DE60002161T3 - Teileinkapselung von stents - Google Patents

Teileinkapselung von stents Download PDF

Info

Publication number
DE60002161T3
DE60002161T3 DE60002161T DE60002161T DE60002161T3 DE 60002161 T3 DE60002161 T3 DE 60002161T3 DE 60002161 T DE60002161 T DE 60002161T DE 60002161 T DE60002161 T DE 60002161T DE 60002161 T3 DE60002161 T3 DE 60002161T3
Authority
DE
Germany
Prior art keywords
layer
expanded polytetrafluoroethylene
radially expandable
stent
stents
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
DE60002161T
Other languages
English (en)
Other versions
DE60002161T2 (de
DE60002161D1 (de
Inventor
Richard Layne
Sandra Cundy
Debra Bebb
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bard Peripheral Vascular Inc
Original Assignee
Bard Peripheral Vascular Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26816146&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=DE60002161(T3) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Bard Peripheral Vascular Inc filed Critical Bard Peripheral Vascular Inc
Publication of DE60002161D1 publication Critical patent/DE60002161D1/de
Publication of DE60002161T2 publication Critical patent/DE60002161T2/de
Application granted granted Critical
Publication of DE60002161T3 publication Critical patent/DE60002161T3/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • A61F2/07Stent-grafts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/89Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure the wire-like elements comprising two or more adjacent rings flexibly connected by separate members
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • A61F2/07Stent-grafts
    • A61F2002/072Encapsulated stents, e.g. wire or whole stent embedded in lining
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0029Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in bending or flexure capacity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S623/00Prosthesis, i.e. artificial body members, parts thereof, or aids and accessories therefor
    • Y10S623/901Method of manufacturing prosthetic device
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1002Methods of surface bonding and/or assembly therefor with permanent bending or reshaping or surface deformation of self sustaining lamina
    • Y10T156/1026Methods of surface bonding and/or assembly therefor with permanent bending or reshaping or surface deformation of self sustaining lamina with slitting or removal of material at reshaping area prior to reshaping
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1052Methods of surface bonding and/or assembly therefor with cutting, punching, tearing or severing
    • Y10T156/1056Perforating lamina
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1052Methods of surface bonding and/or assembly therefor with cutting, punching, tearing or severing
    • Y10T156/1062Prior to assembly
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1089Methods of surface bonding and/or assembly therefor of discrete laminae to single face of additional lamina
    • Y10T156/109Embedding of laminae within face of additional laminae

