darstellen.
  • 2 veranschaulicht nützliche Abschnitte von Temperatur gegen Zeit zum Fluoreszenz-Monitoring der Hybridisierung.
  • 3 stellt ein Diagramm von Temperatur gegen Zeit dar, das beispielhaft für schnelle Temperaturwechsel bei einer PCR ist.
  • 4 zeigt die Ergebnisse vier verschiedener Temperatur-/Zeit-Profile (A-D) und ihre entsprechenden Amplifikationsprodukte nach dreißig Zyklen (Nebenkarte).
  • 5A, B & C veranschaulichen den Mechanismus der Fluoreszenzerzeugung für drei verschiedene Verfahren zum Fluoreszenz-Monitoring einer PCR: (A) Farbstoff für doppelsträngige DNA, Hybridisierungssonden.
  • 15 zeigt ein Diagramm der Fluoreszenz gegen die Zyklenzahl für mehrere verschiedene anfängliche Kopierreaktionen von Templaten, die mit SYBRTM Green I verfolgt wurden: 0, (Δ); 1, (∎); 10, (–); 102, (–); 103, (+): 104, (•); 105, (⟡); 106 (x); 107,
    Figure 00090001
    ; 108 (☐) ; 109, (♦)
  • 19A-C stellen einen Vergleich von drei Methoden eines Fluoreszenz-Monitoring für PCR dar, einschließlich des doppelstrangspezifischen DNA-Farbstoffs SYBR Green I (A), einer zweifach markierten Fluorescein/Rhodamin-Hydrolysesonde (B), und einer Fluorescein-markierten Hybridisierungssonde mit einem Cy5-markierten Primer (C); 19D zeigt den Variationskoeffizienten für die drei in den 19A-C dargestellten Monitoringmethoden.
  • 20 zeigt ein typisches Diagramm von log Fluoreszenz gegen die Zyklenzahl einer Referenzamplifikation, die mit SYBR Green I verfolgt wurde.
  • 21 zeigt die Anpassung einer exponentiellen Kurve an Zyklen 20-27 der aus 20 stammenden Daten.
  • 22 zeigt eine exponentielle Anpassung an eine unbekannte zu bestimmende anfänglichen Kopienzahl aus den Amplifikationsdaten.
  • 23 zeigt ein typisches Diagramm von Fluoreszenz gegen Zyklenzahl für fünf Standards, bei denen in jedem Zyklus ein Monitoring mit benachbarten Hybridisierungssonden erfolgte, wobei die anfänglichen Kopienzahlen wie folgt dargestellt sind: 103, (•); 104, (⟡); 105,
    Figure 00090002
    ; 106, (☐); 107, (♦).
  • 24 zeigt eine Kurvenanpassung an die Referenzdaten von 23.
  • 25 zeigt ein typisches Diagramm von Fluoreszenz gegen Zyklenzahl für fünf Standards, bei denen in jedem Zyklus ein Monitoring mit Hydrolysesonden erfolgte, wobei die anfänglichen Kopienzahlen wie folgt dargestellt sind: 1,5 (•); 15, (⟡); 150,
    Figure 00090003
    ; 1500, (☐); 15.000, (♦).
  • 26 zeigt eine Kurvenanpassung an die Referenzdaten von 25.
  • 27 zeigt ein typisches Diagramm von log Fluoreszenz gegen die Zyklenzahl von drei Referenzamplifikationen, die mit SYBR Green I verfolgt wurden, wobei: (∎); (•);
    Figure 00090004
    .
  • 28 zeigt verschiedene Kurvenanpassungen an die Referenzdaten der 27.
  • 29A & B zeigen Diagramme von (A) Zeit gegen Fluoreszenz und (B) Zeit gegen Temperatur, was die inverse Beziehung zwischen Temperatur und Fluoreszenz verdeutlicht.
  • 30 stellt ein Diagramm dar, das auch als 3D-Plots dargestellte 2D-Plots von Temperatur gegen Zeit, Fluoreszenz gegen Zeit und Fluoreszenz gegen Temperatur für die Amplifikation eines 180 bp-Fragments des Hepatitis B-Genoms in Gegenwart von SYBR Green I zeigt.
  • 31 zeigt eine Projektion der Fluoreszenz gegen die Temperatur für die Amplifikation eines 536 bp-Fragments des humanen beta-Globingens in Gegenwart von SYBR Green I.
  • 32A & B stellen ein Diagramm dar, das (A) eine lineare Änderung des Fluoreszenzverhältnisses mit der Temperatur für Hydrolysesonden und (B) eine radikale Änderung mit der Temperatur für Hybridisierungssonden zeigt.
  • 37 zeigt Schmelzkurven für PCR-amplifizierte Produkte von Hepatitis B-Virus (•; 50% GC, 180 bp); beta-Globin (
    Figure 00100001
    ; 53,2% GC, 536 bp) und Prostata-spezifischem Antigen (x; 60,3% GC, 292 bp).
  • 38 zeigt Schmelzkurven für das PCR-amplifizierte Produkt von Hepatitis B-Virus bei Aufheizgeschwindigkeiten von 0,1°C bis 5,0°C.
  • 39 zeigt die Schmelzkurven für das PCR-amplifizierte Produkt von Hepatitis B-Virus bei verschiedenen Konzentrationen von SYBRTM Green I.
  • 40A & B zeigen (A) Schmelzkurven und (B) elektrophoretisch aufgetrennte Banden von Produkte eines beta-Globinfragments, das (a) ohne zugefügtes Templat, (b) mit 106 Kopien zugefügtem Templat unter niedrigstringenten Bedingungen und (c) mit 106 Kopien zugefügtem Templat unter hochstringenten Bedingungen amplifiziert wurde.
  • 41A & B zeigen (A) Schmelzkurven und (B) Schmelzpeaks von Hepatitis B-Virus-Fragment (HBV), von β-Globin sowie einer Mischung davon.
  • 42A-D zeigen (A) Diagramme der relativen Fluoreszenz gegen die Zyklenzahl für PCR-amplifizierte Produkte aus verschiedenen Mengen β-Globin-Templat, (B) Schmelzpeaks und (C) Elektrophoresebanden der verschiedenen Produkte und (D) die korrigierte Fluoreszenz der Daten von (A).
  • 43A & B zeigen (A) Schmelzkurven und (B) Schmelzpeaks von PCR-amplifizierten Produkten einer Mischung aus cystischem Fibrosegen und c-erbB-2-Onkogen.
  • 44 zeigt Schmelzpeaks bei verschiedenen Zykluszahlen für das cystische Fibrosegen (CFTR) und c-erbB-2 (neu).
  • 45 zeigt einen Graphen von integrierten Schmelzpeaks der CFTR- und neu-PCR-Produkte.
  • 49 zeigt die Form der Reannealingkurven von amplifizierten β-Globin-PCR-Produkten bei verschiedenen Anfangsmengen Templat.
  • 50 zeigt die Bestimmung einer Geschwindigkeitskonstante zweiter Ordnung zur Bestimmung der anfänglichen Templatkonzentration.
  • 51 zeigt ein Blockdiagramm zur Steuerung des Thermocyclings mit den Fluoreszenzdaten.
  • 52A & B zeigen (A) ein Diagramm von Temperatur gegen Zeit, das nach 20 Zyklen erhalten wurde, und (B) ein Diagramm von Fluoreszenz gegen Zeit, das nach 25 Zyklen erhalten wurde, wobei das Thermocycling mit den Fluoreszenzdaten gesteuert wurde.
  • In der Beschreibung und den Ansprüchen der vorliegenden Erfindung wird entsprechend den nachfolgenden Definitionen die folgende Terminologie verwendet.
  • "Nukleinsäure", "DNA" und ähnliche Bezeichnungen, wie sie hier verwendet werden, schließen auch Nukleinsäureanaloga, d.h. Analoga mit einem anderen als einem Phosphodiestergrundgerüst, ein. Beispielsweise kommen die aus dem Stand der Technik bekannten so genannten "Peptidnukleinsäuren", die Peptidbindungen anstelle von Phosphodiesterbindungen im Grundgerüst aufweisen, im Rahmen der vorliegenden Erfindung in Betracht.
  • "Kontinuierliches Monitoring" und ähnliche Begriffe, wie sie hier verwendet werden, bezeichnen ein mehrmaliges Monitoring während eines PCR-Zyklus, vorzugsweise bei Temperaturwechseln, und besonders bevorzugt den Erhalt wenigstens eines Wertepunktes bei jedem Temperaturwechsel.
  • Der Begriff "Cycle-by-cycle"-Monitoring, wie hier verwendet wird, bedeutet ein einmaliges Monitoring der PCR-Reaktion pro Zyklus, vorzugsweise während der Annealing-Phase der PCR.
  • Der Begriff "wirksame Menge", wie er hier verwendet wird, bedeutet eine Menge, die ausreicht, um eine ausgewählte Wirkung hervorzurufen. Eine wirksame Menge an PCR-Primern ist beispielsweise eine zur Amplifikation eines Nukleinsäurefragments durch PCR ausreichende Menge, vorausgesetzt, dass eine DNA-Polymerase, ein Puffer, ein Templat und andere Bedingungen, einschließlich Temperaturbedingungen, wie sie nach dem Stand der Technik zur Durchführung der PCR notwendig sind, vorliegen.
  • Eine PCR erfordert wiederholtes Denaturieren von Templat und Annealing von Primern. Diese Hybridisierungsvorgänge sind temperaturabhängig. Die Temperaturzyklen der PCR, die die Amplifikation treiben, denaturieren abwechselnd bei hoher Temperatur das sich akkumulierende Produkt und bewirken bei einer niedrigeren Temperatur das Annealing von Primern an das Produkt. Die Übergangstemperaturen von Produktdenaturierung und Primer-Annealing hängen in erster Linie vom GC-Gehalt und von der Länge ab. Wenn eine Sonde konstruiert wird, um innen an das PCR-Produkt zu hybridisieren, hängt die Schmelztemperatur der Sonde auch vom GC-Gehalt, der Länge und dem Grad der Komplementarität mit dem Target ab. Mit PCR-kompatiblen Fluoreszenzsonden lässt sich die Hybridisierung während der Amplifikation verfolgen.
  • Gemäß der vorliegenden Erfindung, die vorzugsweise in Verbindung mit schnellen Thermocycling eingesetzt wird (vollständig beschrieben in der oben angegebenen U.S. Serien-Nr. 08/658,993, eingereicht am 4. Juni 1996, mit dem Titel "System And Method For Monitoring PCR Processes", und der U.S. Seriennummer 08/537,612, eingereicht am 2. Oktober 1995, mit dem Titel "Method For Rapid Thermal Cycling of Biological Samples"), ist ein kinetisches Paradigma für die PCR zweckdienlich. Anstatt sich PCR als drei Reaktionen (Denaturierung, Annealing, Extension) vorzustellen, die bei drei verschiedenen Temperaturen über drei Zeiträume ablaufen (1A), ist ein kinetisches Paradigma für die PCR nützlicher (1B). Mit einem kinetischen Paradigma besteht die Kurve von Temperatur gegen Zeit aus kontinuierlichen Wechseln zwischen sich überlagernden Reaktionen. Denaturierung und Annealing erfolgen so schnell, dass keine Haltedauer bei einer bestimmten Temperatur notwendig ist. Die Extension erfolgt mit unterschiedlichen Geschwindigkeiten über einen Bereich von Temperaturen. Eine vollständige Analyse würde die Kenntnis aller relevanten Geschwindigkeitskonstanten über alle Temperaturen erfordern. Wenn die Geschwindigkeitskonstanten aller Reaktionen bekannt wären, könnte eine "physikochemische Beschreibung der PCR" entwickelt werden. Die Bestimmung dieser Geschwindigkeiten würde eine genaue Kontrolle der Probentemperatur erfordern und wird durch ein Monitoring der Reaktion bei den Temperaturwechseln stark vereinfacht.
  • 2 veranschaulicht nützliche Abschnitte von Temperatur gegen Zeit zum Fluoreszenz-Monitoring der Hybridisierung. Die Produktschmelzkurven werden während eines langsamen Temperaturanstiegs bis zur Denaturierung erhalten. Durch ein schnelles Absenken der Temperatur nach der Denaturierung auf eine konstante Temperatur können gegebenenfalls Produkt-, Sonden- oder Primerannealing verfolgt werden. Die Sondenschmelzkurven werden durch langsames Aufheizen durch die Temperaturen um den Sonden-Tm hindurch erhalten. Die in 2 dargestellte Ausführungsform liefert die gesamte Analyse während des Thermocycling in sofortiger Echtzeitdarstellung. Die Fluoreszenzsonden bilden Teil der Amplifikationslösung zum kontinuierlichen Monitoring von Primer-, Sonden- oder Produkthybridisierung während des Thermocycling.
  • Die hier enthaltenen Fluoreszenzhybridisierungsmethoden basieren auf schnellem Thermocycling, wobei dessen Vorteile in Geschwindigkeit und Spezifität liegen.
  • Das Temperaturprofil einer Probe bei einer PCR mit schnellem Thermocycling ist in 3 gezeigt. Denaturierung und Annealing zeigen sich im Gegensatz zu den breiten Plateaus des herkömmlichen Thermocycling der PCR in diesen Figuren als Temperaturspitzen („Spikes"), z.B. 1A. Schnelles Thermocycling steht dem herkömmlichen Thermocycling in 4 gegenüber, wo gezeigt ist, dass 30 Amplifikationszyklen in 15 Minuten abgeschlossen sein können und die entsprechenden PCR-Produkte viel weniger Nebenprodukte enthalten. Daher werden bei schnellem Thermocycling die zur Amplifikation benötigten Zeiten um ungefähr das 10-fache gesenkt und die Spezifität verbessert.
  • Beispiel 1
  • 4 zeigt die Ergebnisse vier verschiedener Temperatur/Zeit-Profile (A-D) und ihre entsprechenden Amplifikationsprodukte nach dreißig Zyklen (A-D). Die Profile A und B in 4 wurden mit einer im Stand der Technik gebräuchlichen Heizblockvorrichtung mit einem im Stand der Technik gebräuchlichen Mikrofugenröhrchen erhalten. Wie in 4 zu sehen ist, erfolgen die Wechsel zwischen den Temperaturen langsam, und in den Profilen A und B zeigen sich viele unspezifische Banden. Profil B zeigt eine Verbesserung bei der Eliminierung einiger der unspezifischen Banden (im Gegensatz zu Profil A), indem die Zeit, für die jede Probe bei jeder Temperatur bleibt, begrenzt wird, was anzeigt, dass kürzere Zeiten bessere Ergebnisse liefern.
  • Profile C und D wurden mit einem schellen Thermocycler erhalten. Wie in 4 zu sehen ist, ist die Amplifikation spezifisch und obwohl die Ausbeute bei Elongationszeiten von 60 Sekunden maximale ist (C), ist sie bei Elongationszeiten von 10 Sekunden noch völlig ausreichend (D).
  • Die optimalen Zeiten und Temperaturen für die Amplifikation eines 536 bp-Fragments von beta-Globin aus humaner genomischer DNA wurden ebenfalls bestimmt. Die Amplifikationsausbeuten und die Produktspezifität waren optimal, wenn die Denaturierung (93°C) und das Annealing (55°C) weniger als 1 Sekunde dauerten. Es gab keinen Vorteil bei längeren Denaturierungs- oder Annealingzeiten. Die Ausbeute stieg bei längeren Elongationszeiten bei 77°C an, aber es wurde kaum eine Veränderung bei Elongationszeiten von länger als 10-20 Sekunden festgestellt. Diese unerwarteten Ergebnisse zeigen, dass die Bedingungen, die zur Optimierung der physikalischen und enzymatischen Erfordernisse der Reaktion benötigt werden, bei den früher verfügbaren Vorrichtungen zur DNA-Amplifikation nicht maximal sind.
  • Weitere Informationen lassen sich erhalten aus: C.T. Wittwer et al., Rapid Cycle Allele-Specific Amplification with Cystic Fibrosis delta F(508) Locus, 39 Clinical Chemistry 804 (1993) und C.T. Wittwer et al., Rapid DNA Amplification, THE POLYMERASE CHAIN REACTION 174 (1999). Die zur Fluoreszenzerfassung und zum schnellen Thermocycling verwendete Apparatur ist in der Serien-Nr. 08/537,612, supra, vollständig offenbart.
  • Wie oben angegeben, kann die Polymerase-Kettenreaktion schnell durchgeführt werden. Neben der Möglichkeit einer schnellen Wärmeübertragung erlaubt die Verwendung optisch reiner Kapillarröhrchen ein kontinuierliches Fluoreszenz-Monitoring der DNA-Amplifikation gemäß der vorliegenden Erfindung.
  • Fluoreszenzsonden können zum Nachweis und zum Monitoring von DNA-Amplifikation verwendet werden. Geeignete Sonden beinhalten für doppelsträngige DNA spezifische Farbstoffe und sequenzspezifische Sonden.
  • In 5A hängt die Fluoreszenz von der Hybridisierung des PCR-Produkts ab, wie mit einem doppelstrangspezifischen DNA-Farbstoff nachgewiesen wurde.
  • Das Verfahren von 5A, einem Aspekt der vorliegenden Erfindung, ist nicht sequenzspezifisch, wenngleich die Produktspezifität durch Schmelzkurven bestimmt werden kann.
  • Auswahl des doppelstrangspezifischen DNA-Farbstoffs. Der Fachmann ist mit der Verwendung von Ethidiumbromid bei Fluoreszenzmethoden vertraut. Wenn während der Amplifikation ein doppelstrangspezifischer Fluoreszenzfarbstoff vorhanden ist, nimmt die Fluoreszenz im Allgemeinen zu, wenn mehr doppelsträngiges Produkt gebildet wird, siehe R. Higuchi et al., Simultaneous amplification and detection of specific DNA sequences, 10 Bio/Technology 413-417 (1992). Ein PCR-Fluoreszenzassay für Hepatitis C-RNA mit einem interkalierenden Farbstoff YO-PRO-1 ist im Stand der Technik ebenfalls bekannt. Siehe T. Ishiguro et al., Homogeneous quantitative assay of hepatitis C virus RNA by polymerase chain reaction in the presence of a fluorescent intercalater, 229 Anal. Biochem. 207-213 (1995). Die Verwendung von SYBRTM Green I, das dem Fachmann allgemein bekannt ist und von Molecular Probes, Eugene, Oregon, erhältlich ist, als doppelstrangspezifischem Farbstoff wird bevorzugt. Die Molekülstruktur dieses Farbstoffs ist ein Geschäftsgeheimnis, aber der Hersteller empfiehlt es als einen empfindlicheren doppelstrangspezifischen Farbstoff zum DNA-Nachweis auf Gelen. SYBRTM Green I ist jedoch hitzelabil und daher nicht zum Fluoreszenz-Monitoring von PCR gemäß den herkömmlichen Verfahren geeignet, bei denen die Temperatur der Reaktionsmischung für längere Zeit auf Schmelztemperatur gehalten wird. Aufgrund der Hitzelabilität war es überraschend zu entdecken, dass SYBRTM Green I zum Monitoring von PCR-Reaktionen verwendet werden kann, wenn die Schmelztemperaturen nicht für längere Zeit beibehalten werden, d.h. wenn die PCR mit schnellem Thermocycling gemäß dem oben beschriebenen kinetischen Paradigma durchgeführt wird.
  • Beispiel 2
  • Verschiedene doppelstrangspezifische DNA-Farbstoffe wurden durch Monitoring der Amplifikation eines 110 bp-Fragments ausgehend vom PCO3/PCO4-Primerpaar des humanen beta-Glonbingens mit 10.000 Templatkopien verglichen. Die Primer wurden mit der standardmäßigen Phosphoramiditchemie, wie sie im Stand der Technik bekannt ist, nämlich unter Verwendung des Pharmacia Biotech Gene Assembler Plus (Piscataway, New Jersey), synthetisiert. Die humanen beta-Globinprimer PCO3/PCO4 (110 Basenpaare) sind bei C.T. Wittwer et al., Automated polymerase chain reaction in capillary tubes with hot air, 17 Nucl. Acids. Res. 4353-4357 (1989) beschrieben, worauf hier vollinhaltlich Bezug genommen wird. Die DNA-Amplifikation wurde in 50 mM Tris, pH 8,5 (25°C), 3 mM MgCl2, 500 μg/ml Rinderserumalbumin, 0,5 μM von jedem Primer, 0,2 mM von jedem Desoxynukleosidtriphosphat und 0,2 U Taq-Polymerase pro 5 μl Probe durchgeführt, soweit in den folgenden Beispielen nicht anders angegeben. Das gereinigte Amplifikationsprodukt wurde als DNA-Templat verwendet und durch Phenol/Chloroform-Extraktion und Ethanolfällung erhalten, siehe D.M. Wallace, Large- and small-scale phenol extractions and precipitation of nucleic acids, 152 Methods in Enzymology 33-48 (1987), gefolgt von Abtrennen der Primer durch wiederholtes Waschen durch einen Centricon 30 Mikroconcentrator (Amicon, Danvers, Massachusetts). Die Templatkonzentrationen wurden durch Extinktion bei 260 nm bestimmt. Die A(260):A(280)-Verhältnisse der Template waren größer als 1,7.
  • SYBRTM Green I (Molecular Probes, Eugene, Oregon) wurde in einer Verdünnung von 1:10.000, Ethidiumbromid mit 5 μg/ml und Acridinorange mit 3 μg/ml verwendet. Diese Konzentrationen wurden als optimale Konzentrationen zur Maximierung des bei der Amplifikation für jeden Farbstoff beobachteten Fluoreszenzsignals bestimmt. Die Anregung erfolgte über einen 450-490 nm Interferenzfilter mit einer Xenonlichtbogenquelle, außer bei Ethidiumbromid, bei dem die Anregung bei 520-550 nm erfolgte. Für SYBRTM Green I erfolgte das Monitoring der Emission bei 520-550 nm. Die Ethidiumbromidfluoreszenz wurde durch einen 580-620 nm Bandfilter beobachtet. Das Signal von Acridinorange wurde als Verhältnis von grüner (520-550 nm) zu roter (> 610 nm) Fluoreszenz angenommen. Die Fluoreszenz der Probe vor der Amplifikation wurde mit der Fluoreszenz nach 35 Zyklen (94°C Max., 60°C für 20 sec) bei 60°C verglichen. Der Fluoreszenzanstieg betrug das 5,3-fache für SYBRTM Green I, das 1,7-fache für Ethidiumbromid und das 1,2-fache für Acridinorange. Bei getrennten Experimenten war die Fluoreszenz von SYBRTM Green I für mehr als 30 min bei 70°C stabil. Es wird auch bequem mit sichtbarem Licht angeregt und soll weniger mutagen sein als Ethidiumbromid. In allen Fällen stammte die Background-Fluoreszenz in erster Linie von den Primern.
  • SYBRTM Green I ist der doppelstrangspezifische Farbstoff für das erfindungsgemäße Fluoreszenz-Monitoring von PCR, in erster Linie wegen seiner der überragenden Empfindlichkeit, die von einer größeren Trennschärfe zwischen doppelsträngiger und einzelsträngiger Nukleinsäure herrührt. SYBRTM Green I kann bei jeder Amplifikation verwendet werden und ist nicht teuer. Außerdem lässt sich die Produktspezifität durch Analyse der Schmelzkurven erhalten, wie nun gleich beschrieben wird.
  • Cycle-by-cycle-Fluoreszenz. Eine übliche Endpunktanalyse der DNA-Amplifikation durch Gelelektrophorese identifiziert die Produktgröße und schätzt die Reinheit ab. Da jedoch die Amplifikation zunächst stochastisch, dann exponentiell und schließlich stagnierend erfolgt, ist der Nutzen der Endpunktanalyse zur Quantifizierung begrenzt. Ein Aspekt der vorliegenden Erfindung beinhaltet ein Cycle-by-cycle-Monitoring zur Quantifizierung der anfänglichen Kopienzahl des Templats mit Hybridisierungssonden. Wie für einen Fachmann ersichtlich ist, ist ein einmaliges Monitoring. mehrerer Proben pro Zyklus (Once-per-cycle Monitoring) während der DNA-Amplifikation ein leistungsstarkes quantitatives Werkzeug. Ein Cycle-by-cycle-Monitoring wird erreicht, indem man die Fluoreszenz bei der Extension oder der kombinierten Annealing/Extensionsphase eines jeden Zyklus erfasst und die Fluoreszenz mit der Produktkonzentration in Beziehung setzt.
  • Beispiel 3
  • Das Cycle-by-cycle-Monitoring der PCR wurde mit drei verschiedenen Fluoreszenzmethoden durchgeführt. Das Fluoreszenz-Monitoring erfolgte durch (i) den doppelstrangspezifischen Farbstoff SYBRTM Green I, (ii) ein Absenken des Fluorescein-Quenchings durch Rhodamin nach Exonukleasespaltung einer zweifach markierten Hydrolysesonde und (iii) Resonanzenergietransfer von Fluorescein auf Cy5 durch benachbarte Hybridisierungssonden. Die Erfindung beinhaltet jedoch nur das Fluoreszenz-Monitoring durch den doppelstrangspezifischen Farbstoff SYBRTM Green I.
  • Die Amplifikationsreagenzien und -bedingungen entsprachen denen von Beispiel 2. Die humanen beta-Globinprimer RS42/KM29 (536 Basenpaare) und PCO3/PCO4 (110 Basenpaare) sind bei C.T. Wittwer et al., Automated polymerase chain reaction in capillary tubes with hot air, 17 Nucl. Acids. Res. 4353-4357 (1989) beschrieben, worauf hier nun vollinhaltlich Bezug genommen wird. Das Thermocycling für beta-Globin erfolgte bei 95°C Maximum, 61°C Minimum, 15 sec bei 72°C und einer Durchschnittsgeschwindigkeit zwischen den Temperaturen von 5,2°C/sec. Die beta-Actinprimer und die Fluorescein/Rhodamin-Zweifachsonde wurden von Perkin Elmer (Nr. N808-0230) erhalten. Das Thermocycling für beta-Actin erfolgte bei 94°C Maximum, 60°C für 15 sec mit einer Durchschnittsgeschwindigkeit zwischen den Temperaturen von 6,2°C/s. Die einfach markierten Sonden 5'-CAAACAGACA CCATGGTGCA CCTGACTCCT GAGGA-Fluorescein-3' (SEQ ID NO: 3) und 5'-Cy5-AAGTCTGCCG TTACTGCCCT GTGGGGCARGp (SEQ ID NO: 4) wurden analog zu Beispiel 3 synthetisiert. Diese benachbarten Sonden hybridisieren auf dem gleichen DNA-Strang innen an das PCO3/PCO4-beta-Globin-Primerpaar und sind durch ein Basenpaar getrennt. Das Thermocycling erfolgte bei 94°C Maximum, 59°C für 20 sec, mit einer Durchschnittsgeschwindigkeit zwischen den Temperaturen von 7,0°C/sec. Die Hybridisierungssonden (beta-Actin und beta-Globin) wurden jeweils mit 0,2 μM eingesetzt.
  • Wenn mehrere Proben einmal pro Zyklus mit SYBRTM Green I einem Monitoring unterzogen werden, lässt sich ein Bereich von 107-108 an anfänglicher Templatkonzentration unterscheiden, wie in 15 dargestellt. Diese Amplifikation stammt von einem 536 bp-Fragment des beta- Globingens mit SYBRTM Green I als doppelstrangspezifischem Farbstoff. Wenn die Daten als Prozent maximale Fluoreszenz jeder Probe normiert wurden, waren hundert anfängliche Kopien eindeutig von zehn Kopien getrennt. Der Unterschied zwischen einer und zehn Kopien war jedoch nur marginal und es ließ sich kein Unterschied zwischen null und durchschnittlich einer Kopie pro Probe feststellen.
  • Das Fluoreszenzsignal von den Hybridisierungssonden ist nicht kumulativ und tritt bei jeder Annealingphase neu auf. Die Fluoreszenz ist ein direktes Maß für die Produktkonzentration, da die Hybridisierung eine Reaktion pseudo-erster Ordnung ist. Weil die Konzentration der Sonde viel höher als die des Produkts ist, ist der an die Sonde hybridisierte Anteil des Produkts von der Produktkonzentration unabhängig. Diese Eigenschaften zeigen an, dass die Verwendung einer einzelnen Hybridisierungssonde zusammen mit einem markierten Primer zu einem besseren Monitoring der Produktakkumulation zu Quantifizierungszwecken führt. Die inhärente Varianz der verschiedenen Fluoreszenzmethoden bei einem Cycle-by-Cycle-Monitoring ist für eine Quantifizierung ebenfalls wichtig.
  • Beispiel 4
  • Die DNA-Amplifikation erfolgte gemäß Beispiel 2 für jedes der drei verschiedenen Verfahren zum Fluoreszenz-Monitoring. SYBRTM Green I wurde in einer Verdünnung von 1:10.000 bei der Amplifikation eines 205 bp langen humanen beta-Globinfragments von den Primern KM29 und PCO4 verwendet. Die Hydrolysesonde und -bedingungen entsprechen den in Beispiel 7 beschriebenen. Die Hybridisierungssonde, TCTGCCGTTA CTGCCCTGTG GGGCAAG-Fluorescein (SEQ ID NO: 5) wurde mit KM29 und dem wie in Beispiel 8 synthetisierten Cy5-markierten Primer CAACTTCATCCACGTT*CACC (SEQ ID NO: 6), wobei T* eine Cy5-markierte T-Base war, verwendet. Alle Amplifikationen wurden in zehnfacher Ausführung mit 15.000 Templatkopien (50 ng humane genomische DNA/10 μl) durchgeführt. Die Temperaturzyklen waren 31 sec lang (94°C Maximum, 60°C für 20 s, Durchschnittgeschwindigkeit zwischen den Temperaturen 6,2°C/sec). Die Fluoreszenz wurde für jede Probe zwischen Sekunden 15 und 20 der Annealing/Extensionssphase erfasst.
  • 19A ermöglicht einen Vergleich der drei Methoden zum Fluoreszenz-Monitoring einer PCR. Die Fluoreszenzsonden sind der dsDNA-Farbstoff SYBRTM Green I (19A), eine zweifach markierte Fluorescein/Rhodamin-Hydrolysesonde (19B) und eine Fluoresceinmarkierte Hybridisierungssonde mit einem Cy5-markierten Primer (19C). Alle Sonden wiesen fast die gleiche Empfindlichkeit auf, wobei nachweisbare Fluoreszenz etwa um den Zyklus 20 herum auftrat. Bei längerer Amplifikation nahm das Signal bei der Hydrolysesonde kontinuierlich zu, war bei SYBRTM Green I auf einem Niveau und nahm bei der Hybridisierungssonde leicht ab.
  • Die Genauigkeit der drei Methoden zum Fluoreszenz-Monitoring wird in 19D verglichen. Die mittleren +/– -Standardabweichungen sind für jeden Punkt aufgetragen. Die Daten sind als Variationskoeffizient (Standardabweichung/Mittelwert) des Fluoreszenzverhältnisses oberhalb der Grundlinie aufgetragen (genommen als Mittelwert der Zyklen 11-15).
  • Obwohl die Änderung im Fluoreszenzverhältnis bei der Hydrolysesonde größer ist als die bei der Hybridisierungssonde (19B und 19C), ist der Variationskoeffizient der Fluoreszenz bei den Hydrolysesonden größer (19D). Das heißt, dass die Fluoreszenz, die bei dem Verfahren mit Hybridisierungsonden resultiert, genauer ist als bei Verwendung einer Hydrolysesonde, auch wenn die absoluten Signalstärken niedriger sind. Dies stellt einen unerwarteten Vorteil der Hybridisierungssonden gegenüber den üblicheren zweifach markierten Hydrolysesonden dar.
  • Quantifizierung der anfänglichen Kopienzahl des Templats. Die quantitative PCR ist sowohl in der biomedizinischen Forschung als auch in der klinischen Laborarbeit zu einer wichtigen Methode geworden. Das Quantifizierungsverfahren beinhaltet oft die Aufnahme einer Eichkurve von Proben, die eine bekannte Kopienzahl der Targetsequenz enthalten, ein. Die Kopienzahl einer unbekannten Probe wird durch Extrapolation zwischen den bekannten Werten ermittelt. Wenn das Cycle-by-cycle-Monitoring einer vollständige Amplifikationskurve mit Fluoreszenz, Radioaktivität oder einem anderen Verfahren erfolgt, das ein zur vorhandenen DNA-Menge proportionales Signal liefert, stehen viele Datenpunkte für eine Analyse zur Verfügung und es ist nicht klar, welcher Wert einen Standard oder eine Unbekannte darstellen soll. Der Stand der Technik wählt einen "Schwellenwert" für das Signal und verwendet dann die Zyklenzahl, bei der der Standard oder die Unbekannte den Schwellenwert schneidet, als repräsentativen Wert (siehe Higuchi & Watson, EPA 0 640 282 A1). Dieser Ansatz verwendet eine sehr kleine Menge der in einer Amplifikationskurve verfügbaren Daten. Außerdem ist die Zuordnung des Schwellenwerts sehr subjektiv und unterliegt einer bewußten oder unbewußten Verzerrung. Mehr verfügbare Daten könnten objektiv durch Anwendung von Methoden zur Anpassung nichtlinearer Kurven auf die Daten in einer Amplifikationskurve verwendet werden. Vorzugsweise könnte man Gleichungen finden, die die Form der Amplifikationskurven durch Modellieren der Faktoren des zugrundeliegenden Verfahrens beschreiben.
  • Eine Vielzahl verschiedener Gleichungen könnte zur Anpassung der bei einer Amplifikation erzeugten Daten verwendet werden. DNA-Amplifikationen weisen üblicherweise einen log-linearen Abschnitt auf und die Daten in diesem Abschnitt können an eine Gleichung angepasst werden, die einen exponentiellen Anstieg beschreiben, wie er bei einer DNA-Amplifikation erwartet wird. Der log-lineare Teil einer DNA-Amplifikation kann durch die Gleichung y = A·[DNA]·(1+E)n beschrieben werden, wobei A ein Skalierungsfaktor ist, der Signaleinheiten in DNA-Einheiten umrechnet; [DNA] die Anfangskonzentration der DNA in der Reaktion ist; E die Effizienz der Reaktion; und n die Zyklenzahl ist.
  • Ein Quantifizierungsverfahren sollte beinhalten: (1) Anpassen der bekannten Standards an die Gleichung und fließen lassen der Parameter A und E, und (2) Anpassen der unbekannten Proben an die Gleichung mit den Werten für A und E aus den Standards und fließen lassen von [DNA]. Diese Methode verwendet viel mehr Daten und nützt den Teil der Daten, den log-linearen Teil, der wahrscheinlich am informativsten ist. Die 20, 21 und 22 zeigen ein Beispiel für diesen Ansatz. Zehnfach-Verdünnungen eines gereinigten PCR-Produkts wurden als Eichkurve amplifiziert und es wurde ein "unbekannter" humaner genomischer DNA-Standard verwendet. 20 zeigt, dass der log-lineare Teil leicht entweder durch den Benutzer oder die Software identifiziert werden kann. 21 zeigt eine Anpassung der Gleichung y = A·[DNA]·(1+E)n an den 104-Kopien-Standard. 22 verwendet Durchschnittswerte von verschiedenen Standards für A und E und passt [DNA] an. Der angepasste Wert von 16.700 liegt sehr nahe am theoretischen Wert eines Gens mit einer einzigen Kopie in der genomischen DNA (15.000 Kopien).
  • Die Verwendung aller Daten für eine Amplifikationskurve sollte das Ausmaß des Hintergrundrauschens und den Plateau-Wert beinhalten. Während das Plateau bei hoher Kopienzahl nicht informativ ist, ist es bei niedriger Kopienzahl häufig zur anfänglichen Kopienzahl proportional. Das Ausmaß des Hintergrundrauschens sollte zur Bestimmung des ersten Punkts nützlich sein, der einen deutlichen Anstieg des Signals zeigt. Zu diesem Zeitpunkt sind alle Faktoren, die an der Form einer DNA-Amplifikationskurve beteiligt sind, unbekannt, so dass ein Ansatz dahingeht, die Form der Kurve zu beschreiben. 23 zeigt Amplifikationskurven bei Verwendung von Fluoreszenzhybridisierungssonden zum Nachweis eines Bereichs von DNA-Templatkonzentrationen von fünf Größenordnungen. Jede Kurve ist an die Gleichung y = ((as·x+ab)–(ds·x+db))/(1+(x/c)^b)+(ds·x+db)angepasst, wobei "as" der Background der Böschungslinie ist, "ab" der y-Abschnitt der Backgroundlinie ist, "ds" die Steigung der Plateaulinie ist, "db" der y-Abschnitt der Böschungslinie ist, "c" die Zyklenzahl ist, bei der die Reaktion auf halbem Wege zwischen Background und Plateau (A50) ist und "b" die Steigung des log-linearen Teils der Amplifikation ist.
  • Diese Gleichung ergibt gute Anpassungen an diese Amplifikationsdaten und 24 zeigt, dass der A50-Wert über sieben Größenordnungen gut mit dem log der anfänglichen Kopienzahl korreliert. 25 zeigt die gleiche Anpassung der Gleichung an die Daten von Amplifikationen, bei denen eine Hydrolysesonde zum Nachweis des DNA-Templates über einen Bereich von 5 Größenordnungen verwendet wurde. Diese Gleichung ergibt gute Anpassungen an diese Amplifikationsdaten und die 26 zeigt, dass der A50-Wert gut mit dem log der anfänglichen Kopienzahl korreliert. Dies zeigt die Flexibilität des Ansatzes einer vollständigen Kurvenanpassung, da die Gleichung gute Anpassungen sowohl an die scharfen Plateaus der Kurven für die Amplifikation mit Hybridisierungssonden als auch an die stetig ansteigenden „Plateaus" der Kurven für die Hydrolysesonden ergab.
  • Vollständige Kurvenanpassungen sind nicht auf diese Gleichung beschränkt. 27 zeigt eine Amplifikation von drei Konzentrationen DNA-Templat, die an die Gleichung: y = (((as·x+ab)–(dmax·x/dd+x))/(1+(x/c)^b))+(dmax·x/dd+x) angepasst ist, die den ersten 6-Parameter-Gleichungen ähnelt, außer dass das Plateau durch eine hyperbolische Kurve und nicht durch eine Gerade definiert ist. 28 zeigt, dass der A50-Wert für diese Gleichung gut mit der anfänglichen Kopienzahl korreliert.
  • Während der A50-Wert bei diesen Beispielen verwendet wurde, sollte eine Ebene zwischen dem Background und dem Plateau gewählt werden, wenn eine bestimmte Methode im Amplifikationsprofil stärker niedriger oder höher ist. Beispielsweise wird eine Reihe von Amplifikationseichkurven für die beste Korrelation zwischen der anfänglichen Kopienzahl und dem A50, dem A40, dem A30, dem A20 und dem A10 ausgewertet. Die Amplifikationsstärke, die am besten mit der bekannten anfänglichen Kopienzahl korreliert, wird bestimmt. Dies ist für verschiedene Nachweissysteme unterschiedlich. 19 zeigt den Variationskoeffizienten für verschiedene Nachweissysteme. Die Amplifikationsstärke, die die beste Vorhersage liefert, ist vermutlich die Stärke mit dem niedrigsten Variationskoeffizienten.
  • Wenn man die DNA-Amplifikationsreaktion selbst besser versteht, könnten andere Gleichungen mit Parametern verwendet werden, die physikalische Prozesse wiedergeben. Das Plateau der DNA-Amplifikationskurve hat bei verschiedenen Reaktionen verschiedene Ursachen. Es ist häufig darauf zurückzuführen, dass die Primer nicht in der Lage sind, mit dem Reannealing der Produkte in den letzten Zyklen zu konkurrieren. Dieser Effekt könnte mit einem Parameter erfasst werden, der vom Quadrat der Produktkonzentration in der Reaktion abhängt (da die Reannealinggeschwindigkeit proportional zum Quadrat der Produktkonzentration ist). Eine andere Ursache für das Plateau kann die Verarmung an Primern sein. Primer-limitierte Reaktionen weisen eine charakteristische Form auf, sie zeigen ein sehr scharfes, klar zu erkennendes Plateau. Anpassungen von primer-limitierten Reaktionen beinhalten Parameter, die diese scharfe Obergrenze definieren. Enzym-limitierte Reaktionen weisen ein sehr abgerundetes Plateau auf, das entsprechend angepasst werden kann. Man kann sich Gewichtungsfaktoren ausdenken, die die bekannten Variations koeffizienten für ein gegebenes System wiedergeben, so dass die verlässlicheren Datenpunkte schwerer gewichtet werden. Indem man mehr Punkte in einem Amplifikationsprofil anpasst, kann man genauere und zuverlässigere Schätzungen der anfänglichen Kopienzahl erhalten. Ein oder mehrere Parameter dieser Anpassungen können verwendet werden, um die anfängliche Kopienzahl unbekannter Proben zu schätzen.
  • Kontinuierliches Fluoreszenz-Monitoring von PCR. Das erfindungsgemäße Merkmal des kontinuierlichen Monitorings, das heißt des mehrmaligen Monitorings in jedem PCR-Zyklus, soll nachfolgend erörtert werden. Obwohl ein Fluoreszenz-Monitoring bei einer PCR auch einmal pro Zyklus bei einer konstanten Temperatur erfolgen kann, bietet die vorliegende Erfindung den wichtigen Vorteil, dass sie ein kontinuierliches Monitoring über einen ganzen PCR-Zyklus vorsieht. Die Temperatur ist von Bedeutung, da sich die Fluoreszenz ändert, wenn sich die Temperatur ändert. Die 29A & B zeigen die inverse Beziehung zwischen Temperatur und Fluoreszenz für SYBRTM Green I. Dies ist ein beim Thermocycling verwirrender Effekt, der gewöhnlich eliminiert wird, indem man die Fluoreszenz einmal pro Zyklus bei konstanter Extensionstemperatur betrachtet. Erfindungsgemäß ist jedoch ein Fluoreszenz-Monitoring bei Temperaturwechseln sehr informativ. Vor der vorliegenden Erfindung wurde nicht bei jedem Zyklus ein kontinuierliches Fluoreszenz-Monitoring durchgeführt, sondern ein einmaliges Fluoreszenz-Monitoring pro Zyklus. Gemäß der vorliegenden Erfindung werden Zeit, Temperatur und Fluoreszenz jede sec, alle 200 ms, alle 100 ms oder sogar mit noch größerer Häufigkeit erfasst. Die entsprechenden Daten können feine Details der Produktdenaturierung, des Reannealing und der Extension, und des Sonden-Annealing und -Aufschmelzens bei einem schnellen Thermocycling aufdecken, die mit den vorher verfügbaren Verfahren nicht verfügbar waren.
  • Beispiel 5
  • Ein 180 bp-Fragment des Gens für das Hepatitis B-Oberflächenantigen wurde ausgehend von 106 Kopien des gereinigten PCR-Produkts mit den Primern 5'-CGTGGTGGAC TTCTCTCAAT-3' (SEQ ID NO: 1) und 5'-AGAAGATGAG GCATAGCAGC-3' (SEQ ID NO: 2) (Genbank-Sequenz HVHEPB) amplifiziert. Man folgte den Amplifikationsbedingungen von Beispiel 2 mit der Ausnahme, dass die Reaktion eine 1:20.000-Verdünnung an SYBRTM Green I und 2 mM MgCl2 enthielt. Jeder Temperaturzyklus dauerte 27 sec (92°C Maximum, 59°C Minimum, 5 sec bei 70°C, Durchschnittsgeschwindigkeit zwischen den Temperaturen 3,0°C/sec). Zeit, Temperatur und 2 Fluoreszenzkanäle wurden alle 200 ms erfasst und kontinuierlich als Diagramme von Fluoreszenz gegen Zyklenzahl und Fluoreszenz gegen Temperatur dargestellt. 30 zeigt eine 3D-Kurve für Temperatur, Zeit und Fluoreszenz für die Zyklen 10 bis 39. Diese 3D-Kurve ist in 30 auch in Form von 2D-Plots von Temperatur gegen Zeit, Fluoreszenz gegen Zeit und Fluoreszenz gegen Temperatur projiziert. Die Projektion von Temperatur gegen Zeit in 30 wiederholt jeden Zyklus und liefert im Wesentlichen die gleichen Informationen, wie sie in 3 angegeben sind. Weil die Fluoreszenz sich umgekehrt zur Temperatur ändert, ist die in 30 gezeigte Projektion von Fluoreszenz gegen Zeit in frühen Zyklen ein maßstabsgetreues Spiegelbild des Diagramms von Temperatur gegen Zeit (siehe 29). Wenn Produkt akkumuliert, nimmt die Fluoreszenz bei allen Temperaturen bei doppelsträngigem Produkt zu. Bei den Denaturierungstemperaturen fällt die Fluoreszenz jedoch auf die Basislinie zurück, da nur einzelsträngige DNA vorhanden ist. Die in 30 gezeigte Projektion von Fluoreszenz gegen Temperatur der Doppelstrang-Farbstoffe eliminiert die Zeitachse und zeigt die Temperaturabhängigkeit des Strangstatus bei der DNA-Amplifikation.
  • Beispiel 6
  • Ein 536 bp-Fragment des humanen beta-Globingens wurde ausgehend von 25 ng genomischer DNA und einer 1:10.000-Verdünnung von SYBRTM Green I in einem Volumen von 5 μl amplifiziert. Jeder Temperaturzyklus dauerte 28 sec (95°C Maximum, 61°C Minimum, 15 sec bei 72°C mit einer Durchschnittsgeschwindigkeit zwischen den Temperaturen von 5,2°C/sec). Andere Bedingungen entsprechen den in 30 beschriebenen. Die Zyklen 15-40 sind dargestellt. Die Temperaturabhängigkeit des Strangstatus des Produkts bei der PCR zeigt sich aus den Diagrammen von Fluoreszenz gegen Temperatur, wie in 31 gezeigt. Die dargestellten frühen Zyklen erscheinen identisch und zeigen einen nichtlinearen Anstieg der Fluoreszenz bei niedrigeren Temperaturen. Bei fortschreitender Amplifikation erscheinen die Temperaturzyklen als aufsteigende Schleifen zwischen Annealing- und Denaturierungstemperatur. Wenn die Probe erhitzt wird, ist die Fluoreszenz bis zur Denaturierung hoch. Wenn die Probe abkühlt, nimmt die Fluoreszenz zu, was ein Reannealing des Produkts widerspiegelt. Wenn die Temperatur bei der Extension konstant ist, korreliert die zunehmende Fluoreszenz mit weiterer DNA-Synthese.
  • Wie sich aus dem Verständnis dieser Offenbarung ergibt, kann ein kontinuierliches Monitoring innerhalb eines Zyklus einen Einblick in die Mechanismen der DNA-Amplifikation bieten, den es zuvor im Stand der Technik nicht gab. Mit der vorliegenden Erfindung sind viele Aspekte der DNA-Amplifikation erkennbar, die vorher schlecht zu verstehen waren. Eine Amplifikation mit schnellem Thermocycling soll das Produkt beispielsweise in weniger als einer Sekunde denaturieren, während der Stand der Technik zehn Sekunden bis eine Minute für die Denaturierung braucht. Die Beobachtung des Aufschmelzens des Produkts durch Echtzeit-Fluoreszenz-Monitoring mit Doppelstrangfarbstoffen gemäß der vorliegenden Erfindung (30 und 31) zeigt, dass die Anwendung kürzerer Denaturierungszeiten effektiv ist. Als anderes Beispiel ist zu nennen, dass für den bekannten „Plateau-Effekt" viele Gründe vorgeschlagen wurden, aber nur wenige Daten zur Verfügung stehen, um zwischen diesen Alternativen zu unterscheiden. Wie in 31 gezeigt erfolgt das Reannealing des Produkts sehr schnell. Tatsächlich reassoziiert bei späteren Amplifikationszyklen beim Abkühlen in jedem Zyklus der größte Teil des Produkts, bevor die Annealingtemperatur der Primer erreicht wird. In einer Apparatur zum raschen Thermocycling erfolgt dies mit Abkühlgeschwindigkeiten von 5-10°C/sec. Das Reannealing des Produkts mit langsameren, im Stand der Technik gebräuchlichen Thermocyclern ist höher und dieser unerwünschte Effekt größer. Reannealing des Produkts scheint ein Hauptgrund und vielleicht der einzige Grund für den „Plateau-Effekt" zu sein.
  • Nachfolgend wird ein kontinuierliches Monitoring sequenzspezifischer Sonden betrachtet. Wie sich aus dieser Offenbarung ergibt, kann ein kontinuierliches Monitoring innerhalb eines Zyklus die Art der Sondenfluoreszenz identifizieren.
  • Beispiel 7
  • Analog zu Beispiel 3 wurde alle 200 msec ein kontinuierliches Monitoring der Amplifikation mit einer zweifach markierten Hydrolysesonde (beta-Actin) und benachbarten Hybridisierungssonden (beta-Globin) durchgeführt. In 32A sind die Zyklen 20-45 einer Reaktion gezeigt, die mit der Hydrolysesonde verfolgt wurde. Die Hydrolysesonden zeigen eine lineare Änderung des Fluoreszenzverhältnisses mit der Temperatur und eine parallele Zunahme bei der Fluoreszenz, wenn mehr Sonde hydrolysiert wird. Im Gegensatz dazu ändert sich das Fluoreszenzverhältnis von Hybridisierungssonden drastisch mit der Temperatur (32B, Zyklen 20-90). Während der Annealing/Extensionsphase hybridisieren die Sonden an einzelsträngiges Produkt und das Fluoreszenzverhältnis (Cy5/Fluorescein) nimmt zu. Beim Aufheizen auf Temperaturen zum Denaturieren des Produkts dissoziieren die Sonden bei etwa 70°C, wodurch das Fluoreszenzverhältnis auf Backgroundniveau zurückgeht.
  • Die erfindungsgemäße Kombination aus (1) kontinuierlichem Fluoreszenz-Monitoring innerhalb jedes Temperaturzyklus und (2) Analyse der Temperatur- und Zeitabhängigkeit der Hybridisierung bietet Vorteile, die ansonsten nicht zu erhalten sind. 2 zeigt, dass durch kontinuierliches Monitoring über einen Zyklus hinweg Informationen extrahiert werden können, die vorher nicht erhältlich waren. Ein kontinuierliches Fluoreszenz-Monitoring während der Phase des Zyklus, in der das Produkt aufgeschmolzen wird, liefert nützliche Informationen über Reinheit, Identität und Menge der bei dem Zyklus vorhandenen DNA.
  • Wenn eine PCR-Reaktion von der Extensionstemperatur auf die Denaturierungstemperatur aufgeheizt wird, wird jede DNA in der Probe in Einzelstränge aufgeschmolzen. Diese Denaturierung kann als Abfall der Fluoreszenz von SYBRTM Green I beobachtet werden. Für kleine PCR-Produkte erfolgt der Vorgang des Aufschmelzens innerhalb eines engen Temperaturbereichs und der Mittelpunkt dieses Schmelzbereichs wird als Tm bezeichnet. Ähnlich der Größenauftrennung durch Gelelektrophorese misst eine Schmelzpeak-Analyse eine grundlegende Eigenschaft der DNA und kann verwendet werden, um amplifizierte Produkts zu identifizieren. Anders als bei der Gelelektrophorese kann die Analyse der Schmelzkurven Produkte mit gleicher Länge aber unterschiedlichem GC/AT-Verhältnis unterscheiden. Zudem hätten zwei Produkte mit gleicher Länge und gleichem GC-Gehalt aber unterschiedlicher GC-Verteilung (beispielsweise gleichverteilt gegenüber einem GC-Clamp an einem Ende) sehr unterschiedliche Schmelzkurven.
