DE112011100800T5 - Pumpe oder Fräse zum Betrieb in einem Fluid - Google Patents

Pumpe oder Fräse zum Betrieb in einem Fluid Download PDF

Info

Publication number
DE112011100800T5
DE112011100800T5 DE112011100800T DE112011100800T DE112011100800T5 DE 112011100800 T5 DE112011100800 T5 DE 112011100800T5 DE 112011100800 T DE112011100800 T DE 112011100800T DE 112011100800 T DE112011100800 T DE 112011100800T DE 112011100800 T5 DE112011100800 T5 DE 112011100800T5
Authority
DE
Germany
Prior art keywords
pump
substance
state
rotor
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DE112011100800T
Other languages
English (en)
Inventor
Reiner Liebing
Petra Wiessler
Sven-René Friedel
Sami Er
Henning Schlicht
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ECP Entwicklungs GmbH
Original Assignee
ECP Entwicklungs GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ECP Entwicklungs GmbH filed Critical ECP Entwicklungs GmbH
Publication of DE112011100800T5 publication Critical patent/DE112011100800T5/de
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/3205Excision instruments
    • A61B17/3207Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions
    • A61B17/320725Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions with radially expandable cutting or abrading elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/3205Excision instruments
    • A61B17/3207Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions
    • A61B17/320758Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions with a rotating cutting instrument, e.g. motor driven
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/122Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
    • A61M60/165Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable in, on, or around the heart
    • A61M60/178Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable in, on, or around the heart drawing blood from a ventricle and returning the blood to the arterial system via a cannula external to the ventricle, e.g. left or right ventricular assist devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/20Type thereof
    • A61M60/205Non-positive displacement blood pumps
    • A61M60/216Non-positive displacement blood pumps including a rotating member acting on the blood, e.g. impeller
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/40Details relating to driving
    • A61M60/424Details relating to driving for positive displacement blood pumps
    • A61M60/457Details relating to driving for positive displacement blood pumps the force acting on the blood contacting member being magnetic
    • A61M60/462Electromagnetic force
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/18Rotors
    • F04D29/22Rotors specially for centrifugal pumps
    • F04D29/24Vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/18Rotors
    • F04D29/22Rotors specially for centrifugal pumps
    • F04D29/24Vanes
    • F04D29/247Vanes elastic or self-adjusting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D3/00Axial-flow pumps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/02General characteristics of the apparatus characterised by a particular materials
    • A61M2205/0272Electro-active or magneto-active materials
    • A61M2205/0277Chemo-active materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/02General characteristics of the apparatus characterised by a particular materials
    • A61M2205/0272Electro-active or magneto-active materials
    • A61M2205/0288Electro-rheological or magneto-rheological materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/122Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
    • A61M60/126Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel
    • A61M60/135Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel inside a blood vessel, e.g. using grafting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/122Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
    • A61M60/126Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel
    • A61M60/148Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel in line with a blood vessel using resection or like techniques, e.g. permanent endovascular heart assist devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/40Details relating to driving
    • A61M60/403Details relating to driving for non-positive displacement blood pumps
    • A61M60/408Details relating to driving for non-positive displacement blood pumps the force acting on the blood contacting member being mechanical, e.g. transmitted by a shaft or cable
    • A61M60/411Details relating to driving for non-positive displacement blood pumps the force acting on the blood contacting member being mechanical, e.g. transmitted by a shaft or cable generated by an electromotor
    • A61M60/414Details relating to driving for non-positive displacement blood pumps the force acting on the blood contacting member being mechanical, e.g. transmitted by a shaft or cable generated by an electromotor transmitted by a rotating cable, e.g. for blood pumps mounted on a catheter

Abstract

Die Erfindung bezieht sich auf eine Fluidpumpe oder Fräse mit wenigstens einem ersten Element (9''', 10'''), das durch Änderung wenigstens einer mechanischen Eigenschaft von einem Transportzustand in einen Betriebszustand gebracht werden kann. Eine solche Pumpe kann beispielsweise eine Blutpumpe für den medizinischen, mikroinvasiven Bereich sein. Die Aufgabe, einen möglichst komfortablen Übergang zwischen dem Transportzustand und dem Betriebszustand zu erreichen und dabei möglichst große Freiheit bei der Konstruktion der entsprechenden Vorrichtung, insbesondere einer Pumpe, zu lassen, wird mit den Mitteln der Erfindung dadurch gelöst, dass das erste Element wenigstens teilweise aus einem Stoff (24, 25, 26, 27) besteht oder mit einem Stoff oder Stoffgemisch füllbar ist, der/das zum Übergang in den Betriebszustand eine Stoffumwandlung durch eine chemische Reaktion, insbesondere Vernetzung, oder eine Kristallisation durchläuft.