Description

  • 1. GEBIET DER ERFINDUNG
  • Die vorliegenden Erfindung betrifft allgemein das Gebiet der medizinischen Einrichtungen und genauer gesagt die Einkapselung von Stents.
  • 2. BESCHREIBUNG DES STANDES DER TECHNIK
  • Stents und ähnliche endoluminale Einrichtungen werden heutzutage von Medizinern verwendet, um Bereiche des Gefäßsystems zu behandeln, die so eng geworden sind, dass der Blutfluss eingeschränkt ist. Stents sind röhrenförmige Strukturen, normalerweise aus Metall, welche radial ausdehnbar sind, um ein verengtes Blutgefäß in einer offenen Konfiguration zu halten. Solche Verengungen (Stenosen) treten beispielsweise als Ergebnis eines Krankheitsverlaufs auf, der als Arteriosklerose bekannt ist. Eine Angioplastie einer Koronararterie, um die Arteriosklerose zu korrigieren, kann eine übermäßige Gewebewucherung stimulieren, welche dann das neu geöffnete Blutgefäß blockiert (Restenose). Während Stents meist verwendet werden, um Blutgefäße offen zu halten, können sie auch verwendet werden, um zusammengefallene oder verengte röhrenförmige Strukturen im Atemsystem zu verstärken, im reproduktiven System, in Cholangien oder in anderen röhrenförmigen Körperstrukturen. Stents sind jedoch im allgemeinen maschenartig, so dass endotheliale und andere Zellen durch die Öffnungen hindurchwachsen können, was zu einer Restenose des Gefäßes führt.
  • Polytetrafluorethylen (PTFE) hat sich als ungewöhnlich vorteilhaft als Material herausgestellt, aus welchem Prothesen für Blutgefäße hergestellt werden, um beschädigte oder kranke Gefäße zu ersetzen. Dies beruht teilweise darauf, dass PTFE extrem biokompatibel ist und eine geringe oder keine immunogenische Reaktion erzeugt, wenn es in dem menschlichen Körper angeordnet wird. Es beruht auch darauf, dass PTFE in seiner bevorzugten Form, nämlich als erweitertes PTFE (ePTFE), das Material leicht und porös ist und potentiell von lebenden Zellen kolonisiert wird, so dass es zu einem permanenten Teil des Körpers wird. Das Verfahren zur Herstellung von ePTFE für Transplantate ist unter Fachleuten wohlbekannt. Es reicht aus, zu sagen, dass der kritische Schritt in diesem Verfahren die Erweiterung von PTFE zu ePTFE anschließend an die Extrusion aus einer Paste aus kristallinen PTFE-Partikeln ist. Die Erweiterung ist ein gesteuertes Strecken in Längsrichtung, bei welchem das PTFE bis auf mehrere hundert Prozent seiner ursprünglichen Länge gestreckt wird. Während des Erweiterungsvorgangs werden Fibrillen aus PTFE aus aggregierten PTFE-Partikeln(Knoten) herausgezogen, wodurch eine poröse Struktur entsteht.
  • Wenn Stents in PTFE eingeschlossen werden könnten, könnte die zellulare Infiltrierung begrenzt werden, so dass hoffentlich die Restenose verhindert oder begrenzt würde. Frühe Versuche, um einen mit ePTFE umgebenen Stent herzustellen, befassten sich hauptsächlich mit der Verwendung von Klebstoffen oder mit der physikalischen Anbringung beispielsweise durch Nähen (siehe beispielsweise US-Patent Nr. 5,405,377 von Cragg). Solche Verfahren sind jedoch keineswegs ideal, und insbesondere das Vernähen ist sehr arbeitsintensiv. In letzter Zeit sind Verfahren entwickelt worden, um einen Stent zwischen zwei röhrenförmigen ePTFE-Elementen einzukapseln, wobei das ePTFE eines Elements sich mit dem ePTFE des anderen Elements durch die Öffnungen in dem Stent hindurch verbindet. Diese Verfahren sind in den neueren Veröffentlichungen WO 98/38947 und WO 96/28115 offenbart. Ein solcher monolithisch eingekapselter Stent tendiert jedoch dazu, recht inflexibel zu sein. Insbesondere kann die radiale Ausdehnung des Stents das ePTFE belasten und zerreißen. Es besteht weiter eine Nachfrage für einen Stent, der eingekapselt ist, um die zellulare Intrusion zu verhindern und einen reibungslösen Blutfluss an der inneren Oberfläche zu bieten und sich dennoch ausdehnen kann, ohne zu zerreißen oder abzublättern, und relativ gesehen flexibler ist.
  • ZUSAMMENFASSUNG DER ERFINDUNG
  • Die vorliegende Erfindung ist in einem Aspekt der Erfindung auf ein Verfahren nach Anspruch 1 und in einem anderen Aspekt auf ein Verfahren nach Anspruch 4 gerichtet.
  • Es ist ein Ziel dieser Erfindung, ein Verfahren zur Herstellung einer Stenteinrichtung zu schaffen, die eine verbesserte Flexibilität hat und ihre Gestalt dennoch bei der Ausdehnung beibehält.
  • Es ist auch ein Ziel dieser Erfindung, ein Verfahren zur Herstellung eines Stents zu schaffen, der eingekapselt ist, um die zellulare Infiltrierung zu verhindern, wobei Bereiche des Stents sich während der radialen Ausdehnung bewegen können, ohne dass einkapselnde Material zu belasten oder zu zerreißen.
  • Diese und weitere Ziele werden erreicht durch ein Einkapselungsverfahren, das Bereiche des Stents frei lässt, so dass sie sich während der Ausdehnung bewegen können, ohne die ePTFE-Beschichtung zu beschädigen. Die grundlegendste Form dieser Erfindung wird hergestellt, indem ein Stent über einem inneren ePTFE-Element angeordnet wird (beispielsweise an einem Dorn gehalten wird) und dann die äußere Oberfläche des Stents mit einer äußeren ePTFE-Röhre bedeckt wird, in welche Schlitze hineingeschnitten worden sind. Die äußere ePTFE-Röhre wird dann mit dem inneren ePTFE durch Öffnungen in der Stentstruktur hindurch laminiert, um den Stent einzuschließen. Durch Auswählen der Größe und Anordnung der Schlitze ist es möglich, kritische Teile des Stents frei zu lassen, um die Flexibilität und Ausdehnung zu erleichtern. Der Schlitz verhindert nicht nur die Verbindung des darunter liegenden PTFE, sondern er bildet auch einen Brennpunkt für das PTFE für die Verbiegung. Eine komplexere Form des Verfahrens besteht darin, eine PTFE-Hülse über den Stent hinüber zu platzieren, in welche Hülse Öffnungen hineingeschnitten worden sind. Diese ”spitzenartige” äußere Hülse lässt Bereiche des Stents frei für eine gesteigerte Flexibilität und für die Bewegung der Stentbereiche während der Ausdehnung, ohne das ePTFE zu beschädigen. Obwohl ein einzelner Stent verwendet werden kann, können diese Ansätze auch für mehrere einzelne Ringstents verwendet werden, die entlang einer inneren ePTFE-Röhre beabstandet sind und von einer ”spitzenartigen” ePTFE-Hülse bedeckt werden.
  • Gemäß der vorliegenden Erfindung werden einzelne Ringstents teilweise eingekapselt unter Verwendung des oben umrissenen Verfahrens. vorzugsweise werden Ringstents mit einer sinusförmigen Zickzackstruktur ”in Phase” auf der Oberfläche eines röhrenförmigen ePTFE-Transplantats platziert (beispielsweise werden Spitzen und Täler eines Stents mit solchen eines benachbarten Stents ausgerichtet), welches Transplantat von einem Dorn gehalten wird. Eine Hülse aus ePTFE wird unter Verwendung eines CO&sub2; Lasers geschnitten, so dass Öffnungen erzeugt werden, was zu einem ”spitzenartigen” Muster führt. Dieses ”spitzenartige” Muster wird dann über die Ringstents hinüber platziert. Die entstehende Struktur wird dann Hitze und Druck unterworfen, so dass Bereiche des ePTFE laminiert oder verbunden werden, wo die spitzenartige Hülse das röhrenförmige Transplantat kontaktiert. Außerdem können die Enden des Stents vollständig eingekapselt werden, und zwar durch bekannte Verfahren, um die Gesamtstruktur zu stabilisieren.
  • Ein besseres Verständnis des Einkapselungsvorgangs sowie eine Realisierung von zusätzlichen Vorteilen und Zielen des Vorgangs ergibt sich für Fachleute durch Betrachtung der nun folgenden ausführlichen Beschreibung der bevorzugten Ausführungsform. Bezug wird auf die anliegenden Zeichnungen genommen, welche zunächst kurz beschrieben werden.
  • KURZE BESCHREIBUNG DER ZEICHNUNGEN
  • 1 ist eine perspektivische Ansicht eines röhrenförmigen ePTFE-Elements, auf welchem einzelne Ringstents angeordnet sind.
  • 2 ist eine perspektivische Ansicht der ”spitzenartigen” Hülse der vorliegenden Erfindung.
  • 3 ist eine perspektivische Ansicht der Hülse aus 2, die über die Struktur aus 1 hinüber platziert ist.
  • 4 ist eine perspektivische Ansicht einer Konfiguration der geschlitzten Hülse der vorliegenden Erfindung mit längsgerichteten Schlitzen.
  • 5 ist eine perspektivische Ansicht einer zweiten Ausgestaltung der geschlitzten Hülse der vorliegenden Erfindung mit in Umfangsrichtung orientierten Schlitzen.
  • 6 ist eine perspektivische Ansicht einer dritten Konfiguration der geschlitzten Hülse, wie sie über die Struktur aus 1 hinüber platziert ist.
  • AUSFÜHRLICHE BESCHREIBUNG DER BEVORZUGTEN AUSFÜHRUNGSFORM
  • Die vorliegende Erfindung befriedigt die Nachfrage nach einer eingekapselten Stenteinrichtung, um Restenose zu verhindern, welche Einrichtung bei der Ausdehnung und Kontraktion flexibel ist, so dass die allgemeine strukturelle Form beibehalten wird. Dies wird erzielt durch Einkapseln eines Stents oder durch Einkapseln mehrerer Stentringe unter Verwendung einer ePTFE-Beschichtung, in welche Öffnungen hineingeschnitten worden sind.
  • Mit Bezug auf die Zeichnungen, in welchen gleiche Bezugsziffern gleiche oder ähnliche Strukturen bezeichnen, stellt 1 einen ersten Schritt beim Aufbauen des teilweise eingekapselten Stents der vorliegenden Erfindung dar. Ein röhrenförmiges ePTFE Transplantat 20 wird über einen Kern für den Zusammenbau einer Einrichtung 10 (3) hinüber platziert. Ein Stent wird dann über das Transplantat 20 hinüber platziert. In einer bevorzugten Ausführungsform werden, wie in 1 dargestellt, eine Reihe von sinusförmigen Zickzack-Ringstents 30 über die äußere Oberfläche des Transplantats 20 hinüber platziert. Alternativ kann zumindest ein Stent verwendet werden, wobei jeder Stent mehr als einen Ring oder Reifen aufweist (beispielsweise wo die Ringe schraubenförmig verbunden sind). Die Ringstents 30 können aus jedem beliebigen Material sein, aber ein bevorzugtes Material ist Metall. Die Zickzack-Ringstents 30 können ”in Phase” zusammengebaut werden, wobei jeder benachbarte Ringstent ausgerichtete Spitzen und Täler hat. Alternativ können die einzelnen Stents 30 auch um unterschiedliche Grade ”außer Phase” sein. Es wird deutlich, dass die Phasenbeziehung von benachbarten Stents 30 die seitliche Flexibilität sowie die Kompressibilität in Längsrichtung der Struktur verändern will. Die Phasenbeziehung kann entlang der Länge der Einrichtung 10 verändert werden, wodurch die physikalischen Eigenschaften in unterschiedlichen Bereichen der Einrichtung 10 verändert werden, Das Vorsehen von einzelnen Ringstents 30 hat im Gegensatz zu einem einzelnen röhrenförmigen Stent den Vorteil, dass die Periodizität oder die Anzahl und bestimmte Gestalt der Zickzackformen pro Ring einfach entlang der Länge des Transplantats verändert werden kann, uni die Flexibilität und Stabilität der Struktur zu beeinflussen. Außerdem kann der Abstand der einzelnen Stents (die Anzahl der Stents pro Längeneinheit) sowie die Phasenbeziehung von Stent zu Stent verändert werden, um Stent-Transplantate mit gewünschten Eigenschaften zu produzieren. Durch Platzieren der Ringstents 30 über der äußeren Oberfläche des röhrenförmigen ePTFE-Transplantats 20 hat die entstehende Struktur eine innere (luminale) Oberfläche, die vollständig glatt ist, um den Blutfluss zu erleichtern. Es können jedoch Fälle auftreten, in welchen die Ringstents 30 oder andere röhrenförmige Stents vorteilhaft in Kontakt mit der inneren Oberfläche des Transplantats oder an sowohl der inneren als auch der äußeren Oberfläche platziert werden, wie es Fachleuten bewusst sein wird.
  • 2 zeigt die Struktur eines ”spitzenartigen” Transplantats 40 mit eine Hülse aus ePTFE 42, in welche Öffnungen hineingeschnitten worden sind. Dieses spitzenartige Transplantat 40 wird über die Ringstents 30 in der bevorzugten Ausführungsform hinüber platziert. Das spitzenartige Transplantat 40 wird hergestellt, indem Öffnungen 44 in eine röhrenförmige ePTFE-Hülse 42 hineingeschnitten werden. Die Öffnungen 44 wurden in die Hülse mittels eines CO&sub2; Lasers hineingeschnitten, obwohl auch jede andere Schneidtechnologie einfach angewandt werden könnte. Das spitzenartige Transplantat 40 wird über die Ringstents 30 hinüber geschoben und über das darunter liegende röhrenförmige Transplantat 20, um die in 3 gezeigte bevorzugte Einrichtung zu schaffen. Die Einrichtung 10 wird dann Hitze und Druck ausgesetzt, beispielsweise indem sie mit einem PTFE-Band umwickelt und dann in einem Ofen erhitzt wird, so dass die ePTFE-Bereiche des spitzenartige Transplantats 40 sich mit dem röhrenförmigen Transplantat 20 verbinden oder laminieren, wo sie einander berühren. Es sollte bemerkt werden, dass die Abschnitte in Umfangsrichtung des PTFE 46, die über den Ringstents 30 platziert sind, viele unterschiedliche Ausgestaltungen haben können. Wie dargestellt, ist eine Hülse 42 mit Öffnungen 44, die ausgeschnitten worden sind, eine Art, das Ziel der Flexibilität und Stabilität zu erreichen. Die Öffnungen 44 zwischen den Umfangsabschnitten aus ePTFE 46 können verändert werden, um den Grad der Flexibilität und Stabilität wie gewünscht zu steuern. In der bevorzugten Ausführungsform in 3 bildet das spitzenartige Transplantat 40 eine Anzahl von Umfangsabschnitten 46, die einen Bereich des Umfangs jedes Ringstents 30 abdecken sollen, wobei die Enden der Zickzackformen unbedeckt bleiben. Durch Bedecken nur eines Bereichs jedes Ringstents 30 in Umfangsrichtung wird die maximale seitliche Flexibilität geschaffen.
  • Das Bedecken der einzelnen Ringstents 30 in Umfangsrichtung ohne jede Unterstützung in Längsrichtung würde jedoch zu einem Aufbau mit geringer Festigkeit und Stabilität in Längsrichtung führen, der sich leicht ”teleskopisch” verhalten würde. Daher sind die längs verlaufenden Abschnitte 48, die Umfangsabschnitte aus PTFE 46 verbinden, wichtig, weil die Längsabschnitte 48 vollständig mit dem darunter liegenden Transplantat 20 laminiert werden und als ”Anti-Kompressions-Einrichtungen” wirken, indem sie dem Verkürzen der Struktur 10 widerstehen (die doppelte Dicke des ePTFE widersteht dem teleskopischen Verhalten der längs verlaufenden Abschnitte 48). Die Breite der Umfangsabschnitte 46 und der längs verlaufenden Abschnitte 48 steuert die Festigkeit und Stabilität in Längsrichtung gegenüber der seitlichen Flexibilität. Durch Anpassen dieser Parameter können die Transplantate mehr oder weniger flexibel mit einer größeren oder kleineren Anti-Kompressionsfestigkeit gemacht werden. In der bevorzugten Ausführungsform sind vier Längsabschnitte 48 ausgeformt, und die Enden der Struktur 10 sind für eine größere Stabilität vollständig eingekapselt. Natürlich könnte eine größere Anzahl von Längsabschnitten 48 ausgeformt sein. Auch die Längsabschnitte 48 können selbst zickzackartig sein oder schraubenförmig angeordnet sein, abhängig davon, wie die Öffnungen 48 in die Hülse 42 hinein geschnitten sind. Jeder Aufbau wird unterschiedliche Eigenschaften haben. In gleicher Weise können die Umfangsabschnitte 46 unterschiedliche Formen haben und wellenförmig sein. Nichts schließt eine Beschichtung mit einem komplexeren Muster aus, wo Umfangsabschnitte und längs verlaufende Abschnitte schwierig voneinander zu unterscheiden oder sogar nicht existent sind.
  • Eine zweite Ausführungsform der vorliegenden Erfindung ergibt sich aus den 4 bis 6. Statt einer spitzenartigen Struktur des Transplantats wird eine geschlitzte äußere Hülse verwendet, um eine teilweise Einkapselung des Stents zu schaffen, wobei die Schlitze eine Flexibilität der Struktur bieten, so dass sich der Stent einfacher ausweiten und zusammenziehen kann. In 4 verlaufen vier Längsschlitze 52 entlang der Länge des Stents, wobei 5 bis 10 mm ungeschnittene Hülse an den Enden verbleibt. Die Schlitz sind bei 0°, 90°, 180° und 270° ausgebildet und so orientiert, dass sie über einen Spitzenbereich jedes zickzackartigen Ringstents 30 hinüber verlaufen (6). 5 zeigt Umfangsschlitze 62, wobei Schlitze in Umfangsrichtung um die Hülse 60 herum beabstandet eingeschnitten sind, vorzugsweise so, dass sie mit einem Stentring zusammenfallen. Bei jedem radialen Abschnitt sind zwei Schlitze um den Umfang herum in gleichmäßigen Abständen geschnitten. In einem ersten radialen Abschnitt verlaufen die Schlitze von 0 bis 90° und von 180 bis 270°. Jeder darauffolgende radiale Abschnitt hat ein Paar von Schlitzen, die bezüglich des vorherigen Paares um 90° versetzt sind. Daher wird ein zweiter radialer Abschnitt Schlitze haben, die zwischen 90 und 180° und zwischen 270 und 0° verlaufen. Neben den in 4 und 5 gezeigten Konfigurationen sind eine Anzahl anderer Schlitzkonfigurationen möglich, einschließlich diagonaler und sinusförmiger Ausgestaltungen, wie es Fachleuten bewusst sein wird. Wie in 6 dargestellt, wird eine Hülse 70 über die Ringstents 30 und das darunter liegende röhrenförmige Transplantat 20 platziert, um einen neuen Aufbau 80 zu bilden. Die längs verlaufende Schlitze 72, welche in die Hülse 70 eingeschnitten sind, unterscheiden sich von den Schlitzen 52 in 4 darin, dass sie nicht die Länge der Struktur 80 abdecken und um den Umfang der Hülse 70 herum versetzt sind. Idealer Weise sind die Schlitze über die Spitzen in den zickzackartigen Ringstents 30 hinüber ausgerichtet. Wenn die Schlitze 72 einmal in die Hülse 70 unter Verwendung eines bekannten Verfahrens hineingeschnitten worden sind, wird die Struktur 80 Hitze und Druck ausgesetzt, indem sie beispielsweise mit einem PTFE-Band umwickelt und in einem Ofen erhitzt wird, so dass sich die ePTFE-Bereiche des geschlitzten Transplantats 70 mit dem röhrenförmigen Transplantat 20 verbinden. Die Schlitze 72 in der geschlitzten äußeren Hülse 70 können durch Verwenden eines CO&sub2; Lasers, einer Rasierklinge oder einer anderen geeigneten, in der Technik bekannten Methode ausgebildet werden. Die Schlitze verbessern die Flexibilität der eingekapselten Struktur und ermöglichen eine radiale Ausdehnung, ohne dass das ePTFE zerreißt. Außerdem helfen mehrere Schlitze dem ausgedehnten Transplantat dabei, an der Wand des Blutgefäßes anzugreifen. Dies ist insbesondere wichtig, wenn eine eingekapselter Stent einen Bereich eines beschädigten oder geschwächten Gefäßes abdeckt, wie beispielsweise in einem Aneurysma. Außerdem wachsen während des Heilvorgangs Gewebe einfach in die Schlitze hinein und verankern das Transplantat weiter mit der Wand des Gefäßes.
  • Ein Vorteil, den das Hineinschneiden von Schlitzen in eine ePTFE-Hülse bietet, besteht darin, dass es einfacher ist, eine solche Hülse herzustellen als das spitzenartige Transplantat. Weil kein Material entfernt wird, ist die Hülse um einiges stärker als ein spitzenartiges Transplantat. Es gibt eine Vielzahl von möglichen Ausgestaltungen, einschließlich dem Hineinschneiden der Schlitze in asymmetrischer Art und Weise, um gewünschte Ergebnisse zu erzielen, wobei beispielsweise radiale, längs verlaufende und diagonale Schnitte gleichzeitig verwendet werden können. Außerdem kann eine größere Anzahl von Schlitzen in einem Bereich der Struktur hineingeschnitten werden, in welchem eine größere Ausdehnung gewünscht ist.
  • Obwohl in den oben beschriebenen Beispielen die spitzenartigen und geschlitzten Transplantate über einen Stent hinüber platziert sind, welcher selbst über ein röhrenförmiges Transplantat hinüber platziert ist, kann diese Orientierung auch einfach umgekehrt werden. Das heißt, die spitzenartigen oder geschlitzten Transplantate können auf einem Dorn angeordnet werden; und ein Stent oder Stents können dann über die spitzenartigen oder geschlitzten Transplantate hinüber platziert werden, und ein röhrenförmiges Transplantat kann dann über den Stent oder die Stents platziert werden. Dies ergibt eine Struktur, bei welcher ein Teil oder sogar ein Großteil der luminalen Oberfläche von dem äußeren Transplantat zur Verfügung gestellt wird, was zu einer verbesserten Heilung führt, da nur eine einzige Schicht aus ePTFE Körpergewebe von dem Blut trennt. In gleicher Art und Weise ist eine Struktur mit zwei spitzenartigen oder geschlitzten Transplantaten möglich. Indem die Öffnungen in einem Transplantat außer Phase mit, denen in dem anderen Transplantat gehalten werden, ergibt sich eine blutdichte Struktur. Nichts desto weniger würde ein Hauptteil der endgültigen Oberfläche der Einrichtung eine einzige Schicht aufweisen, in die Körpergewebe von dem kreisenden Blut trennen würde. Nur in dem Bereich, der tatsächlich von dem Stent oder den Stents eingenommen wird, und durch Überlappen zwischen den beiden Transplantaten, würde eine Sperre für die zellulare Infiltrierung bilden. Außerdem hätte eine solche Struktur ein kleineres Profil, wenn sie komprimiert ist, weil die gesamte Menge an PTFE reduziert ist. In gleicher Art und Weise könnte eine Kombination des spitzenartige Transplantats und des geschlitzten Transplantats verwendet werden.
  • Zickzackförmige Stentringe sind beschrieben worden, aber die oben erläuterten Konzepte der Erfindung sind genauso anwendbar auf sinusförmige und andere Stent-Ausgestaltungen. Die beschriebenen Ausführungsformen sollen eher erläuternd als beschränkend verstanden werden. Die Erfindung wird weiter durch die nun folgenden Ansprüche definiert.