  • Die Temperatur, bei der PCR-Produkte schmelzen, variiert über einen großen Bereich. Die Verwendung von im Stand der Technik bekannten empirischen Formeln zum Effekt des GC-Gehalts auf die Schmelztemperatur (Tm) der DNA sagt voraus, dass eine Duplex mit 0% GC um 41°C tiefer als eine Duplex mit 100% GC schmelzen würde. Bei gleichem GC-Gehalt würde ein 40 bp-Primerdimer 12°C unter einem 1000 bp-Produkt schmelzen. Der Tm-Bereich für mögliche PCR-Produkte umfasst daher mindestens 50°C. Dieser breite Bereich ermöglicht eine Unterscheidung der meisten PCR-Produkte aufgrund ihrer Schmelzkurven. Daher bietet eine Kombination aus Fluoreszenz-Monitoring von PCR und Schmelzkurvenanalyse gleichzeitig Amplifikation, Nachweis und Unterscheidung von PCR-Produkten.
  • Beispiel 8
  • Die DNA-Schmelzkurven für drei verschiedene PCR-Produkte wurden an einem Mikrovolumenfluorimeter aufgenommen, das mit einem 24-Proben-Thermocycler mit einem optischen System für SYBRTM Green I-Fluoreszenz (LightCycler LC24, Idaho Technology, Idaho Falls, Idaho) ausgestattet war. Die Primer für die Amplifikation des 180 bp langen Gens für das Hepatitis B-Oberflächenantigen waren 5'-CGTGGTGGAC TTCTCTCAAT-3' (SEQ ID NO: 1) und 5'-AGAAGATGAG GCATAGCAGC-3' (SEQ ID NO: 2). Die Primer für die Amplifikation des 292 bp langen Gens für das Prostata-spezifische Antigen (PSA) waren 5'-CTGTCCGTGA CGTGGATT-3' (SEQ ID NO: 7) und 5'-AAGTCCTCCG AGTATAGC-3' (SEQ ID NO: 8). Die Amplifikation des 536 bp langen humanen beta-Globingens wurde analog zu Beispiel 3 durchgeführt und die PCR wurde wie in Beispiel 2 beschrieben durchgeführt. Die Amplifikationsprodukte wurden durch Phenol/Chloroform-Extraktion und Ethanolfällung gereinigt, gefolgt von wiederholtem Waschen durch einen Centricon 30-Microconcentrator (erhältlich bei Amicon, Danvers, Massachusetts). Die Templatkonzentrationen wurden durch Extinktion bei 260 nm bestimmt und wiesen A(260)/A(280)-Verhältnisse von mehr als 1,7 auf.
  • Fünfzig ng gereinigte DNA in 50 mM Tris, pH 8,5, 2 mM MgCl2 und 250 μg/ml Rinderserumalbumin und ein 5 μl-Volumen wurden in das offene Plastikreservoir von Verbundglas/Plastik-Reaktionsröhrchen pipettiert, zum Sammeln der Probe an der Glaskapillarspitze bei niedriger Geschwindigkeit zentrifugiert und innen mit einem Plastikstöpsel verschlossen. Die Fluoreszenzdaten für die Schmelzkurven wurden durch Integrieren des Signals über 0,25-2,0 Sekunden bei einem linearen Temperaturwechsel auf 95°C mit 0,1-10,0°C/Sekunde erfasst. Die Fluoreszenz wurde kontinuierlich erfasst und als Diagramm von Fluoreszenz gegen Temperatur in der LabView-Programmierumgebung dargestellt (National Instrument, Austin, TX). 37 zeigt die Schmelzkurven der drei gereinigten PCR-Produkte.
  • Die Tm-Werte der drei Produkte in 37 umfassen nur 6°C und zwei der Kurven unterscheiden sich nur um 2°C. Dieser kleine Unterschied reicht aus, um eine leichte Unterscheidung der Produkte zu ermöglichen. Die Bedeutung des Prozentsatzes an GC über die Länge für die Tm wird durch das 292 bp-PSA-Produkt veranschaulicht, das gegenüber dem längeren 536 bp-beta-Globinfragment bei einer höheren Temperatur schmilzt. Schmelzkurven werden häufig bei einer Geschwindigkeit von 0,5°C/Minute erhalten, um das Gleichgewicht sicherzustellen. Wenn die Aufheizgeschwindigkeit abnimmt, verschiebt sich die Schmelzkurven zudem zu tieferen Temperaturen und wird schärfer (38; Hepatitis B-Fragment). Es sei jedoch zu beachten, dass die Schmelzkurven der 37 bei einer Aufheizgeschwindigkeit von 0,2°C/sec (12°C/Minute) erhalten wurden und zwischen Produkten unterscheiden lassen, die sich in der Tm um 2°C oder weniger unterscheiden.
  • Die apparente Tm der PCR-Produkte hängt auch von der Konzentration des doppelstrangspezifischen DNA-Farbstoffs ab (39, Hepatitis B-Fragment). Höhere Farbstoffkonzentrationen erhöhen die Stabilität der DNA-Duplex und die beobachtete Tm.
  • Für ein Monitoring der Schmelzkurven mit SYBRTM Green I sind die bevorzugten Bedingungen eine 1:7.000-1:30.000-fache Verdünnung von SYBRTM Green I und Aufheizgeschwindigkeiten von 0,1-0,5°C/Sekunde. Diese Bedingungen ermöglichen eine leichte Unterscheidung von Produkten, die sich in der Tm um 2°C unterscheiden.
  • Eine genauere Temperaturkontrolle und Software zur Schmelzpeak-Analyse wird den nachweisbaren Unterschied in der Tm auf den Bruchteil eines Grads verringern. Dies wird die Unterscheidung der meisten PCR-Produkte ermöglichen. Nicht alle Produkte können jedoch über die Tm unterschieden werden, genauso wie es möglich ist, Elektrophoreseergebnisse aufgrund der Comigration von zwei oder mehreren Produkten falsch zu interpretieren, ist es möglich, dass ein Teil der Produkte, die im erwarteten Bereich schmelzen, nicht die angestrebten Produkte darstellen. Wenn jedoch im Bereich des erwarteten Produkts keine DNA schmilzt, lässt sich daraus der Schluss ziehen, dass kein erwartetes Produkt vorliegt.
  • Eine andere Form der Produktunterscheidung, die mit einer Schmelzkurvenanalyse verfügbar wird, sind die markanten Muster beim Domänenschmelzen, die man bei längeren PCR-Produkten sieht. Während kurze Produkte (<300 bp) normalerweise in einem Umwandlungsvorgang schmelzen, können längere Produkte interne Schmelzdomänen haben, die den Schmelzkurven ein komplexes, markantes Aussehen verleihen. Diese komplexen Schmelzkurven können als „Fingerprint" zur Identifizierung des Produkts verwendet werden.
  • Die Analyse von Schmelzkurven kann verwendet werden, um angestrebtes Produkt von unspezifischen Produkten wie Primerdimeren, zu unterscheiden. Primerdimere schmelzen über einen breiten Bereich niedriger Temperaturen, sehr verschieden von den scharfen Schmelzkurven spezifischer PCR-Amplifikationsprodukte. Längere heterogene Produkte, die beim Durchlaufen vieler Zyklen bei niedrigstringenten Bedingungen für ein Annealing entstehen, weisen im Vergleich mit reinem PCR-Produkt niedrigere und breitere Schmelzkurven auf.
  • Beispiel 9
  • Die Amplifikation des 536-beta-Globingenfragments wurde analog Beispiel 3 mit einer 1:30.000-Verdünnung von SYBRTM Green I durchgeführt, mit der Ausnahme, dass die Bedingungen variiert wurden. Bei Reaktion A (40) wurde kein Templat zugegeben und die Reaktion wurde 0 sec bei 94°C, 0 sec bei 60°C und 10 sec bei 72°C 30 Zyklen lang einem Thermocycling unterzogen, was kleine, unspezifische Amplifikationsprodukte lieferte. Bei B zeigte die Amplifikation von 106 anfänglichen Kopien des gereinigten Templats bei niedrigstringenten Bedingungen (94°C für 0 sec, 50°C für 0 sec und 72°C für 10 sec) über 55 Zyklen bei der Gelelektrophorese einen breiten Größenbereich für die Amplifikationsprodukte und ein Schmelzen über einen weiten Temperaturbereich. Bei C wurden 106 anfängliche Kopien gereinigtes Templat 0 sec bei 94°C, 0 sec bei 60°C und 10 sec bei 72°C 30mal einem Thermocycling unterzogen und es zeigt sich eine einzelne klare Bande und ein Schmelzen mit einem scharfen Übergang. Die Geschwindigkeit des Temperaturwechsels betrug 0,2°C/sec. Ein Hind III-Verdau von λ-Phagen-DNA (M) wird als Marker verwendet.
  • 40 zeigt, wie genau Schmelzkurven die Spezifität einer PCR-Reaktion wiedergeben. Die scharfe Schmelzkurve C bei hoher Temperatur entspricht einer einzelnen Bande auf einem Gel. Die breite Schmelzkurve A bei niedriger Temperatur entstammt der Analyse einer Kontrolle ohne Templat, die nur Primerdimere zeigt. Eine Überamplifikation des Produkts bei C ergibt eine dazwischen liegende Schmelzkurve B, die von dem spezifischen Produkt noch deutlich zu unterscheiden ist.
  • Die zum Beispiel in 37 zu sehenden Schmelzkurven können besser quantifiziert werden, wenn man zuerst die Ableitung von Fluoreszenz (F) gegen die Temperatur (T) nimmt. Diese Ableitung wird als dF/dT gegen T dargstellt und überführt die Schmelzkurven in Schmelzpeaks.
  • Beispiel 10
  • Die gereinigten Hepatitis B- und beta-Globin-Genfragmente aus Beispiel 8 wurden einzeln und zusammen bei einer Temperaturwechselgeschwindigkeit von 0,2°C/sec und den weiteren in Beispiel 8 (41) spezifizierten Bedingungen aufgeschmolzen. Die etwas subjektive Bestimmung von Tm aus den Schmelzkurven (oben) ergibt sich leicht durch unmittelbare Betrachtung der Schmelzpeaks (unten). Die Fläche unter den Schmelzpeaks kann auch durch Integration der Fläche unter den Kurven quantifiziert werden. Die Baseline der Fluoreszenz wurde zuerst vom Diagramm –dF/dT gegen T subtrahiert, in der Annahme, dass sich die Höhe der Baseline mit der Fläche unter der Kurve ändert. Dann wurden die Peaks mit dem Mittelwert, der Standardabweichung und der Höhe der Peaks als Anpassungsparameter durch nichtlineare Regression nach der Methode der Abweichung der kleinsten Quadrate für Gaußkurven angepasst. Die Fläche unter jeder Gaußkurve wurde als Peakfläche genommen. Alle Berechnungen erfolgten in der LabView-Programmierumgebung (National Instruments, Austin, TX). 41 zeigt beispielhaft eine Umrechnung der Schmelzkurven in Schmelzpeaks. Der Code für diese Berechnungen ist als Anhang A beigefügt.
  • Die Fähigkeit, ein spezifisches Produkt von einem Primerdimer und andere Reaktionsartefakten zu unterscheiden, verbessert die Verwendung von doppelstrangspezifischen DNA-Farbstoffen bei der Quantifizierung niedriger anfänglicher Kopienzahlen. Relativ große anfängliche Kopienzahlen des Templats wurden mit Ethidiumbromid quantifiziert (Higuchi & Watson, supra). Bei niedrigen anfänglichen Kopienzahlen stören jedoch Background-Amplifikation der Primerdimere und andere Amplifikationsartefakte das spezifische Amplifikationssignal. Mit der Fähigkeit der vorliegenden Erfindung, spezifische Produkte von unspezifischen Produkten zu unterscheiden, können doppelstrangspezifische DNA-Farbstoffe zur Quantifizierung niedriger anfänglicher Kopienzahlen des Templats verwendet werden. Dieser Vorteil ergibt sich aus der Einfachheit der Anwendung dieser Farbstoffe. Die doppelstrangspezifischen DNA-Farbstoffe können bei jeder Amplifikation verwendet werden und es sind keine kundenspezifisch fluoreszenzmarkierten Oligonukleotide notwendig. Die Quantifizierung sehr geringer Kopienzahlen mit doppelstrangspezifischen DNA-Farbstoffen erfordert eine sehr gute Amplifikationsspezifität oder, wie mit der vorliegenden Erfindung zur Verfügung gestellt, ein Mittel, um zwischen dem gewünschten Produkt von einer unspezifischen Amplifikation zu unterscheiden.
  • Beispiel 11
  • Der erfindungsgemäße Ansatz für eine Reinheitsbestimmung des Produkts wurde verwendet, um die quantitativen PCR basierend auf einem Once-per-cycle-Monitoring der Fluoreszenz doppelstrangspezifischer DNA-Farbstoffe zu verbessern. Die Fluoreszenz wurde einmal pro Zyklus nach Extension des Produkts mit Polymerase für eine Reihe von Reaktionen erfasst, die sich in der anfänglichen Konzentration des gereinigten beta-Globin-Templats unterschieden (siehe 42A). Das beta-Globin-Templat und die Amplifikationsbedingungen waren analog zu Beispiel 3. Der log-lineare Anstieg über die Background- Fluoreszenz begann bei einer Zyklenzahl, die von der anfänglichen Templatkonzentration abhing. Die Diagramme für die fünf Reaktionen über einen Bereich von 106 bis 102 Kopien pro Reaktion waren durch etwa vier Zyklen getrennt. Die Probe mit durchschnittlich 102 Kopien pro Reaktion zeigte eine Abnahme der Reaktionseffizienz und Reaktionen mit anfänglichen Kopienzahlen unter 100 ergaben weniger brauchbare Fluoreszenzprofile. Die Fluoreszenzprofile für die Reaktionen mit (durchschnittlich) 10 und 1 Kopie(n) stiegen in umgekehrter Reihenfolge an und die negative Kontrolle zeigte nach etwa 30 Zyklen eine Amplifikation. Dies ist auf eine Amplifikation von Primerdimeren und auf andere unspezifische Amplifikationsprodukte zurückzuführen, die sich mit einem Once-per-cycle-Fluoreszenz-Monitoring des doppelstrangspezifischen DNA-Farbstoffs nicht von dem vorgesehenen Produkt unterscheiden lassen.
  • Für jede Probe wurden die Schmelzpeaks aufgenommen (42AB) und es stellte sich heraus, dass sie gut mit den Elektrophoreseergebnissen korrelierten (42C). Die Reaktion mit null und durchschnittlich einer Templatkopie lieferte keine wahrnehmbare Elektrophoresebande an der für 536 Basenpaare erwarteten Position. Die Reaktionen mit 10 und 100 anfänglichen Templatkopien zeigten schwache Elektrophoresebanden. Dies stimmte gut mit der Schmelzpeak-Analyse überein, die im Bereich des angestrebten Produkts (90-92°C) für die Reaktionen mit null und einer anfänglichen Kopie kein Aufschmelzen von DNA zeigte und für 10 und 100 Kopien in diesem Temperaturbereich kleine Peaks zeigte. Starke Elektrophoresebanden für die Reaktionen mit 103-106 anfänglichen Kopien korrelieren gut mit großen Schmelzpeaks im erwarteten Bereich von 90-92°C.
  • Das Verhältnis an angestrebtem Produkt zu Gesamtprodukt, das durch Integrieren über die Schmelzpeaks bestimmt wurde, reichte von 0,28 für 105 Kopien bis 0,0002 für null anfängliche Templatkopien. Jeder Fluoreszenzwert in 41A wurde mit dem passenden Verhältnis multipliziert, um das korrigierte Diagramm zu erhalten (in 42D als „korrigierte Fluoreszenz" bezeichnet). Diese Vorgehensweise erweiterte den effektiven dynamischen Quantifizierungsbereich auf zwischen 10 und 1 anfängliche Templatkopien.
  • Schmelzpeaks können zwischen spezifischen Produkten und unspezifischen Produkten unterscheiden (40) und sie können zwischen zwei gereinigten, miteinander vermischten PCR-Produkten unterscheiden (41), so dass sie auch geeignet sein sollten, um zwei spezifische Produkte, die zusammen in einem einzelnen Reaktionsröhrchen amplifiziert wurden, voneinander zu unterscheiden. Die durch ein erfindungsgemäßes kontinuierliches Monitoring von PCR-Reaktionen erhaltenen Schmelzkurven sind bei einer Multiplex-PCR nützlich.
  • Beispiel 12
  • In diesem Beispiel wurden zwei Genfragmente gleichzeitig aus genomischer DNA amplifiziert und einem Fluoreszenz-Monitoring mit SYBRTM Green unterzogen. Bei jedem Amplifikationszyklus denaturieren verschiedene Amplifikationsprodukte bei Schmelztemperaturen, die von der Länge des Produkts, dem GC-Verhältnis und anderen dem Fachmann bekannten Faktoren abhängen. Die Temperatur, bei der jedes Produkt schmilzt, kann mit dem doppelstrangspezifischen Farbstoff, SYBRTM Green I verfolgt werden. Ein 81 bp-Fragment aus dem cystischen Fibrosegen wurde mit den hier als SEQ ID NO: 14 und SEQ ID NO: 15 beschriebenen Primern amplifiziert, zusammen mit einem 98 bp-Fragment des c-erbB-2 (HER2/neu)-Onkogens, das mit den hier als SEQ ID NO: 16 und SEQ ID NO: 17 beschriebenen Primern amplifiziert wurde.
  • Die Amplifikationsreaktionen bestanden aus 50 mM Tris-HCl, pH 8,3, 3 mM MgCl2, 500 μg/ml Rinderserumalbumin, 200 μM von jedem dNTP und 0,5 μM cystische Fibrose-Primer, 0,3 μM HER2/neu-Primer, eine 1:30.000-Verdünnung von SYBRTM Green I, 1 U AmpliTaq Gold DNA-Polymerase (Perkin Elmer, Foster City, CA) und 50 ng humaner genomischer DNA in 10 μl.
  • Nach 30 Minuten Aktivierung der Polymerase bei 95°C wurden die Proben 0 Sekunden bei 94°C (Steigung = 20), 0 Sekunden bei 55°C (Steigung = 20) und 10 Sekunden bei 70°C (Steigung = 29) 35 Zyklen lang einem Thermocycling unterzogen. Die Proben wurden auf 70°C abgekühlt und die Fluoreszenz wurde während eines Anstiegs mit 0,2°C/sec auf 94°C kontinuierlich erfasst. Die Schmelzkurven (43) zeigten deutlich zwei unterschiedliche Produkte, die bei 78°C (CFTR) und 89°C (neu) schmolzen. Die beiden Produkte unterscheiden sich in ihrem Tm um ungefähr 10°C und sind leicht voneinander zu unterscheiden.
  • Eine Multiplex-Amplifikation eignet sich für Fälle, bei denen eine interne Kontrolle bei der Amplifikation nötig ist. Beispielsweise sind mit einer PCR viele Translokationen nachweisbar, indem man auf beiden Seiten des „Breakpoint" Primer plaziert. Wenn keine Amplifikation stattfindet, liegt keine Translokation vor, falls die DNA intakt ist und nicht ein Inhibitor vorhanden ist. Diese Möglichkeiten können ausgeschlossen werden, indem man einen positiven Kontrolllokus in der gleichen Reaktionsmischung amplifiziert. Solche Kontrollamplifikationen werden am besten als interne Kontrollen mit gleichzeitig Amplifikation und Nachweis durchgeführt.
  • Beispiel 13
  • Bei diesem Beispiel wurde entsprechend Beispiels 12 verfahren, mit der Ausnahme, dass die Proben nach 30 Minuten Aktivierung der Polymerase bei 95°C 20 Zyklen 0 Sekunden bei 94°C (Steigung = 20), 0 Sekunden bei 55°C (Steigung = 20) und 10 Sekunden bei 70°C (Steigung = 20) und anschließend 15 Zyklen 0 Sekunden bei 94°C (Steigung = 1), 0 Sekunden bei 55°C (Steigung = 20) und 20 Sekunden bei 70°C (Steigung = 20) einem Thermocycling unterzogen wurden. Für die Zyklen 26-31 wurde die Fluoreszenz für jeden Wechsel von 1°C/sec von 70°C bis 94°C kontinuierlich erfasst. Die Schmelzkurven wurden in Schmelzpeaks umgerechnet und dargestellt (44).
  • Es ist anzumerken, dass die Amplifikationseffizienz des CFTR-Fragments größer zu sein scheint als die des neu-Fragments. Die Amplifikazionseffizienz kann durch die Integration der Daten für die Schmelzpeaks wie in Beispiel 10 genau bestimmt werden.
  • Diese Art quantitativer Daten in Bezug auf eine Kontrolle hat viele Anwendungsmöglichkeiten. Beispielsweise werden manche Onkogene wie HER2/neu in vielen Tumoren in vivo amplifiziert. Das heißt, dass die Gene in genomischer DNA, manchmal viele male, repliziert werden. Oft hängt das klinische Verhalten des Tumors vom Ausmaß der Onkogenreplikation ab. Die Amplifikation des Onkogens und eines Kontrolltemplats ermöglicht eine quantitative Bestimmung der relativen Kopienzahl. Ein weiteres Beispiel ist die Quantifizierung der Virusbelastung eines Patienten, der mit HIV oder Hepatitis C infiziert ist, die bei der Prognose und Therapie von Bedeutung ist. Durch Verwendung eines Kontrolltemplats und durch ein Monitoring der Amplifikationseffizienz sowohl der Kontrolltemplate als auch der natürlichen Template bei der Amplifikation, lässt sich eine genaue Quantifizierung der anfänglichen Kopienzahl des Templats erreichen.
  • Das erfindungsgemäße Merkmal der Verwendung von Schmelzkurven zur relativen Quantifizierung soll nachfolgend erörtert werden. Gemäß der vorliegenden Erfindung stellt eine quantitative PCR eine zusätzliche Verwendungsmöglichkeit für die Schmelzkurven dar. 42 zeigte, dass eine Korrelation zwischen der Fläche unter dem Schmelzpeak und der Menge an spezifischem Produkt bestand. Eine relative Quantifizierung zweier PCR-Produkte sollte möglich sein, wenn die beiden Produkte mit ähnlicher Effizienz amplifiziert würden (oder wenn die unterschiedlichen Effizienzen bekannt wären und ausgeglichen werden könnten). Die relative Quantifizierung der beiden Produkte durch Integration über die Schmelzpeakflächen (siehe Beispiel 10) stellt einen Aspekt der vorliegenden Erfindung dar.
  • Beispiel 14
  • Die Fragmente der Gene für cystische Fibrose und HER-2-neu aus Beispiel 12 wurden amplifiziert, analog zu Beispiel 2 gereinigt und auf 175 μg/ml eingestellt. Die Proben wurden in verschiedenen Verhältnissen (insgesamt 8 μl) vermischt und zu Puffer (1 μl) und SYBRTM Green I (1 μl) gegeben. Die Endkonzentrationen betrugen 50 mM Tris, pH 8,3, 3 mM MgCl2, 250 μg/ml Rinderserumalbumin und eine 1:30.000-Verdünnung von SYBRTM Green I. Die Schmelzkurven wurden bei 0,2°C/s aufgenommen, die Background-Fluoreszenz subtrahiert und die Peaks wie in Beispiel 10 beschrieben integriert. Die Ergebnisse sind in 45 dargestellt. Es zeigte sich eine ausgezeichnete Korrelation zwischen den relativen Flächen unter den Schmelzpeaks und den relativen Mengen der beiden Produkte.
  • Eine relative Quantifizierung von zwei PCR-Produkten ist für viele quantitative PCR-Anwendungen von Bedeutung. Eine Multiplex-Amplifikation von zwei oder mehr Produkten, denen eine Integration der Flächen unter den Schmelzpeaks folgt, ist auf diesem Gebiet sehr nützlich. mRNA wird oft bezogen auf die Menge an mRNA eines Housekeeping-Gens quantifiziert.
  • Eine andere wichtige Anwendung der relativen Quantifizierung ist bei einer kompetitiven quantitativen PCR gegeben. Üblicherweise wird ein Kompetitor synthetisiert, der die gleichen Primerstellen aufweist, sich aber in der Länge von der Original-Targetsequenz unterscheidet. Bekannte Mengen des Kompetitors werden in eine unbekannte Probe gemischt und es wird eine relative Quantifizierung durchgeführt. Es können Kompetitoren hergestellt werden, die sich von der Targetsequenz in ihrer Tm und nicht in der Länge unterscheiden. Die relativen Mengen der Produkte können durch Vergleich der Flächen unter ihren Schmelzpeaks quantifiziert werden. Wenn die Menge eines der Produkte bekannt ist, lässt sich die Menge des ursprünglichen Targets erhalten. Das Schmelzpeakverfahren ist erheblich einfacher als die derzeit gebräuchlichen Verfahren, die das Laufen lassen von mehreren Röhrchen für jede unbekannte Probe und ein mehrmaliges Ziehen von Röhrchen bei verschiedenen Zykluszahlen bei der Reaktion beinhalten, um den log-linearen Teil der Reaktion zu finden. Dann müssen die relativen Mengen der beiden Produkte bestimmt werden. Üblicherweise erfolgt dies, indem man eines der dNTPs mit einem Radioisotop markiert und anschließend nach Agarosegelelektrophorese die Menge an Marker quantifiziert, die in jede Bande eingebaut ist. Im Vergleich dazu ermöglicht die vorliegende Erfindung ein kontinuierliches Monitoring der Reaktion, so dass der log lineare Teil der Amplifikation leicht bestimmt werden kann. Die relative Quantifizierung kann durch Integration der Schmelzpeaks schnell durchgeführt werden. Ein Ganztagesprozeß wird auf weniger als eine Stunde reduziert.
  • Aus der vorhergehenden Diskussion ergibt sich, dass Fluoreszenz-Monitoring bei DNA-Amplifikation eine außergewöhnlich leistungsstarke analytische Methode ist. Wenn sequenzspezifischer Nachweis und Quantifizierung erwünscht sind, können Resonanzenergietransfersonden anstelle von doppelstrangspezifischen DNA-Farbstoffen verwendet werden. Die Tm der Hybridisierungssonden verschiebt sich bei einem einzelnen Basen-Mismatch um etwa 4-8°C. Wenn eine Hybridisierungssonde an der Stelle einer Mutation plaziert wird, sind einzelne Basenmutationen als Verschiebung der Schmelztemperatur der Sonde nachweisbar.
  • Absolute Produktkonzentration durch Reassoziationskinetik des Produkts. Bestimmungen der Produktkonzentration werden mit der vorliegenden Erfindung ebenfalls vorteilhaft durchgeführt. Ein kontinuierliches Monitoring der Bildung doppelsträngiger DNA ermöglicht bei jedem Amplifikationszyklus eine DNA-Quantifizierung durch eine Reassoziationskinetik. Die Probentemperatur wird schnell von der Denaturierungstemperatur abgesenkt und bei einer niedrigeren Temperatur konstant gehalten, die noch hoch genug ist, um ein Primer-Annealing zu verhindern (2). Die Geschwindigkeit der Reassoziation des Produkts folgt einer Kinetik zweiter Ordnung (siehe B. Young & M. Anderson, Quantitative analysis of solution hybridization, In: Nucleic Acid Hybridization: A Practical Approach 47-71, B. Hames & S. Higgins, Hrsg., (1985)).
  • Für jedes gegebene PCR-Produkt und jede gegebene Temperatur kann eine Geschwindigkeitskonstante zweiter Ordnung gemessen werden. Wenn die Geschwindigkeitskonstante bekannt ist, kann jede unbekannte DNA-Konzentration aus den experimentellen Reassoziationsdaten bestimmt werden. Das Abkühlen erfolgt nie unmittelbar und ein gewisses Reannealing tritt immer auf, bevor eine konstante Temperatur erreicht wird. Ein schnelles Abkühlen maximiert die Menge der Daten, die für eine Bestimmung der Geschwindigkeitskonstante und der DNA-Konzentration zur Verfügung stehen. Die Methode erfordert ein reines PCR-Produkt, dies kann aber durch Schmelzkurven, die bei der vorliegenden Erfindung ebenfalls während des Thermocyclings erhalten werden, sichergestellt werden. Dieses erfindungsgemäße Verfahren zur Quantifizierung ist in vorteilhafter Weise unabhängig von jeder Schwankung der Signalintensität zwischen den Proben.
  • Beispiel 15
  • Ein 536 bp-Fragment des beta-Globingens wurde aus humaner genomischer DNA amplifiziert (Beispiel 3) und gereinigt (siehe Beispiel 2).
  • Verschiedene Mengen der gereinigten DNA wurden mit einer 1:30.000-Verdünnung von SYBRTM Green I in 5 μl 50 mM Tris, pH 8,3 und 3 mM MgCl2 vermischt. Die Proben wurden bei 94°C denaturiert und anschließend schnell auf 85°C abgekühlt. Das Fluoreszenz-Monitoring bei 520-550 nm erfolgte zeitlich bei 85°C. Wenn verschiedene DNA-Konzentrationen getestet wurden, war die Form der Reassoziationskurve für die DNA-Konzentration charakteristisch (siehe 49). Für jedes gegebene PCR-Produkt und jede gegebene Temperatur kann eine Geschwindigkeitskonstante zweiter Ordnung bestimmt werden. 50 zeigt die Bestimmung einer Geschwindigkeitskonstanten zweiter Ordnung für die Reassoziation für 100 ng des 536 bp-Fragments in 5 μl bei 85°C. Die Kurve wurde durch nichtlineare Regression nach der Methode der Abweichung der kleinsten Quadrate mit Fmax, Fmin, t0 und k als Fließparametern angepasst, wobei die in 50 gezeigte Geschwindigkeitsgleichung zweiter Ordnung verwendet wurde. Analyseprogramme für diese Art von Kurvenanpassung sind im Stand der Technik allgemein bekannt (beispielsweise die benutzerdefinierte Kurvenanpassung von Delta Graph, DeltaPoint, Inc., Monteray, CA). Wenn die Geschwindigkeitskonstante bekannt ist, kann eine unbekannte DNA-Konzentration aus den experimentellen Reassoziationsdaten bestimmt werden.
  • Mit der definierten Geschwindigkeitskonstanten (k) werden die DNA-Konzentrationen in unbekannten Proben bestimmt. Die Kurven von Fluoreszenz gegen Zeit unbekannter Proben werden durch nichtlineare Regression nach der Methode der Abweichung der kleinsten Quadrate, vorzugsweise bei Thermocycling in Echtzeit (beispielsweise mit dem nichtlinearen Levenberg-Marquardt-Verfahren, das in der LabView-Programmierumgebung, National Instruments, Austin, TX, beschrieben ist) angepasst. Bei dieser Anpassung Sind Fmax, Fmin, t0 und [DNA] die Fließparameter und k ist konstant.
  • Da einige Fluoreszenzfarbstoffe konzentrationsabhängig das Reannealing beeinflussen, wird die Annahme einer Kinetik zweiter Ordnung für die Reassoziation des Produkts durch Bestimmung der Geschwindigkeitskonstanten bei verschiedenen Konzentrationen einer Standard-DNA überprüft. Die Beziehung ist definiert und bei Bedarf wird eine alternative Formel zur Anpassung inkorporiert.
  • Die Annealinggeschwindigkeiten für die Sonden benutzt, um die Produktkonzentration zu bestimmen, ähnlich dem oben beschriebenen Verfahren zur Bestimmung der Produktkonzentration durch Produktreassoziation. Die Schritte werden wie folgt zusammengefasst: (1) Wählen der für das System geeigneten Geschwindigkeitsgleichung (2) Laufen lassen bekannter DNA-Standards, um die Geschwindigkeitskonstanten zu bestimmen, (3) Überprüfen der Gültigkeit der Geschwindigkeitsgleichung durch Vergleich verschiedener Geschwindigkeitskonstanten, die sich von verschiedenen Verdünnungen ableiten, und (4) Verwendung der Geschwindigkeitskonstanten zur Bestimmung der DNA-Konzentration von Unbekannten aus deren Daten für das Sondenannealing.
  • Fluoreszenz-Feedback zur Steuerung des Thermocycling. Im Gegensatz zur Endpunkt- und Cycle-by-cycle-Analyse kann Fluoreszenz-Monitoring mit der vorliegenden Erfindung auch über jeden Temperaturzyklus hinweg erfolgen. Kontinuierliches Fluoreszenz-Monitoring kann zur Steuerung der Parameter des Thermocycling genutzt werden. Die vorliegende Erfindung nutzt ein Fluoreszenz-Feedback zur Echtzeitsteuerung und Optimierung der Amplifikation. Kontinuierliches Fluoreszenz-Monitoring von PCR-Proben, die einen doppelstrangspezifischen DNA-Farbstoff oder fluoreszenzmarkierte Oligonukleotidsonden enthalten, kann für ein Monitoring von Hybridisierung und Aufschmelzen während einzelner Amplifikationszyklen verwendet werden. Diese Informationen können von den Algorithmen zur Temperatursteuerung in der Thermocycling-Apparatur verwendet werden, um die Bedingungen für das Thermocycling zu verbessern und für den Benutzer maßzuschneidern. Eine herkömmliche PCR wird durchgeführt, indem man vor der Amplifikation alle Cyclingparameter programmiert. Bei einem kontinuierlichen Monitoring kann eine Bestimmung der Erfordernisse für das Thermocycling während der Amplifikation erfolgen, basierend auf einer kontinuierlichen Beobachtung des Annealing, der Extension und der Denaturierung. Die potentiellen Vorteile einer Verwendung von Hybridisierungsinformationen zur Kontrolle des Thermocycling beinhalten:
    • 1. Sicherstellung einer vollständigen Denaturierung des PCR-Produkts in jedem Zyklus und gleichzeitig: a. Minimieren der Exposition von übermäßig hohen Denaturierungstemperaturen um so eine durch Hitze induzierte Schädigung der Amplifikationsprodukte und der Polymerase zu vermeiden. Begrenzen der Dauer, für die das Produkt den Denaturierungstemperaturen ausgesetzt ist, ist besonders nützlich bei der Amplifikation langer Produkte. b. Erhöhen der Reaktionsspezifität durch Minimierung der Denaturierungstemperatur. Dies selektiert gegen Produkte mit einer Tm, die höher ist als die des angestrebten Amplifikationsprodukts.
    • 2. Maximieren der Amplifikationseffizienz durch Sicherstellen einer für das Primerannealing bei jedem Zyklus ausreichenden Zeit und gleichzeitig: a. Minimieren der Zeitdauer, die zur Amplifikation erforderlich ist, indem man das Primerannealing nicht länger als nötig erlaubt, um eine bestimmte Effizienz zu erreichen. b. Verbesserung der Reaktionsspezifität durch Minimieren der Zeitdauer bei Annealingtemperatur.
    • 3. Maximieren der Amplifikationseffizienz durch Sicherstellen einer für die Extension bei jedem Zyklus ausreichenden Zeit und gleichzeitig: a. Minimieren der Zeitdauer, die zur Amplifikation erforderlich ist, indem man nicht mehr Zeit als nötig erlaubt, um die Produktextension abzuschließen. b. Verbesserung der Reaktionsspezifität, indem man gegen Produkte selektioniert, die länger sind als das angestrebte Amplifikationsprodukt. Diese würden mehr als die zugeteilte Zeit brauchen, um die Produktextension abzuschließen.
    • 4. Initiieren von Änderungen beim Thermocycling in Abhängigkeit von der erhaltenen Fluoreszenzstärke oder der momentanen Amplifikationseffizienz. Beispielsweise können Überamplifikation und unspezifische Reaktionsprodukte minimiert werden, indem man das Thermocycling beendet, wenn die Effizienz auf einen bestimmten Wert fällt. Als weiteres Beispiel können die Temperaturwechsel modifiziert werden, um langsamere Temperaturanstiege zur Aufnahme von Schmelzkurven zu initiieren, wenn die Fluoreszenz nachweisbar wird. Dies spart Zeit, weil die langsameren Anstiege nicht bei früheren Zyklen verwendet werden müssen. Andere wünschenswerte Veränderungen werden bei der weiteren Ausführung der Erfindung deutlich.
  • Die Steuerung basiert auf einer Abschätzung der Reaktionsparameter aus den Fluoreszenzdaten. Die originären Fluoreszenzdaten werden entweder als Änderung der Fluoreszenz mit der Zeit (temperaturspezifische Geschwindigkeiten von Denaturierung, Annealing und Extension), als Änderung der Fluoreszenz mit der Temperatur (Produkt- oder Sonden-Tm) oder als Änderung in der Stärke der Amplifikation (Amplifikationsausbeute und -effizienz) erhalten. Diese Geschwindigkeiten, Tm und ihre ersten und zweiten Ableitungen werden verwendet, um die optimalen Reaktionsparameter zu bestimmen, welche Temperatur und Zeit für die Denaturierung, Temperatur und Zeit für das Primerannealing, Temperatur und Zeit für das Sondenannealing, Temperatur und Zeit für die enzymatische Extension und die Zyklenzahl umfassen.
  • Doppelstrangspezifische DNA-Farbstoffe werden zur Kontrolle der Denaturierung, zur Kontrolle der Extension und zur Initiierung von Änderungen im Thermocycling bei einer bestimmten Amplifikationshöhe oder – effizienz verwendet.
  • Beispiel 16
  • Ein kommerziell erhältlicher Thermocycler zum Fluoreszenz-Monitoring (LC24 LightCycler, Idaho Technology Inc., Idaho Falls, Idaho) wurde so modifiziert, dass die Software nicht länger mit Temperatur/Zeit-Sollwerten programmiert ist, sondern auf die Erfassung der Fluoreszenzwerte programmiert ist, um diese Werte anschließend zur Steuerung des Thermocyclers zu verwenden.
  • Wie im Funktionalen Blockdiagramm (51) dargestellt ist, kommuniziert das Lauf-Zeit-Programm über serielle und DAQ-Board-Schnittstellen mit dem LightCycler. Dies ermöglicht einen Zugriff auf entweder Temperatur- oder Fluoreszenzdaten auf höchster Ebene und kann auch von der Board-Level-Software zur Temperatursteuerung verwendet werden. In der vorliegenden Ausführungsform des Geräts werden jedoch nur die Temperaturdaten auf der Controller-Hardware-Ebene in die digitale Form umgewandelt. Die Fluoreszenzdaten werden in analoger Form durch die Schnittstelle des Boards zur digitalen Erfassung geschickt, mit dem Lauf-Zeit-Programm analysiert und über die serielle Schnittstelle zur Board-Level-Software zurückgeschickt.
  • Steuerung des Aufschmelzens von Produkt:
  • Für das angestrebte PCR-Produkt wurde ein Schmelzpeak aufgenommen und für die Probe, die den Reaktionscocktail enthielt, wurde bei der Temperatur, bei der das Produkt vollständig geschmolzen war, eine Baseline-Fluoreszenz erfasst.
  • Jeder Zyklus der Reaktion verwendete dann diesen Fluoreszenzwert als Sollwert. Die Annäherung an die Denaturierung des Produkts erfolgte in zwei Stufen, um die durch die Notwendigkeit begründete Zeitverzögerung zu umgehen, den Fluoreszenzwert zur Analyse zu einem entfernten Computer zu senden und anschließend die Anweisung, dass der Wert erreicht worden war, zurückzusenden. Mit jedem Schritt zum Schmelzen des Produkts wurde die Temperatur erhöht, bis die Fluoreszenz einen Zwischenwert erreichte, dann wurde die Heizstärke so reduziert, dass eine Temperaturanstiegsgeschwindigkeit von ungefähr 3°C/sec dem Computer die Zeit ließ, die Fluoreszenz zu analysieren und dem Thermocycler das Signal zu geben, dass eine Produktdenaturierung stattgefunden hatte.
  • Das resultierende Temperatur/Zeit-Diagramm (52) zeigt einen charakteristischen Anstieg der Schmelztemperatur nach Zyklus 20, wenn die Konzentration des Amplifikationsprodukts ansteigt. Die Tm des Produkts ist eine Funktion der Produktkonzentration.
  • Produkt-Annealing/Extension:
  • Das Fluoreszenz-Monitoring erfolgte bei einer längeren Haltezeit bei einer kombinierten Annealing/Extensionstemperatur und diese Information wurde verwendet um sicherzustellen, dass eine ausreichende, aber nicht übermäßige Zeit für die Produktextension erlaubt worden war. Das Fluoreszenz-Monitoring erfolgte in Abständen von 10 Sekunden, wenn die Fluoreszenz höher als ein einstellbares Verhältnis (üblicherweise 1,00-1,05) anstieg, und dann wurde der Annealing/Extensionsschritt fortgesetzt. Ansonsten wurde der nächste Schritt zum Schmelzen des Produkts initiiert. Das Intervall von 10 Sekunden wurde gewählt, um bei der kombinierten Annealing/Extensionstemperatur ein Minimum von 20 Sekunden zu haben.
  • Das resultierende Fluoreszenz/Zeit-Diagramm (52) zeigt einen charakteristischen Anstieg in der Verweilzeit bei der kombinierten Annealing/Extensionstemperatur, wenn die Konzentration des Amplifikationsprodukts zunimmt. Da die Primerkonzentration und die Polymerase limitierend werden, wird bei jedem Zyklus mehr Zeit zur Beendigung der Produktextension benötigt.
  • Amplifikationsplateau:
  • Am Ende jedes Annealing/Extensionsschritts wurde der Fluoreszenzwert erfasst und gespeichert. Wenn dieser Wert auf das 1,2-fache des niedrigsten Fluoreszenzwerts am Ende eines Zyklus angestiegen war und danach unterhalb eines vom Benutzer einstellbaren Verhältnisses (üblicherweise 1,00-1,02) aufgehört hatte, zu steigen, wurde das Thermocycling beendet. Dazu wurde ein Schritt zur Erfassung der Schmelzkurven initiiert, indem ein langsamer Temperaturanstieg von 0,1-0,2°C/Sekunde über die Produkt-Tm hinweg eingegeben und ein kontinuierliches Fluoreszenz-Monitoring der Probe durchgeführt wurde.
  • Das resultierende Fluoreszenz/Zeit-Diagramm (52) zeigt, dass das Verhältnis der Cycle-by-cycle-Zunahme der Fluoreszenz nach 25 Amplifikationszyklen unter 1,00 fiel und die Reaktion beendet war.
  • In einer Ausführungsform der vorliegenden Erfindung wird der Nachweis des Amplifikationsplateaus verwendet, um in einem Versuch mit mehreren Proben bei einem für jede Probe optimalen Temperaturzyklus für jede Probe hochaulösende Schmelzkurven zu erfassen. Wenn eine Probe ihr Amplifikationsplateau erreicht, wird für diese Probe eine Schmelzkurve aufgenommen, anschließend wird das reguläre Thermocycling wieder aufgenommen, bis eine andere Reaktion ihr Amplifikationsplateau erreicht.
  • Zusammenfassung. Aus der vorhergehenden Diskussion wird deutlich, dass kontinuierliches Fluoreszenz-Monitoring bei der DNA-Amplifikation zum Monitoring von Hybridisierung eine außergewöhnlich leistungsstarke analytische Methode ist. Mit den hier beschriebenen Verfahren und abhängig von der Zahl der zu Anfang vorhandenen Templatkopien, kann man in fünf bis zwanzig Minuten nach Beginn des Thermocycling eine Identifizierung und Quantifizierung des Produkts erreichen. Die vorliegende Erfindung bietet verschiedene Vorteile, die im Stand der Technik bislang nicht möglich waren. Die vorliegende Erfindung stellt beispielsweise Verfahren mit Einfarbenfluoreszenz zum Monitoring der Produktreinheit, zur relativen Quantifizierung mit Multiplex-PCR oder kompetitiver PCR, zur absoluten Produktquantifizierung mittels Reassoziationskinetik bereit, und ein verbessertes Verfahren zur Quantifizierung von anfänglichem Templat durch Diagramme von Fluoreszenz gegen Zyklenzahl.
  • Die folgende Tabelle beschreibt doppelstrangspezifische DNA-Farbstoffe, die sich zum kontinuierlichen Monitoring von PCR eignen. Die Fluoreszenz doppelstrangspezifischer DNA-Farbstoffe hängt vom Strangstatus der DNA ab. Zusammenfassung von Fluoreszenzsonden zum kontinuierlichen Monitoring von PCR
    Hybridisierung dsDNA-Farbstoff
    Mechanismus Strangstatus
    Sondensynthese Unnötig
    Spezifität Produkt-Tm
    Schmelzanalyse Ja
    Mehrfarbenanalyse Nein
  • Gemäß der vorliegenden Erfindung werden Zeit, Temperatur und Fluoreszenz 1-10mal pro sec erfasst und bei den Temperaturwechseln werden Feindetails von Produkt- und/oder Sondenhybridisierung beobachtet. Mit dem doppelstrangspezifischen DNA-Farbstoff SYBRTMGreen I wird die Produkthybridisierung bezogen auf die Temperatur verwendet, um Produkte mit Hilfe der Schmelzkurven zu bestimmen. Zudem erreicht man eine relative Quantifizierung von Produkt durch Multiplex-Amplifikation zweier oder mehrerer verschiedener Produkte, die sich in der Tm unterscheiden. Ferner führt man eine kompetitive PCR durch, indem man die Sequenz innen in den gemeinsamen Primern so ändert, dass zwei oder mehr Produkte verschiedene Tm aufweisen. Eine absolute Produktquantifizierung erhält man durch schnelles Abkühlen des denaturierten Produkts und Beobachten der Reassoziations kinetik. Die Empfindlichkeit der Quantifizierung von anfänglichem Templat mit Diagrammen von Fluoreszenz gegen Zyklenzahl wird durch Analyse der Produktschmelzkurven zur Kontrolle auf unspezifische Amplifikation und durch Algorithmen zur Kurvenanpassung erhöht. Schließlich erhält man ein unmittelbares Fluoreszenz-Feedback zur Steuerung von Denaturierungsbedingungen, Elongationszeiten und der Produktausbeute durch Monitoring des Strangstatus des Produkts mit doppelstrangspezifischen DNA-Farbstoffen.
  • Wenn eine Mulitplex-Analyse in einer PCR-Reaktion erwünscht ist, ist es üblich, zur Identifizierung mehrerer Produkte verschiedene Fluoreszenzmarker mit unterscheidbaren Emissionsspektren zu verwenden. Die Analyse wird durch die begrenzte Zahl verfügbarer Fluorophore und die überlappenden Emissionsspektren der verfügbaren Fluorophore kompliziert (siehe HM Shapiro, supra). Die Analyse der Produkt- oder Sondenhybridisierung mit Hilfe von Schmelzkurven stellt ein weiteres Verfahren zur Unterscheidung multipler PCR-Produkte dar. Durch Verfolgen der Hybridisierung bei Temperaturwechseln kann die Anzahl an Sonden und/oder Spektralfarben, die zur Unterscheidung multipler Produkte notwendig sind, minimiert werden.
  • Der Programmiercode für Schmelzkurvenanalysen und anderen Analysen ist auf den nächsten Seiten zu finden.
  • Figure 00400001
  • Figure 00410001
  • Figure 00420001
  • Figure 00430001
  • Figure 00440001
  • Figure 00450001
  • Figure 00460001
  • Figure 00470001
  • Figure 00480001
  • Figure 00490001
  • Figure 00500001
  • Figure 00510001
  • Figure 00520001
  • Figure 00530001
  • Figure 00540001
  • Figure 00550001
  • Figure 00560001
  • Figure 00570001
  • Figure 00580001
  • Figure 00590001
  • Figure 00600001
  • Figure 00610001
  • Figure 00620001
  • Figure 00630001
  • Figure 00640001
  • Figure 00650001
  • Figure 00660001
  • Figure 00670001
  • Figure 00680001
  • Figure 00690001
  • Figure 00700001
  • Figure 00710001
  • Figure 00720001
  • Figure 00730001
  • Figure 00740001
  • Figure 00750001
  • Figure 00760001
  • Figure 00770001
  • Figure 00780001
  • Figure 00790001
  • Figure 00800001
  • Figure 00810001
  • Figure 00820001
  • Figure 00830001
  • Figure 00840001
  • Figure 00850001
  • Figure 00860001
  • NICHTLINEARE LEV-MAR-ANPASSUNG:
  • Dieses VI verwendet den Levenberg-Marquardt-Algorithmus zur Bestimmung der least square-Gruppe der Koeffizienten, die am besten mit der Gruppe der Eingabe-Datenpunkte (X,Y) übereinstimmen, wie durch eine nichtlineare Funktion Y = F(X,A) ausgedrückt wird, wo A die beste Gruppe der Koeffizienten kennzeichnet. Dieses VI erzeugt auch die beste Kurvenanpassung Y = F(X,A).
  • Der Benutzer muß ein Sub-VI „TARGET FNC & DERIV NONLIN" öffnen und seine/ihre nichtlineare Funktion F(X,A) in Formelschreibweise eingeben. Wenn der Benutzer eine Formelberechnung für das Ableitungsverfahren auswählt, muß er/sie die partielle Ableitung von F(X,A) unter ebensolcher Berücksichtigung von A einfügen.
  • Eingaben:
    • X: experimentelle Datenpunkte
    • Y: experimentelle Datenpunkte
    • Standardabweichung: Standardabweichung von allen experimentellen Daten. Falls keine Kenntnis des Parameters vorliegt, ist er auszulassen.
    • Anfängliche, geschätzte Koeffizienten: Ihre geschätzten Koeffizienten. Wenn sich diese zu weit von den gewünschten Koeffizienten entfernt befinden, wird VI eventuell nicht die geeigneten Koeffizienten und die beste Kurvenanpassung liefern.
    • Max. Iteration: Der Algorithmus wird die max. Iteration versuchen. Falls sie bei Erreichen der max. Iteration nicht konvergiert, zeigt VI einen Fehler an. Ableitung: Es gibt zwei Wege, die partielle Ableitung von F(X,A) unter Berücksichtigung des Koeffizienten A zu berechnen. Wenn man die numerische Berechnung auswählt, wird VI das numerische Verfahren zu deren internen Berechnung verwenden. Wenn man die Formelberechnung auswählt, muß man die Ableitungsformel in das Sub-VI TARGET FNC & DERIV NONLIN eingeben. Die Formelberechnung ist genauer als die numerische Berechnung.
  • Ausgaben:
    • Beste, geschätzte Koeffizienten: Die least-square-Koeffizienten.
    • Beste Anpassung: die beste Anpassung der Kurve F(X,A).
    • Covarianz: Covarianzmatrix der besten, geschätzten Koeffizienten. MSE. MSE = 1/N·SUM[Y(I)–F(X(I),A))/STD(I)]^2); (STD: Standardabweichung)
  • Figure 00880001
  • Figure 00890001
  • Figure 00900001
  • Figure 00910001
  • Figure 00920001
  • SEQUENZPROTOKOLL
    Figure 00930001
  • Figure 00940001
  • Figure 00950001
  • Figure 00960001
  • Figure 00970001
  • Figure 00980001
  • Figure 00990001
  • Figure 01000001

Claims (6)

  1. Verfahren zum Echtzeit-Monitoring der Amplifikation einer Target-Nukleinsäuresequenz in einer biologischen Probe, wobei das Verfahren die Schritte umfasst: Amplifizieren der Targetsequenz durch Polymerase-Kettenreaktion in Gegenwart einer Menge SYBRTM Green I, wobei die Polymerase-Kettenreaktion die Schritte Hinzufügen von SYBRTM Green I, einer thermostabilen Polymerase und von Primern für die Target-Nukleinsäuresequenz zu der biologischen Probe zur Bildung einer Amplifikationsmischung und Thermocycling der Amplifikationsmischung zwischen wenigstens einer Denaturierungstemperatur und einer Elongationstemperatur über eine Vielzahl von Amplifikationszyklen umfasst; und entweder Bestrahlen der Mischung mit Licht einer von SYBRTM Green I absorbierten Wellenlänge bei wenigstens einem Teil der Vielzahl von Amplifikationszyklen und Nachweisen einer Fluoreszenzemission des SYBRTM Green I nach Probenbestrahlung, wobei die Fluoreszenzemission mit der Menge amplifizierter Target-Nukleinsäure in der Probe in Beziehung steht, oder Bestrahlen der Probe mit Licht einer von SYBRTM Green I absorbierten Wellenlänge im Anschluß an wenigstens einen Teil der Vielzahl von Amplifikationszyklen und Monitoring der Fluoreszenzemission des SYBRTM Green I in der Probe als Funktion der Probentemperatur zum Erstellen einer Schmelzkurve für die amplifizierte Targetsequenz.
  2. Verfahren nach Anspruch 1, gekennzeichnet durch Bestrahlen der Mischung mit Licht einer von SYBRTM Green I absorbierten Wellenlänge bei wenigstens einem Teil der Vielzahl von Amplifikationszyklen und Nachweisen einer Fluoreszenzemission des SYBRTM Green I nach Probenbestrahlung, wobei die Fluoreszenzemission mit der Menge amplifizierter Target-Nukleinsäure in der Probe in Beziehung steht, und ferner gekennzeichnet durch Bestrahlen der Probe mit Licht einer von SYBRTM Green I absorbierten Wellenlänge im Anschluß an wenigstens einen Teil der Vielzahl von Amplifikationszyklen und Monitoring der Fluoreszenzemission des SYBRTM Green I in der Probe als Funktion der Probentemperatur zum Erstellen einer Schmelzkurve für die amplifizierte Targetsequenz.
  3. Verfahren nach Anspruch 1 oder 2 zum Nachweis einer Target-Nukleinsäuresequenz in einer biologischen Probe bei einer Amplifikation mit einem schnellen Temperaturwechselprofil.
  4. Verfahren nach Anspruch 3, wobei jeder Zyklus des schnellen Temperaturwechselprofils eine Dauer von weniger als 2 Minuten besitzt.
  5. Verfahren nach Anspruch 3, wobei die Probe zum Erstellen einer Schmelzkurve bestrahlt wird und die Fluoreszenz nachgewiesen wird, wenn die Temperatur erhöht wird.
  6. PCR-Reaktionsmischung zur Amplifikation einer Target-Nukleotidsequenz, wobei die Mischung umfasst: eine DNA-Probe, die die Oligonukleotidprimer für die Targetsequenz in einer zur PCR-Amplifikation ausreichenden Menge enthält, eine thermostabile Polymerase und SYBRTM Green I in einer Menge, die ein Fluoreszenzsignal liefern kann, das die Konzentration der Targetsequenz in der Mischung anzeigt.
DE69733282T 1996-06-04 1997-06-04 Überwachung der Hybridisierung während PCR Expired - Lifetime DE69733282T2 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US65899396A 1996-06-04 1996-06-04
US658993 1996-06-04
US81826797A 1997-03-17 1997-03-17
US818267 1997-03-17