Claims (6)

  1. Verfahren zur Herstellung eines teilweise eingekapselten radial ausdehnbaren verstärkten Gefäßimplantats (10), mit den folgenden Schritten: Vorsehen einer ersten ausgedehnten Polytetrafluorethylenmaterialschicht (20), Vorsehen einer zweiten ausgedehnten Polytetrafluorethylenmaterialschicht (40, 42, 50, 60, 70), Anordnen einer radial ausdehnbaren aus mindestens einem Stent (30) bestehenden Stützschicht über der ersten ausgedehnten Polytetrafluorethylenschicht, Platzieren der zweiten ausgedehnten Polytetrafluorethylenschicht (40, 42, 50, 60, 70) über der radial ausdehnbaren Stützschicht (30) und Laminieren der zweiten ausgedehnten Polytetrafluorethylenschicht (40, 42, 50, 60, 70) auf die erste ausgedehnte Polytetrafluorethylenschicht, gekennzeichnet durch: das Schneiden von mehreren Öffnungen (44, 52, 62, 72) in eine der ausgedehnten Polytetrafluorethylenschichten (20, 40, 42, 50, 60, 70) und das Positionieren der Öffnungen (44, 52, 62, 72) in Bezug zu der Stützschicht, wobei Bereiche der Stützschicht durch die Öffnungen hindurch freiliegend gelassen werden.
  2. Verfahren nach Anspruch 1, wobei die radial ausdehnbare Stützschicht aus mehreren Ringstents (30) besteht, die in einem Zick-Zack-Muster aus sich abwechselnden Spitzen und Tälern ausgebildet sind, wobei der Schritt des Anordnens außerdem das Anordnen der Spitzen und Täler von aufeinanderfolgenden Stents in Phase beinhaltet.
  3. Verfahren nach Anspruch 1 oder 2, des Weiteren mit dem Schritt des vollständigen Einkapselns von zumindest einem Ende des radial ausdehnbaren verstärkten Gefäßimplantats.
  4. Verfahren zur Herstellung eines teilweise eingekapselten radial ausdehnbaren verstärkten Gefäßimplantats, mit den folgenden Schritten: Vorsehen einer ersten ausgedehnten Polytetrafluorethylenmaterialschicht (20), Vorsehen einer zweiten ausgedehnten Polytetrafluorethylenmaterialschicht (40), Anordnen einer radial ausdehnbaren Stützschicht, die zumindest einen Stent (30) über der ersten ausgedehnten Polytetrafluorethylenschicht (20) einschließt, Platzieren der zweiten ausgedehnten Polytetrafluorethylenschicht (40, 42, 50, 60, 70) über der radial ausdehnbaren Stützschicht (30) und Laminieren der zweiten ausgedehnten Polytetrafluorethylenschicht (40, 42, 50, 60, 70) auf die erste ausgedehnte Polytetrafluorethylenschicht (20), gekennzeichnet durch das Schneiden von mehreren Schlitzen (52, 62, 72) in zumindest eine der röhrenförmigen ausgedehnten Polytetrafluorethylenschichten (50, 60, 70) bevor diese als Teil des radial ausdehnbaren, verstärkten Gefäßimplantats positioniert werden, und Positionieren der Schlitze (52, 62, 72), sodass sie zumindest Bereiche der radial ausdehnbaren Stützschicht überspannen.
  5. Verfahren nach Anspruch 4, wobei die radial ausdehnbare Stützschicht mehrere Ringstents (30) aufweist, die in einem Zick-Zack-Muster aus sich abwechselnden Spitzen und Tälern ausgebildet sind, wobei der Schritt des Anordnens außerdem das Anordnen der Spitzen und Täler von aufeinanderfolgenden Stents in Phase aufweist.
  6. Verfahren nach Anspruch 4 oder 5, des Weiteren mit dem Schritt des vollständigen Einkapselns zumindest eines Endes des radial ausdehnbaren verstärkten Gefäßimplantats.
DE60002161T 1999-02-02 2000-02-02 Teileinkapselung von stents Expired - Lifetime DE60002161T3 (de)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US11826999P 1999-02-02 1999-02-02
US118269P 1999-02-02
US09/388,496 US6398803B1 (en) 1999-02-02 1999-09-02 Partial encapsulation of stents
US388496 1999-09-02
EP00915745.4A EP1148843B2 (de) 1999-02-02 2000-02-02 Teileinkapselung von stents
PCT/US2000/002884 WO2000045741A1 (en) 1999-02-02 2000-02-02 Partial encapsulation of stents

Publications (3)

Publication Number Publication Date
DE60002161D1 DE60002161D1 (de) 2003-05-22
DE60002161T2 DE60002161T2 (de) 2003-12-04
DE60002161T3 true DE60002161T3 (de) 2013-12-24

Family

ID=26816146

Family Applications (1)

Application Number Title Priority Date Filing Date
DE60002161T Expired - Lifetime DE60002161T3 (de) 1999-02-02 2000-02-02 Teileinkapselung von stents

Country Status (9)

Country Link
US (6) US6398803B1 (de)
EP (1) EP1148843B2 (de)
JP (1) JP4248151B2 (de)
AT (1) ATE237287T1 (de)
CA (1) CA2371964C (de)
DE (1) DE60002161T3 (de)
ES (1) ES2195883T3 (de)
MX (1) MXPA01007790A (de)
WO (1) WO2000045741A1 (de)