Publications (2)

Publication Number Publication Date
DE69733282D1 DE69733282D1 (de) 2005-06-16
DE69733282T2 true DE69733282T2 (de) 2006-01-19

Family

ID=27097737

Family Applications (3)

Application Number Title Priority Date Filing Date
DE69735313T Expired - Lifetime DE69735313T2 (de) 1996-06-04 1997-06-04 Fluoreszenz-Donor-Akzeptor Paar
DE69739357T Expired - Lifetime DE69739357D1 (de) 1996-06-04 1997-06-04 Überwachung der hybridisierung während pcr
DE69733282T Expired - Lifetime DE69733282T2 (de) 1996-06-04 1997-06-04 Überwachung der Hybridisierung während PCR

Family Applications Before (2)

Application Number Title Priority Date Filing Date
DE69735313T Expired - Lifetime DE69735313T2 (de) 1996-06-04 1997-06-04 Fluoreszenz-Donor-Akzeptor Paar
DE69739357T Expired - Lifetime DE69739357D1 (de) 1996-06-04 1997-06-04 Überwachung der hybridisierung während pcr

Country Status (12)

Country Link
US (9) US6174670B1 (de)
EP (3) EP0912766B2 (de)
JP (4) JP4540754B2 (de)
AT (3) ATE428801T1 (de)
AU (1) AU726501B2 (de)
CA (3) CA2257109C (de)
DE (3) DE69735313T2 (de)
DK (2) DK0912766T4 (de)
ES (2) ES2243393T3 (de)
NZ (2) NZ333136A (de)
PT (2) PT1179600E (de)
WO (1) WO1997046714A1 (de)

Families Citing this family (772)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070269799A9 (en) * 1994-06-22 2007-11-22 Zhang David Y Nucleic acid amplification methods
ATE428801T1 (de) * 1996-06-04 2009-05-15 Univ Utah Res Found Überwachung der hybridisierung während pcr
WO1998036096A1 (en) * 1997-02-14 1998-08-20 E.I. Du Pont De Nemours And Company Detection of double-stranded dna in a homogeneous solution
US20030165888A1 (en) * 2001-07-18 2003-09-04 Brown Bob D. Oligonucleotide probes and primers comprising universal bases for diagnostic purposes
US6518017B1 (en) * 1997-10-02 2003-02-11 Oasis Biosciences Incorporated Combinatorial antisense library
US6485901B1 (en) 1997-10-27 2002-11-26 Boston Probes, Inc. Methods, kits and compositions pertaining to linear beacons
AU1366299A (en) 1997-10-27 1999-05-17 Boston Probes, Inc. Methods, kits and compositions pertaining to pna molecular beacons
IL135851A (en) * 1997-10-28 2004-03-28 Univ California Method for determining the base indentity at specific sites on a dna strand
CA2308762A1 (en) * 1997-11-04 1999-05-14 Roche Diagnostics Gmbh Specific and sensitive nucleic acid detection method
GB9725197D0 (en) * 1997-11-29 1998-01-28 Secr Defence Detection system
US6893877B2 (en) * 1998-01-12 2005-05-17 Massachusetts Institute Of Technology Methods for screening substances in a microwell array
EP1055001A1 (de) * 1998-02-05 2000-11-29 Bavarian Nordic Research Institute A/S Quantifizierung durch inhibierung der amplifikation
GB9803382D0 (en) 1998-02-19 1998-04-15 Secr Defence Detection system
US6270973B1 (en) * 1998-03-13 2001-08-07 Promega Corporation Multiplex method for nucleic acid detection
DE19811731A1 (de) * 1998-03-18 1999-09-23 November Ag Molekulare Medizin Verfahren zum Nachweis einer Nukleotidsequenz
DE19811729C2 (de) * 1998-03-18 2000-05-18 November Ag Molekulare Medizin Verfahren und Vorrichtung zum Nachweis einer Nukleotidsequenz
US6361942B1 (en) 1998-03-24 2002-03-26 Boston Probes, Inc. Method, kits and compositions pertaining to detection complexes
US6132968A (en) * 1998-05-13 2000-10-17 University Of Alberta Methods for quantitating low level modifications of nucleotide sequences
GB9811483D0 (en) * 1998-05-29 1998-07-29 Photonic Research Systems Limi Luminescence assay using cyclical excitation wavelength sequence
US7799521B2 (en) * 1998-06-24 2010-09-21 Chen & Chen, Llc Thermal cycling
US6780617B2 (en) 2000-12-29 2004-08-24 Chen & Chen, Llc Sample processing device and method
GB9815799D0 (en) 1998-07-21 1998-09-16 Pharmagene Lab Limited Quantitative analysis of gene expression
GB9819418D0 (en) * 1998-09-07 1998-10-28 Secr Defence Amplification method
GB9819417D0 (en) * 1998-09-07 1998-10-28 Secr Defence Reaction method
DE19840897A1 (de) * 1998-09-08 2000-03-09 Dirk Happich Faktor V-Leiden-Test
US6140054A (en) * 1998-09-30 2000-10-31 University Of Utah Research Foundation Multiplex genotyping using fluorescent hybridization probes
GB9821989D0 (en) * 1998-10-08 1998-12-02 Hybaid Ltd Detection of nucleic acid polymorphism
DE19850593A1 (de) * 1998-11-03 2000-05-04 Biochip Technologies Gmbh Verfahren zum Nachweis von Hybridisierungsereignissen bei DNA
US6216049B1 (en) * 1998-11-20 2001-04-10 Becton, Dickinson And Company Computerized method and apparatus for analyzing nucleic acid assay readings
EP1013775A1 (de) * 1998-12-21 2000-06-28 LUTZ, Hans Quantitative Polymerase-Kettenreaktion mittels fluorogenen Echtzeiterfassungssystem
GB9901072D0 (en) * 1999-01-19 1999-03-10 Imp Cancer Res Tech Methods for detecting changes to a macromolecular component of a cell
CN1348396A (zh) 1999-03-19 2002-05-08 金克克国际有限公司 用于高效筛选的多通孔测试板
US6303305B1 (en) 1999-03-30 2001-10-16 Roche Diagnostics, Gmbh Method for quantification of an analyte
KR20020013519A (ko) * 1999-04-08 2002-02-20 추후제출 보편적 및/또는 축퇴성 염기를 포함하는 안티센스올리고뉴클레오티드
GB9908437D0 (en) * 1999-04-13 1999-06-09 Minton Treharne & Davies Limit Methods of marking materials
DE60045059D1 (de) * 1999-04-20 2010-11-18 Nat Inst Of Advanced Ind Scien Verfahren und Sonden zur Bestimmung der Konzentration von Nukleinsäure-Molekülen und Verfahren zur Analyse der gewonnenen Daten
US6387621B1 (en) * 1999-04-27 2002-05-14 University Of Utah Research Foundation Automated analysis of real-time nucleic acid amplification
US6331393B1 (en) 1999-05-14 2001-12-18 University Of Southern California Process for high-throughput DNA methylation analysis
AU5882000A (en) * 1999-06-22 2001-01-09 Invitrogen Corporation Improved primers and methods for the detection and discrimination of nucleic acids
CA2380238A1 (en) * 1999-07-27 2001-02-01 University Of Utah Research Foundation Homogeneous fluorescence method for assaying structural modifications of biomolecules
US6197520B1 (en) * 1999-08-13 2001-03-06 University Of Utah Research Foundation Solution-based color compensation adjusted for temperature and electronic gains
US7192698B1 (en) * 1999-08-17 2007-03-20 Purdue Research Foundation EphA2 as a diagnostic target for metastatic cancer
US6927203B1 (en) * 1999-08-17 2005-08-09 Purdue Research Foundation Treatment of metastatic disease
CA2395353A1 (en) * 1999-11-29 2001-05-31 Glaxo Group Limited Continuous time-resolved resonance energy-transfer assay for polynucleic acid polymerases
GB9928232D0 (en) * 1999-12-01 2000-01-26 Skelton Stephen Detection system
DE10027113A1 (de) * 1999-12-23 2001-09-27 Andreas Hoeft Verfahren zur Bestimmung von mikrobieller DNS/RNS, Kit dafür und Verwendung des Verfahrens
US7700279B2 (en) * 1999-12-24 2010-04-20 Quest Diagnostics Investments Incorporated Assay for bcr/abl gene rearrangement
US7250252B2 (en) * 1999-12-30 2007-07-31 David Aaron Katz Amplification based polymorphism detection
US20020151040A1 (en) 2000-02-18 2002-10-17 Matthew O' Keefe Apparatus and methods for parallel processing of microvolume liquid reactions
GB0005281D0 (en) * 2000-03-07 2000-04-26 Secr Defence Analytical method
DE10045521A1 (de) * 2000-03-31 2001-10-04 Roche Diagnostics Gmbh Nukleinsäureamplifikationen
US6691041B2 (en) * 2000-03-31 2004-02-10 Roche Molecular Systems, Inc. Method for the efficiency-corrected real-time quantification of nucleic acids
DE10018465A1 (de) * 2000-04-14 2001-10-18 Aventis Res & Tech Gmbh & Co Testsystem zum Nachweis einer Spleißreaktion, sowie dessen Verwendung
US6783934B1 (en) * 2000-05-01 2004-08-31 Cepheid, Inc. Methods for quantitative analysis of nucleic acid amplification reaction
EP1158449A3 (de) * 2000-05-19 2004-12-15 Becton Dickinson and Company Computerverfahren und Vorrichtung zur Analysierung des Lesens von Nukleinsäuretests
GB0016516D0 (en) * 2000-07-06 2000-08-23 Owen Mumford Ltd Improvements relating to needle protection devices
JP4807921B2 (ja) * 2000-07-07 2011-11-02 アベンティス・ファーマスーティカルズ・インコーポレイテツド トランスポゾンで仲介されたマルチプレックスシークエンシング
JP5213297B2 (ja) 2000-08-11 2013-06-19 ユニバーシティ オブ ユタ リサーチ ファウンデーション 単一ラベルオリゴヌクレオチド・プローブ
AU2001296864A1 (en) 2000-08-31 2002-03-13 Mayo Foundation For Medical Education And Research Detection of varicella-zoster virus
US7101976B1 (en) 2000-09-12 2006-09-05 Purdue Research Foundation EphA2 monoclonal antibodies and methods of making and using same
US6558929B2 (en) * 2000-09-15 2003-05-06 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forshung E.V. PCR reaction mixture for fluorescence-based gene expression and gene mutation analyses
US6346386B1 (en) * 2000-09-29 2002-02-12 Arup Institue Method of solution-based scanning for alterations in a DNA segment using a double-stranded DNA binding dye and fluorescence melting profiles
GB0025913D0 (en) 2000-10-23 2000-12-06 Guldberg Per Materials and methods relating to nucleic acid amplification and profiling
AU2002210700B2 (en) * 2000-10-23 2006-09-21 Cancer Research Technology Limited Nucleic acid amplification-based methods for the determination of a methylation profile and reagents therefor
ES2245995T3 (es) * 2000-11-16 2006-02-01 F. Hoffmann-La Roche Ag Pares de colorantes para mediciones de transferencia de energia de fluorescencia-resonancia (fret).
US8900811B2 (en) 2000-11-16 2014-12-02 Caliper Life Sciences, Inc. Method and apparatus for generating thermal melting curves in a microfluidic device
US6312929B1 (en) * 2000-12-22 2001-11-06 Cepheid Compositions and methods enabling a totally internally controlled amplification reaction
US7691571B2 (en) * 2001-01-31 2010-04-06 Mayo Foundation For Medical Education And Research Detection of bordetella
US20030165866A1 (en) * 2001-01-31 2003-09-04 Cockerill Franklin R. Detection of bordetella
ATE465272T1 (de) * 2001-01-31 2010-05-15 Mayo Foundation Nachweis von herpex-simplex-virus
US7267945B2 (en) * 2001-03-26 2007-09-11 Applera Corporation Methods of determining the presence of polynucleotides employing amplification
US7559879B2 (en) * 2001-04-16 2009-07-14 Brunswick Corporation Stride adjustment mechanism
US6830888B2 (en) 2001-05-07 2004-12-14 Mayo Foundation For Medical Education And Research Detection of Legionella
US6979530B2 (en) * 2001-05-21 2005-12-27 Applera Corporation Peptide conjugates and fluorescence detection methods for intracellular caspase assay
GB0112868D0 (en) 2001-05-25 2001-07-18 Secr Defence Detection system
US6825927B2 (en) * 2001-06-15 2004-11-30 Mj Research, Inc. Controller for a fluorometer
NZ530343A (en) * 2001-06-22 2007-01-26 Marshfield Clinic Methods and oligonucleotides for the detection of E. coli 0157:H7
DE10132211A1 (de) * 2001-06-27 2003-01-16 Epigenomics Ag Nachweis spezifischer Dinukleotide in DNA-Proben durch Fluoreszenzresonanzenergietransfer (FRET)
US9261460B2 (en) 2002-03-12 2016-02-16 Enzo Life Sciences, Inc. Real-time nucleic acid detection processes and compositions
DE10132785A1 (de) * 2001-07-06 2003-01-16 Clondiag Chip Tech Gmbh Verfahren zum Nachweis von in einer Polymerase-Kettenreaktion amplifizierten Nukleinsäuremolekülen
EP1275735A1 (de) 2001-07-11 2003-01-15 Roche Diagnostics GmbH Zusammensetzung und Methode zur 'Hot start' Nukleinsäureamplifizierung
US7226732B2 (en) * 2001-07-16 2007-06-05 Cepheid Methods, apparatus, and computer programs for verifying the integrity of a probe
ATE522776T1 (de) * 2001-07-16 2011-09-15 Idaho Technology Inc Temperaturwechselsystem und verwendungsverfahren
US6872529B2 (en) * 2001-07-25 2005-03-29 Affymetrix, Inc. Complexity management of genomic DNA
US6979541B1 (en) 2001-07-26 2005-12-27 University Of Utah Research Foundation Methods for identifying chromosomal aneuploidy
US7188030B2 (en) * 2001-08-21 2007-03-06 Applera Corporation Automatic threshold setting for quantitative polymerase chain reaction
JP2005500856A (ja) * 2001-08-23 2005-01-13 メルク エンド カムパニー インコーポレーテッド 多重フルオロフォアを使用する蛍光多重hpvpcrアッセイ
DE60213730T2 (de) * 2001-08-31 2007-08-16 The University Of Utah Research Foundation, Salt Lake City Echtzeit-Quantifizierung mit internen Standards
JP4513085B2 (ja) * 2001-09-11 2010-07-28 アイキューム インク 試料の容器
US20030082563A1 (en) * 2001-10-15 2003-05-01 Bell Constance A. Detection of bacillus anthracis
US20030165859A1 (en) 2001-10-23 2003-09-04 Invitrogen Corporation Primers and methods for the detection and discrimination of nucleic acids
ATE328119T1 (de) * 2001-11-02 2006-06-15 Roche Diagnostics Gmbh Nachweis von variola virus
US7163790B2 (en) * 2001-11-28 2007-01-16 Bio-Rad Laboratories, Inc. Parallel polymorphism scoring by amplification and error correction
US7352694B1 (en) * 2001-12-14 2008-04-01 Applied Micro Circuits Corporation System and method for tolerating data link faults in a packet communications switch fabric
US8418129B1 (en) 2001-12-14 2013-04-09 Qualcomm Incorporated Method for automatically generating code to define a system of hardware elements
US7424013B1 (en) * 2001-12-20 2008-09-09 Applied Micro Circuits Corporation System and method for granting arbitrated bids in the switching of information
US20040063109A2 (en) 2002-01-25 2004-04-01 Applera Corporation Single-tube, ready-to-use assay kits, and methods using same
US7228237B2 (en) * 2002-02-07 2007-06-05 Applera Corporation Automatic threshold setting and baseline determination for real-time PCR
US7373253B2 (en) 2002-02-12 2008-05-13 Idaho Technology Multi-test analysis of real-time nucleic acid amplification
US6593093B1 (en) 2002-02-20 2003-07-15 Mayo Foundation For Medical Education And Research Detection of group a Streptococcus
US9353405B2 (en) 2002-03-12 2016-05-31 Enzo Life Sciences, Inc. Optimized real time nucleic acid detection processes
US7166478B2 (en) * 2002-03-12 2007-01-23 Enzo Life Sciences, Inc., C/O Enzo Biochem, Inc. Labeling reagents and labeled targets, target labeling processes and other processes for using same in nucleic acid determinations and analyses
US20050065330A1 (en) * 2002-04-24 2005-03-24 The Cleveland Clinic Foundation Identification of Histoplasma capsulatum using a PCR assay
US7297484B2 (en) * 2002-04-26 2007-11-20 Idaho Technology Characterization of single stranded nucleic acids by melting analysis of secondary structure using double strand-specific nucleic acid dye
AUPS205802A0 (en) * 2002-05-01 2002-06-06 Bio-Molecular Holdings Pty Limited Improved cycling device and method
US7785776B2 (en) * 2002-05-13 2010-08-31 Idaho Technology, Inc. Genotyping by amplicon melting curve analysis
US20030215814A1 (en) * 2002-05-17 2003-11-20 Cockerill Franklin R. Detection of Shiga toxin- or Shiga-like toxin-producing organisms
AUPS267802A0 (en) * 2002-05-30 2002-06-20 Bio-Molecular Holdings Pty Limited Improved dna amplification apparatus and method
JP4457001B2 (ja) * 2002-05-31 2010-04-28 セクレタリー・デパートメント・オブ・アトミック・エナジー ドナー/アクセプター部分が相補鎖上となる標的核酸検出のmet/fretに基づく方法
AU2003253651C1 (en) * 2002-06-14 2010-06-03 Gen-Probe Incorporated Compositions and methods for detecting hepatitis B virus
US6896727B2 (en) * 2002-06-28 2005-05-24 Seh America, Inc. Method of determining nitrogen concentration within a wafer
US7083974B2 (en) * 2002-07-12 2006-08-01 Applera Corporation Rotatable sample disk and method of loading a sample disk
US20040219557A1 (en) * 2002-08-01 2004-11-04 Dobrowolski Steven F. Real time PCR assays to detect mutations in the biotinidase gene for newborn screening
US8277753B2 (en) * 2002-08-23 2012-10-02 Life Technologies Corporation Microfluidic transfer pin
AU2003236461B2 (en) * 2002-08-29 2009-05-28 Epigenomics Ag Improved method for bisulfite treatment
DE60329853D1 (de) * 2002-09-03 2009-12-10 Quanta Biosciences Inc Verbesserte zusammensetzungen und verfahren für die cdna-synthese
US20040053318A1 (en) * 2002-09-17 2004-03-18 Mcwilliams Diana R. Preservation of RNA and reverse transcriptase during automated liquid handling
AU2003272491B2 (en) * 2002-09-18 2008-10-02 The Trustees Of The University Of Pennsylvania Compositions, methods and kits for detection of an antigen on a cell and in a biological mixture
US7074598B2 (en) 2002-09-25 2006-07-11 Mayo Foundation For Medical Education And Research Detection of vancomycin-resistant enterococcus spp.
US7365176B2 (en) 2002-09-26 2008-04-29 Mayo Foundation For Medical Education And Research Detection of Epstein-Barr virus
US7074599B2 (en) 2002-09-27 2006-07-11 Mayo Foundation For Medical Education And Research Detection of mecA-containing Staphylococcus spp.
WO2004031408A1 (en) * 2002-09-30 2004-04-15 F.Hoffmann-La Roche Ag Oligonucleotides for genotyping thymidylate synthase gene
US9850381B2 (en) * 2002-10-23 2017-12-26 University Of Utah Research Foundation Amplicon melting analysis with saturation dyes
ES2527068T3 (es) * 2002-10-23 2015-01-19 University Of Utah Research Foundation Análisis de fusión de amplicones con colorantes de saturación
CA2507240C (en) 2002-12-06 2011-05-24 F. Hoffmann-La Roche Ag Multiplex assay detection of pathogenic organisms
US7718361B2 (en) 2002-12-06 2010-05-18 Roche Molecular Systems, Inc. Quantitative test for bacterial pathogens
US20050042639A1 (en) * 2002-12-20 2005-02-24 Caliper Life Sciences, Inc. Single molecule amplification and detection of DNA length
CA2510166A1 (en) 2002-12-20 2004-09-30 Caliper Life Sciences, Inc. Single molecule amplification and detection of dna
US20060094108A1 (en) * 2002-12-20 2006-05-04 Karl Yoder Thermal cycler for microfluidic array assays
US7560231B2 (en) * 2002-12-20 2009-07-14 Roche Molecular Systems, Inc. Mannitol and glucitol derivatives
EP1608952B1 (de) * 2002-12-20 2016-08-10 Life Technologies Corporation Assay vorrichtung und verfahren unter verwendung von mikrofluiden matrixstrukturen
ATE386141T1 (de) * 2002-12-20 2008-03-15 Stratagene Inc Zusammensetzungen und verfahren für den nachweis von polynukleotiden
US8275554B2 (en) * 2002-12-20 2012-09-25 Caliper Life Sciences, Inc. System for differentiating the lengths of nucleic acids of interest in a sample
ATE373673T1 (de) * 2003-01-29 2007-10-15 Hoffmann La Roche Verbessertes verfahren zur behandlung durch bisulfit
WO2004080597A2 (en) 2003-02-05 2004-09-23 Iquum, Inc. Sample processing tubule
JP4896707B2 (ja) * 2003-02-05 2012-03-14 ジーイー・ヘルスケア・バイオサイエンス・コーポレイション 固相配列決定法
JP4608483B2 (ja) * 2003-02-18 2011-01-12 アプライド バイオシステムズ, エルエルシー ポリヌクレオチドの複合的分析のための組成物および方法
US7282331B2 (en) * 2003-03-18 2007-10-16 Advandx, Inc. Method for improved specificity in probe based assays
EP2390352A1 (de) 2003-03-18 2011-11-30 Quantum Genetics Ireland Limited Systeme und Methoden zur Erhöhung der Milchproduktion bei Tieren
US20040191776A1 (en) * 2003-03-21 2004-09-30 Pei-Jer Chen Method for genotyping and quantifying Hepatitis B Virus
GB2399776A (en) * 2003-03-24 2004-09-29 Pa Knowledge Ltd Cyclical heating and cooling device and associated methods
BRPI0408967B8 (pt) 2003-03-31 2021-07-27 Hoffmann La Roche kit e métodos para detecção de um ácido nucléico de vários membros do sorogrupo do vírus da encefalite japonesa em uma amostra biológica sob condições de hibridização rigorosas
ES2384170T3 (es) * 2003-04-04 2012-07-02 F. Hoffmann-La Roche Ag Sistema mejorado de PCR multicolor a tiempo real
CA2463719A1 (en) * 2003-04-05 2004-10-05 F. Hoffmann-La Roche Ag Nucleotide analogs with six membered rings
US7820030B2 (en) * 2003-04-16 2010-10-26 Handylab, Inc. System and method for electrochemical detection of biological compounds
US20060177824A1 (en) * 2003-04-29 2006-08-10 Procop Gary W Salmonella detection identification
US7148043B2 (en) 2003-05-08 2006-12-12 Bio-Rad Laboratories, Inc. Systems and methods for fluorescence detection with a movable detection module
DE04752947T1 (de) 2003-05-23 2006-11-16 Bio-Rad Laboratories, Inc., Hercules Lokalisierte temperaturregelung für raumanordnungen von reaktionsmedien
EP1641938A2 (de) * 2003-06-30 2006-04-05 AstraZeneca AB Nukleinsäurepolymerase-fluoreszenztests
EP1493822A1 (de) * 2003-07-02 2005-01-05 Labor Becker, Olgemoeller &amp; Kollegen GbR Detektionsverfahren für Nucleinsäuren mit interner Amplifikationskontrolle
GB0317343D0 (en) * 2003-07-24 2003-08-27 Medical Biosystems Ltd Polynucleotide sequencing
EP1502958A1 (de) * 2003-08-01 2005-02-02 Roche Diagnostics GmbH Neues Format zur Detektion von Heissstart- und Echtzeit-Polymerasekettenreaktion
US20050053950A1 (en) * 2003-09-08 2005-03-10 Enrique Zudaire Ubani Protocol and software for multiplex real-time PCR quantification based on the different melting temperatures of amplicons
US7788039B2 (en) 2003-09-25 2010-08-31 Roche Molecular Systems, Inc. Quantitation of nucleic acids using growth curves
EP1530046A1 (de) * 2003-11-04 2005-05-11 Ludwig-Maximilians-Universität München Methode zur Unterscheidung von AML Subtypen mit verändertem Karyotyp mit mittelmässiger Prognose
EP1682903A2 (de) * 2003-11-04 2006-07-26 Roche Diagnostics GmbH Methode zur unterscheidung zwischen aml-spezifischen flt3 längenmutationen und tkd mutationen
US20070128607A1 (en) * 2003-11-04 2007-06-07 Martin Dugas Method for distinguishing aml subtypes with different gene dosages
US20070207459A1 (en) * 2003-11-04 2007-09-06 Martin Dugas Method For Distinguishing Immunologically Defined All Subtype
WO2005043161A2 (en) * 2003-11-04 2005-05-12 Roche Diagnostics Gmbh Method for distinguishing leukemia subtypes
EP1682900A2 (de) * 2003-11-04 2006-07-26 Roche Diagnostics GmbH Methode zur unterscheidung von t(11q23)/mll positiven leukemien von t(11q23)/mll negativen leukemien
EP1533618A1 (de) * 2003-11-04 2005-05-25 Ludwig-Maximilians-Universität München Methode zur Unterscheidung prognostisch definierbarer AML
WO2005043164A2 (en) * 2003-11-04 2005-05-12 Roche Diagnostics Gmbh Method for distinguishing cbf-positive aml subtypes from cbf-negative aml subtypes
EP1682902A2 (de) * 2003-11-04 2006-07-26 Roche Diagnostics GmbH Methode zur unterscheidung von mll-ptd positiven aml von anderen aml subtypen
US20070105118A1 (en) * 2003-11-04 2007-05-10 Martin Dugas Method for distinguishing aml subtypes with recurring genetic aberrations
US7691570B2 (en) * 2003-11-06 2010-04-06 Dual Juerg Chemical analysis using dynamic viscometry
US7427475B2 (en) * 2003-11-18 2008-09-23 Mayo Foundation For Medical Education And Research Detection of group B streptococcus
WO2005051967A2 (en) * 2003-11-19 2005-06-09 Allelogic Biosciences Corp. Oligonucleotides labeled with a plurality of fluorophores
US7582452B2 (en) * 2003-11-24 2009-09-01 Life Genetics Lab, Llc Assay for species sources
CA2494571C (en) * 2003-12-02 2010-02-09 F.Hoffmann-La Roche Ag Oligonucleotides containing molecular rods
WO2005054502A1 (en) 2003-12-02 2005-06-16 Roche Diagnostics Gmbh Improved method for bisulfite treatment
US20050130213A1 (en) * 2003-12-10 2005-06-16 Tom Morrison Selective ligation and amplification assay
US8697433B2 (en) * 2003-12-10 2014-04-15 Samsung Electronics Co., Ltd. Polymerase chain reaction (PCR) module and multiple PCR system using the same
ATE485401T1 (de) * 2004-02-10 2010-11-15 Hoffmann La Roche Neue primer und sonden zum nachweis von parvovirus b19
WO2005077125A2 (en) * 2004-02-11 2005-08-25 Applera Corporation Methods and compositions for detecting nucleic acids
WO2005112544A2 (en) 2004-02-19 2005-12-01 The Governors Of The University Of Alberta Leptin promoter polymorphisms and uses thereof
US20050250134A1 (en) * 2004-03-02 2005-11-10 Dawei Sheng Fluorescent energy transfer labeled nucleic acid substrates and methods of use thereof
AU2005220746A1 (en) 2004-03-05 2005-09-22 Medical College Of Ohio Methods and compositions for assessing nucleic acids and alleles
WO2005089945A1 (en) 2004-03-12 2005-09-29 Biotrove, Inc. Nanoliter array loading
AU2005230833B2 (en) 2004-04-01 2011-04-14 Bio-Rad Laboratories, Inc. Quantitative amplification with a labeled probe and 3' to 5' exonuclease activity
EP1745157A4 (de) 2004-04-12 2008-06-11 Ohio Med College Verfahren und zusammensetzungen zum testen von analyten
WO2005100538A1 (en) * 2004-04-16 2005-10-27 Spartan Bioscience Inc. System for rapid nucleic acid amplification and detection
US7387887B2 (en) * 2004-04-20 2008-06-17 University Of Utah Research Foundation Nucleic acid melting analysis with saturation dyes
US9657347B2 (en) 2004-04-20 2017-05-23 University of Utah Research Foundation and BioFire Defense, LLC Nucleic acid melting analysis with saturation dyes
US7939251B2 (en) 2004-05-06 2011-05-10 Roche Molecular Systems, Inc. SENP1 as a marker for cancer
US20050250112A1 (en) * 2004-05-07 2005-11-10 Padmabandu Gothami A Nucleic acids, compositions, methods, and kits for detecting mycoplasma and acholeplasma species
NZ551996A (en) * 2004-05-13 2010-07-30 Anita Goel Nano-PCR: Methods and devices for nucleic acid amplification and detection
DE102004025538A1 (de) * 2004-05-25 2005-12-22 Advalytix Ag Temperierverfahren und -vorrichtung für die Temperaturbehandlung kleiner Flüssigkeitsmengen
EP2290071B1 (de) 2004-05-28 2014-12-31 Asuragen, Inc. Verfahren und Zusammensetzungen mit MicroRNA
EP1605060A1 (de) * 2004-06-10 2005-12-14 Biodynamics S.R.L. Verfahren und Reaktionsgemisch zur Steigerung der Spezifität und Genauigkeit von Polymerasereaktionen
JP4782784B2 (ja) * 2004-06-25 2011-09-28 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 病原性大腸菌の検出および識別のためのdna配列
EP1610170A1 (de) * 2004-06-25 2005-12-28 Sony Deutschland GmbH Eine Methode zum Auftragen einer Teilchenschicht zur Herstellung einer Oberfläche mit Licht-diffusiven Eigenschaften und / oder verringertem Glanz
GB0416944D0 (en) 2004-07-29 2004-09-01 Lumora Ltd Method for determining the amount of template nucleic acid present in a sample
TWI349704B (en) * 2004-08-10 2011-10-01 Food And Drug Administration Dept Of Health A method for rapidly detecting quinolone-resistant salmonella spp. and the probes and primers utilized therein
US7361469B2 (en) * 2004-08-13 2008-04-22 Stratagene California Dual labeled fluorescent probes
EP1632578A1 (de) 2004-09-03 2006-03-08 Roche Diagnostics GmbH Methode zur Dekontamination der DNA
EP2093297A3 (de) 2004-09-07 2009-11-18 Telethon Institute for Child Health Research Wirkstoffe zur Behandlung oder Vorbeugung einer allergischen Störung
EP1634965B1 (de) 2004-09-09 2010-01-20 Roche Diagnostics GmbH Echtzeit-PCR unter Zusatz von Pyrophosphatase
US20060051796A1 (en) * 2004-09-09 2006-03-09 Inga Boell Real time PCR with the addition of pyrophosphatase
EP1799858A4 (de) * 2004-09-20 2009-03-04 Univ Pittsburgh Multimodus-multiplexlöschverfahren
EP1791982B1 (de) 2004-09-21 2011-01-05 Life Technologies Corporation Zweifarbige echtzeit/endpunkt-quantifizierung von mikro-rnas (mirnas)
WO2006042136A2 (en) * 2004-10-07 2006-04-20 Chronix Biomedical Detection of nucleic acids to assess risk for creutzfeldt-jakob disease
US20060078894A1 (en) * 2004-10-12 2006-04-13 Winkler Matthew M Methods and compositions for analyzing nucleic acids
EP2927238B1 (de) * 2004-10-18 2018-01-17 Brandeis University Verfahren zur LATE Amplifikation und Sequenzierung von Nukleinsäuren
WO2006045009A2 (en) * 2004-10-20 2006-04-27 Stratagene California Triplex probe compositions and methods for polynucleotide detection
WO2006045392A2 (en) 2004-10-21 2006-05-04 GSF-Forschungszentrum für Umwelt und Gesundheit GmbH Kaspp (lrrke) gene, its production and use for the detection and treatment of neurodegenerative disorders
JP4999103B2 (ja) * 2004-10-27 2012-08-15 セフィード 閉鎖系の多段階核酸増幅反応
US20090118132A1 (en) * 2004-11-04 2009-05-07 Roche Molecular Systems, Inc. Classification of Acute Myeloid Leukemia
DK2302055T3 (da) 2004-11-12 2014-10-13 Asuragen Inc Fremgangsmåder og sammensætninger involverende miRNA og miRNA-inhibitormolekyler
WO2006074222A2 (en) * 2005-01-03 2006-07-13 The Government Of The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services, Centers For Disease Control And Prevention Primer for nucleic acid detection
EP2813581B1 (de) * 2005-01-06 2018-06-27 Applied Biosystems, LLC Verwendung von Polypeptiden mit Nukleinsäurebindungsaktivität in Verfahren schneller Nukleinsäurenamplifikation
US7315376B2 (en) * 2005-01-07 2008-01-01 Advanced Molecular Systems, Llc Fluorescence detection system
ATE359500T1 (de) 2005-01-18 2007-05-15 Hoffmann La Roche Fluoreszenzabbildung mittels telezentrizität
ATE357653T1 (de) 2005-01-18 2007-04-15 Hoffmann La Roche Fluoreszenzabbildung mittels telezentrischer anregungs- und abbildungsoptiken
US8669052B2 (en) * 2008-06-10 2014-03-11 Rapid Pathogen Screening, Inc. Lateral flow nucleic acid detector
US8470608B2 (en) * 2008-05-20 2013-06-25 Rapid Pathogen Screening, Inc Combined visual/fluorescence analyte detection test
US20060246423A1 (en) * 2005-02-10 2006-11-02 Adelson Martin E Method and kit for the collection and maintenance of the detectability of a plurality of microbiological species in a single gynecological sample
US9464310B2 (en) * 2005-02-10 2016-10-11 Medical Diagnostic Laboratories, Llc Integrated method for collection and maintenance of detectability of a plurality of microbiological agents in a single clinical sample and for handling a plurality of samples for reporting a sum of diagnostic results for each sample
US7393665B2 (en) 2005-02-10 2008-07-01 Population Genetics Technologies Ltd Methods and compositions for tagging and identifying polynucleotides
US20060178838A1 (en) * 2005-02-10 2006-08-10 Adelson Martin E Method of receiving and handling a plurality of clinical samples for reporting a sum of diagnostic results for each sample
US20060188891A1 (en) * 2005-02-23 2006-08-24 Bickmore William D Jr Methods and apparatus for controlling DNA amplification
JP4398886B2 (ja) * 2005-03-07 2010-01-13 ソニー株式会社 通信端末装置、通信システム、通信方法、およびプログラム
EP1700922B1 (de) 2005-03-10 2016-08-24 Roche Diagnostics GmbH 3-Substituierte 5-Nitroindolderivate und diese enthaltende markierte Oligonukleotidsonden
EP2348320B1 (de) 2005-03-10 2024-05-01 Gen-Probe Incorporated Verfahren und Systeme zur Erkennung mehrerer Fluoreszenzemissionssignale
US7759469B2 (en) 2005-03-10 2010-07-20 Roche Diagnostics Operations, Inc. Labeling reagent
CA2842232C (en) 2005-03-10 2015-01-27 Gen-Probe Incorporated Systems and methods to perform assays for detecting or quantifying analytes within samples
US7680604B2 (en) 2005-03-11 2010-03-16 Roche Molecular Systems, Inc. PCR elbow determination by rotational transform after zero slope alignment
US7776567B2 (en) 2005-03-17 2010-08-17 Biotium, Inc. Dimeric and trimeric nucleic acid dyes, and associated systems and methods
US7601498B2 (en) * 2005-03-17 2009-10-13 Biotium, Inc. Methods of using dyes in association with nucleic acid staining or detection and associated technology
US7456281B2 (en) * 2005-04-20 2008-11-25 Idaho Technology, Inc. Nucleic acid melting analysis with saturation dyes
US20100003665A1 (en) * 2005-04-28 2010-01-07 Taddeo Frank J Real-time HPV PCR Assays
US20070015180A1 (en) * 2005-05-02 2007-01-18 Stratagene California Oligonucleotide probe/primer compositions and methods for polynucleotide detection
US7737281B2 (en) * 2005-05-24 2010-06-15 Enzo Life Sciences, Inc. C/O Enzo Biochem, Inc. Purine based fluorescent dyes
US8357801B2 (en) 2005-05-24 2013-01-22 Enzo Life Sciences, Inc. Labeling of target molecules, identification of organelles and other applications, novel compositions, methods and kits
US7569695B2 (en) * 2005-05-24 2009-08-04 Enzo Life Sciences, Inc. Dyes for the detection or quantification of desirable target molecules
US8362250B2 (en) 2005-05-24 2013-01-29 Enzo Biochem, Inc. Fluorescent dyes and compounds, methods and kits useful for identifying specific organelles and regions in cells of interest
AU2006341607B2 (en) * 2005-05-31 2011-03-17 Applied Biosystems, Llc. Multiplexed amplification of short nucleic acids
US20060281099A1 (en) * 2005-06-14 2006-12-14 Bio-Rad Laboratories, Inc. Q-melt for polymorphism detection
JP5331476B2 (ja) 2005-06-15 2013-10-30 カリダ・ジェノミックス・インコーポレイテッド 遺伝子解析および化学解析用の単分子アレイ
US20060286590A1 (en) * 2005-06-20 2006-12-21 Applera Corporation. Cis-regulatory modules
US20060292578A1 (en) 2005-06-28 2006-12-28 Weidong Zheng DNA polymerase blends and mutant DNA polymerases
GB0514889D0 (en) 2005-07-20 2005-08-24 Lgc Ltd Oligonucleotides
ES2494922T3 (es) * 2005-09-01 2014-09-16 Ausdiagnostics Pty Ltd. Métodos para la amplificación, cuantificación e identificación de ácidos nucleicos
US7569367B2 (en) 2005-09-07 2009-08-04 Roche Diagnostics Operations, Inc. Nucleic acid preparation from whole blood for use in diagnosis of transmissible spongiform encephalopathy
US20070059713A1 (en) 2005-09-09 2007-03-15 Lee Jun E SSB-DNA polymerase fusion proteins
US7991561B2 (en) 2005-09-29 2011-08-02 Roche Molecular Systems, Inc. Ct determination by cluster analysis with variable cluster endpoint
US7991558B2 (en) 2005-09-29 2011-08-02 Roche Molecular Systems, Inc. Systems and methods for determining real-time PCR cycle thresholds using cluster analysis
EP1943348B1 (de) 2005-10-03 2013-01-02 Life Technologies Corporation Zusammensetzungen, verfahren und kits zur amplifikation von nukleinsäuren
EP2546360A1 (de) 2005-10-07 2013-01-16 Callida Genomics, Inc. Selbstangeordnete einzelne Molekülarrays und Verwendungen davon
WO2007047606A2 (en) * 2005-10-17 2007-04-26 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Electrokinetic thermal cycler and reactor
US7781165B2 (en) 2005-10-19 2010-08-24 Roche Diagnostics Operations, Inc. Benzimidazolium compounds and salts of benzimidazolium compounds for nucleic acid amplification
WO2007120208A2 (en) * 2005-11-14 2007-10-25 President And Fellows Of Harvard College Nanogrid rolling circle dna sequencing
CN103710430B (zh) 2005-11-29 2016-03-30 剑桥企业有限公司 乳腺癌标志物
EP1798291B1 (de) * 2005-12-13 2011-05-18 Institut Curie Verfahren für die Detektion von Mutationen in Nukleinsaüren, und die Anwendung in der Diagnose von genetischen Krankheiten und Krebs
DE602006016859D1 (de) * 2005-12-14 2010-10-21 Roche Diagnostics Gmbh Neues verfahren für die bisulfitbehandlung
EP1798650A1 (de) * 2005-12-19 2007-06-20 Roche Diagnostics GmbH Analytisches Verfahren und Instrument
EP1798542A1 (de) * 2005-12-19 2007-06-20 Roche Diagnostics GmbH Analytisches Verfahren und Gerät
US7844403B2 (en) 2005-12-20 2010-11-30 Roche Molecular Systems, Inc. Temperature step correction with double sigmoid Levenberg-Marquardt and robust linear regression
US7991562B2 (en) 2005-12-20 2011-08-02 Roche Molecular Systems, Inc. PCR elbow determination using curvature analysis of a double sigmoid
US7668663B2 (en) 2005-12-20 2010-02-23 Roche Molecular Systems, Inc. Levenberg-Marquardt outlier spike removal method
US7680868B2 (en) 2005-12-20 2010-03-16 Roche Molecular Systems, Inc. PCR elbow determination by use of a double sigmoid function curve fit with the Levenburg-Marquardt algorithm and normalization
US7981606B2 (en) * 2005-12-21 2011-07-19 Roche Molecular Systems, Inc. Control for nucleic acid testing
EP2025762A3 (de) 2006-01-17 2009-09-30 Health Research Inc. Heteroduplex-Trackingassay
US20090305238A1 (en) * 2006-01-23 2009-12-10 Applera Corporation Microarray Microcard
US7785786B2 (en) * 2006-01-23 2010-08-31 Quest Diagnostics Investments Incorporated Methods for detecting nucleic acids using multiple signals
WO2007092538A2 (en) 2006-02-07 2007-08-16 President And Fellows Of Harvard College Methods for making nucleotide probes for sequencing and synthesis
GB0603190D0 (en) * 2006-02-16 2006-03-29 Enigma Diagnostics Ltd Detection system
CA2638854C (en) * 2006-02-27 2012-05-15 F. Hoffmann-La Roche Ag Pcr hot start by magnesium sequestration
JP2009528063A (ja) * 2006-03-01 2009-08-06 パーレジェン サイエンシーズ, インコーポレイテッド 依存症に対するマーカー
US20110143344A1 (en) * 2006-03-01 2011-06-16 The Washington University Genetic polymorphisms and substance dependence
RU2394915C2 (ru) * 2006-03-24 2010-07-20 Александр Борисович Четверин Бесконтактные способы обнаружения молекулярных колоний, наборы реагентов и устройство для их осуществления
US8778637B2 (en) * 2006-03-28 2014-07-15 Canon U.S. Life Sciences, Inc. Method and apparatus for applying continuous flow and uniform temperature to generate thermal melting curves in a microfluidic device
EP2759307B1 (de) 2006-03-29 2016-11-09 Merial Limited Impfstoff gegen Streptokokken
CA2648195A1 (en) 2006-04-04 2007-10-11 Labonnet Ltd. Assessment of reaction kinetics compatibility between polymerase chain reactions
US20070238108A1 (en) * 2006-04-07 2007-10-11 Agilent Technologies, Inc. Validation of comparative genomic hybridization
US20070238093A1 (en) * 2006-04-11 2007-10-11 Espy Mark J Detection of influenza A virus
US20070238095A1 (en) * 2006-04-11 2007-10-11 Mayo Foundation For Medical Education And Research , A Minnesota Corporation Detection of Influenza A Virus
US9862984B2 (en) 2006-04-21 2018-01-09 Nanobiosym, Inc. Single-molecule platform for drug discovery: methods and apparatuses for drug discovery, including discovery of anticancer and antiviral agents
US8349556B2 (en) 2006-04-28 2013-01-08 Igor Kutyavin Use of base-modified deoxynucleoside triphosphates to improve nucleic acid detection
US8900828B2 (en) 2006-05-01 2014-12-02 Cepheid Methods and apparatus for sequential amplification reactions
EP2027251A4 (de) * 2006-05-17 2010-05-05 California Inst Of Techn Thermisches wechselbeanspruchungssystem
US8232091B2 (en) * 2006-05-17 2012-07-31 California Institute Of Technology Thermal cycling system
US8637436B2 (en) 2006-08-24 2014-01-28 California Institute Of Technology Integrated semiconductor bioarray
WO2007143669A2 (en) * 2006-06-05 2007-12-13 California Institute Of Technology Real time micro arrays
US11001881B2 (en) 2006-08-24 2021-05-11 California Institute Of Technology Methods for detecting analytes
US8119352B2 (en) * 2006-06-20 2012-02-21 Cepheld Multi-stage amplification reactions by control of sequence replication times
US7629124B2 (en) 2006-06-30 2009-12-08 Canon U.S. Life Sciences, Inc. Real-time PCR in micro-channels
US11525156B2 (en) 2006-07-28 2022-12-13 California Institute Of Technology Multiplex Q-PCR arrays
US8048626B2 (en) * 2006-07-28 2011-11-01 California Institute Of Technology Multiplex Q-PCR arrays
WO2008021010A2 (en) * 2006-08-07 2008-02-21 Stratagene California Methods for real-time quantitative pcr
US11560588B2 (en) 2006-08-24 2023-01-24 California Institute Of Technology Multiplex Q-PCR arrays
US9481912B2 (en) 2006-09-12 2016-11-01 Longhorn Vaccines And Diagnostics, Llc Compositions and methods for detecting and identifying nucleic acid sequences in biological samples
US8097419B2 (en) 2006-09-12 2012-01-17 Longhorn Vaccines & Diagnostics Llc Compositions and method for rapid, real-time detection of influenza A virus (H1N1) swine 2009
US8080645B2 (en) 2007-10-01 2011-12-20 Longhorn Vaccines & Diagnostics Llc Biological specimen collection/transport compositions and methods
EP1900824A1 (de) * 2006-09-14 2008-03-19 Deutsches Krebsforschungszentrum Stiftung Des Öffentlichen Rechts Genexpressionsprofile zur Prognose, Diagnose und Therapie von Prostatakrebs und deren Verwendung
CA2663962A1 (en) * 2006-09-19 2008-03-27 Asuragen, Inc. Mir-15, mir-26, mir-31,mir-145, mir-147, mir-188, mir-215, mir-216, mir-331, mmu-mir-292-3p regulated genes and pathways as targets for therapeutic intervention
BRPI0718050A2 (pt) * 2006-11-02 2013-11-05 Veridex Llc Formação de imegens do endotélio vascular ativado usando agentes de contraste de mri imunomagnéticos
US9114398B2 (en) 2006-11-29 2015-08-25 Canon U.S. Life Sciences, Inc. Device and method for digital multiplex PCR assays
US20080131878A1 (en) * 2006-12-05 2008-06-05 Asuragen, Inc. Compositions and Methods for the Detection of Small RNA
CN101622348A (zh) * 2006-12-08 2010-01-06 奥斯瑞根公司 作为治疗性干预靶标的miR-20调节的基因和途径
EP2104734A2 (de) * 2006-12-08 2009-09-30 Asuragen, INC. Mir-20-regulierte gene und pfade als ziele für therapeutische interventionen
CA2671294A1 (en) * 2006-12-08 2008-06-19 Asuragen, Inc. Mir-21 regulated genes and pathways as targets for therapeutic intervention
CA2671299A1 (en) * 2006-12-08 2008-06-19 Asuragen, Inc. Functions and targets of let-7 micro rnas
EP2857526B1 (de) 2006-12-13 2016-08-17 Luminex Corporation Systeme und Verfahren zur Multiplexanalyse von PCR in Echtzeit
WO2008074101A2 (en) 2006-12-21 2008-06-26 Agriculture Victoria Services Pty Limited Artificial selection method and reagents
US8535888B2 (en) * 2006-12-29 2013-09-17 Mayo Foundation For Medical Education And Research Compositions and methods for detecting methicillin-resistant S. aureus
CA2671270A1 (en) * 2006-12-29 2008-07-17 Asuragen, Inc. Mir-16 regulated genes and pathways as targets for therapeutic intervention
US8247171B2 (en) * 2007-02-01 2012-08-21 Abacus Diagnostica Oy Method for detection of presence of target polynucleotide in samples
ES2665690T3 (es) 2007-02-02 2018-04-26 Genera Biosystems Limited Generación de moléculas de ácido nucleico
US20100190167A1 (en) * 2007-02-14 2010-07-29 Genisphere Inc. Methods, Reagents and Kits for Detection of Nucleic Acid Molecules
JP4942508B2 (ja) * 2007-02-20 2012-05-30 アークレイ株式会社 abl遺伝子変異の検出用プローブおよびその用途
US9475051B2 (en) * 2007-02-27 2016-10-25 Sony Corporation Nucleic acid amplifier
GB0703997D0 (en) * 2007-03-01 2007-04-11 Oxitec Ltd Methods for detecting nucleic sequences
GB0703996D0 (en) * 2007-03-01 2007-04-11 Oxitec Ltd Nucleic acid detection
DK2574681T3 (en) 2007-03-28 2016-07-04 Signal Diagnostics System and method for high-resolution analysis of nucleic acids to detect sequence variations
JP5191041B2 (ja) * 2007-04-05 2013-04-24 エフ.ホフマン−ラ ロシュ アーゲー 急速ワンステップrt−pcr
EP2150625B1 (de) 2007-04-19 2013-03-20 Molecular Detection Inc. Verfahren, zusammensetzungen und kits zur erkennung und analyse von antibiotika-resistenten bakterien
US20090232893A1 (en) * 2007-05-22 2009-09-17 Bader Andreas G miR-143 REGULATED GENES AND PATHWAYS AS TARGETS FOR THERAPEUTIC INTERVENTION
AU2008261951A1 (en) * 2007-06-08 2008-12-18 Asuragen, Inc. miR-34 regulated genes and pathways as targets for therapeutic intervention
DE102007031137A1 (de) * 2007-06-13 2008-12-18 Attomol Gmbh Molekulare Diagnostika Verfahren und Sonden/Primärsystem zum "real time" Nachweis eines Nukleinsäuretargets
US20100203572A1 (en) * 2007-06-13 2010-08-12 Attomol Gmbh Molekulare Diagnostika Method for carrying out and evaluating mix & measure assays for the measurement of reaction kinetics, concentrations and affinities of analytes in multiplex format
CA2691451C (en) 2007-06-21 2015-03-24 Sara H. Fan Instrument and receptacles for performing processes
US7635566B2 (en) 2007-06-29 2009-12-22 Population Genetics Technologies Ltd. Methods and compositions for isolating nucleic acid sequence variants
US20090023138A1 (en) * 2007-07-17 2009-01-22 Zila Biotechnology, Inc. Oral cancer markers and their detection
US20090055243A1 (en) 2007-08-21 2009-02-26 Jayson Lee Lusk Systems and methods for predicting a livestock marketing method
US11041215B2 (en) 2007-08-24 2021-06-22 Longhorn Vaccines And Diagnostics, Llc PCR ready compositions and methods for detecting and identifying nucleic acid sequences
US8386184B2 (en) 2007-08-28 2013-02-26 Becton, Dickinson And Company Systems and methods for determining an amount of starting reagent using the polymerase chain reaction
US8380457B2 (en) * 2007-08-29 2013-02-19 Canon U.S. Life Sciences, Inc. Microfluidic devices with integrated resistive heater electrodes including systems and methods for controlling and measuring the temperatures of such heater electrodes
DE102007041864B4 (de) 2007-09-04 2012-05-03 Sirs-Lab Gmbh Verfahren zum Nachweis von Bakterien und Pilzen
WO2009036332A1 (en) 2007-09-14 2009-03-19 Asuragen, Inc. Micrornas differentially expressed in cervical cancer and uses thereof
US20090119020A1 (en) 2007-09-25 2009-05-07 Roche Molecular Systems, Inc. Pcr elbow determination using quadratic test for curvature analysis of a double sigmoid
ATE505562T1 (de) 2007-09-28 2011-04-15 3M Innovative Properties Co Doppel-oligonukleotid- nukleinsäurenachweisverfahren
WO2009052386A1 (en) * 2007-10-18 2009-04-23 Asuragen, Inc. Micrornas differentially expressed in lung diseases and uses thereof
WO2009055050A1 (en) * 2007-10-25 2009-04-30 Canon U.S. Life Sciences, Inc High-resolution melting analysis
FR2922897B1 (fr) * 2007-10-25 2009-11-27 Bio Rad Pasteur Mesure d'une population d'acides nucleiques,en particulier par pcr en temps reel.
WO2009059022A1 (en) 2007-10-30 2009-05-07 Complete Genomics, Inc. Apparatus for high throughput sequencing of nucleic acids
US20090181391A1 (en) * 2007-11-01 2009-07-16 Zymo Research Corporation Methods for analysis of dna methylation percentage
US20090137058A1 (en) * 2007-11-28 2009-05-28 General Electric Company Chemical and biological detection method and device based on measurements of fluorescence and reflectivity
WO2009070805A2 (en) * 2007-12-01 2009-06-04 Asuragen, Inc. Mir-124 regulated genes and pathways as targets for therapeutic intervention
US9551026B2 (en) 2007-12-03 2017-01-24 Complete Genomincs, Inc. Method for nucleic acid detection using voltage enhancement
US20090162863A1 (en) * 2007-12-13 2009-06-25 Hitachi High-Technologies Corporation Nucleic acid detection probe
WO2009086156A2 (en) * 2007-12-21 2009-07-09 Asuragen, Inc. Mir-10 regulated genes and pathways as targets for therapeutic intervention
WO2009081965A1 (ja) * 2007-12-26 2009-07-02 Arkray, Inc. 融解曲線解析方法および融解曲線解析装置
JP5542439B2 (ja) * 2007-12-26 2014-07-09 アークレイ株式会社 核酸増幅判定方法および核酸増幅判定装置
DE102007063102B4 (de) 2007-12-28 2022-02-10 Robert Bosch Gmbh Verfahren zur Erfassung eines periodisch pulsierenden Betriebsparameters
WO2009092564A2 (en) 2008-01-23 2009-07-30 Roche Diagnostics Gmbh Integrated instrument performing synthesis and amplification
EP2252702B1 (de) 2008-02-08 2014-01-29 Mayo Foundation for Medical Education and Research Nachweis von clostridium difficile
WO2009100430A2 (en) * 2008-02-08 2009-08-13 Asuragen, Inc miRNAs DIFFERENTIALLY EXPRESSED IN LYMPH NODES FROM CANCER PATIENTS
WO2009103003A2 (en) * 2008-02-15 2009-08-20 Bio-Rad Laboratories, Inc. Scanning fluorescent reader with diffuser system
EP2247710A4 (de) 2008-03-03 2016-04-20 Heatflow Technologies Inc Wärmefluss-polymerase-kettenreaktionssysteme und -verfahren
EP2291541A4 (de) * 2008-03-05 2011-06-22 Clean Earth Tech Llc Mit multiplex-pcr gekoppelter durchflusszytometrischer test mit pna-markierten beads zum gleichzeitigen nachweis mehrerer biologischer stoffe
CA2658520C (en) 2008-03-19 2016-11-08 F. Hoffmann-La Roche Ag Nucleic acid amplification in the presence of modified randomers
WO2009154835A2 (en) * 2008-03-26 2009-12-23 Asuragen, Inc. Compositions and methods related to mir-16 and therapy of prostate cancer
ATE537272T1 (de) * 2008-04-08 2011-12-15 Hoffmann La Roche Detektion von pcr-produkten in der gelelektrophorese
EP2108699B1 (de) 2008-04-08 2014-06-25 F.Hoffmann-La Roche Ag Vorrichtung zur analytischen Verarbeitung und Detektion
WO2009126726A1 (en) * 2008-04-08 2009-10-15 Asuragen, Inc Methods and compositions for diagnosing and modulating human papillomavirus (hpv)
WO2009137807A2 (en) 2008-05-08 2009-11-12 Asuragen, Inc. Compositions and methods related to mirna modulation of neovascularization or angiogenesis
US8815609B2 (en) 2008-05-20 2014-08-26 Rapid Pathogen Screening, Inc. Multiplanar lateral flow assay with diverting zone
US8962260B2 (en) 2008-05-20 2015-02-24 Rapid Pathogen Screening, Inc. Method and device for combined detection of viral and bacterial infections
US9068981B2 (en) 2009-12-04 2015-06-30 Rapid Pathogen Screening, Inc. Lateral flow assays with time delayed components
US8609433B2 (en) 2009-12-04 2013-12-17 Rapid Pathogen Screening, Inc. Multiplanar lateral flow assay with sample compressor
US20130196310A1 (en) 2008-05-20 2013-08-01 Rapid Pathogen Screening, Inc. Method and Device for Combined Detection of Viral and Bacterial Infections
ES2439951T3 (es) 2008-06-06 2014-01-27 F. Hoffmann-La Roche Ag Detección y cuantificación multiplex de ácidos nucleicos microbianos controlada de forma interna
US20110086359A1 (en) * 2008-06-10 2011-04-14 Rapid Pathogen Screening, Inc. Lateral flow assays
EP2138588A1 (de) * 2008-06-23 2009-12-30 Koninklijke Philips Electronics N.V. Messung der Schmelzkurve während der Amplifizierung
US8097412B2 (en) 2008-07-12 2012-01-17 Biodiagnostics, Inc. DNA-based test for detection of annual and intermediate ryegrass
DE102008040513B4 (de) * 2008-07-17 2010-08-26 BAM Bundesanstalt für Materialforschung und -prüfung Verwendung einer langwellig emittierenden Cyaninverbindung als NIR-Fluoreszenzstandard und Kit zur Kalibrierung von Photolumineszenzmesssystemen
EP2148187A1 (de) 2008-07-25 2010-01-27 Roche Diagnostics GmbH Anregungs- und Abbildungsoptik für die Fluoreszenzdetektion
GB0909333D0 (en) 2009-06-01 2009-07-15 Fu Guoliang Multiplex amplification and detection
CA2638458A1 (en) * 2008-07-31 2010-01-31 Spartan Bioscience Inc. Thermal recycling by positioning relative to fixed-temperature source
JP5367078B2 (ja) 2008-08-01 2013-12-11 エフ.ホフマン−ラ ロシュ アーゲー mRNA定量のための改善された溶解および逆転写
US20100055733A1 (en) * 2008-09-04 2010-03-04 Lutolf Matthias P Manufacture and uses of reactive microcontact printing of biomolecules on soft hydrogels
US9250249B2 (en) * 2008-09-08 2016-02-02 Enzo Biochem, Inc. Autophagy and phospholipidosis pathway assays
US9334281B2 (en) * 2008-09-08 2016-05-10 Enzo Life Sciences, Inc. Fluorochromes for organelle tracing and multi-color imaging
CN102187215A (zh) * 2008-09-09 2011-09-14 生物辐射实验室股份有限公司 基于回归的多级pcr分析系统
US7910720B2 (en) 2008-09-09 2011-03-22 Roche Diagnostics Operations, Inc. Polyanion for improved nucleic acid amplification
US8219324B2 (en) 2008-09-12 2012-07-10 Roche Molecular Systems, Inc. Real-time PCR elbow calling by equation-less algorithm
US9540686B2 (en) * 2008-09-18 2017-01-10 Canon U.S. Life Sciences, Inc. Systems and methods for the amplification of DNA
CA2682439A1 (en) 2008-10-17 2010-04-17 F. Hoffmann-La Roche Ag Cell monitoring and molecular analysis
US8170804B2 (en) * 2008-10-17 2012-05-01 Roche Molecular Systems, Inc. Determination of melting temperatures of DNA
US20100301398A1 (en) 2009-05-29 2010-12-02 Ion Torrent Systems Incorporated Methods and apparatus for measuring analytes
US20100119454A1 (en) * 2008-11-03 2010-05-13 Ping Shen Use of the conserved Drosophila NPFR1 system for uncovering interacting genes and pathways important in nociception and stress response
US20100112630A1 (en) * 2008-11-03 2010-05-06 Scott Martell Boyette Methods for measuring microbiological content in aqueous media
US8481302B2 (en) * 2008-11-03 2013-07-09 General Electric Company Total bacteria monitoring system
US8628927B2 (en) 2008-11-07 2014-01-14 Sequenta, Inc. Monitoring health and disease status using clonotype profiles
US9365901B2 (en) 2008-11-07 2016-06-14 Adaptive Biotechnologies Corp. Monitoring immunoglobulin heavy chain evolution in B-cell acute lymphoblastic leukemia
US9394567B2 (en) 2008-11-07 2016-07-19 Adaptive Biotechnologies Corporation Detection and quantification of sample contamination in immune repertoire analysis
GB2467704B (en) 2008-11-07 2011-08-24 Mlc Dx Inc A method for determining a profile of recombined DNA sequences in T-cells and/or B-cells
US9528160B2 (en) 2008-11-07 2016-12-27 Adaptive Biotechnolgies Corp. Rare clonotypes and uses thereof