Families Citing this family (219)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6051020A (en) 1994-02-09 2000-04-18 Boston Scientific Technology, Inc. Bifurcated endoluminal prosthesis
US5609627A (en) * 1994-02-09 1997-03-11 Boston Scientific Technology, Inc. Method for delivering a bifurcated endoluminal prosthesis
US7204848B1 (en) 1995-03-01 2007-04-17 Boston Scientific Scimed, Inc. Longitudinally flexible expandable stent
US6579314B1 (en) * 1995-03-10 2003-06-17 C.R. Bard, Inc. Covered stent with encapsulated ends
US6264684B1 (en) 1995-03-10 2001-07-24 Impra, Inc., A Subsidiary Of C.R. Bard, Inc. Helically supported graft
US6451047B2 (en) 1995-03-10 2002-09-17 Impra, Inc. Encapsulated intraluminal stent-graft and methods of making same
US5961545A (en) * 1997-01-17 1999-10-05 Meadox Medicals, Inc. EPTFE graft-stent composite device
US6395019B2 (en) 1998-02-09 2002-05-28 Trivascular, Inc. Endovascular graft
US7491232B2 (en) * 1998-09-18 2009-02-17 Aptus Endosystems, Inc. Catheter-based fastener implantation apparatus and methods with implantation force resolution
US7128073B1 (en) 1998-11-06 2006-10-31 Ev3 Endovascular, Inc. Method and device for left atrial appendage occlusion
US7044134B2 (en) 1999-11-08 2006-05-16 Ev3 Sunnyvale, Inc Method of implanting a device in the left atrial appendage
US8382821B2 (en) * 1998-12-03 2013-02-26 Medinol Ltd. Helical hybrid stent
US20060122691A1 (en) * 1998-12-03 2006-06-08 Jacob Richter Hybrid stent
US20040267349A1 (en) 2003-06-27 2004-12-30 Kobi Richter Amorphous metal alloy medical devices
US7018401B1 (en) 1999-02-01 2006-03-28 Board Of Regents, The University Of Texas System Woven intravascular devices and methods for making the same and apparatus for delivery of the same
US6398803B1 (en) * 1999-02-02 2002-06-04 Impra, Inc., A Subsidiary Of C.R. Bard, Inc. Partial encapsulation of stents
US6673103B1 (en) 1999-05-20 2004-01-06 Scimed Life Systems, Inc. Mesh and stent for increased flexibility
US6652570B2 (en) 1999-07-02 2003-11-25 Scimed Life Systems, Inc. Composite vascular graft
US7220281B2 (en) 1999-08-18 2007-05-22 Intrinsic Therapeutics, Inc. Implant for reinforcing and annulus fibrosis
WO2009033100A1 (en) 2007-09-07 2009-03-12 Intrinsic Therapeutics, Inc. Bone anchoring systems
WO2004100841A1 (en) 1999-08-18 2004-11-25 Intrinsic Therapeutics, Inc. Devices and method for augmenting a vertebral disc nucleus
US7972337B2 (en) 2005-12-28 2011-07-05 Intrinsic Therapeutics, Inc. Devices and methods for bone anchoring
US8323341B2 (en) 2007-09-07 2012-12-04 Intrinsic Therapeutics, Inc. Impaction grafting for vertebral fusion
US6936072B2 (en) 1999-08-18 2005-08-30 Intrinsic Therapeutics, Inc. Encapsulated intervertebral disc prosthesis and methods of manufacture
US7717961B2 (en) 1999-08-18 2010-05-18 Intrinsic Therapeutics, Inc. Apparatus delivery in an intervertebral disc
US7998213B2 (en) 1999-08-18 2011-08-16 Intrinsic Therapeutics, Inc. Intervertebral disc herniation repair
US7553329B2 (en) 1999-08-18 2009-06-30 Intrinsic Therapeutics, Inc. Stabilized intervertebral disc barrier
CA2425951C (en) 1999-08-18 2008-09-16 Intrinsic Therapeutics, Inc. Devices and method for nucleus pulposus augmentation and retention
US6994092B2 (en) * 1999-11-08 2006-02-07 Ev3 Sunnyvale, Inc. Device for containing embolic material in the LAA having a plurality of tissue retention structures
US6652567B1 (en) * 1999-11-18 2003-11-25 David H. Deaton Fenestrated endovascular graft
US6964676B1 (en) 2000-04-14 2005-11-15 Scimed Life Systems, Inc. Stent securement system
US8845713B2 (en) * 2000-05-12 2014-09-30 Advanced Bio Prosthetic Surfaces, Ltd., A Wholly Owned Subsidiary Of Palmaz Scientific, Inc. Self-supporting laminated films, structural materials and medical devices manufactured therefrom and methods of making same
US7118592B1 (en) 2000-09-12 2006-10-10 Advanced Cardiovascular Systems, Inc. Covered stent assembly for reduced-shortening during stent expansion
AU2002223326A1 (en) * 2000-11-17 2002-05-27 Raimund Erbel Endovascular prosthesis
US20040106972A1 (en) * 2000-11-20 2004-06-03 Deaton David H. Fenestrated endovascular graft
US6945991B1 (en) * 2000-11-28 2005-09-20 Boston Scientific/Scimed Life Systems, Inc. Composite tubular prostheses
US6673105B1 (en) * 2001-04-02 2004-01-06 Advanced Cardiovascular Systems, Inc. Metal prosthesis coated with expandable ePTFE
US20050148925A1 (en) 2001-04-20 2005-07-07 Dan Rottenberg Device and method for controlling in-vivo pressure
US20050177180A1 (en) 2001-11-28 2005-08-11 Aptus Endosystems, Inc. Devices, systems, and methods for supporting tissue and/or structures within a hollow body organ
US20090112303A1 (en) * 2001-11-28 2009-04-30 Lee Bolduc Devices, systems, and methods for endovascular staple and/or prosthesis delivery and implantation
EP1448117B1 (de) 2001-11-28 2013-05-22 Aptus Endosystems, Inc. Endovaskuläres system zum ausbessern eines aneurysmas
US20050070992A1 (en) * 2001-11-28 2005-03-31 Aptus Endosystems, Inc. Prosthesis systems and methods sized and configured for the receipt and retention of fasteners
US20070073389A1 (en) 2001-11-28 2007-03-29 Aptus Endosystems, Inc. Endovascular aneurysm devices, systems, and methods
US8231639B2 (en) 2001-11-28 2012-07-31 Aptus Endosystems, Inc. Systems and methods for attaching a prosthesis within a body lumen or hollow organ
US9320503B2 (en) 2001-11-28 2016-04-26 Medtronic Vascular, Inc. Devices, system, and methods for guiding an operative tool into an interior body region
US7125464B2 (en) 2001-12-20 2006-10-24 Boston Scientific Santa Rosa Corp. Method for manufacturing an endovascular graft section
US7090693B1 (en) 2001-12-20 2006-08-15 Boston Scientific Santa Rosa Corp. Endovascular graft joint and method for manufacture
US6776604B1 (en) * 2001-12-20 2004-08-17 Trivascular, Inc. Method and apparatus for shape forming endovascular graft material
US7147661B2 (en) 2001-12-20 2006-12-12 Boston Scientific Santa Rosa Corp. Radially expandable stent
US20030171801A1 (en) * 2002-03-06 2003-09-11 Brian Bates Partially covered intraluminal support device
US7288111B1 (en) * 2002-03-26 2007-10-30 Thoratec Corporation Flexible stent and method of making the same
US7691461B1 (en) * 2002-04-01 2010-04-06 Advanced Cardiovascular Systems, Inc. Hybrid stent and method of making
WO2004016199A1 (en) 2002-08-15 2004-02-26 Gmp Cardiac Care, Inc. Stent-graft with rails
US20040059406A1 (en) 2002-09-20 2004-03-25 Cully Edward H. Medical device amenable to fenestration
US7435255B1 (en) * 2002-11-13 2008-10-14 Advnaced Cardiovascular Systems, Inc. Drug-eluting stent and methods of making
US7150758B2 (en) * 2003-03-06 2006-12-19 Boston Scientific Santa Rosa Corp. Kink resistant endovascular graft
DE602004018282D1 (de) * 2003-03-17 2009-01-22 Ev3 Endovascular Inc Stent mit laminierter dünnfilmverbund
GB0309616D0 (en) 2003-04-28 2003-06-04 Angiomed Gmbh & Co Loading and delivery of self-expanding stents
US8021418B2 (en) * 2003-06-19 2011-09-20 Boston Scientific Scimed, Inc. Sandwiched radiopaque marker on covered stent
DE602004031612D1 (de) 2003-06-20 2011-04-14 Intrinsic Therapeutics Inc Vorrichtung zur abgabe eines implantats durch einen ringförmigen defekt in einer bandscheibe
US7131993B2 (en) * 2003-06-25 2006-11-07 Boston Scientific Scimed, Inc. Varying circumferential spanned connectors in a stent
US9039755B2 (en) 2003-06-27 2015-05-26 Medinol Ltd. Helical hybrid stent
US9155639B2 (en) 2009-04-22 2015-10-13 Medinol Ltd. Helical hybrid stent
DE10333511A1 (de) * 2003-07-17 2005-02-03 Biotronik Meß- und Therapiegeräte GmbH & Co. Ingenieurbüro Berlin Stentimplantationssystem sowie Gefässstütze
US7735493B2 (en) 2003-08-15 2010-06-15 Atritech, Inc. System and method for delivering a left atrial appendage containment device
GB0322511D0 (en) * 2003-09-25 2003-10-29 Angiomed Ag Lining for bodily lumen
US9078780B2 (en) * 2003-11-08 2015-07-14 Cook Medical Technologies Llc Balloon flareable branch vessel prosthesis and method
US20050137677A1 (en) * 2003-12-17 2005-06-23 Rush Scott L. Endovascular graft with differentiable porosity along its length
US7530994B2 (en) * 2003-12-30 2009-05-12 Scimed Life Systems, Inc. Non-porous graft with fastening elements
US7803178B2 (en) 2004-01-30 2010-09-28 Trivascular, Inc. Inflatable porous implants and methods for drug delivery
US20060142838A1 (en) * 2004-12-29 2006-06-29 Masoud Molaei Medical devices including metallic films and methods for loading and deploying same
US8992592B2 (en) * 2004-12-29 2015-03-31 Boston Scientific Scimed, Inc. Medical devices including metallic films
US20050197687A1 (en) * 2004-03-02 2005-09-08 Masoud Molaei Medical devices including metallic films and methods for making same
US8998973B2 (en) * 2004-03-02 2015-04-07 Boston Scientific Scimed, Inc. Medical devices including metallic films
US8632580B2 (en) * 2004-12-29 2014-01-21 Boston Scientific Scimed, Inc. Flexible medical devices including metallic films
US8591568B2 (en) * 2004-03-02 2013-11-26 Boston Scientific Scimed, Inc. Medical devices including metallic films and methods for making same
US7901447B2 (en) * 2004-12-29 2011-03-08 Boston Scientific Scimed, Inc. Medical devices including a metallic film and at least one filament
US20050216043A1 (en) * 2004-03-26 2005-09-29 Blatter Duane D Stented end graft vessel device for anastomosis and related methods for percutaneous placement
US20050223440A1 (en) * 2004-03-31 2005-10-06 Council Of Scientific And Industrial Research Tissue culture process for producing cotton plants
US8048140B2 (en) * 2004-03-31 2011-11-01 Cook Medical Technologies Llc Fenestrated intraluminal stent system
US8034096B2 (en) 2004-03-31 2011-10-11 Cook Medical Technologies Llc Stent-graft with graft to graft attachment
US9358141B2 (en) 2004-03-31 2016-06-07 Cook Medical Technologies Llc Stent deployment device
US20050230039A1 (en) * 2004-04-19 2005-10-20 Michael Austin Stent with protective pads or bulges
US7955373B2 (en) * 2004-06-28 2011-06-07 Boston Scientific Scimed, Inc. Two-stage stent-graft and method of delivering same
WO2006071244A1 (en) * 2004-12-29 2006-07-06 Boston Scientific Limited Medical devices including metallic films and methods for making the same
ES2671416T3 (es) 2005-05-13 2018-06-06 Boston Scientific Limited Stent integrado que presenta un bucle de reposicionamiento y / o recuperación
US7854760B2 (en) * 2005-05-16 2010-12-21 Boston Scientific Scimed, Inc. Medical devices including metallic films
AU2006275881B2 (en) * 2005-07-27 2012-04-12 Cook Medical Technologies Llc Stent/graft device and method for open surgical placement
DE602006019753D1 (de) * 2005-09-01 2011-03-03 Medtronic Vascular Inc Verfahren und gerät zur behandlung von aneurysmen der a. thoracica
US7972359B2 (en) 2005-09-16 2011-07-05 Atritech, Inc. Intracardiac cage and method of delivering same
WO2007040485A1 (en) * 2005-09-22 2007-04-12 Novovascular, Inc. Stent covered by a layer having a layer opening
CN101466316B (zh) 2005-10-20 2012-06-27 阿普特斯内系统公司 包括使用固定件工具的用于修复物递送和植入的装置、系统和方法
US20070135826A1 (en) 2005-12-01 2007-06-14 Steve Zaver Method and apparatus for delivering an implant without bias to a left atrial appendage
US9681948B2 (en) 2006-01-23 2017-06-20 V-Wave Ltd. Heart anchor device
EP1978893A2 (de) * 2006-02-03 2008-10-15 Design & Performance - Cyprus Limited Implantierbare transplantatanordnung und aneurysmabehandlung
CA2643720A1 (en) * 2006-02-28 2007-09-07 Debra A. Bebb Flexible stretch stent-graft
US8025693B2 (en) * 2006-03-01 2011-09-27 Boston Scientific Scimed, Inc. Stent-graft having flexible geometries and methods of producing the same
WO2008027188A2 (en) * 2006-08-29 2008-03-06 C. R. Bard, Inc. Helical high fatigue stent-graft
US7988720B2 (en) 2006-09-12 2011-08-02 Boston Scientific Scimed, Inc. Longitudinally flexible expandable stent
WO2008033678A2 (en) * 2006-09-14 2008-03-20 C. R. Bard, Inc. Compressed inner covering hinged segmented stent-graft
US20100016946A1 (en) * 2006-09-18 2010-01-21 C.R. Bard, Inc Single layer eptfe and discrete bioresorbable rings
KR101659197B1 (ko) 2006-10-22 2016-09-22 이데브 테크놀로지스, 아이엔씨. 스텐트 전진을 위한 장치 및 방법
CA2667318C (en) 2006-10-22 2016-09-13 Idev Technologies, Inc. Methods for securing strand ends and the resulting devices
US9622888B2 (en) * 2006-11-16 2017-04-18 W. L. Gore & Associates, Inc. Stent having flexibly connected adjacent stent elements
EP2166983A4 (de) * 2007-06-22 2012-08-22 Bard Inc C R Vorschiebbare stentprothese mit blockierten segmenten