US9506119B2 (en) 2008-11-07 2016-11-29 Adaptive Biotechnologies Corp. Method of sequence determination using sequence tags
US8748103B2 (en) 2008-11-07 2014-06-10 Sequenta, Inc. Monitoring health and disease status using clonotype profiles
US20100179213A1 (en) * 2008-11-11 2010-07-15 Mirna Therapeutics, Inc. Methods and Compositions Involving miRNAs In Cancer Stem Cells
US10669574B2 (en) 2008-11-18 2020-06-02 XCR Diagnostics, Inc. DNA amplification technology
US20110300544A1 (en) 2008-12-09 2011-12-08 Guoliang Fu Enhanced taqman probe based amplification
JP2012511927A (ja) 2008-12-17 2012-05-31 ライフ テクノロジーズ コーポレーション 対立遺伝子変種を検出するための方法、組成物、およびキット
CA2688174C (en) 2008-12-19 2018-08-07 F. Hoffmann-La Roche Ag Dry composition of reaction compounds with stabilized polymerase
US20100159452A1 (en) * 2008-12-22 2010-06-24 Roche Molecular Systems, Inc. Method For Detecting a Target Nucleic Acid in a Sample
US8206929B2 (en) 2009-01-07 2012-06-26 Roche Molecular Systems, Inc. Nucleic acid amplification with allele-specific suppression of sequence variants
JP5818688B2 (ja) * 2009-01-08 2015-11-18 バイオ−ラッド ラボラトリーズ インコーポレーティッド 核酸増幅反応の効率を改善するための方法および組成物
EA020593B1 (ru) 2009-01-13 2014-12-30 Флуидигм Корпорейшн Анализ нуклеиновых кислот, полученных из единичных клеток
PT2387627E (pt) 2009-01-15 2016-06-03 Adaptive Biotechnologies Corp Determinação do perfil de imunidade adaptativa e métodos de geração de anticorpos monoclonais
EP2384368B1 (de) 2009-01-30 2016-01-27 Kantonsspital Aarau AG Gendosierungsanalyse
CA2750900C (en) 2009-01-30 2017-03-28 Gen-Probe Incorporated Systems and methods for detecting a signal and applying thermal energy to a signal transmission element
JP5457222B2 (ja) * 2009-02-25 2014-04-02 エフ.ホフマン−ラ ロシュ アーゲー 小型化ハイスループット核酸分析
US9347092B2 (en) * 2009-02-25 2016-05-24 Roche Molecular System, Inc. Solid support for high-throughput nucleic acid analysis
US8606527B2 (en) 2009-02-27 2013-12-10 Bio-Rad Laboratories, Inc. SNP detection by melt curve clustering
US8039215B2 (en) 2009-03-10 2011-10-18 Roche Molecular Systems, Inc. Multiplex quantitative nucleic acid amplification and melting assay
US9542526B2 (en) * 2009-03-10 2017-01-10 Canon U.S. Life Sciences, Inc. Method and system for temperature correction in thermal melt analysis
EP3249053A1 (de) 2009-03-27 2017-11-29 Life Technologies Corporation Verfahren, zusammensetzungen und kits für den nachweis von allelen varianten
GB0905325D0 (en) 2009-03-30 2009-05-13 Selex Sensors & Airborne Sys Detection system
CN202830041U (zh) * 2009-04-03 2013-03-27 Illumina公司 用于加热生物样本的设备
KR101798211B1 (ko) 2009-04-07 2017-11-15 코닌클리케 필립스 엔.브이. 독소생성 클로스트리디움 디피실리 균주의 검출 및 특성 확인 방법
CN104630220A (zh) 2009-04-17 2015-05-20 巴斯夫植物科学有限公司 胚乳中有效的植物启动子及其用途
WO2010133972A1 (en) 2009-05-22 2010-11-25 Population Genetics Technologies Ltd Sorting asymmetrically tagged nucleic acids by selective primer extension
US8691504B2 (en) 2009-05-26 2014-04-08 Xiamen University Method for detecting variations in nucleic acid sequences
EP3663750B1 (de) 2009-05-29 2021-11-03 Life Technologies Corporation Nukleinsäuregerüstpolymerpartikel und verfahren zur herstellung und verwendung
US8776573B2 (en) 2009-05-29 2014-07-15 Life Technologies Corporation Methods and apparatus for measuring analytes
US20120261274A1 (en) 2009-05-29 2012-10-18 Life Technologies Corporation Methods and apparatus for measuring analytes
US20100330571A1 (en) 2009-06-25 2010-12-30 Robins Harlan S Method of measuring adaptive immunity
US8628924B2 (en) 2009-07-21 2014-01-14 Gen-Probe Incorporated Methods and compositions for quantitative amplification and detection over a wide dynamic range
US20110045458A1 (en) * 2009-08-20 2011-02-24 Mayo Foundation For Medical Education And Research Detection of Enterovirus
EP2467479B1 (de) 2009-08-20 2016-01-06 Population Genetics Technologies Ltd Zusammensetzungen und verfahren für intramolekulare neuanordnung von nukleinsäuren
US20110059453A1 (en) * 2009-08-23 2011-03-10 Affymetrix, Inc. Poly(A) Tail Length Measurement by PCR
FI20090306A0 (fi) 2009-08-25 2009-08-25 Qret Technologies Oy Erotusvapaa määritysmenetelmä
US8219366B2 (en) 2009-08-26 2012-07-10 Roche Molecular Sytems, Inc. Determination of elbow values for PCR for parabolic shaped curves
WO2011031377A1 (en) * 2009-09-09 2011-03-17 Helixis, Inc. Optical system for multiple reactions
US8815515B1 (en) 2009-09-24 2014-08-26 University Of Utah Research Foundation Methods, compositions, and kits for rare allele detection
US8524450B2 (en) 2009-10-30 2013-09-03 Illumina, Inc. Microvessels, microparticles, and methods of manufacturing and using the same
US20110111403A1 (en) 2009-10-30 2011-05-12 Life Technologies Corporation Multi-primer assay for mycoplasma detection
US20120245041A1 (en) 2009-11-04 2012-09-27 Sydney Brenner Base-by-base mutation screening
US9133343B2 (en) 2009-11-30 2015-09-15 Enzo Biochem, Inc. Dyes and compositions, and processes for using same in analysis of protein aggregation and other applications
US9238832B2 (en) 2009-12-11 2016-01-19 Roche Molecular Systems, Inc. Allele-specific amplification of nucleic acids
US8614071B2 (en) 2009-12-11 2013-12-24 Roche Molecular Systems, Inc. Preferential amplification of mRNA over DNA using chemically modified primers
US9404160B2 (en) 2009-12-22 2016-08-02 Becton, Dickinson And Company Methods for the detection of microorganisms
US8877437B1 (en) 2009-12-23 2014-11-04 Biotium, Inc. Methods of using dyes in association with nucleic acid staining or detection
EP2524053A1 (de) * 2010-01-15 2012-11-21 Steffen Mergemeier Verfahren zur erkennung mehr als eines ziels in einem pcr-basierten ansatz mit einer unspezifischen und nicht mit der emission fluorphor-etikettierter sonden interferierenden matrize
US20110177512A1 (en) * 2010-01-19 2011-07-21 Predictive Biosciences, Inc. Method for assuring amplification of an abnormal nucleic acid in a sample
WO2011101744A2 (en) 2010-02-22 2011-08-25 Population Genetics Technologies Ltd. Region of interest extraction and normalization methods
WO2011107887A2 (en) 2010-03-02 2011-09-09 Population Genetic Technologies Ltd. Methods for replicating polynucleotides with secondary structure
GB201004339D0 (en) 2010-03-16 2010-04-28 Enigma Diagnostics Ltd Sequence detection assay
EP2554680B1 (de) * 2010-03-29 2016-10-12 Toppan Printing Co., Ltd. Verfahren zur unterscheidung von zielbasissequenzen
DE102010003781B4 (de) * 2010-04-08 2012-08-16 Aj Innuscreen Gmbh Verfahren zum Nachweis spezifischer Nukleinsäuresequenzen
US20110250598A1 (en) 2010-04-12 2011-10-13 Ulrike Fischer Detergent free polymerases
US8774494B2 (en) 2010-04-30 2014-07-08 Complete Genomics, Inc. Method and system for accurate alignment and registration of array for DNA sequencing
WO2011138402A1 (en) 2010-05-05 2011-11-10 Check-Points Holding B.V. Assays, compositions and methods for detecting drug resistant micro-organisms
WO2011139371A1 (en) 2010-05-06 2011-11-10 Sequenta, Inc. Monitoring health and disease status using clonotype profiles
GB201007868D0 (en) 2010-05-11 2010-06-23 Enigma Diagnostics Ltd Sequence detection assay
GB201007867D0 (en) 2010-05-11 2010-06-23 Enigma Diagnostics Ltd Signalling system
US8828688B2 (en) 2010-05-27 2014-09-09 Affymetrix, Inc. Multiplex amplification methods
US20120035062A1 (en) 2010-06-11 2012-02-09 Life Technologies Corporation Alternative nucleotide flows in sequencing-by-synthesis methods
WO2011161549A2 (en) 2010-06-24 2011-12-29 Population Genetics Technologies Ltd. Methods and compositions for polynucleotide library production, immortalization and region of interest extraction
US9650629B2 (en) 2010-07-07 2017-05-16 Roche Molecular Systems, Inc. Clonal pre-amplification in emulsion
ES2644797T3 (es) 2010-07-29 2017-11-30 F. Hoffmann-La Roche Ag PCR genérica
ES2640522T3 (es) 2010-07-29 2017-11-03 F. Hoffmann-La Roche Ag Ácidos nucleicos de control para múltiples parámetros
JP5992909B2 (ja) 2010-07-29 2016-09-14 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft 微生物核酸の定性的および定量的検出
CN107058617A (zh) 2010-07-29 2017-08-18 霍夫曼-拉罗奇有限公司 通用样品制备
US9816131B2 (en) 2010-08-02 2017-11-14 Dxna Llc Pressurizable cartridge for polymerase chain reactions
CN106198656B (zh) 2010-08-18 2018-12-11 生命科技股份有限公司 用于电化学检测装置的微孔的化学涂层
US9051606B2 (en) 2010-09-10 2015-06-09 Qiagen Gaithersburg, Inc. Methods and compositions for nucleic acid detection
CA3102758C (en) 2010-09-13 2023-09-05 Clinical Genomics Pty. Ltd. Epigenetic markers of colorectal cancers and diagnostic methods using the same
DK2623613T3 (en) 2010-09-21 2016-10-03 Population Genetics Tech Ltd Increasing the reliability of the allele-indications by molecular counting
WO2012038049A2 (en) 2010-09-22 2012-03-29 Roche Diagnostics Gmbh Amplification of distant nucleic acid targets using engineered primers
WO2012045668A1 (en) 2010-10-04 2012-04-12 Roche Diagnostics Gmbh Method for cell lysis in a rt-pcr reaction buffer
CA2810316A1 (en) 2010-10-04 2012-04-12 F. Hoffmann-La Roche Ag Method for cell lysis and pcr within the same reaction vessel
JP6174999B2 (ja) 2010-10-04 2017-08-02 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft Pcr反応緩衝液中での細胞溶解のための方法
DK2625295T3 (da) 2010-10-08 2019-06-11 Harvard College High-throughput-immunsekvensering
DK2625320T3 (da) 2010-10-08 2019-07-01 Harvard College High-throughput enkeltcellestregkodning
GB201017011D0 (en) 2010-10-08 2010-11-24 Skova Services Ltd Assay
US8725422B2 (en) 2010-10-13 2014-05-13 Complete Genomics, Inc. Methods for estimating genome-wide copy number variations
GB201017978D0 (en) 2010-10-25 2010-12-08 Oxitec Ltd Multiplex amplification and detection
KR101420094B1 (ko) 2010-10-27 2014-07-17 (주)바이오니아 다양한 생체시료분석을 위한 전자동실시간정량증폭장비, 다양한 생체시료분석을 위한 자동정제 및 반응준비 장치, 전자동 핵산정제 및 실시간 정량 유전자증폭 방법, 전자동 핵산정제방법, 실시간정량pcr을 이용한 병원균의 전자동 생균수검사방법, 정량면역pcr을 이용한 전자동 항원농도획득방법 및 타겟항원에 라벨링된 부착용 타겟핵산의 정제방법
US20130224116A1 (en) 2010-11-05 2013-08-29 TransBio Ltd. Markers of Endothelial Progenitor Cells and Uses Thereof
RU2451086C1 (ru) * 2010-12-03 2012-05-20 Государственное образовательное учреждение высшего профессионального образования Смоленская государственная медицинская академия федерального агентства по здравоохранению и социальному развитию Способ детекции специфических нуклеотидных последовательностей и нуклеотидных замен с помощью пцр в режиме реального времени с эффектом гашения флуоресценции зонда праймером
US8569254B2 (en) 2010-12-10 2013-10-29 National Yang Ming University Methods for modulating the expression and aggregation of CAG-expanded gene product in cells and methods for identifying agents useful for doing the same
EP2465945A1 (de) 2010-12-17 2012-06-20 F. Hoffmann-La Roche AG Allgemeine Matrix zur Steuerung von Nukleinsäuren
WO2012087135A1 (en) 2010-12-22 2012-06-28 Academisch Ziekenhuis Leiden H.O.D.N. Lumc Genetic markers specific for clostridium difficile ribotypes 027 (nap01/b1; rt 027) and 078 (nap7/8; rt 078) and their use
US9594870B2 (en) 2010-12-29 2017-03-14 Life Technologies Corporation Time-warped background signal for sequencing-by-synthesis operations
EP2658999B1 (de) 2010-12-30 2019-03-13 Life Technologies Corporation Modelle zur analyse von daten aus sequenzierung-mit-synthese-operationen
US20130060482A1 (en) 2010-12-30 2013-03-07 Life Technologies Corporation Methods, systems, and computer readable media for making base calls in nucleic acid sequencing
US10241075B2 (en) 2010-12-30 2019-03-26 Life Technologies Corporation Methods, systems, and computer readable media for nucleic acid sequencing
MX2017015093A (es) 2011-01-11 2023-03-10 Seegene Inc Detección de secuencias de ácido nucleico objetivo mediante ensayo de escisión y extensión del pto.
WO2012095378A1 (en) 2011-01-11 2012-07-19 Roche Diagnostics Gmbh High resolution melting analysis as a prescreening tool
US9096892B1 (en) 2011-02-04 2015-08-04 K2 Biomicrosystems, LLC Nucleic acid amplification and monitoring apparatus
US9365897B2 (en) 2011-02-08 2016-06-14 Illumina, Inc. Selective enrichment of nucleic acids
FR2971258B1 (fr) 2011-02-09 2020-12-04 Bio Rad Pasteur Combinaison de biomarqueurs pour le pronostic d'une reponse ou non-reponse a un traitement anti-vhc
FR2971256A1 (fr) 2011-02-09 2012-08-10 Bio Rad Pasteur Combinaison de biomarqueurs pour la detection et l'evaluation d'une fibrose hepatique
FR2971257B1 (fr) 2011-02-09 2020-12-04 Bio Rad Pasteur Combinaison de biomarqueurs pour le pronostic d'une reponse ou non-reponse a un traitement anti-vhc
BR112013022889B8 (pt) 2011-03-08 2022-12-20 Univ Laval Dispositivo centrípeto fluídico para testar componentes de um material biológico em um fluido, aparelho de teste e método de teste usando tal dispositivo centrípeto fluídico
EP2694675B1 (de) 2011-04-08 2018-01-24 Life Technologies Corporation Phasenschützende reagenzflussordnungen für die verwendung zur sequenzierung durch synthese
CA3082652A1 (en) 2011-04-15 2012-10-18 Becton, Dickinson And Company Scanning real-time microfluidic thermocycler and methods for synchronized thermocycling and scanning optical detection
US20140106354A1 (en) 2011-04-18 2014-04-17 Garvan Institute Of Medical Research Method of Diagnosing Cancer
KR20210056458A (ko) * 2011-05-04 2021-05-18 바이오셉트 인코포레이티드 핵산 서열 변이체를 검출하는 방법
WO2012154876A1 (en) 2011-05-09 2012-11-15 Fluidigm Corporation Probe based nucleic acid detection
WO2012153153A1 (en) 2011-05-11 2012-11-15 Diagon Kft. Procedure for rapid determination of viruses using nucleic acid-based molecular diagnostics, and a kit for this purpose
EP2710146A2 (de) 2011-05-18 2014-03-26 Life Technologies Corporation Chromosomenkonformationsanalyse
ES2570591T3 (es) 2011-05-24 2016-05-19 Elitechgroup B V Detección de Staphylococcus aureus resistente a meticilina
US9034581B2 (en) 2011-05-26 2015-05-19 Roche Molecular Systems, Inc. Compositions and methods for detection of Staphylococcus aureus
CA2835654A1 (en) * 2011-06-01 2012-12-06 Streck, Inc. Rapid thermocycler system for rapid amplification of nucleic acids and related methods
EP2721173A1 (de) 2011-06-14 2014-04-23 INSERM (Institut National de la Santé et de la Recherche Médicale) Verfahren zur bestimmung des expressionsniveaus eines bestimmten gens mit korrektur von rt-qpcr-daten für signale aus der genomischen dna
AU2012296385A1 (en) 2011-08-18 2014-02-20 Nestec S.A. Compositions and methods for detecting allelic variants
EP3624124B1 (de) 2011-08-18 2023-11-22 Life Technologies Corporation Systeme zur herstellung von basenzuordnungen in einer nukleinsäuresequenzierung
US10704164B2 (en) 2011-08-31 2020-07-07 Life Technologies Corporation Methods, systems, computer readable media, and kits for sample identification
US10385475B2 (en) 2011-09-12 2019-08-20 Adaptive Biotechnologies Corp. Random array sequencing of low-complexity libraries
WO2013040251A2 (en) 2011-09-13 2013-03-21 Asurgen, Inc. Methods and compositions involving mir-135b for distinguishing pancreatic cancer from benign pancreatic disease
CA2849023C (en) 2011-09-15 2022-07-19 David A. Shafer Probe:antiprobe compositions for high specificity dna or rna detection
EP2570487A1 (de) 2011-09-16 2013-03-20 Lexogen GmbH Verfahren zur Nukleinsäuretranskription
WO2013038010A2 (en) 2011-09-16 2013-03-21 Lexogen Gmbh Nucleic acid transcription method
CN107267615A (zh) 2011-09-23 2017-10-20 霍夫曼-拉罗奇有限公司 G形夹用于改进的等位基因特异性pcr的用途
US20130109596A1 (en) 2011-09-26 2013-05-02 Life Technologies Corporation High efficiency, small volume nucleic acid synthesis
WO2013049613A1 (en) 2011-09-29 2013-04-04 Luminex Corporation Hydrolysis probes
US9416153B2 (en) 2011-10-11 2016-08-16 Enzo Life Sciences, Inc. Fluorescent dyes
CN103998921B (zh) * 2011-10-14 2016-04-20 贝克顿·迪金森公司 方波热循环
EP2766498B1 (de) 2011-10-14 2019-06-19 President and Fellows of Harvard College Sequenzierung durch strukturanordnung
CA2853088C (en) 2011-10-21 2018-03-13 Adaptive Biotechnologies Corporation Quantification of adaptive immune cell genomes in a complex mixture of cells
US10837879B2 (en) 2011-11-02 2020-11-17 Complete Genomics, Inc. Treatment for stabilizing nucleic acid arrays
EP2773892B1 (de) 2011-11-04 2020-10-07 Handylab, Inc. Vorrichtung zur vorbereitung von polynukleotidproben
US9447458B2 (en) 2011-11-16 2016-09-20 Canon U.S. Life Sciences, Inc. Detection of neighboring variants
US9260714B2 (en) 2011-12-02 2016-02-16 Roche Molecular Systems, Inc. Suppression of non-specific amplification with high-homology oligonucleotides
AU2012347460B2 (en) 2011-12-09 2017-05-25 Adaptive Biotechnologies Corporation Diagnosis of lymphoid malignancies and minimal residual disease detection
US9499865B2 (en) 2011-12-13 2016-11-22 Adaptive Biotechnologies Corp. Detection and measurement of tissue-infiltrating lymphocytes
US20140377762A1 (en) 2011-12-19 2014-12-25 360 Genomics Ltd. Method for enriching and detection of variant target nucleic acids
US8981318B1 (en) 2011-12-30 2015-03-17 Gene Capture, Inc. Multi-dimensional scanner for nano-second time scale signal detection
US9194840B2 (en) 2012-01-19 2015-11-24 Life Technologies Corporation Sensor arrays and methods for making same
US20150126438A1 (en) 2012-01-24 2015-05-07 Beth Israel Deaconess Medical Center, Inc. Novel ChREBP Isoforms and Methods Using the Same
US9864846B2 (en) 2012-01-31 2018-01-09 Life Technologies Corporation Methods and computer program products for compression of sequencing data
US9515676B2 (en) 2012-01-31 2016-12-06 Life Technologies Corporation Methods and computer program products for compression of sequencing data
WO2013113748A1 (en) * 2012-02-02 2013-08-08 Primer Design Ltd Method for detecting and genotyping target nucleic acid
EP4361606A2 (de) 2012-02-03 2024-05-01 California Institute of Technology Signalkodierung und -dekodierung in multiplexierten biochemischen assays
WO2013123125A1 (en) 2012-02-17 2013-08-22 President And Fellows Of Harvard College Assembly of nucleic acid sequences in emulsions
WO2013124743A1 (en) 2012-02-22 2013-08-29 Population Genetics Technologies Ltd. Compositions and methods for intramolecular nucleic acid rearrangement ii
WO2013128281A1 (en) 2012-02-28 2013-09-06 Population Genetics Technologies Ltd Method for attaching a counter sequence to a nucleic acid sample
AU2013228226B2 (en) 2012-03-05 2016-06-02 Seegene, Inc. Detection of nucleotide variation on target nucleic acid sequence by PTO cleavage and extension assay
US10077478B2 (en) 2012-03-05 2018-09-18 Adaptive Biotechnologies Corp. Determining paired immune receptor chains from frequency matched subunits
WO2013139860A1 (en) 2012-03-21 2013-09-26 Roche Diagnostics Gmbh Methods for assessing rna quality
US9803239B2 (en) 2012-03-29 2017-10-31 Complete Genomics, Inc. Flow cells for high density array chips
SG11201407107VA (en) 2012-05-08 2014-11-27 Adaptive Biotechnologies Corp Compositions and method for measuring and calibrating amplification bias in multiplexed pcr reactions
US9646132B2 (en) 2012-05-11 2017-05-09 Life Technologies Corporation Models for analyzing data from sequencing-by-synthesis operations
CA2872867C (en) 2012-05-11 2020-09-15 Clinical Genomics Pty Ltd Diagnostic gene marker panel for colorectal cancer
DK3608421T3 (da) 2012-05-18 2022-09-05 Clinical Genomics Pty Ltd Fremgangsmåde til screening for colorektal cancer
EP3553181A1 (de) * 2012-05-25 2019-10-16 Accugenomics, Inc. Nukleinsäureamplifikation und anwendung davon
WO2013184754A2 (en) 2012-06-05 2013-12-12 President And Fellows Of Harvard College Spatial sequencing of nucleic acids using dna origami probes
US9488823B2 (en) 2012-06-07 2016-11-08 Complete Genomics, Inc. Techniques for scanned illumination
US9628676B2 (en) 2012-06-07 2017-04-18 Complete Genomics, Inc. Imaging systems with movable scan mirrors
WO2013188839A1 (en) 2012-06-14 2013-12-19 Life Technologies Corporation Novel compositions, methods and kits for real time polymerase chain reaction (pcr)
WO2014014991A2 (en) 2012-07-19 2014-01-23 President And Fellows Of Harvard College Methods of storing information using nucleic acids
US9932628B2 (en) 2012-07-27 2018-04-03 Gen-Probe Incorporated Dual reference calibration method and system for quantifying polynucleotides
AU2013202808B2 (en) 2012-07-31 2014-11-13 Gen-Probe Incorporated System and method for performing multiplex thermal melt analysis
EP3901243A1 (de) 2012-08-03 2021-10-27 California Institute of Technology Multiplexing und quantifizierung in pcr mit reduzierter hardware und reduzierten anforderungen
US10993418B2 (en) 2012-08-13 2021-05-04 Life Genetics Lab, Llc Method for measuring tumor burden in patient derived xenograft (PDX) mice
US9957557B2 (en) 2012-08-13 2018-05-01 Life Genetics Lab, Llc Development of a highly sensitive quantification system for assessing DNA degradation and quality in forensic samples
US9982313B2 (en) 2012-08-17 2018-05-29 Roche Molecular Systems, Inc. Compositions and methods for detection of herpes simplex virus 1 and 2
WO2014039963A1 (en) * 2012-09-10 2014-03-13 Biofire Diagnostics, Inc. Multiple amplification cycle detection
US9914968B2 (en) 2012-09-26 2018-03-13 Cepheid Honeycomb tube
AU2013327423B2 (en) 2012-10-01 2017-06-22 Adaptive Biotechnologies Corporation Immunocompetence assessment by adaptive immune receptor diversity and clonality characterization
US10176293B2 (en) 2012-10-02 2019-01-08 Roche Molecular Systems, Inc. Universal method to determine real-time PCR cycle threshold values
WO2014058919A1 (en) * 2012-10-09 2014-04-17 University Of Utah Research Foundation Monitoring temperature with fluorescence
US10329608B2 (en) 2012-10-10 2019-06-25 Life Technologies Corporation Methods, systems, and computer readable media for repeat sequencing
US9476089B2 (en) 2012-10-18 2016-10-25 President And Fellows Of Harvard College Methods of making oligonucleotide probes
EP2722399A1 (de) 2012-10-18 2014-04-23 Roche Diagniostics GmbH Verfahren zur Vermeidung von Produkten mit hohem Molekulargewicht während einer Amplifikation
CN103114131B (zh) 2012-11-30 2018-10-02 珠海市坤元农业科技有限公司 一种引物中部序列干扰pcr技术
CN105121661B (zh) 2013-02-01 2018-06-08 加利福尼亚大学董事会 用于基因组组装及单体型定相的方法
US9411930B2 (en) 2013-02-01 2016-08-09 The Regents Of The University Of California Methods for genome assembly and haplotype phasing
EP2770065B1 (de) 2013-02-25 2017-12-13 Seegene, Inc. Detektion einer Nukleotidvariation auf Nukleinsäurezielsequenz
EP2971115B1 (de) 2013-03-13 2022-07-27 Seegene, Inc. Quantifizierung von zielnukleinsäuren unter verwendung von schmelzspitzenwertanalyse
AU2013202788B2 (en) 2013-03-14 2015-10-01 Gen-Probe Incorporated Indexing signal detection module
US20140296080A1 (en) 2013-03-14 2014-10-02 Life Technologies Corporation Methods, Systems, and Computer Readable Media for Evaluating Variant Likelihood
US10563240B2 (en) 2013-03-14 2020-02-18 Life Technologies Corporation High efficiency, small volume nucleic acid synthesis
AU2013202805B2 (en) 2013-03-14 2015-07-16 Gen-Probe Incorporated System and method for extending the capabilities of a diagnostic analyzer
GB2584364A (en) 2013-03-15 2020-12-02 Abvitro Llc Single cell bar-coding for antibody discovery
US10933417B2 (en) 2013-03-15 2021-03-02 Nanobiosym, Inc. Systems and methods for mobile device analysis of nucleic acids and proteins
KR20210037750A (ko) 2013-03-15 2021-04-06 아벨리노 랩 유에스에이, 인크. 대립유전자 검출을 위한 게놈 dna 주형의 개선된 단리 방법
EP2972402B1 (de) 2013-03-15 2023-12-20 Abbott Laboratories Diagnostische analysevorrichtung und vorbehandlungskarussells und zugehörige verfahren
ES2934684T3 (es) 2013-03-15 2023-02-24 Abbott Lab Analizadores de diagnóstico automatizados que tienen carruseles dispuestos verticalmente y métodos relacionados
US20140273181A1 (en) 2013-03-15 2014-09-18 Biofire Diagnostics, Inc. Compact optical system for substantially simultaneous monitoring of samples in a sample array
CN105745546B (zh) 2013-03-15 2017-10-13 雅培制药有限公司 具有后面可进入轨道系统的自动化诊断分析仪及相关方法
EP3312295A1 (de) 2013-03-19 2018-04-25 Directed Genomics, LLC Anreicherung von zielsequenzen
WO2014174143A1 (en) 2013-04-23 2014-10-30 Thermo Fisher Scientific Oy Melt curve analysis
WO2014189843A1 (en) 2013-05-20 2014-11-27 Board Of Trustees Of The University Of Arkansas Gep5 model for multiple myeloma
EP3957743A1 (de) 2013-06-19 2022-02-23 Luminex Corporation Multiplexierter echtzeithydrolysesondentest
CN111349692B (zh) * 2013-06-25 2023-10-13 C.威特沃 进行聚合酶链式反应的方法及其相关应用
WO2014210593A1 (en) 2013-06-28 2014-12-31 Streck, Inc. Devices for real-time polymerase chain reaction
US9708657B2 (en) 2013-07-01 2017-07-18 Adaptive Biotechnologies Corp. Method for generating clonotype profiles using sequence tags
US20160244816A1 (en) 2013-07-15 2016-08-25 Seegene, Inc. Detection of target nucleic acid sequence by pto cleavage and extension-dependent immobilized oligonucleotide hybridization
US9926597B2 (en) 2013-07-26 2018-03-27 Life Technologies Corporation Control nucleic acid sequences for use in sequencing-by-synthesis and methods for designing the same
EP3461913B1 (de) 2013-08-09 2020-06-24 Luminex Corporation Sonden zur verbesserten schmelzunterscheidung und zum multiplexing in nukleinsäuretests
US20160186265A1 (en) 2013-08-15 2016-06-30 Centre Hospitalier Universitarie Vaudois Methods for Typing HLA Alleles
US10410739B2 (en) 2013-10-04 2019-09-10 Life Technologies Corporation Methods and systems for modeling phasing effects in sequencing using termination chemistry
AU2014331828B2 (en) 2013-10-09 2020-05-14 Fluoresentric, Inc. Multiplex probes
US10072288B2 (en) 2013-11-11 2018-09-11 Roche Molecular Systems, Inc. Detecting single nucleotide polymorphism using overlapped primer and melting probe
KR20230007558A (ko) 2013-11-15 2023-01-12 아벨리노 랩 유에스에이, 인크. 안과 질환과 관련된 대립유전자의 멀티플렉스 검출 방법
US10927408B2 (en) 2013-12-02 2021-02-23 Personal Genome Diagnostics, Inc. Method for evaluating minority variants in a sample
US9476853B2 (en) 2013-12-10 2016-10-25 Life Technologies Corporation System and method for forming microwells
EP3540074A1 (de) 2013-12-11 2019-09-18 The Regents of the University of California Verfahren zur markierung innerer regionen von nukleinsäuremolekülen
CA2940322C (en) 2014-02-21 2021-05-18 President And Fellows Of Harvard College De novo design of allosteric proteins
AU2015227054A1 (en) 2014-03-05 2016-09-22 Adaptive Biotechnologies Corporation Methods using randomer-containing synthetic molecules
WO2015138343A1 (en) 2014-03-10 2015-09-17 Click Diagnostics, Inc. Cartridge-based thermocycler
EP2921556A1 (de) 2014-03-21 2015-09-23 Lexogen GmbH Anzahlerhaltendes RNA-Analyseverfahren
WO2015147370A1 (en) 2014-03-28 2015-10-01 Seegene, Inc. Detection of target nucleic acid sequences using different detection temperatures
US11390921B2 (en) 2014-04-01 2022-07-19 Adaptive Biotechnologies Corporation Determining WT-1 specific T cells and WT-1 specific T cell receptors (TCRs)
US10066265B2 (en) 2014-04-01 2018-09-04 Adaptive Biotechnologies Corp. Determining antigen-specific t-cells
EP3792366A1 (de) 2014-04-04 2021-03-17 Affymetrix, Inc. Verbesserte zusammensetzungen und verfahren für molekularinversionsprobenassays
BE1022048B1 (nl) * 2014-04-11 2016-02-10 Ugentec Bvba Methoden voor fluorescentie data correctie
EP3132059B1 (de) 2014-04-17 2020-01-08 Adaptive Biotechnologies Corporation Quantifizierung von adaptiven immunzellgenomen in einer komplexen mischung von zellen
US10124333B2 (en) 2014-06-10 2018-11-13 Reolab Inc. Discrete elements for 3D microfluidics
GB201411567D0 (en) * 2014-06-30 2014-08-13 Epistem Ltd Quantification methods
DE102014212657B4 (de) * 2014-06-30 2016-03-10 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. System und Verfahren zur bedarfsgerechten Zuführung von Beleuchtungsenergie an Pflanzen
US10526641B2 (en) 2014-08-01 2020-01-07 Dovetail Genomics, Llc Tagging nucleic acids for sequence assembly
DE102014215352A1 (de) * 2014-08-04 2016-02-04 Berthold Technologies Gmbh & Co. Kg Messgerät und Verfahren zum Bestimmen einer Messgröße
EP3967771B1 (de) 2014-08-11 2023-10-04 Luminex Corporation Sonden für verbesserte schmelzunterscheidung und multiplexierung in nukleinsäuretests
SG11201702060VA (en) 2014-09-15 2017-04-27 Abvitro Inc High-throughput nucleotide library sequencing
EP3194624B1 (de) 2014-09-15 2022-02-16 Garvan Institute of Medical Research Verfahren zur diagnose, prognose und überwachung von brustkrebs und reagenzien dafür
RS62334B1 (sr) * 2014-09-16 2021-10-29 Sangamo Therapeutics Inc Postupci i sastavi za inženjering genoma posredovan nukleazom i korekciju kod matičnih ćelija hematopoeze
AU2015327756B2 (en) 2014-09-30 2018-01-04 Genetic Technologies Limited Methods for assessing risk of developing breast cancer
WO2016060974A1 (en) 2014-10-13 2016-04-21 Life Technologies Corporation Methods, systems, and computer-readable media for accelerated base calling
WO2016069886A1 (en) 2014-10-29 2016-05-06 Adaptive Biotechnologies Corporation Highly-multiplexed simultaneous detection of nucleic acids encoding paired adaptive immune receptor heterodimers from many samples
EP3218467A4 (de) 2014-11-13 2018-04-11 The Board of Trustees of the University of Illinois Biologisch manipulierte hyperfunktionale »super -helikasen
US10246701B2 (en) 2014-11-14 2019-04-02 Adaptive Biotechnologies Corp. Multiplexed digital quantitation of rearranged lymphoid receptors in a complex mixture
US9745618B2 (en) 2014-11-19 2017-08-29 Roche Molecular Systems, Inc. Photoblocked probes and methods for sequential detection of nucleic acids
WO2016086029A1 (en) 2014-11-25 2016-06-02 Adaptive Biotechnologies Corporation Characterization of adaptive immune response to vaccination or infection using immune repertoire sequencing
US9920381B2 (en) 2014-12-02 2018-03-20 Roche Molecular Systems, Inc. Compositions and methods for detecting MECC-containing methicillin-resistant Staphylococcus aureus
LT3557262T (lt) 2014-12-09 2022-11-10 Life Technologies Corporation Didelio efektyvumo nukleorūgščių sintezė mažame tūryje
WO2016093838A1 (en) 2014-12-11 2016-06-16 New England Biolabs, Inc. Enrichment of target sequences
US9909169B2 (en) 2014-12-17 2018-03-06 Roche Molecular Systems, Inc. Allele-specific amplification of nucleic acids using blocking oligonucleotides for wild type suppression
WO2016109691A1 (en) 2014-12-31 2016-07-07 Boris Andreyev Devices and methods for molecular diagnostic testing
US10421993B2 (en) 2015-02-11 2019-09-24 Paragon Genomics, Inc. Methods and compositions for reducing non-specific amplification products
NZ734854A (en) 2015-02-17 2022-11-25 Dovetail Genomics Llc Nucleic acid sequence assembly
EP3262196B1 (de) 2015-02-24 2020-12-09 Adaptive Biotechnologies Corp. Verfahren zur bestimmung des hla-status mittels immunrepertoiresequenzierung
US9708647B2 (en) 2015-03-23 2017-07-18 Insilixa, Inc. Multiplexed analysis of nucleic acid hybridization thermodynamics using integrated arrays
WO2016154540A1 (en) 2015-03-26 2016-09-29 Dovetail Genomics Llc Physical linkage preservation in dna storage
US9957393B2 (en) 2015-03-30 2018-05-01 Enzo Biochem, Inc. Monoazo dyes with cyclic amine as fluorescence quenchers
WO2016161273A1 (en) 2015-04-01 2016-10-06 Adaptive Biotechnologies Corp. Method of identifying human compatible t cell receptors specific for an antigenic target
AU2016252998B2 (en) 2015-04-24 2021-11-04 Atila Biosystems Incorporated Amplification with primers of limited nucleotide composition
US10968475B2 (en) 2015-05-01 2021-04-06 Vanderbilt University Monitoring and analysis of nucleic acid hybridization state and amplification using L-DNA
US10978174B2 (en) 2015-05-14 2021-04-13 Life Technologies Corporation Barcode sequences, and related systems and methods
US20180155764A1 (en) 2015-06-04 2018-06-07 Mizuho Medy Co., Ltd. Kit for together detecting multiple target nucleic acids differing from each other and detection method using the same
JP2018525305A (ja) * 2015-06-08 2018-09-06 ザ・ユニバーシティ・オブ・シカゴThe University Of Chicago 単分散貴金属ナノ結晶の双角錐鋳型合成
US9499861B1 (en) 2015-09-10 2016-11-22 Insilixa, Inc. Methods and systems for multiplex quantitative nucleic acid amplification
CN108291257B (zh) 2015-09-24 2023-12-29 阿布维特罗有限责任公司 亲和-寡核苷酸缀合物及其用途
CN108369230B (zh) 2015-09-25 2021-09-17 阿布维特罗有限责任公司 用于对天然配对t细胞受体序列进行t细胞受体靶向鉴别的高通量方法
WO2017059132A1 (en) 2015-09-29 2017-04-06 The General Hospital Corporation Methods of treating and diagnosing disease using biomarkers for bcg therapy
SG11201803289VA (en) 2015-10-19 2018-05-30 Dovetail Genomics Llc Methods for genome assembly, haplotype phasing, and target independent nucleic acid detection
US10808287B2 (en) 2015-10-23 2020-10-20 Rapid Pathogen Screening, Inc. Methods and devices for accurate diagnosis of infections
USD799715S1 (en) 2015-10-23 2017-10-10 Gene POC, Inc. Fluidic centripetal device
EP3387107B1 (de) 2015-12-11 2020-08-12 Spartan Bioscience Inc. Röhrchenverschlusssystem und verfahren zur nukleinsäureamplifikation
SG11201805118XA (en) 2015-12-18 2018-07-30 Biofire Defense Llc Solid fluorescence standard
JP7126704B2 (ja) 2016-01-28 2022-08-29 ザ ユニバーシティー オブ メルボルン 結腸直腸癌発症のリスクを評価するための方法
US10975417B2 (en) 2016-02-23 2021-04-13 Dovetail Genomics, Llc Generation of phased read-sets for genome assembly and haplotype phasing
WO2017155858A1 (en) 2016-03-07 2017-09-14 Insilixa, Inc. Nucleic acid sequence identification using solid-phase cyclic single base extension
MX2018010108A (es) 2016-03-10 2018-12-17 Pionner Hi Bred Int Inc Sistema de amplificacion por reaccion en cadena de la polimerasa mediada por luz y de deteccion de productos y metodos de uso.
WO2017153566A1 (en) 2016-03-11 2017-09-14 Roche Diagnostics Gmbh Compositions and methods for detection of zika virus
WO2017185067A1 (en) 2016-04-22 2017-10-26 Click Diagnostics, Inc. Printed circuit board heater for an amplification module
US10619205B2 (en) 2016-05-06 2020-04-14 Life Technologies Corporation Combinatorial barcode sequences, and related systems and methods
WO2017197040A1 (en) 2016-05-11 2017-11-16 Click Diagnostics, Inc. Devices and methods for nucleic acid extraction
DK3455356T3 (da) 2016-05-13 2021-11-01 Dovetail Genomics Llc Genfinding af langtrækkende bindingsinformation fra konserverede prøver
EP3458597B1 (de) 2016-05-18 2022-09-07 Roche Diagnostics GmbH Quantitative echtzeit-pcr-amplifikation unter verwendung einer elektrobenetzungsbasierten vorrichtung
US10612101B2 (en) 2016-05-27 2020-04-07 Roche Molecular Systems, Inc. Compositions and methods for detection of Mycoplasma genitalium
EP3464617B1 (de) 2016-05-27 2021-04-07 Roche Diagnostics GmbH Zusammensetzungen und verfahren zur detektion von trichomonas vaginalis
WO2017210437A1 (en) 2016-06-01 2017-12-07 Life Technologies Corporation Methods and systems for designing gene panels
US20170356025A1 (en) 2016-06-14 2017-12-14 Roche Molecular Systems, Inc. Internal control probes for improving pcr assay performance
WO2017218777A1 (en) 2016-06-17 2017-12-21 California Institute Of Technology Nucleic acid reactions and related methods and compositions
RU2691763C2 (ru) * 2016-06-21 2019-06-18 Федеральное государственное бюджетное учреждение науки Институт аналитического приборостроения Российской академии наук (ИАП РАН) Устройство для одновременного контроля в реальном масштабе времени множества амплификаций нуклеиновой кислоты
MX2018015889A (es) 2016-06-29 2019-05-27 Click Diagnostics Inc Dispositivos y metodos para la deteccion de moleculas usando una celda de flujo.
US10626454B2 (en) 2016-07-27 2020-04-21 SeqMatic, LLC Compositions and methods for nucleic acid amplification and analysis
ES2926513T3 (es) 2016-07-29 2022-10-26 Juno Therapeutics Inc Métodos para evaluar la presencia o ausencia de virus competente en replicación
US10443095B2 (en) 2016-08-02 2019-10-15 Roche Molecular Systems, Inc. Helper oligonucleotide for improved efficiency of amplification and detection/quantitation of nucleic acids
KR102468174B1 (ko) 2016-09-15 2022-11-17 에프. 호프만-라 로슈 아게 멀티플렉스 pcr 수행 방법
US10428325B1 (en) 2016-09-21 2019-10-01 Adaptive Biotechnologies Corporation Identification of antigen-specific B cell receptors
WO2018057928A1 (en) 2016-09-23 2018-03-29 Grail, Inc. Methods of preparing and analyzing cell-free nucleic acid sequencing libraries
BR112019005748A2 (pt) 2016-09-24 2019-06-18 Abvitro Llc afinidade-conjugados de oligonucleotídeo e usos destes
US9851345B1 (en) 2016-10-12 2017-12-26 Viasphere, Llc Compositions and methods for disease diagnosis using single cell analysis
WO2018073872A1 (ja) 2016-10-17 2018-04-26 オリンパス株式会社 標的核酸分子の検出方法
WO2018085862A2 (en) 2016-11-07 2018-05-11 Grail, Inc. Methods of identifying somatic mutational signatures for early cancer detection
US10793923B2 (en) 2016-11-09 2020-10-06 Roche Molecular Systems, Inc. Compositions and methods for detection of BK virus
WO2018111872A1 (en) 2016-12-12 2018-06-21 Grail, Inc. Methods for tagging and amplifying rna template molecules for preparing sequencing libraries
JP2020503857A (ja) 2016-12-12 2020-02-06 セファイド 自動反応カートリッジにおける統合化イムノpcr及び核酸分析
US20190211377A1 (en) 2016-12-22 2019-07-11 Roche Molecular Systems, Inc. Cobra probes to detect a marker for epidemic ribotypes of clostridium difficile
EP3559255A1 (de) 2016-12-23 2019-10-30 Grail, Inc. Verfahren zur hocheffizienten bibliothek-herstellung unter verwendung von doppelsträngigen adaptern
US10793901B2 (en) 2016-12-28 2020-10-06 Roche Molecular Systems, Inc. Reversibly protected nucleotide reagents with high thermal stability
PT3565905T (pt) 2017-01-04 2022-08-02 Mgi Tech Co Ltd Sequenciação de ácidos nucleicos utilizando reagentes de afinidade
ES2874143T3 (es) 2017-01-10 2021-11-04 Paragon Genomics Inc Métodos y composiciones para reducir códigos de barras, moleculares redundantes creados en reacciones de prolongación de cebadores
US10328147B2 (en) 2017-03-24 2019-06-25 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Herpes simplex virus type-1(HSV-1) vaccine strain VC2 generating an anti-EHV-1 immune response
EP4219771A3 (de) 2017-03-24 2023-08-16 Gen-Probe Incorporated Zusammensetzungen und verfahren für den multiplexnachweis viraler krankheitserreger in proben
US11274344B2 (en) 2017-03-30 2022-03-15 Grail, Inc. Enhanced ligation in sequencing library preparation
US11584958B2 (en) 2017-03-31 2023-02-21 Grail, Llc Library preparation and use thereof for sequencing based error correction and/or variant identification
WO2018183897A1 (en) 2017-03-31 2018-10-04 Grail, Inc. Higher target capture efficiency using probe extension
EP3628056A4 (de) 2017-04-28 2021-03-03 Avellino Lab USA, Inc. Verfahren zum nachweis von allelen im zusammenhang mit keratokonus
WO2018213803A1 (en) 2017-05-19 2018-11-22 Neon Therapeutics, Inc. Immunogenic neoantigen identification
US20190093155A1 (en) 2017-05-25 2019-03-28 Roche Molecular Systems, Inc. Multiplex Nucleic Acid Amplification Assay
CN111148849A (zh) 2017-05-26 2020-05-12 阿布维托有限责任公司 高通量多核苷酸文库测序和转录组分析
US20180363044A1 (en) 2017-06-14 2018-12-20 Roche Molecular Systems, Inc. Compositions and methods for improving the thermal stability of nucleic acid amplification reagents
US11450121B2 (en) 2017-06-27 2022-09-20 The Regents Of The University Of California Label-free digital brightfield analysis of nucleic acid amplification
JP2020526194A (ja) 2017-06-29 2020-08-31 ジュノー セラピューティクス インコーポレイテッド 免疫療法薬と関連する毒性を評価するためのマウスモデル
CN111032209A (zh) 2017-07-10 2020-04-17 简·探针公司 分析系统和方法
US10760137B2 (en) 2017-07-18 2020-09-01 Roche Molecular Systems, Inc. Compositions and methods for detection of Babesia
BR112020001719A2 (pt) 2017-07-29 2020-07-21 Juno Therapeutics Inc reagentes para expansão de células que expressam receptores recombinantes
WO2019045532A2 (en) 2017-08-31 2019-03-07 Seegene, Inc. EVALUATION OF COMPONENT PERFORMANCE USING A PAIR OF DIMER FORMER PRIMERS
MA50057A (fr) 2017-09-01 2020-07-08 Juno Therapeutics Inc Expression génique et évaluation d'un risque de développement d'une toxicité suite à une thérapie cellulaire
US20200263170A1 (en) 2017-09-14 2020-08-20 Grail, Inc. Methods for preparing a sequencing library from single-stranded dna
US11851650B2 (en) 2017-09-28 2023-12-26 Grail, Llc Enrichment of short nucleic acid fragments in sequencing library preparation
WO2019063661A1 (en) 2017-09-29 2019-04-04 Roche Diagnostics Gmbh COMPOSITIONS AND METHODS FOR THE DETECTION OF TRICHOMONAS VAGINALIS
WO2019066461A2 (en) 2017-09-29 2019-04-04 Seegene, Inc. DETECTION OF TARGET NUCLEIC ACID SEQUENCES BY CLEAVAGE ANALYSIS AND EXTENSION OF PTO
WO2019084055A1 (en) 2017-10-23 2019-05-02 Massachusetts Institute Of Technology CLASSIFICATION OF GENETIC VARIATION FROM UNICELLULAR TRANSCRIPTOMS
SG11202003657VA (en) 2017-11-01 2020-05-28 Juno Therapeutics Inc Process for producing a t cell composition
WO2019094784A1 (en) 2017-11-09 2019-05-16 Click Diagnostics, Inc. Portable molecular diagnostic device and methods for the detection of target viruses
US11078534B2 (en) 2017-11-27 2021-08-03 Roche Molecular Systems, Inc. Photocleavable nucleotide reagents with high stability
US11254980B1 (en) 2017-11-29 2022-02-22 Adaptive Biotechnologies Corporation Methods of profiling targeted polynucleotides while mitigating sequencing depth requirements
US11414656B2 (en) 2017-12-15 2022-08-16 Grail, Inc. Methods for enriching for duplex reads in sequencing and error correction
WO2019126803A1 (en) 2017-12-22 2019-06-27 Grail, Inc. Error removal using improved library preparation methods
MX2020006923A (es) 2018-01-05 2020-09-09 Seegene Inc Metodo para determinar la presencia o ausencia de m. tuberculosis, m. bovis y m. bovis bcg en una muestra.
US20210071242A1 (en) 2018-01-29 2021-03-11 Gen-Probe Incorporated Analytical systems and methods
JP2021511802A (ja) 2018-01-31 2021-05-13 ジュノー セラピューティクス インコーポレイテッド 複製可能ウイルスの存在または非存在を評価するための方法および試薬
US20190292596A1 (en) 2018-03-21 2019-09-26 Roche Molecular Systems, Inc. Modified nucleoside phosphates with high thermal stability
US11384376B2 (en) 2018-05-31 2022-07-12 Roche Molecular Systems, Inc. Reagents and methods for post-synthetic modification of nucleic acids
US20210317515A1 (en) 2018-07-10 2021-10-14 Gen-Probe Incorporated Methods and systems for detecting and quantifying nucleic acids
GB201812192D0 (en) 2018-07-26 2018-09-12 Ttp Plc Variable temperature reactor, heater and control circuit for the same
EP3836967A4 (de) 2018-07-30 2022-06-15 ReadCoor, LLC Verfahren und systeme zur probenverarbeitung oder -analyse
US20210324461A1 (en) 2018-08-16 2021-10-21 Life Technologies Corporation Reagents, mixtures, kits and methods for amplification of nucleic acids
JP7221491B2 (ja) 2018-09-18 2023-02-14 株式会社ミズホメディー 複数の標的核酸を検出するキットを用いる検出方法
US20220195515A1 (en) 2018-10-29 2022-06-23 Koninklijke Nederlandse Akademie Van Wetenschappen Single cell full length RNA sequencing
EP3877054B1 (de) 2018-11-06 2023-11-01 Juno Therapeutics, Inc. Verfahren zur herstellung von genetisch veränderten t-zellen
US20220017973A1 (en) 2018-12-03 2022-01-20 Roche Molecular Systems, Inc. Compositions and methods for detection of candida auris
US11268091B2 (en) 2018-12-13 2022-03-08 Dna Script Sas Direct oligonucleotide synthesis on cells and biomolecules
CA3121923A1 (en) 2018-12-18 2020-06-25 Wenying Pan Methods for detecting disease using analysis of rna
JP2022515912A (ja) 2019-01-03 2022-02-22 ディーエヌエー スクリプト オリゴヌクレオチドセットのワンポット合成
EP3937780A4 (de) 2019-03-14 2022-12-07 InSilixa, Inc. Verfahren und systeme zur zeitgesteuerten fluoreszenzbasierten detektion
MX2021012607A (es) 2019-04-17 2022-03-11 Alpine Immune Sciences Inc Metodos y usos de proteinas de fusion de ligando icos (icosl) variante.
US20200346218A1 (en) * 2019-05-01 2020-11-05 Luminex Corporation Apparatus and methods for thermal cycling of sample
WO2020221915A1 (en) 2019-05-02 2020-11-05 F. Hoffmann-La Roche Ag UTILIZATION OF dITP FOR PREFERENTIAL/SELECTIVE AMPLIFICATION OF RNA VERSUS DNA TARGETS BASED ON STRAND-SEPARATION TEMPERATURE
US20220220539A1 (en) 2019-05-07 2022-07-14 Roche Molecular Systems, Inc. Compositions and methods for detection of neisseria gonorroheae
US20220249637A1 (en) 2019-06-12 2022-08-11 Juno Therapeutics, Inc. Combination therapy of a cell-mediated cytotoxic therapy and an inhibitor of a prosurvival bcl2 family protein
WO2021013972A1 (en) 2019-07-25 2021-01-28 F. Hoffmann-La Roche Ag Compositions and methods for detection of epstein barr virus (ebv)
WO2021035194A1 (en) 2019-08-22 2021-02-25 Juno Therapeutics, Inc. Combination therapy of a t cell therapy and an enhancer of zeste homolog 2 (ezh2) inhibitor and related methods
CN114286866A (zh) 2019-08-27 2022-04-05 豪夫迈·罗氏有限公司 用于扩增和检测包括从cccDNA转录的HBV RNA在内的乙型肝炎病毒RNA的组合物和方法
US11441167B2 (en) 2019-11-20 2022-09-13 Roche Molecular Systems, Inc. Compositions and methods for rapid identification and phenotypic antimicrobial susceptibility testing of bacteria and fungi
JP2023505327A (ja) 2019-12-09 2023-02-08 エフ.ホフマン-ラ ロシュ アーゲー ジカチオン性蛍光色素
JP2023508100A (ja) 2019-12-27 2023-02-28 エフ. ホフマン-ラ ロシュ エージー. メチシリン耐性黄色ブドウ球菌を検出するための組成物および方法
WO2021138544A1 (en) 2020-01-03 2021-07-08 Visby Medical, Inc. Devices and methods for antibiotic susceptibility testing
WO2021140173A1 (en) 2020-01-10 2021-07-15 Biouniversa S.R.L. Methods and uses for treating fibrotic solid tumors with bags inhibitors
WO2021146349A1 (en) 2020-01-13 2021-07-22 Aspen Neuroscience, Inc. Method of differentiating neural cells and related compositions and methods of use
WO2021180665A1 (en) 2020-03-09 2021-09-16 Janssen Pharmaceutica Nv Compositions and methods for quantifying integration of recombinant vector nucleic acid
WO2021180631A1 (en) 2020-03-09 2021-09-16 F. Hoffmann-La Roche Ag Compositions and methods for detecting severe acute respiratory syndrome coronavirus 2 (sars-cov-2), influenza a and influenza b
KR20230022868A (ko) 2020-05-13 2023-02-16 주노 쎄러퓨티크스 인코퍼레이티드 재조합 수용체를 발현하는 공여자-배치 세포의 제조 방법
US10941453B1 (en) 2020-05-20 2021-03-09 Paragon Genomics, Inc. High throughput detection of pathogen RNA in clinical specimens
WO2021237292A1 (en) 2020-05-27 2021-12-02 Genetic Technologies Limited Methods of assessing risk of developing a severe response to coronavirus infection
WO2021260186A1 (en) 2020-06-26 2021-12-30 Juno Therapeutics Gmbh Engineered t cells conditionally expressing a recombinant receptor, related polynucleotides and methods
US11519861B2 (en) * 2020-07-20 2022-12-06 Photothermal Spectroscopy Corp Fluorescence enhanced photothermal infrared spectroscopy and confocal fluorescence imaging
US20240052391A1 (en) 2020-10-29 2024-02-15 Dna Script Enzymatic Synthesis of Polynucleotide Probes
CN112461806B (zh) * 2020-11-18 2022-02-11 厦门大学 基于智能手机的荧光光谱检测方法
EP4256089A1 (de) 2020-12-04 2023-10-11 F. Hoffmann-La Roche AG Zusammensetzungen und verfahren zum nachweis von malaria
JP7209980B2 (ja) 2020-12-11 2023-01-23 東洋紡株式会社 Dnaポリメラーゼの5’→3’エキソヌクレアーゼ活性ドメインに特異的に結合する抗体
EP4267764A1 (de) 2020-12-22 2023-11-01 F. Hoffmann-La Roche AG Verfahren zur durchführung von multiplexierter echtzeit-pcr unter verwendung von grossen stokes-verschiebungsfluoreszenzfarbstoffen
US20220205020A1 (en) 2020-12-30 2022-06-30 Roche Molecular Systems, Inc. Compositions and methods for detection of bacteria and fungi associated with bacterial and candida vaginosis
WO2022167570A1 (en) 2021-02-05 2022-08-11 F. Hoffmann-La Roche Ag Compositions and methods for detection of human parainfluenza viruses 1-4 (hpiv 1-4)
US20220290221A1 (en) 2021-03-15 2022-09-15 Roche Molecular Systems, Inc. Compositions and methods for detecting severe acute respiratory syndrome coronavirus 2 (sars-cov-2) variants having spike protein mutations
EP4334472A1 (de) 2021-05-06 2024-03-13 F. Hoffmann-La Roche AG Zusammensetzungen und verfahren zum nachweis des hepatitis-delta-virus durch einen doppeltarget-test
US20230043483A1 (en) 2021-07-09 2023-02-09 Cepheld High-level multiplexing reaction vessel, reagent spotting device and associated methods
WO2023004371A1 (en) 2021-07-21 2023-01-26 Aspen Neuroscience, Inc. Methods of differentiating neural cells and predicting engraftment thereof and related compositions
WO2023043280A1 (ko) 2021-09-17 2023-03-23 주식회사 씨젠 합성 비자연 염기를 포함하는 태그 올리고뉴클레오타이드를 이용한 타겟 핵산 서열의 검출
US20230121442A1 (en) 2021-10-06 2023-04-20 Johnson & Johnson Consumer Inc. Method of Quantifying Product Impact on Human Microbiome
WO2023057338A1 (en) 2021-10-06 2023-04-13 Bayer Aktiengesellschaft Integrated system for chemical, biochemical or molecular biological reactions in a microplate
WO2023079032A1 (en) 2021-11-05 2023-05-11 F. Hoffmann-La Roche Ag Compositions and methods for detection of malaria
WO2023089186A1 (en) 2021-11-22 2023-05-25 F. Hoffmann-La Roche Ag Compositions and methods for detecting vana and/or vanb genes associated with multidrug resistance
WO2023102459A1 (en) 2021-12-03 2023-06-08 Medicinal Genomics Corporation Psilocybe assay
US20230377685A1 (en) 2022-04-15 2023-11-23 Aspen Neuroscience, Inc. Methods of classifying the differentiation state of cells and related compositions of differentiated cells
US11680293B1 (en) 2022-04-21 2023-06-20 Paragon Genomics, Inc. Methods and compositions for amplifying DNA and generating DNA sequencing results from target-enriched DNA molecules
WO2023230581A1 (en) 2022-05-25 2023-11-30 Celgene Corporation Methods of manufacturing t cell therapies
WO2024003114A1 (en) 2022-06-29 2024-01-04 Actome Gmbh Detection of biomolecules in single cells
WO2024003332A1 (en) 2022-06-30 2024-01-04 F. Hoffmann-La Roche Ag Controlling for tagmentation sequencing library insert size using archaeal histone-like proteins
WO2024003260A1 (en) 2022-06-30 2024-01-04 F. Hoffmann-La Roche Ag Compositions and methods for detecting lymphogranuloma venereum (lgv) serovars of chlamydia trachomatis
WO2024015766A1 (en) 2022-07-12 2024-01-18 Topogene Inc. Scalable, submicron-resolution replication of dna arrays
WO2024042042A1 (en) 2022-08-24 2024-02-29 F. Hoffmann-La Roche Ag Compositions and methods for detecting monkeypox virus
WO2024059493A1 (en) 2022-09-13 2024-03-21 Medicinal Genomics Corporation Psilocybe assay
WO2024062208A1 (en) 2022-09-20 2024-03-28 Cost-Bry Pty Ltd (trading as BiomeBank) Compositions and methods for reducing endogenous sulphide in inflammatory bowel diseases

Family Cites Families (116)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1006767A (en) 1910-01-19 1911-10-24 Gen Electric Electric hair-drier.
US1456005A (en) 1922-07-24 1923-05-22 Harris Jack Incubator
US2379474A (en) 1943-11-10 1945-07-03 Bramson Maurice Heating cabinet, incubator, and the like
US3219416A (en) 1962-10-30 1965-11-23 Scientific Industries Apparatus for the automatic chemical sequential treatment and analysis of small quantities of material
US3556659A (en) 1966-02-03 1971-01-19 Applied Physics Corp Laser-excited raman spectrometer
US3616264A (en) 1969-06-30 1971-10-26 Beckman Instruments Inc Temperature-controlled discrete sample analyzer
US3718133A (en) 1971-01-12 1973-02-27 Damon Corp Container unit for liquid samples
US4038055A (en) 1975-10-10 1977-07-26 Block Engineering, Inc. Gas chromatograph for continuous operation with infrared spectrometer
US4168017A (en) 1977-04-05 1979-09-18 Anderwald Cecil E Container means preventing accidental use by children
AU528259B2 (en) 1978-09-14 1983-04-21 Union Carbide Corp Method and apparatus for assaying liquid materials
IT1101295B (it) 1978-11-22 1985-09-28 Erba Strumentazione Camera gas-cromatografica
US4257774A (en) * 1979-07-16 1981-03-24 Meloy Laboratories, Inc. Intercalation inhibition assay for compounds that interact with DNA or RNA
US4420679A (en) 1982-02-26 1983-12-13 Delta Associates, Inc. Gas chromatographic oven using symmetrical flow of preheated - premixed ambient air
US4468423A (en) 1982-11-17 1984-08-28 Arlie Hall Insulating cell element and structures composed thereof
US4468426A (en) * 1982-11-24 1984-08-28 E. I. Du Pont De Nemours And Company Adherable reinforced poly(ethylene terephthalate) composite sheet
US4481405A (en) 1983-04-27 1984-11-06 Malick Franklin S Cooking appliance
US4599169A (en) 1984-02-28 1986-07-08 Varian Associates, Inc. Heating and cooling apparatus for chromatography column
US4701415A (en) 1984-03-02 1987-10-20 Mallinckrodt, Inc. Controlled atmosphere enclosure
JPS60212986A (ja) 1984-04-06 1985-10-25 日本特殊陶業株式会社 直流電圧印加用セラミツクヒ−タ−
JPS60241884A (ja) 1984-05-15 1985-11-30 Tokyo Daigaku 自動サイクリング反応装置およびこれを用いる自動分析装置
US4683195A (en) 1986-01-30 1987-07-28 Cetus Corporation Process for amplifying, detecting, and/or-cloning nucleic acid sequences
US4965188A (en) 1986-08-22 1990-10-23 Cetus Corporation Process for amplifying, detecting, and/or cloning nucleic acid sequences using a thermostable enzyme
US5333675C1 (en) 1986-02-25 2001-05-01 Perkin Elmer Corp Apparatus and method for performing automated amplification of nucleic acid sequences and assays using heating and cooling steps
US5038852A (en) 1986-02-25 1991-08-13 Cetus Corporation Apparatus and method for performing automated amplification of nucleic acid sequences and assays using heating and cooling steps
US4683202A (en) 1985-03-28 1987-07-28 Cetus Corporation Process for amplifying nucleic acid sequences
JPS6212986A (ja) 1985-07-10 1987-01-21 Hitachi Ltd 磁気バブルメモリデバイスのパツケ−ジ
US4740472A (en) 1985-08-05 1988-04-26 The United States Of America As Represented By The United States Department Of Energy Method and apparatus for automated processing and aliquoting of whole blood samples for analysis in a centrifugal fast analyzer
US4868104A (en) * 1985-09-06 1989-09-19 Syntex (U.S.A.) Inc. Homogeneous assay for specific polynucleotides
US4675300A (en) 1985-09-18 1987-06-23 The Board Of Trustees Of The Leland Stanford Junior University Laser-excitation fluorescence detection electrokinetic separation
CA1273552A (en) 1985-12-23 1990-09-04 Michael J. Heller Fluorescent stokes shift probes for polynucleotide hybridization assays
ATE88761T1 (de) * 1986-01-10 1993-05-15 Amoco Corp Kompetitiver homogener test.
US4868103A (en) 1986-02-19 1989-09-19 Enzo Biochem, Inc. Analyte detection by means of energy transfer
CA1339653C (en) 1986-02-25 1998-02-03 Larry J. Johnson Appartus and method for performing automated amplification of nucleic acid sequences and assays using heating and cooling steps
US4889818A (en) 1986-08-22 1989-12-26 Cetus Corporation Purified thermostable enzyme
US4708782A (en) 1986-09-15 1987-11-24 Sepragen Corporation Chromatography column-electrophoresis system
US4684465A (en) 1986-10-10 1987-08-04 Combustion Engineering, Inc. Supercritical fluid chromatograph with pneumatically controlled pump
US4902624A (en) 1987-11-23 1990-02-20 Eastman Kodak Company Temperature cycling cuvette
DE3808942A1 (de) 1988-03-17 1989-09-28 Bio Med Gmbh Ges Fuer Biotechn Inkubator, insbes. fuer die polymerase-ketten-methode
GB8807297D0 (en) 1988-03-26 1988-04-27 Dean P D G Intelligent heating block
US4908112A (en) 1988-06-16 1990-03-13 E. I. Du Pont De Nemours & Co. Silicon semiconductor wafer for analyzing micronic biological samples
US4865986A (en) 1988-10-06 1989-09-12 Coy Corporation Temperature control apparatus
US5169511A (en) 1988-11-29 1992-12-08 Isco, Inc. Capillary electrophoresis technique
US5536648A (en) 1988-12-09 1996-07-16 Amrad Corporation Limited Amplified DNA assay using a double stranded DNA binding protein
AU638234B2 (en) 1989-02-08 1993-06-24 City Of Hope Apparatus for peptide sequencing
ATE112181T1 (de) 1989-06-20 1994-10-15 Claudio Bonini Prüfröhrchen mit einer linsenförmigen aussenfläche, insbesondere für automatische klinische analysen.
US5449621A (en) * 1989-07-31 1995-09-12 Biotope, Inc. Method for measuring specific binding assays
US5346672A (en) 1989-11-17 1994-09-13 Gene Tec Corporation Devices for containing biological specimens for thermal processing
US5075556A (en) * 1989-12-01 1991-12-24 Technicon Instruments Corporation Acridine orange derivatives and their use in the quantitation of reticulocytes in whole blood
US5169521A (en) 1989-12-13 1992-12-08 The United States Of America As Represented By The Department Of Health And Human Services Apparatus for countercurrent chromatography separations
US5173163A (en) 1990-01-11 1992-12-22 Isco, Inc. Capillary electrophoresis technique
US5141621A (en) 1990-01-26 1992-08-25 The Board Of Trustees Of The Leland Stanford Junior University Capillary electrophoresis injection device and method
US5207987A (en) * 1990-05-21 1993-05-04 Pb Diagnostic Systems Inc. Temperature controlled chamber for diagnostic analyzer
EP0459241B1 (de) 1990-05-29 1994-10-26 Waters Investments Limited Verfahren und Vorrichtung zum Durchführen der Kapillarelektroforese
US7081226B1 (en) 1996-06-04 2006-07-25 University Of Utah Research Foundation System and method for fluorescence monitoring
US5455175A (en) 1990-06-04 1995-10-03 University Of Utah Research Foundation Rapid thermal cycling device
US5187084A (en) 1990-06-22 1993-02-16 The Dow Chemical Company Automatic air temperature cycler and method of use in polymerose chain reaction
US5210015A (en) 1990-08-06 1993-05-11 Hoffman-La Roche Inc. Homogeneous assay system using the nuclease activity of a nucleic acid polymerase
US5269900A (en) 1990-09-13 1993-12-14 University Of North Carolina At Chapel Hill Method and device for high speed separation of complex molecules
DE69128520T2 (de) * 1990-10-31 1998-07-09 Tosoh Corp Verfahren zum Nachweis oder Quantifizierung von Zielnukleinsäuren
US5131998A (en) 1990-11-13 1992-07-21 The University Of North Carolina At Chapel Hill Two-dimensional high-performance liquid chromatography/capillary electrophoresis
US5240577A (en) 1990-11-13 1993-08-31 University Of North Carolina At Chapel Hill Two-dimensional high-performance liquid chromatography/capillary electrophoresis
KR100236506B1 (ko) 1990-11-29 2000-01-15 퍼킨-엘머시터스인스트루먼츠 폴리머라제 연쇄 반응 수행 장치
US5380489A (en) 1992-02-18 1995-01-10 Eastman Kodak Company Element and method for nucleic acid amplification and detection using adhered probes
EP0533909B1 (de) 1991-03-28 1997-01-08 Perseptive Biosystems, Inc. Produktinformation in chromatographischem effluenten durch differenzbildung
US5994056A (en) 1991-05-02 1999-11-30 Roche Molecular Systems, Inc. Homogeneous methods for nucleic acid amplification and detection
WO1992020778A1 (en) 1991-05-24 1992-11-26 Kindconi Pty Limited Biochemical reaction control
US5340715A (en) 1991-06-07 1994-08-23 Ciba Corning Diagnostics Corp. Multiple surface evanescent wave sensor with a reference
US5316913A (en) 1991-09-06 1994-05-31 Stanford University Neutrophil LECAM-1 as indicator of neutrophil activation
US5114551A (en) 1991-09-30 1992-05-19 Bio-Rad Laboratories, Inc. Multi-point detection method for electrophoresis and chromatography in capillaries
US5116471A (en) 1991-10-04 1992-05-26 Varian Associates, Inc. System and method for improving sample concentration in capillary electrophoresis
DE69231853T2 (de) 1991-11-07 2001-09-13 Nanotronics Inc Hybridisierung von mit chromophoren und fluorophoren konjugierten polynukleotiden zur erzeugung eines donor-zu-donor energietransfersystems
US5348853A (en) 1991-12-16 1994-09-20 Biotronics Corporation Method for reducing non-specific priming in DNA amplification
DE4234086A1 (de) * 1992-02-05 1993-08-12 Diagen Inst Molekularbio Verfahren zur bestimmung von in vitro amplifizierten nukleinsaeuresequenzen
EP0566751B1 (de) * 1992-03-23 1996-01-10 F. Hoffmann-La Roche Ag Verfahren zum DNS-Nachweis
JPH07505297A (ja) 1992-04-06 1995-06-15 アボツト・ラボラトリーズ 内面全反射を使用して核酸または被分析物質を検出する方法及び装置
JPH0634546A (ja) 1992-07-17 1994-02-08 Tosoh Corp 蛍光検出器
EP0609431B1 (de) 1992-08-24 1997-10-08 Dade MicroScan Inc. Abdichtbarer behälter zum konservieren und behandeln analytischer proben
US5340728A (en) * 1992-12-09 1994-08-23 E. I. Du Pont De Nemours And Company Method for amplification of targeted segments of nucleic acid using nested polymerase chain reaction
US5593840A (en) * 1993-01-27 1997-01-14 Oncor, Inc. Amplification of nucleic acid sequences
US5364790A (en) 1993-02-16 1994-11-15 The Perkin-Elmer Corporation In situ PCR amplification system
US5798215A (en) 1993-02-18 1998-08-25 Biocircuits Corporation Device for use in analyte detection assays
US5436134A (en) 1993-04-13 1995-07-25 Molecular Probes, Inc. Cyclic-substituted unsymmetrical cyanine dyes
US6027884A (en) * 1993-06-17 2000-02-22 The Research Foundation Of The State University Of New York Thermodynamics, design, and use of nucleic acid sequences
JP3598123B2 (ja) 1993-07-15 2004-12-08 浜松ホトニクス株式会社 核酸の変性検出装置
ATE208658T1 (de) 1993-07-28 2001-11-15 Pe Corp Ny Vorrichtung und verfahren zur nukleinsäurevervielfältigung
CA2129787A1 (en) * 1993-08-27 1995-02-28 Russell G. Higuchi Monitoring multiple amplification reactions simultaneously and analyzing same
ATE207966T1 (de) 1993-09-13 2001-11-15 Canon Kk Bestimmung von nukleinsäuren durch pcr, messung der anzahl von mikrobiellen zellen, genen oder genkopien durch pcr und kit zu ihrer verwendung
US5415839A (en) 1993-10-21 1995-05-16 Abbott Laboratories Apparatus and method for amplifying and detecting target nucleic acids
JP4071277B2 (ja) * 1993-11-12 2008-04-02 ピーエイチアールアイ・プロパティーズ・インコーポレーテッド 核酸検出用ハイブリダイゼーションプローブ、共通ステム、方法およびキット
US5804380A (en) 1993-11-12 1998-09-08 Geron Corporation Telomerase activity assays
US5863726A (en) 1993-11-12 1999-01-26 Geron Corporation Telomerase activity assays
US5925517A (en) * 1993-11-12 1999-07-20 The Public Health Research Institute Of The City Of New York, Inc. Detectably labeled dual conformation oligonucleotide probes, assays and kits
GB9401535D0 (en) 1994-01-27 1994-03-23 Steer Rupert P Timing devices
US5654419A (en) 1994-02-01 1997-08-05 The Regents Of The University Of California Fluorescent labels and their use in separations
WO1995021382A2 (en) 1994-02-01 1995-08-10 Fields Robert E Molecular analyzer and method of use
JP3265113B2 (ja) * 1994-03-04 2002-03-11 三菱製紙株式会社 インクジェット記録シート
CA2143365A1 (en) 1994-03-14 1995-09-15 Hugh V. Cottingham Nucleic acid amplification method and apparatus
CA2159830C (en) 1994-04-29 2001-07-03 Timothy M Woudenberg System for real time detection of nucleic acid amplification products
ATE280243T1 (de) 1994-04-29 2004-11-15 Johnson & Johnson Clin Diag Homogenes verfahren zum nachweis von doppelstrang-nukleinsäuren mittels fluoreszierender farbstoffe und dafür nützliche kits
DE69427876T2 (de) * 1994-05-23 2002-04-11 Biotronics Corp Methode zur detektion einer gezielten nukleinsäure
US5766889A (en) 1994-06-08 1998-06-16 The Perkin-Elmer Corporation Method for determining the characteristics of the concentration growth of target nucleic acid molecules in polymerase chain reaction sample
US5622821A (en) * 1994-06-29 1997-04-22 The Regents Of The University Of California Luminescent lanthanide chelates and methods of use
US6106777A (en) * 1994-11-09 2000-08-22 Hitachi, Ltd. DNA analyzing method and device therefor
US6008373A (en) * 1995-06-07 1999-12-28 Carnegie Mellon University Fluorescent labeling complexes with large stokes shift formed by coupling together cyanine and other fluorochromes capable of resonance energy transfer
JPH11506605A (ja) * 1995-06-07 1999-06-15 アボツト・ラボラトリーズ 増幅反応におけるバックグラウンドを減少させるためにプローブをマスキングする方法
WO1996041864A1 (en) 1995-06-13 1996-12-27 The Regents Of The University Of California Diode laser heated micro-reaction chamber with sample detection means
US5863727A (en) * 1996-05-03 1999-01-26 The Perkin-Elmer Corporation Energy transfer dyes with enhanced fluorescence
US5945526A (en) * 1996-05-03 1999-08-31 Perkin-Elmer Corporation Energy transfer dyes with enhanced fluorescence
US5800996A (en) * 1996-05-03 1998-09-01 The Perkin Elmer Corporation Energy transfer dyes with enchanced fluorescence
ATE428801T1 (de) * 1996-06-04 2009-05-15 Univ Utah Res Found Überwachung der hybridisierung während pcr
US5846727A (en) 1996-06-06 1998-12-08 Board Of Supervisors Of Louisiana State University And Agricultural & Mechanical College Microsystem for rapid DNA sequencing
EP0822261B1 (de) * 1996-07-29 2002-07-03 Academia Sinica Verfahren zur schnellen antimikrobiellen Empfindlichkeitsnachweis
US6482590B1 (en) * 1996-12-20 2002-11-19 Aventis Behring Gmbh Method for polynucleotide amplification
US6143496A (en) * 1997-04-17 2000-11-07 Cytonix Corporation Method of sampling, amplifying and quantifying segment of nucleic acid, polymerase chain reaction assembly having nanoliter-sized sample chambers, and method of filling assembly
US6140054A (en) * 1998-09-30 2000-10-31 University Of Utah Research Foundation Multiplex genotyping using fluorescent hybridization probes
US6153411A (en) * 1998-10-30 2000-11-28 American Water Works Company, Inc. Methods and kits for detection of Cryptosporidium parvum using immunomagnetic separation and amplification