CA2691064C (en) * 2007-06-22 2015-11-24 David L. Bogert Helical and segmented stent-graft
US8906081B2 (en) 2007-09-13 2014-12-09 W. L. Gore & Associates, Inc. Stented vascular graft
US8663309B2 (en) 2007-09-26 2014-03-04 Trivascular, Inc. Asymmetric stent apparatus and method
US8226701B2 (en) 2007-09-26 2012-07-24 Trivascular, Inc. Stent and delivery system for deployment thereof
US8066755B2 (en) 2007-09-26 2011-11-29 Trivascular, Inc. System and method of pivoted stent deployment
US20090088833A1 (en) * 2007-09-28 2009-04-02 Maximiliano Soetermans Double wall stent with retrieval member
JP2010540190A (ja) 2007-10-04 2010-12-24 トリバスキュラー・インコーポレイテッド 低プロファイル経皮的送達のためのモジュラー式血管グラフト
JP2011500283A (ja) 2007-10-26 2011-01-06 クック クリティカル ケア インコーポレーテッド 開放手術で設置される脈管導管及び送達システム
US8083789B2 (en) 2007-11-16 2011-12-27 Trivascular, Inc. Securement assembly and method for expandable endovascular device
US8328861B2 (en) 2007-11-16 2012-12-11 Trivascular, Inc. Delivery system and method for bifurcated graft
US8795577B2 (en) 2007-11-30 2014-08-05 Cook Medical Technologies Llc Needle-to-needle electrospinning
WO2009086015A2 (en) * 2007-12-21 2009-07-09 Boston Scientific Scimed, Inc. Flexible stent-graft device having patterned polymeric coverings
US8926688B2 (en) 2008-01-11 2015-01-06 W. L. Gore & Assoc. Inc. Stent having adjacent elements connected by flexible webs
US8196279B2 (en) 2008-02-27 2012-06-12 C. R. Bard, Inc. Stent-graft covering process
US20090259290A1 (en) * 2008-04-14 2009-10-15 Medtronic Vascular, Inc. Fenestration Segment Stent-Graft and Fenestration Method
JP2011519300A (ja) * 2008-05-01 2011-07-07 アニュクローズ エルエルシー 動脈瘤閉塞装置
US10716573B2 (en) 2008-05-01 2020-07-21 Aneuclose Janjua aneurysm net with a resilient neck-bridging portion for occluding a cerebral aneurysm
US10028747B2 (en) 2008-05-01 2018-07-24 Aneuclose Llc Coils with a series of proximally-and-distally-connected loops for occluding a cerebral aneurysm
US10898620B2 (en) 2008-06-20 2021-01-26 Razmodics Llc Composite stent having multi-axial flexibility and method of manufacture thereof
US8206635B2 (en) 2008-06-20 2012-06-26 Amaranth Medical Pte. Stent fabrication via tubular casting processes
US20100042202A1 (en) * 2008-08-13 2010-02-18 Kamal Ramzipoor Composite stent having multi-axial flexibility
DE202008009604U1 (de) * 2008-07-17 2008-11-27 Sahl, Harald, Dr. Membranimplantat zur Behandlung von Hirnarterienaneurysmen
GB0816965D0 (en) * 2008-09-16 2008-10-22 Angiomed Ag Stent device adhesively bonded to a stent device pusher
CA2740867C (en) 2008-10-16 2018-06-12 Aptus Endosystems, Inc. Devices, systems, and methods for endovascular staple and/or prosthesis delivery and implantation
US20100100170A1 (en) * 2008-10-22 2010-04-22 Boston Scientific Scimed, Inc. Shape memory tubular stent with grooves
US20100131002A1 (en) * 2008-11-24 2010-05-27 Connor Robert A Stent with a net layer to embolize and aneurysm
US20130268062A1 (en) 2012-04-05 2013-10-10 Zeus Industrial Products, Inc. Composite prosthetic devices
GB0901496D0 (en) 2009-01-29 2009-03-11 Angiomed Ag Delivery device for delivering a stent device
AU2014240264B2 (en) * 2009-04-22 2016-05-26 Medinol Ltd. Helical hybrid stent
US10076403B1 (en) 2009-05-04 2018-09-18 V-Wave Ltd. Shunt for redistributing atrial blood volume
US20210161637A1 (en) 2009-05-04 2021-06-03 V-Wave Ltd. Shunt for redistributing atrial blood volume
US9034034B2 (en) 2010-12-22 2015-05-19 V-Wave Ltd. Devices for reducing left atrial pressure, and methods of making and using same
EP2427143B1 (de) 2009-05-04 2017-08-02 V-Wave Ltd. Vorrichtung zur druckregelung in einer herzkammer
GB0909319D0 (en) 2009-05-29 2009-07-15 Angiomed Ag Transluminal delivery system
JP5456892B2 (ja) 2009-08-07 2014-04-02 ゼウス インダストリアル プロダクツ インコーポレイテッド 多層複合体
JP5638614B2 (ja) 2009-09-14 2014-12-10 サーキュライト・インコーポレーテッド 血管内吻合コネクタデバイス、供給システム、ならびに供給および使用方法
ES2623399T3 (es) 2009-09-22 2017-07-11 Doheny Eye Institute Sistemas y dispositivos de cánula ajustable
US8333727B2 (en) * 2009-10-08 2012-12-18 Circulite, Inc. Two piece endovascular anastomotic connector
US9358140B1 (en) 2009-11-18 2016-06-07 Aneuclose Llc Stent with outer member to embolize an aneurysm
US8637109B2 (en) * 2009-12-03 2014-01-28 Cook Medical Technologies Llc Manufacturing methods for covering endoluminal prostheses
DE102009060280B4 (de) * 2009-12-23 2011-09-22 Acandis Gmbh & Co. Kg Medizinisches Implantat und Verfahren zum Herstellen eines derartigen Implantats
EP2519189B1 (de) 2009-12-28 2014-05-07 Cook Medical Technologies LLC Endoluminale vorrichtung mit knickfesten bereichen
US8906057B2 (en) * 2010-01-04 2014-12-09 Aneuclose Llc Aneurysm embolization by rotational accumulation of mass
US9750866B2 (en) 2010-02-11 2017-09-05 Circulite, Inc. Cannula lined with tissue in-growth material
US9504776B2 (en) * 2010-02-11 2016-11-29 Circulite, Inc. Cannula lined with tissue in-growth material and method of using the same
US9023095B2 (en) 2010-05-27 2015-05-05 Idev Technologies, Inc. Stent delivery system with pusher assembly
US8425548B2 (en) 2010-07-01 2013-04-23 Aneaclose LLC Occluding member expansion and then stent expansion for aneurysm treatment
WO2012085807A1 (en) * 2010-12-19 2012-06-28 Inspiremd Ltd. Stent with sheath and metal wire retainer
US9138232B2 (en) 2011-05-24 2015-09-22 Aneuclose Llc Aneurysm occlusion by rotational dispensation of mass
US11135054B2 (en) 2011-07-28 2021-10-05 V-Wave Ltd. Interatrial shunts having biodegradable material, and methods of making and using same
US9662196B2 (en) * 2011-09-27 2017-05-30 Cook Medical Technologies Llc Endoluminal prosthesis with steerable branch
US10426642B2 (en) 2011-10-10 2019-10-01 National University Of Singapore Membrane for covering a peripheral surface of a stent
US9227388B2 (en) 2011-10-10 2016-01-05 W. L. Gore & Associates, Inc. Devices and methods for attaching support frames to substrates
US9175427B2 (en) 2011-11-14 2015-11-03 Cook Medical Technologies Llc Electrospun patterned stent graft covering
CA2863980A1 (en) * 2012-02-14 2013-08-22 Neograft Technologies, Inc. Kink resistant graft devices and related systems and methods
US8992595B2 (en) 2012-04-04 2015-03-31 Trivascular, Inc. Durable stent graft with tapered struts and stable delivery methods and devices
US9498363B2 (en) 2012-04-06 2016-11-22 Trivascular, Inc. Delivery catheter for endovascular device
JP2015536185A (ja) * 2012-10-23 2015-12-21 ゾリオン メディカル インコーポレイテッド 完全吸収性の管腔内装具およびその製造方法
US10154918B2 (en) * 2012-12-28 2018-12-18 Cook Medical Technologies Llc Endoluminal prosthesis with fiber matrix
EP2958526A4 (de) * 2013-02-25 2016-10-05 Univ California Dünnschicht-gefässstent für arteriellen erkrankungen
EP3335677A1 (de) * 2013-03-14 2018-06-20 Medinol Ltd. Spiralförmiger hybridstent
US20140277467A1 (en) 2013-03-14 2014-09-18 Spinal Stabilization Technologies, Llc Prosthetic Spinal Disk Nucleus
US9907684B2 (en) 2013-05-08 2018-03-06 Aneuclose Llc Method of radially-asymmetric stent expansion
EP2999412B1 (de) 2013-05-21 2020-05-06 V-Wave Ltd. Vorrichtung zur freisetzung von vorrichtungen zur reduzierung von linksatrialem druck
US9999542B2 (en) 2014-07-16 2018-06-19 Doheny Eye Institute Systems, methods, and devices for cannula insertion
WO2016073587A1 (en) 2014-11-04 2016-05-12 Spinal Stabilization Technologies Llc Percutaneous implantable nuclear prosthesis
PL3215067T3 (pl) 2014-11-04 2020-11-02 Spinal Stabilization Technologies Llc Implantowana przezskórnie proteza jądra
US10299948B2 (en) 2014-11-26 2019-05-28 W. L. Gore & Associates, Inc. Balloon expandable endoprosthesis
WO2016109597A2 (en) 2014-12-31 2016-07-07 C.R. Bard, Inc. Expandable stent with constrained end
JP6436572B2 (ja) * 2015-03-13 2018-12-12 テルモ株式会社 医療用装置
US10940296B2 (en) 2015-05-07 2021-03-09 The Medical Research, Infrastructure and Health Services Fund of the Tel Aviv Medical Center Temporary interatrial shunts
CN107530162B (zh) * 2015-05-11 2020-01-24 曲瓦斯库勒股份有限公司 具有提高的柔韧性的支架移植物
EP4233873A3 (de) 2015-06-29 2023-10-18 Lyra Therapeutics, Inc. Implantierbare gerüste zur behandlung von sinusitis
EP3313330A4 (de) 2015-06-29 2019-03-20 480 Biomedical, Inc. Gerüstlade- und -abgabesysteme
US10232082B2 (en) 2015-06-29 2019-03-19 480 Biomedical, Inc. Implantable scaffolds for treatment of sinusitis
KR101772482B1 (ko) * 2015-07-27 2017-08-29 (주) 태웅메디칼 미끄럼 방지 기능이 향상된 스텐트
CA2997117A1 (en) 2015-09-01 2017-03-09 Spinal Stabilization Technologies Llc Implantable nuclear prosthesis
US10076430B2 (en) * 2015-10-19 2018-09-18 Cook Medical Technologies Llc Devce with tensioners
GB201518888D0 (en) * 2015-10-24 2015-12-09 Smiths Medical Int Ltd Medico-surgical tubes and their manufacture
US9486323B1 (en) 2015-11-06 2016-11-08 Spinal Stabilization Technologies Llc Nuclear implant apparatus and method following partial nuclectomy
US10973664B2 (en) 2015-12-30 2021-04-13 Lyra Therapeutics, Inc. Scaffold loading and delivery systems
US10568752B2 (en) 2016-05-25 2020-02-25 W. L. Gore & Associates, Inc. Controlled endoprosthesis balloon expansion
US20170340460A1 (en) 2016-05-31 2017-11-30 V-Wave Ltd. Systems and methods for making encapsulated hourglass shaped stents
US10835394B2 (en) 2016-05-31 2020-11-17 V-Wave, Ltd. Systems and methods for making encapsulated hourglass shaped stents
CN109414332B (zh) * 2016-06-23 2020-07-31 M.I.泰克株式会社 用于消化器官的多孔支架
WO2018026904A1 (en) 2016-08-03 2018-02-08 Spence Paul A Devices, systems and methods to improve placement and prevent heart block with percutaneous aortic valve replacement
US11291807B2 (en) 2017-03-03 2022-04-05 V-Wave Ltd. Asymmetric shunt for redistributing atrial blood volume
AU2018228451B2 (en) 2017-03-03 2022-12-08 V-Wave Ltd. Shunt for redistributing atrial blood volume
US10335264B2 (en) * 2017-03-10 2019-07-02 Byung Choo Moon Vascular graft
CN110831520B (zh) 2017-04-27 2022-11-15 波士顿科学国际有限公司 具有织物保持倒钩的闭塞医疗装置
US10201639B2 (en) 2017-05-01 2019-02-12 480 Biomedical, Inc. Drug-eluting medical implants
US10869747B2 (en) 2017-05-10 2020-12-22 Cook Medical Technologies Llc Side branch aortic repair graft with wire lumen
CA3078496C (en) * 2017-10-09 2023-02-28 W. L. Gore & Associates, Inc. Matched stent cover
WO2019128703A1 (zh) * 2017-12-27 2019-07-04 先健科技(深圳)有限公司 覆膜支架
WO2019131559A1 (ja) * 2017-12-28 2019-07-04 川澄化学工業株式会社 管状留置具及び管状留置具留置装置
US11744589B2 (en) 2018-01-20 2023-09-05 V-Wave Ltd. Devices and methods for providing passage between heart chambers
US10898698B1 (en) 2020-05-04 2021-01-26 V-Wave Ltd. Devices with dimensions that can be reduced and increased in vivo, and methods of making and using the same
US11458287B2 (en) 2018-01-20 2022-10-04 V-Wave Ltd. Devices with dimensions that can be reduced and increased in vivo, and methods of making and using the same
US11284989B2 (en) * 2018-04-24 2022-03-29 Medtronic Vascular, Inc. Stent-graft prosthesis with pressure relief channels
CA3101217C (en) 2018-06-11 2023-03-28 Boston Scientific Scimed, Inc. Sphincterotomes and methods for using sphincterotomes
WO2020041437A1 (en) 2018-08-21 2020-02-27 Boston Scientific Scimed, Inc. Projecting member with barb for cardiovascular devices
JP7457712B2 (ja) 2018-09-04 2024-03-28 スパイナル スタビライゼーション テクノロジーズ リミテッド ライアビリティ カンパニー 植込み可能な髄核補綴物、キット、および関連する方法
US11612385B2 (en) 2019-04-03 2023-03-28 V-Wave Ltd. Systems and methods for delivering implantable devices across an atrial septum
US11865282B2 (en) 2019-05-20 2024-01-09 V-Wave Ltd. Systems and methods for creating an interatrial shunt
EP3998962A1 (de) 2019-07-17 2022-05-25 Boston Scientific Scimed, Inc. Linkes herzohrimplantat mit kontinuierlicher abdeckung
EP3986284A1 (de) 2019-08-30 2022-04-27 Boston Scientific Scimed, Inc. Implantat für den linken vorhofanhang mit dichtungsscheibe
CN110575282A (zh) * 2019-09-26 2019-12-17 杭州心桥医疗科技有限公司 覆膜支架用结构及覆膜支架
CN112891019B (zh) * 2019-12-03 2022-09-20 深圳市先健畅通医疗有限公司 覆膜支架
EP4125634A1 (de) 2020-03-24 2023-02-08 Boston Scientific Scimed Inc. Medizinisches system zur behandlung eines linken herzohrs
WO2022042820A1 (en) * 2020-08-24 2022-03-03 Angiomed Gmbh & Co. Medizintechnik Kg Method of making a highly flexible stent graft and stent graft
US11944557B2 (en) 2020-08-31 2024-04-02 Boston Scientific Scimed, Inc. Self expanding stent with covering
US11234702B1 (en) 2020-11-13 2022-02-01 V-Wave Ltd. Interatrial shunt having physiologic sensor
WO2023127943A1 (ja) * 2021-12-28 2023-07-06 日本ゼオン株式会社 消化器系ステント
US11813386B2 (en) 2022-04-14 2023-11-14 V-Wave Ltd. Interatrial shunt with expanded neck region