Also Published As

Publication number Publication date
US6569627B2 (en) 2003-05-27
CA2257109A1 (en) 1997-12-11
JP2000509608A (ja) 2000-08-02
EP1033411A3 (de) 2000-10-11
US20040002098A1 (en) 2004-01-01
EP1179600B1 (de) 2005-05-11
US8343754B2 (en) 2013-01-01
US6232079B1 (en) 2001-05-15
EP0912766B2 (de) 2011-12-14
ES2243393T3 (es) 2005-12-01
ES2326050T5 (es) 2012-04-26
NZ502323A (en) 2001-09-28
US20090258414A1 (en) 2009-10-15
PT1179600E (pt) 2005-08-31
EP1033411B1 (de) 2006-02-22
WO1997046714A1 (en) 1997-12-11
ATE318327T1 (de) 2006-03-15
DK1179600T3 (da) 2005-09-05
JP2007185188A (ja) 2007-07-26
JP4401416B2 (ja) 2010-01-20
DK0912766T4 (da) 2012-04-02
US7670832B2 (en) 2010-03-02
US20020058258A1 (en) 2002-05-16
JP2008173127A (ja) 2008-07-31
EP0912766A1 (de) 1999-05-06
US7160998B2 (en) 2007-01-09
US6245514B1 (en) 2001-06-12
CA2257109C (en) 2009-10-06
JP4540754B2 (ja) 2010-09-08
EP0912766B1 (de) 2009-04-15
ES2326050T3 (es) 2009-09-29
US20090311673A1 (en) 2009-12-17
US6174670B1 (en) 2001-01-16
JP4118932B2 (ja) 2008-07-16
DE69735313T2 (de) 2006-11-02
PT912766E (pt) 2009-07-16
EP1033411A2 (de) 2000-09-06
US20120258524A1 (en) 2012-10-11
DE69739357D1 (de) 2009-05-28
US20060029965A1 (en) 2006-02-09
CA2591550C (en) 2009-04-28
ATE295427T1 (de) 2005-05-15
EP1179600A1 (de) 2002-02-13
DK0912766T3 (da) 2009-08-10
CA2658290C (en) 2012-04-10
CA2658290A1 (en) 1997-12-11
ATE428801T1 (de) 2009-05-15
CA2591550A1 (en) 1997-12-11
JP2010046063A (ja) 2010-03-04
DE69733282D1 (de) 2005-06-16
DE69735313D1 (de) 2006-04-27
AU3481297A (en) 1998-01-05
NZ333136A (en) 2000-03-27
AU726501B2 (en) 2000-11-09

Similar Documents

Publication Publication Date Title
DE69733282T2 (de) Überwachung der Hybridisierung während PCR
DE60213730T2 (de) Echtzeit-Quantifizierung mit internen Standards
DE60035459T2 (de) Automatisierte Echtzeit-Analyse von Nukleinsäureamplifikation
DE69828908T2 (de) Fluorimetrisches system zum nachweis von nucleinsäuren
DE69531133T2 (de) Verfahren zur Dämpfung der Fluoreszene in Lösung von Fluoreszenzmarkierten Oligonucleotidsonden
DE60002424T2 (de) Farbkompensation von änderungen bedingt durch temperatur und elektronische phänomene
DE60035691T2 (de) Verfahren zur Erkennung von Einzel-Nukleotid-Polymorphismen
DE69917303T2 (de) Genomische Multi-Loci Analyse durch ein Verfahren der verbesserten zyklischen Sequenzierung
DE60119533T2 (de) Verfahren zur erkennung des produkts einer nukleinsäuresynthetisierungsreaktion
DE60113945T2 (de) Verfahren zur Analyse von Wiederkehrenden PCR-Podukten, das auf der Analyse von DNS-Schmelzkurven basiert
DE60204874T2 (de) Verfahren zur nachweis von nukleinsäuren
EP2167685B1 (de) Verfahren und sonden/primersystem zum &#34;real time&#34; nachweis eines nukleinsäuretargets
DE102007013099A1 (de) Verfahren und Testkit zum schnellen Nachweis spezifischer Nukleinsäuresequenzen, insbesondere zum Nachweis von Mutationen oder SNP&#39;s
DE102005045560B4 (de) Verfahren zur quantitativen Bestimmung der Kopienzahl einer vorbestimmten Sequenz in einer Zelle
DE60133534T3 (de) Ein homogenes verfahren zur detektion eines polynukleotids, mit beispielsweise abspaltbarer lanthanidchelat markierung
DE10104937B4 (de) Fluoreszenzpolarisation 2
DE60017750T2 (de) Amplifizierungsverfahren zum Nachweis von zu bestimmenden Nucleinsäuren und Anwendung von Flourszenzenergieübertragung
DE10104938B4 (de) Fluoreszenzpolarisation 1
DE60127244T2 (de) Spezifische multiplex-analyse von nukleinsäuren
EP1493822A1 (de) Detektionsverfahren für Nucleinsäuren mit interner Amplifikationskontrolle
WO2003002759A2 (de) Nachweis spezifischer dinukleotide in dna-proben durch fluoreszenzresonanztransfer (fret)
DE112018008028B4 (de) Verfahren zur mehrfachanalyse von amplikon unter verwendung der fluoreszenzbasierten mehrfachschmelzanalyse
DE102005051816A1 (de) Verfahren zur relativen Bestimmung der Kopienzahl einer vorbestimmten Sequenz in einer biologischen Probe
DE60317420T2 (de) Verfahren zu Identifizierung von Nukleotid-Polymorphismen unter Verwendung von Resonanzenergietransfer
DE10014575A1 (de) Verfahren zur Identifizierung von Organismen durch vergleichende genetische Analyse sowie Primer und Hybridisationssonden zur Durchführung des Verfahrens

Legal Events

Date Code Title Description
8364 No opposition during term of opposition
8310 Action for declaration of annulment
8313 Request for invalidation rejected/withdrawn