Family Cites Families (291)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US612897A (en) * 1898-10-25 Construction of tubes and cylinders
US1505591A (en) * 1923-06-06 1924-08-19 Thomas H Edelblute Block for car wheels
US2642625A (en) * 1950-06-23 1953-06-23 Sprague Electric Co Process for producing thin polytetrahaloethylene films
US3027601A (en) * 1957-07-22 1962-04-03 Minnesota Mining & Mfg Polytetrafluoroethylene films and method for making same
US3105492A (en) * 1958-10-01 1963-10-01 Us Catheter & Instr Corp Synthetic blood vessel grafts
US3060517A (en) * 1959-08-18 1962-10-30 Du Pont Fabrication of massive shaped articles of polytetrafluoroethylene
BE607748A (de) * 1960-09-02
US3281511A (en) * 1964-05-15 1966-10-25 Gen Plastics Corp Method of preparing microporous tetrafluoroethylene resin sheets
US3196194A (en) * 1964-06-04 1965-07-20 Pennsylvania Fluorocarbon Co I Fep-fluorocarbon tubing process
US3304557A (en) * 1965-09-28 1967-02-21 Ethicon Inc Surgical prosthesis
US3887761A (en) * 1967-09-07 1975-06-03 Gore & Ass Tape wrapped conductor
US3657744A (en) * 1970-05-08 1972-04-25 Univ Minnesota Method for fixing prosthetic implants in a living body
US3767500A (en) * 1971-12-28 1973-10-23 Tme Corp Method of laminating long strips of various materials
US3992725A (en) * 1973-11-16 1976-11-23 Homsy Charles A Implantable material and appliances and method of stabilizing body implants
US6436135B1 (en) 1974-10-24 2002-08-20 David Goldfarb Prosthetic vascular graft
US4061517A (en) * 1975-08-27 1977-12-06 Chemelec Products, Inc. Method of making fluorocarbon resin covered gaskets
JPS5360979A (en) * 1976-11-11 1978-05-31 Daikin Ind Ltd Polytetrafluoroethylene fine powder and its preparation
JPS6037734B2 (ja) * 1978-10-12 1985-08-28 住友電気工業株式会社 管状臓器補綴材及びその製造方法
DE3019996A1 (de) * 1980-05-24 1981-12-03 Institute für Textil- und Faserforschung Stuttgart, 7410 Reutlingen Hohlorgan
US4324574A (en) 1980-12-19 1982-04-13 E. I. Du Pont De Nemours And Company Felt-like layered composite of PTFE and glass paper
US4416028A (en) * 1981-01-22 1983-11-22 Ingvar Eriksson Blood vessel prosthesis
US4604762A (en) * 1981-02-13 1986-08-12 Thoratec Laboratories Corporation Arterial graft prosthesis
US4596837A (en) * 1982-02-22 1986-06-24 Daikin Industries Ltd. Semisintered polytetrafluoroethylene article and production thereof
SE445884B (sv) 1982-04-30 1986-07-28 Medinvent Sa Anordning for implantation av en rorformig protes
US4482516A (en) * 1982-09-10 1984-11-13 W. L. Gore & Associates, Inc. Process for producing a high strength porous polytetrafluoroethylene product having a coarse microstructure
JPS59109534A (ja) * 1982-12-14 1984-06-25 Nitto Electric Ind Co Ltd ポリテトラフルオロエチレン多孔質体
JPS59109506A (ja) * 1982-12-14 1984-06-25 Daikin Ind Ltd 新規なポリテトラフルオロエチレン・フアインパウダ−
US4512338A (en) * 1983-01-25 1985-04-23 Balko Alexander B Process for restoring patency to body vessels
US4503569A (en) * 1983-03-03 1985-03-12 Dotter Charles T Transluminally placed expandable graft prosthesis
US4647416A (en) * 1983-08-03 1987-03-03 Shiley Incorporated Method of preparing a vascular graft prosthesis
US5067957A (en) * 1983-10-14 1991-11-26 Raychem Corporation Method of inserting medical devices incorporating SIM alloy elements
US5190546A (en) 1983-10-14 1993-03-02 Raychem Corporation Medical devices incorporating SIM alloy elements
US4665906A (en) * 1983-10-14 1987-05-19 Raychem Corporation Medical devices incorporating sim alloy elements
DE3345513A1 (de) * 1983-12-16 1985-07-04 B. Braun Melsungen Ag, 3508 Melsungen Verfahren zur herstellung einer gefaessprothese
DE3566498D1 (en) * 1984-03-01 1989-01-05 Kanegafuchi Chemical Ind Artificial vessel and process for preparing the same
US4580568A (en) * 1984-10-01 1986-04-08 Cook, Incorporated Percutaneous endovascular stent and method for insertion thereof
US4655769A (en) * 1984-10-24 1987-04-07 Zachariades Anagnostis E Ultra-high-molecular-weight polyethylene products including vascular prosthesis devices and methods relating thereto and employing pseudo-gel states
US4629458A (en) * 1985-02-26 1986-12-16 Cordis Corporation Reinforcing structure for cardiovascular graft
US5102417A (en) * 1985-11-07 1992-04-07 Expandable Grafts Partnership Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
US4733665C2 (en) * 1985-11-07 2002-01-29 Expandable Grafts Partnership Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft
DE3640745A1 (de) * 1985-11-30 1987-06-04 Ernst Peter Prof Dr M Strecker Katheter zum herstellen oder erweitern von verbindungen zu oder zwischen koerperhohlraeumen
FR2600524B1 (fr) * 1986-01-13 1991-10-18 Galtier Claude Oesophage artificiel.
US4767418A (en) * 1986-02-13 1988-08-30 California Institute Of Technology Luminal surface fabrication for cardiovascular prostheses
SE453258B (sv) * 1986-04-21 1988-01-25 Medinvent Sa Elastisk, sjelvexpanderande protes samt forfarande for dess framstellning
JPS62279920A (ja) * 1986-05-28 1987-12-04 Daikin Ind Ltd 多孔質熱収縮性テトラフルオロエチレン重合体管及びその製造方法
US5071609A (en) * 1986-11-26 1991-12-10 Baxter International Inc. Process of manufacturing porous multi-expanded fluoropolymers
US4907336A (en) * 1987-03-13 1990-03-13 Cook Incorporated Method of making an endovascular stent and delivery system
US5061276A (en) * 1987-04-28 1991-10-29 Baxter International Inc. Multi-layered poly(tetrafluoroethylene)/elastomer materials useful for in vivo implantation
US4816339A (en) * 1987-04-28 1989-03-28 Baxter International Inc. Multi-layered poly(tetrafluoroethylene)/elastomer materials useful for in vivo implantation
US5143085A (en) * 1987-05-13 1992-09-01 Wilson Bruce C Steerable memory alloy guide wires
US4969458A (en) * 1987-07-06 1990-11-13 Medtronic, Inc. Intracoronary stent and method of simultaneous angioplasty and stent implant
US5171805A (en) * 1987-08-05 1992-12-15 Daikin Industries Ltd. Modified polytetrafluoroethylene and process for preparing the same
US4886062A (en) * 1987-10-19 1989-12-12 Medtronic, Inc. Intravascular radially expandable stent and method of implant
US5133732A (en) 1987-10-19 1992-07-28 Medtronic, Inc. Intravascular stent
US4820298A (en) * 1987-11-20 1989-04-11 Leveen Eric G Internal vascular prosthesis
US5192307A (en) * 1987-12-08 1993-03-09 Wall W Henry Angioplasty stent
US5124523A (en) * 1987-12-23 1992-06-23 Swiss Aluminium Ltd. Process for adapting the frequency band of an oscillating circuit made from a metal-plastic-metal sandwich foil useful as an identification label, and sandwich foil for implementing the process
FR2627982B1 (fr) * 1988-03-02 1995-01-27 Artemis Endoprothese tubulaire pour conduits anatomiques, et instrument et procede pour sa mise en place
US5019090A (en) * 1988-09-01 1991-05-28 Corvita Corporation Radially expandable endoprosthesis and the like
US5219361A (en) * 1988-09-16 1993-06-15 Clemson University Soft tissue implant with micron-scale surface texture to optimize anchorage
CA1322628C (en) * 1988-10-04 1993-10-05 Richard A. Schatz Expandable intraluminal graft
US5464438A (en) 1988-10-05 1995-11-07 Menaker; Gerald J. Gold coating means for limiting thromboses in implantable grafts
US4935068A (en) * 1989-01-23 1990-06-19 Raychem Corporation Method of treating a sample of an alloy
US5078726A (en) * 1989-02-01 1992-01-07 Kreamer Jeffry W Graft stent and method of repairing blood vessels
US4969896A (en) * 1989-02-01 1990-11-13 Interpore International Vascular graft prosthesis and method of making the same
US4957669A (en) * 1989-04-06 1990-09-18 Shiley, Inc. Method for producing tubing useful as a tapered vascular graft prosthesis
JP2678945B2 (ja) 1989-04-17 1997-11-19 有限会社ナイセム 人工血管とその製造方法及び人工血管用基質
US4955899A (en) * 1989-05-26 1990-09-11 Impra, Inc. Longitudinally compliant vascular graft
US5152782A (en) * 1989-05-26 1992-10-06 Impra, Inc. Non-porous coated ptfe graft
DE3918736C2 (de) * 1989-06-08 1998-05-14 Christian Dr Vallbracht Kunststoffüberzogene Metallgitterstents
US5084065A (en) * 1989-07-10 1992-01-28 Corvita Corporation Reinforced graft assembly
ATE120377T1 (de) * 1990-02-08 1995-04-15 Howmedica Aufblasbarer dilatator.
US5158548A (en) 1990-04-25 1992-10-27 Advanced Cardiovascular Systems, Inc. Method and system for stent delivery
US5242399A (en) 1990-04-25 1993-09-07 Advanced Cardiovascular Systems, Inc. Method and system for stent delivery
US5344426A (en) 1990-04-25 1994-09-06 Advanced Cardiovascular Systems, Inc. Method and system for stent delivery
US5123917A (en) * 1990-04-27 1992-06-23 Lee Peter Y Expandable intraluminal vascular graft
US5078736A (en) * 1990-05-04 1992-01-07 Interventional Thermodynamics, Inc. Method and apparatus for maintaining patency in the body passages
US5135503A (en) * 1990-05-16 1992-08-04 Advanced Cardiovascular Systems, Inc. Shaping ribbon for guiding members
EP0461791B1 (de) 1990-06-11 1997-01-02 Hector D. Barone Aortatransplantat sowie Apparat zum Ausbessern eines Aneurysmas der Unterleibsaorta
US5578071A (en) 1990-06-11 1996-11-26 Parodi; Juan C. Aortic graft
US5360443A (en) 1990-06-11 1994-11-01 Barone Hector D Aortic graft for repairing an abdominal aortic aneurysm
US5064435A (en) * 1990-06-28 1991-11-12 Schneider (Usa) Inc. Self-expanding prosthesis having stable axial length
US5236447A (en) 1990-06-29 1993-08-17 Nissho Corporation Artificial tubular organ
US5122154A (en) 1990-08-15 1992-06-16 Rhodes Valentine J Endovascular bypass graft
US5139480A (en) 1990-08-22 1992-08-18 Biotech Laboratories, Inc. Necking stents
JP2779456B2 (ja) 1990-08-28 1998-07-23 ミードックス・メディカルス・インコーポレイテッド 自己保持型編織製人工血管およびその製造法
AR246020A1 (es) * 1990-10-03 1994-03-30 Hector Daniel Barone Juan Carl Un dispositivo de balon para implantar una protesis intraluminal aortica para reparar aneurismas.
DE69118083T2 (de) * 1990-10-09 1996-08-22 Cook Inc Perkutane Stentanordnung
DE69116130T2 (de) 1990-10-18 1996-05-15 Ho Young Song Selbstexpandierender, endovaskulärer dilatator
US5341818A (en) 1992-12-22 1994-08-30 Advanced Cardiovascular Systems, Inc. Guidewire with superelastic distal portion
EP0491349B1 (de) 1990-12-18 1998-03-18 Advanced Cardiovascular Systems, Inc. Verfahren zur Herstellung eines super-elastischen Führungsteils
US5116360A (en) * 1990-12-27 1992-05-26 Corvita Corporation Mesh composite graft
US5163951A (en) * 1990-12-27 1992-11-17 Corvita Corporation Mesh composite graft
FR2671482A1 (fr) 1991-01-16 1992-07-17 Seguin Jacques Endoprothese vasculaire.
US5258027A (en) 1991-01-24 1993-11-02 Willy Rusch Ag Trachreal prosthesis
CA2060067A1 (en) 1991-01-28 1992-07-29 Lilip Lau Stent delivery system
US5156620A (en) * 1991-02-04 1992-10-20 Pigott John P Intraluminal graft/stent and balloon catheter for insertion thereof
EP0571527B1 (de) 1991-02-14 1996-04-24 Baxter International Inc. Herstellungsverfahren für biegsame biologische Gewebeverpflanzungsmaterialen
US5231989A (en) * 1991-02-15 1993-08-03 Raychem Corporation Steerable cannula
US5116365A (en) * 1991-02-22 1992-05-26 Cordis Corporation Stent apparatus and method for making
US5282847A (en) * 1991-02-28 1994-02-01 Medtronic, Inc. Prosthetic vascular grafts with a pleated structure
CA2065634C (en) 1991-04-11 1997-06-03 Alec A. Piplani Endovascular graft having bifurcation and apparatus and method for deploying the same
CA2068584C (en) 1991-06-18 1997-04-22 Paul H. Burmeister Intravascular guide wire and method for manufacture thereof
CA2074349C (en) * 1991-07-23 2004-04-20 Shinji Tamaru Polytetrafluoroethylene porous film and preparation and use thereof
US5630806A (en) 1991-08-13 1997-05-20 Hudson International Conductors Spiral wrapped medical tubing
CA2117088A1 (en) * 1991-09-05 1993-03-18 David R. Holmes Flexible tubular device for use in medical applications
US5370681A (en) 1991-09-16 1994-12-06 Atrium Medical Corporation Polyumenal implantable organ
US5500013A (en) 1991-10-04 1996-03-19 Scimed Life Systems, Inc. Biodegradable drug delivery vascular stent
US5366504A (en) 1992-05-20 1994-11-22 Boston Scientific Corporation Tubular medical prosthesis
US5354309A (en) 1991-10-11 1994-10-11 Angiomed Ag Apparatus for widening a stenosis in a body cavity
US5282860A (en) 1991-10-16 1994-02-01 Olympus Optical Co., Ltd. Stent tube for medical use
JP2961287B2 (ja) 1991-10-18 1999-10-12 グンゼ株式会社 生体管路拡張具、その製造方法およびステント
US5387235A (en) 1991-10-25 1995-02-07 Cook Incorporated Expandable transluminal graft prosthesis for repair of aneurysm
CA2380683C (en) 1991-10-28 2006-08-08 Advanced Cardiovascular Systems, Inc. Expandable stents and method for making same
US5167614A (en) * 1991-10-29 1992-12-01 Medical Engineering Corporation Prostatic stent
US5211658A (en) 1991-11-05 1993-05-18 New England Deaconess Hospital Corporation Method and device for performing endovascular repair of aneurysms
FR2683449A1 (fr) 1991-11-08 1993-05-14 Cardon Alain Endoprothese pour implantation transluminale.
US5282849A (en) 1991-12-19 1994-02-01 University Of Utah Research Foundation Ventricle assist device with volume displacement chamber
US5316023A (en) 1992-01-08 1994-05-31 Expandable Grafts Partnership Method for bilateral intra-aortic bypass
JP3419797B2 (ja) 1992-01-10 2003-06-23 松下電器産業株式会社 スイッチング電源装置
SE469653B (sv) 1992-01-13 1993-08-16 Lucocer Ab Poroest implantat
US5507767A (en) 1992-01-15 1996-04-16 Cook Incorporated Spiral stent
US5486193A (en) 1992-01-22 1996-01-23 C. R. Bard, Inc. System for the percutaneous transluminal front-end loading delivery of a prosthetic occluder
US5683448A (en) 1992-02-21 1997-11-04 Boston Scientific Technology, Inc. Intraluminal stent and graft
US5405377A (en) 1992-02-21 1995-04-11 Endotech Ltd. Intraluminal stent
US5282823A (en) 1992-03-19 1994-02-01 Medtronic, Inc. Intravascular radially expandable stent
US5591224A (en) 1992-03-19 1997-01-07 Medtronic, Inc. Bioelastomeric stent
US5354329A (en) 1992-04-17 1994-10-11 Whalen Biomedical, Inc. Vascular prosthesis having enhanced compatibility and compliance characteristics
WO1995014500A1 (en) 1992-05-01 1995-06-01 Beth Israel Hospital A stent
US5540712A (en) 1992-05-01 1996-07-30 Nitinol Medical Technologies, Inc. Stent and method and apparatus for forming and delivering the same
WO1993022986A1 (en) 1992-05-08 1993-11-25 Schneider (Usa) Inc. Esophageal stent and delivery tool
US5405378A (en) 1992-05-20 1995-04-11 Strecker; Ernst P. Device with a prosthesis implantable in the body of a patient
US5383928A (en) 1992-06-10 1995-01-24 Emory University Stent sheath for local drug delivery
US5507771A (en) 1992-06-15 1996-04-16 Cook Incorporated Stent assembly
US5342387A (en) 1992-06-18 1994-08-30 American Biomed, Inc. Artificial support for a blood vessel
US5429869A (en) 1993-02-26 1995-07-04 W. L. Gore & Associates, Inc. Composition of expanded polytetrafluoroethylene and similar polymers and method for producing same
US5382261A (en) 1992-09-01 1995-01-17 Expandable Grafts Partnership Method and apparatus for occluding vessels
US5562725A (en) 1992-09-14 1996-10-08 Meadox Medicals Inc. Radially self-expanding implantable intraluminal device
CA2475058C (en) 1992-10-13 2008-12-02 Boston Scientific Corporation Medical stents for body lumens exhibiting peristaltic motion
US5383926A (en) 1992-11-23 1995-01-24 Children's Medical Center Corporation Re-expandable endoprosthesis
US5628782A (en) 1992-12-11 1997-05-13 W. L. Gore & Associates, Inc. Method of making a prosthetic vascular graft
BE1006440A3 (fr) 1992-12-21 1994-08-30 Dereume Jean Pierre Georges Em Endoprothese luminale et son procede de preparation.
US5630840A (en) 1993-01-19 1997-05-20 Schneider (Usa) Inc Clad composite stent
US5370691A (en) 1993-01-26 1994-12-06 Target Therapeutics, Inc. Intravascular inflatable stent
US5433996A (en) 1993-02-18 1995-07-18 W. L. Gore & Associates, Inc. Laminated patch tissue repair sheet material
US5334201A (en) 1993-03-12 1994-08-02 Cowan Kevin P Permanent stent made of a cross linkable material
US5474563A (en) 1993-03-25 1995-12-12 Myler; Richard Cardiovascular stent and retrieval apparatus
US5523092A (en) 1993-04-14 1996-06-04 Emory University Device for local drug delivery and methods for using the same
WO1994024961A1 (en) 1993-04-23 1994-11-10 Schneider (Usa) Inc. Covered stent and stent delivery device
EP0621015B1 (de) 1993-04-23 1998-03-18 Schneider (Europe) Ag Stent mit einer Beschichtung aus elastischem Material und Verfahren zum Anbringen der Beschichtung auf dem Stent
US5349964A (en) 1993-05-05 1994-09-27 Intelliwire, Inc. Device having an electrically actuatable section with a portion having a current shunt and method
US5437083A (en) 1993-05-24 1995-08-01 Advanced Cardiovascular Systems, Inc. Stent-loading mechanism
US5458615A (en) 1993-07-06 1995-10-17 Advanced Cardiovascular Systems, Inc. Stent delivery system
US5514115A (en) 1993-07-07 1996-05-07 Device For Vascular Intervention, Inc. Flexible housing for intracorporeal use
US5464449A (en) 1993-07-08 1995-11-07 Thomas J. Fogarty Internal graft prosthesis and delivery system
CA2121159C (en) 1993-07-16 2005-03-29 Kenneth Dean Conger Contoured tire building drum and method of building an extended mobility tire
US5735892A (en) 1993-08-18 1998-04-07 W. L. Gore & Associates, Inc. Intraluminal stent graft
US6027779A (en) 1993-08-18 2000-02-22 W. L. Gore & Associates, Inc. Thin-wall polytetrafluoroethylene tube
CA2169549C (en) 1993-08-18 2000-07-11 James D. Lewis A tubular intraluminal graft
AU6943794A (en) 1993-08-18 1995-03-14 W.L. Gore & Associates, Inc. A thin-wall, seamless, porous polytetrafluoroethylene tube
JPH07102413A (ja) 1993-09-16 1995-04-18 Japan Gore Tex Inc ポリテトラフルオロエチレン糸状物
GB2281865B (en) 1993-09-16 1997-07-30 Cordis Corp Endoprosthesis having multiple laser welded junctions,method and procedure
BR9405622A (pt) 1993-09-30 1999-09-08 Endogad Res Pty Ltd Enxerto intraluminal
US5609624A (en) 1993-10-08 1997-03-11 Impra, Inc. Reinforced vascular graft and method of making same
US5639278A (en) 1993-10-21 1997-06-17 Corvita Corporation Expandable supportive bifurcated endoluminal grafts
US5723004A (en) 1993-10-21 1998-03-03 Corvita Corporation Expandable supportive endoluminal grafts
DE4336705C2 (de) 1993-10-27 1996-11-28 Hoffmann Elektrokohle Schleifkontaktelement sowie Verfahren zur Verbindung eines elektrischen Anschlußleiters mit einem Schleifkontaktelement
US5384019A (en) 1993-10-29 1995-01-24 E. I. Du Pont De Nemours And Company Membrane reinforced with modified leno weave fabric
US5389106A (en) 1993-10-29 1995-02-14 Numed, Inc. Impermeable expandable intravascular stent
AU1091095A (en) 1993-11-08 1995-05-29 Harrison M. Lazarus Intraluminal vascular graft and method
US5527353A (en) 1993-12-02 1996-06-18 Meadox Medicals, Inc. Implantable tubular prosthesis
JP2703510B2 (ja) 1993-12-28 1998-01-26 アドヴァンスド カーディオヴァスキュラー システムズ インコーポレーテッド 拡大可能なステント及びその製造方法
US5549635A (en) 1994-01-24 1996-08-27 Solar, Rita & Gaterud, Ltd. Non-deformable self-expanding parallel flow endovascular stent and deployment apparatus therefore
US5507769A (en) 1994-10-18 1996-04-16 Stentco, Inc. Method and apparatus for forming an endoluminal bifurcated graft
US5549663A (en) 1994-03-09 1996-08-27 Cordis Corporation Endoprosthesis having graft member and exposed welded end junctions, method and procedure
US5556413A (en) * 1994-03-11 1996-09-17 Advanced Cardiovascular Systems, Inc. Coiled stent with locking ends
US5449373A (en) 1994-03-17 1995-09-12 Medinol Ltd. Articulated stent
US5556389A (en) 1994-03-31 1996-09-17 Liprie; Samuel F. Method and apparatus for treating stenosis or other constriction in a bodily conduit
US6165210A (en) 1994-04-01 2000-12-26 Gore Enterprise Holdings, Inc. Self-expandable helical intravascular stent and stent-graft
US5693085A (en) 1994-04-29 1997-12-02 Scimed Life Systems, Inc. Stent with collagen
US5554181A (en) 1994-05-04 1996-09-10 Regents Of The University Of Minnesota Stent
WO1995031945A1 (en) 1994-05-19 1995-11-30 Scimed Life Systems, Inc. Improved tissue supporting devices
DE4418336A1 (de) 1994-05-26 1995-11-30 Angiomed Ag Stent
EP0792627B2 (de) 1994-06-08 2003-10-29 Cardiovascular Concepts, Inc. System zur Herstellung eines abzweigenden Transplantats
ES2239322T3 (es) 1994-06-27 2005-09-16 Bard Peripheral Vascular, Inc. Politetrafluoretileno radialmente expandible y stents endovasculares expandibles formados con esta materia.
EP0689805B1 (de) 1994-06-27 2003-05-28 Corvita Corporation Bistabile luminale Transplantat-Endoprothesen
US5522881A (en) 1994-06-28 1996-06-04 Meadox Medicals, Inc. Implantable tubular prosthesis having integral cuffs
JP2749263B2 (ja) 1994-07-07 1998-05-13 三洋電機株式会社 フレーム同期再生回路
US5556426A (en) 1994-08-02 1996-09-17 Meadox Medicals, Inc. PTFE implantable tubular prostheses with external coil support
US5527355A (en) 1994-09-02 1996-06-18 Ahn; Sam S. Apparatus and method for performing aneurysm repair
US6015429A (en) 1994-09-08 2000-01-18 Gore Enterprise Holdings, Inc. Procedures for introducing stents and stent-grafts
US5723003A (en) 1994-09-13 1998-03-03 Ultrasonic Sensing And Monitoring Systems Expandable graft assembly and method of use
US5649977A (en) 1994-09-22 1997-07-22 Advanced Cardiovascular Systems, Inc. Metal reinforced polymer stent
US5836965A (en) 1994-10-19 1998-11-17 Jendersee; Brad Stent delivery and deployment method
AU3783295A (en) 1994-11-16 1996-05-23 Advanced Cardiovascular Systems Inc. Shape memory locking mechanism for intravascular stent
US5630829A (en) 1994-12-09 1997-05-20 Intervascular, Inc. High hoop strength intraluminal stent
US5637113A (en) 1994-12-13 1997-06-10 Advanced Cardiovascular Systems, Inc. Polymer film for wrapping a stent structure
US5674277A (en) 1994-12-23 1997-10-07 Willy Rusch Ag Stent for placement in a body tube
DE19524653A1 (de) 1994-12-23 1996-06-27 Ruesch Willy Ag Platzhalter zum Anordnen in einer Körperröhre
US5591226A (en) 1995-01-23 1997-01-07 Schneider (Usa) Inc. Percutaneous stent-graft and method for delivery thereof
US5755770A (en) 1995-01-31 1998-05-26 Boston Scientific Corporatiion Endovascular aortic graft
US5522883A (en) 1995-02-17 1996-06-04 Meadox Medicals, Inc. Endoprosthesis stent/graft deployment system
EP0810845A2 (de) 1995-02-22 1997-12-10 Menlo Care Inc. Expandierbarer netzstent mit einer umhüllung
US5681345A (en) 1995-03-01 1997-10-28 Scimed Life Systems, Inc. Sleeve carrying stent
DE19508805C2 (de) 1995-03-06 2000-03-30 Lutz Freitag Stent zum Anordnen in einer Körperröhre mit einem flexiblen Stützgerüst aus mindestens zwei Drähten mit unterschiedlicher Formgedächtnisfunktion
US5556414A (en) 1995-03-08 1996-09-17 Wayne State University Composite intraluminal graft
ES2151082T3 (es) 1995-03-10 2000-12-16 Impra Inc Soporte encapsulado endoluminal y procedimientos para su fabricacion y su colocacion endoluminal.
US6039755A (en) 1997-02-05 2000-03-21 Impra, Inc., A Division Of C.R. Bard, Inc. Radially expandable tubular polytetrafluoroethylene grafts and method of making same
US6451047B2 (en) 1995-03-10 2002-09-17 Impra, Inc. Encapsulated intraluminal stent-graft and methods of making same
US6124523A (en) 1995-03-10 2000-09-26 Impra, Inc. Encapsulated stent
US6579314B1 (en) 1995-03-10 2003-06-17 C.R. Bard, Inc. Covered stent with encapsulated ends
US6264684B1 (en) 1995-03-10 2001-07-24 Impra, Inc., A Subsidiary Of C.R. Bard, Inc. Helically supported graft
US6053943A (en) 1995-12-08 2000-04-25 Impra, Inc. Endoluminal graft with integral structural support and method for making same
US5591197A (en) 1995-03-14 1997-01-07 Advanced Cardiovascular Systems, Inc. Expandable stent forming projecting barbs and method for deploying
ATE169484T1 (de) 1995-04-01 1998-08-15 Variomed Ag Stent zur transluminalen implantation in hohlorgane
US5676671A (en) 1995-04-12 1997-10-14 Inoue; Kanji Device for introducing an appliance to be implanted into a catheter
BE1009277A3 (fr) 1995-04-12 1997-01-07 Corvita Europ Tuteur auto-expansible pour dispositif medical a introduire dans une cavite d'un corps, et son procede de preparation.
US6863686B2 (en) 1995-04-17 2005-03-08 Donald Shannon Radially expandable tape-reinforced vascular grafts
US5641373A (en) 1995-04-17 1997-06-24 Baxter International Inc. Method of manufacturing a radially-enlargeable PTFE tape-reinforced vascular graft
US5667523A (en) * 1995-04-28 1997-09-16 Impra, Inc. Dual supported intraluminal graft
US5591228A (en) 1995-05-09 1997-01-07 Edoga; John K. Methods for treating abdominal aortic aneurysms
US5628786A (en) 1995-05-12 1997-05-13 Impra, Inc. Radially expandable vascular graft with resistance to longitudinal compression and method of making same
DE69634013T2 (de) 1995-05-26 2005-12-15 SurModics, Inc., Eden Prairie Verfahren und implantierbarer gegenstand zur förderung der endothelialisierung
US6010530A (en) 1995-06-07 2000-01-04 Boston Scientific Technology, Inc. Self-expanding endoluminal prosthesis
US5591199A (en) 1995-06-07 1997-01-07 Porter; Christopher H. Curable fiber composite stent and delivery system
US5863366A (en) 1995-06-07 1999-01-26 Heartport, Inc. Method of manufacture of a cannula for a medical device
MX9601944A (es) 1995-06-07 1997-08-30 Advanced Cardiovascular System Manguito retraible reforzado con bobina, para cateter de suministro de endoprotesis.
US5728131A (en) 1995-06-12 1998-03-17 Endotex Interventional Systems, Inc. Coupling device and method of use
US6214039B1 (en) 1995-08-24 2001-04-10 Impra, Inc., A Subsidiary Of C. R. Bard, Inc. Covered endoluminal stent and method of assembly
US5824037A (en) 1995-10-03 1998-10-20 Medtronic, Inc. Modular intraluminal prostheses construction and methods
US5776161A (en) 1995-10-16 1998-07-07 Instent, Inc. Medical stents, apparatus and method for making same
US5628788A (en) 1995-11-07 1997-05-13 Corvita Corporation Self-expanding endoluminal stent-graft
US5788626A (en) 1995-11-21 1998-08-04 Schneider (Usa) Inc Method of making a stent-graft covered with expanded polytetrafluoroethylene
US5593417A (en) 1995-11-27 1997-01-14 Rhodes; Valentine J. Intravascular stent with secure mounting means
US5665117A (en) 1995-11-27 1997-09-09 Rhodes; Valentine J. Endovascular prosthesis with improved sealing means for aneurysmal arterial disease and method of use
EP1380270A3 (de) 1995-12-08 2004-03-24 Bard Peripheral Vascular, Inc. Endoluminales Transplantat mit integralem Stützgerüst und Verfahren zu seiner Herstellung
CA2246157C (en) 1995-12-14 2007-02-20 Gore Enterprise Holdings, Inc. Kink resistant stent-graft
US6042605A (en) 1995-12-14 2000-03-28 Gore Enterprose Holdings, Inc. Kink resistant stent-graft
US6428571B1 (en) 1996-01-22 2002-08-06 Scimed Life Systems, Inc. Self-sealing PTFE vascular graft and manufacturing methods
US5800512A (en) 1996-01-22 1998-09-01 Meadox Medicals, Inc. PTFE vascular graft
US5871537A (en) 1996-02-13 1999-02-16 Scimed Life Systems, Inc. Endovascular apparatus
US5607478A (en) 1996-03-14 1997-03-04 Meadox Medicals Inc. Yarn wrapped PTFE tubular prosthesis
CA2199890C (en) 1996-03-26 2002-02-05 Leonard Pinchuk Stents and stent-grafts having enhanced hoop strength and methods of making the same
US5713949A (en) 1996-08-06 1998-02-03 Jayaraman; Swaminathan Microporous covered stents and method of coating
US5718159A (en) 1996-04-30 1998-02-17 Schneider (Usa) Inc. Process for manufacturing three-dimensional braided covered stent
US6312454B1 (en) 1996-06-13 2001-11-06 Nitinol Devices & Components Stent assembly
US5843161A (en) 1996-06-26 1998-12-01 Cordis Corporation Endoprosthesis assembly for percutaneous deployment and method of deploying same
US5769884A (en) 1996-06-27 1998-06-23 Cordis Corporation Controlled porosity endovascular implant
US5928279A (en) 1996-07-03 1999-07-27 Baxter International Inc. Stented, radially expandable, tubular PTFE grafts
US20050113909A1 (en) 1996-07-03 2005-05-26 Shannon Donald T. Polymer coated stents
US6120535A (en) 1996-07-29 2000-09-19 Radiance Medical Systems, Inc. Microporous tubular prosthesis
US5755781A (en) 1996-08-06 1998-05-26 Iowa-India Investments Company Limited Embodiments of multiple interconnected stents
WO1998011847A1 (en) 1996-09-20 1998-03-26 Houser Russell A Radially expanding prostheses and systems for their deployment
US5824046A (en) 1996-09-27 1998-10-20 Scimed Life Systems, Inc. Covered stent
EP0971643A4 (de) 1996-12-03 2004-01-28 Atrium Medical Corp Mehrstufige prothese
US6010529A (en) 1996-12-03 2000-01-04 Atrium Medical Corporation Expandable shielded vessel support
US6015431A (en) 1996-12-23 2000-01-18 Prograft Medical, Inc. Endolumenal stent-graft with leak-resistant seal
US5925061A (en) 1997-01-13 1999-07-20 Gore Enterprise Holdings, Inc. Low profile vascular stent
US5961545A (en) 1997-01-17 1999-10-05 Meadox Medicals, Inc. EPTFE graft-stent composite device
US5843166A (en) 1997-01-17 1998-12-01 Meadox Medicals, Inc. Composite graft-stent having pockets for accomodating movement
US5769817A (en) 1997-02-28 1998-06-23 Schneider (Usa) Inc. Coextruded balloon and method of making same
ATE287679T1 (de) 1997-03-05 2005-02-15 Boston Scient Ltd Konformanliegende, mehrschichtige stentvorrichtung
US5897588A (en) * 1997-03-14 1999-04-27 Hull; Cheryl C. Coronary stent and method of fabricating same
US5851232A (en) 1997-03-15 1998-12-22 Lois; William A. Venous stent
US5824053A (en) * 1997-03-18 1998-10-20 Endotex Interventional Systems, Inc. Helical mesh endoprosthesis and methods of use
US5824054A (en) 1997-03-18 1998-10-20 Endotex Interventional Systems, Inc. Coiled sheet graft stent and methods of making and use
NL1007584C2 (nl) * 1997-11-19 1999-05-20 Cordis Europ Vena cava filter.
US6156062A (en) 1997-12-03 2000-12-05 Ave Connaught Helically wrapped interlocking stent
US6241691B1 (en) 1997-12-05 2001-06-05 Micrus Corporation Coated superelastic stent
US6488701B1 (en) 1998-03-31 2002-12-03 Medtronic Ave, Inc. Stent-graft assembly with thin-walled graft component and method of manufacture
US6063111A (en) 1998-03-31 2000-05-16 Cordis Corporation Stent aneurysm treatment system and method
JP4583597B2 (ja) 1998-05-05 2010-11-17 ボストン サイエンティフィック リミテッド 末端が滑らかなステント
US6547814B2 (en) 1998-09-30 2003-04-15 Impra, Inc. Selective adherence of stent-graft coverings
US6398803B1 (en) * 1999-02-02 2002-06-04 Impra, Inc., A Subsidiary Of C.R. Bard, Inc. Partial encapsulation of stents
US6364903B2 (en) 1999-03-19 2002-04-02 Meadox Medicals, Inc. Polymer coated stent
JP4739533B2 (ja) 1999-05-20 2011-08-03 ボストン サイエンティフィック リミテッド 可撓性の増大したステント−移植片
US6673103B1 (en) * 1999-05-20 2004-01-06 Scimed Life Systems, Inc. Mesh and stent for increased flexibility
US6364904B1 (en) 1999-07-02 2002-04-02 Scimed Life Systems, Inc. Helically formed stent/graft assembly
GB0003387D0 (en) 2000-02-14 2000-04-05 Angiomed Ag Stent matrix
US6585760B1 (en) 2000-06-30 2003-07-01 Vascular Architects, Inc AV fistula and function enhancing method
US6808533B1 (en) 2000-07-28 2004-10-26 Atrium Medical Corporation Covered stent and method of covering a stent
US6770086B1 (en) 2000-11-02 2004-08-03 Scimed Life Systems, Inc. Stent covering formed of porous polytetraflouroethylene
US6673105B1 (en) 2001-04-02 2004-01-06 Advanced Cardiovascular Systems, Inc. Metal prosthesis coated with expandable ePTFE
US6716239B2 (en) 2001-07-03 2004-04-06 Scimed Life Systems, Inc. ePTFE graft with axial elongation properties
US7288111B1 (en) * 2002-03-26 2007-10-30 Thoratec Corporation Flexible stent and method of making the same
US7789908B2 (en) 2002-06-25 2010-09-07 Boston Scientific Scimed, Inc. Elastomerically impregnated ePTFE to enhance stretch and recovery properties for vascular grafts and coverings
US20050060020A1 (en) 2003-09-17 2005-03-17 Scimed Life Systems, Inc. Covered stent with biologically active material
JP4667393B2 (ja) 2003-12-12 2011-04-13 シー・アール・バード・インコーポレーテッド フッ素化ポリマーコーティングを有する植込み型医療器具、およびその塗布方法
US20050131515A1 (en) 2003-12-16 2005-06-16 Cully Edward H. Removable stent-graft
US8585753B2 (en) 2006-03-04 2013-11-19 John James Scanlon Fibrillated biodegradable prosthesis
US8196279B2 (en) 2008-02-27 2012-06-12 C. R. Bard, Inc. Stent-graft covering process

Also Published As

Publication number Publication date
MXPA01007790A (es) 2002-07-02
US8617337B2 (en) 2013-12-31
US10213328B2 (en) 2019-02-26
DE60002161T2 (de) 2003-12-04
EP1148843B1 (de) 2003-04-16
DE60002161D1 (de) 2003-05-22
JP2002536055A (ja) 2002-10-29
US7914639B2 (en) 2011-03-29
US20140107763A1 (en) 2014-04-17
EP1148843B2 (de) 2013-08-07
EP1148843A1 (de) 2001-10-31
US20010032009A1 (en) 2001-10-18
US20110126966A1 (en) 2011-06-02
US20040236402A1 (en) 2004-11-25
ES2195883T3 (es) 2003-12-16
CA2371964A1 (en) 2000-08-10
US20090294035A1 (en) 2009-12-03
US6770087B2 (en) 2004-08-03
ATE237287T1 (de) 2003-05-15
WO2000045741A1 (en) 2000-08-10
JP4248151B2 (ja) 2009-04-02
CA2371964C (en) 2008-10-28
US6398803B1 (en) 2002-06-04

Similar Documents

Publication Publication Date Title
DE60002161T3 (de) Teileinkapselung von stents
DE60035877T2 (de) Verbessertes verbundstoff-blutgefässimplantat
DE60023143T2 (de) Schraubenförmig gebildetes stent/transplantat
DE60021061T2 (de) Teileinkapselung von stents durch streifen und bänder
DE69828220T2 (de) Expandierbare intraluminale Endoprothese
DE69834170T2 (de) Niedrig- profil selbst-expandierbarer blutgefäss stent
DE69727178T2 (de) Profilierter Stent und Herstellungsverfahren dafür
DE60116803T2 (de) Längsflexibler Stent
DE60021040T2 (de) Flexibler medizinischer Stent
EP0682505B2 (de) Stent
EP0734698B2 (de) Stent zur transluminalen Implantation in Hohlorgane
DE3342798C2 (de)
DE69629679T2 (de) Verstärktes gefässimplantat mit einem äusserlich unterstützten band
DE60317883T2 (de) Mri-kompatibler stent sowie verfahren zu seiner herstellung
EP0711135B2 (de) Stent
DE69518275T3 (de) Blutgefässtransplantat
DE69531872T2 (de) Verfahren zur herstellung eines endoluminalen transplantats mit integralem stützgerüst
DE69922885T2 (de) Endoluminal einführbare stents und ihre herstellung
DE60018435T2 (de) Expandierbarer mikrokatheter
DE60019009T2 (de) Intraluminale aufweitbare Endoprothese
EP2654620B1 (de) Stent-graft
DE60032151T2 (de) Rohrförmige stent-gewebe kompositvorrichtung und herstellungsverfahren dafür
WO2006047977A1 (de) Stent zur implantation in oder um ein hohlorgan mit markerelementen aus einem röntgenopaken material
DE10153340A1 (de) In Längsrichtung flexibler Stent
EP1667608A1 (de) Stent mit endständigen verankerungselementen

Legal Events

Date Code Title Description
8363 Opposition against the patent
8327 Change in the person/name/address of the patent owner

Owner name: BARD PERIPHERAL VASCULAR,INC., TEMPE, ARIZ., US