Description

  • Die Erfindung liegt auf dem Gebiet des Maschinenbaus und der Feinwerktechnik und ist mit besonderem Vorteil bei Vorrichtungen einsetzbar, die in einem Transportzustand an einen Einsatzort befördert und dort in einen Betriebszustand gebracht werden, bevor sie in Gang gesetzt werden.
  • Dies ist beispielsweise bei Geräten sinnvoll, die an schwierig zugängliche Orte befördert werden müssen, um dort eingesetzt zu werden, beispielsweise Pumpen oder Bearbeitungswerkzeuge in verwinkelten Schlauch- oder Rohrsystemen.
  • Im mikroskopischen Maßstab sind derartige Geräte als mikroinvasive Geräte, beispielsweise Pumpen oder Fräsen in menschlichen oder tierischen Gefäßen, beispielsweise Blutgefäßen oder anderen Körperhohlräumen einsetzbar.
  • Dabei ist es schwierig, diese Geräte durch die körpereigenen Gefäße einzuführen, da hierzu die entsprechenden Maße sehr klein gehalten werden müssen, wobei gleichzeitig im Betrieb größere Abmaße für die Effektivität des Einsatzes sinnvoll sind.
  • Auf dem Gebiet der Katheterpumpen, insbesondere der Blutpumpen, sind zur Lösung dieses Problems bereits radial komprimierbare Pumpen vorgeschlagen worden, die während des Transports in einem Transportzustand mit geringer radialer Ausdehnung gehalten werden und die nach dem Einbringen an den Einsatzort, beispielsweise in eine Herzkammer, dort radial expandiert werden können.
  • Zu diesem Zweck sind aufwendige mechanische Konstruktionen bekannt, die zum Aufrichten von Förderelementen eines Rotors dienen. Zudem ist es oft notwendig, die entsprechenden Förderelemente wie Förderschaufeln im Betrieb zu stabilisieren, da diese beträchtlichen Fluidkräften im Betrieb ausgesetzt sind.
  • Beispielsweise ist ein komprimierbarer Rotor aus der US 6 860 713 bekannt. Zudem ist aus der US 7 393 181 32 ein weiterer Rotor bekannt. Bei den aus der Patentliteratur bekannten Lösungen ist teilweise vorgesehen, dass ein Rotor durch elastisch verformbare Förderschaufeln komprimierbar ist oder dass Aufrichtmechanismen für Förderschaufeln geschaffen werden, die ansonsten bei ruhendem Rotor an diesen angelegt sind.
  • Zusätzlich zur Komprimierbarkeit des Rotors kann es auch vorteilhaft oder sinnvoll sein, das Pumpengehäuse, das den Rotor umgeben kann, entsprechend komprimierbar auszugestalten.
  • Dabei besteht regelmäßig das Problem, dass einerseits die Konstruktion und die Materialien des Rotors im Betrieb stabil sein sollen, um das Fluid bei hohen Drehzahlen zuverlässig zu fördern, und dass andererseits eine gewisse Nachgiebigkeit zumindest von Teilen des Rotors wünschenswert ist, um die zur Kompression des Rotors bzw. der Pumpe notwendigen Kräfte in Grenzen zu halten.
  • Aus der WO 2009/132309 ist eine Technik bekannt, Stents nach dem Einführen in ein Blutgefäß durch Einbringen eines härtbaren Mediums in eine gewünschte Form zu bringen und diese nachfolgend in einem Betriebszustand zu stabilisieren.
  • Der vorliegenden Erfindung liegt vor diesem Hintergrund die Aufgabe zugrunde, eine entsprechende Vorrichtung zur mechanischen Einwirkung auf ein Medium, insbesondere eine Fluidpumpe oder eine Fräse, derart zu gestalten, dass sie sinnvoll von einem Transportzustand in einen Betriebszustand gebracht werden kann, wobei der Transportzustand eine besondere Eignung für den Transport aufweist, während der Betriebszustand sich von diesem unterscheidet und besonders für den Betrieb der Vorrichtung/Pumpe geeignet ist.
  • Die Aufgabe wird mit den Merkmalen der Erfindung gemäß Patentanspruch 1 gelöst.
  • Dadurch, dass das erste Element aus einem Stoff besteht bzw. mit einem Stoff oder Stoffgemisch gefüllt oder füllbar ist, der/das beim Übergang in den Betriebszustand eine chemische Reaktion, beispielsweise eine Vernetzung oder einen Übergang vom flüssigen Zustand in einen festen Zustand oder eine Änderung des rheologischen Zustands durchläuft und damit wenigstens eine mechanische Eigenschaft ändert, ist es möglich, beispielsweise im Transportzustand des ersten Elementes eine geringere Steifigkeit oder eine geringere Viskosität zu realisieren als im Betriebszustand. Beispielsweise kann das erste Element ein Förderelement, beispielsweise eine Förderschaufel eines Rotors einer Fluidpumpe oder ein Abspannelement einer Fräse sein, so dass bei geringerer Steifigkeit das entsprechende Förderelement an eine Nabe anlegbar ist und der entsprechende Rotor damit leicht komprimierbar ist. Der Rotor kann in diesem Zustand auch selbstkomprimierbar sein, dadurch, dass im Ruhezustand die Förderelemente an der Nabe anliegen und diese erst durch Zentrifugalkräfte bei Inbetriebnahme aufgestellt werden.
  • Um dann im Betrieb eine höhere Steifigkeit der Förderschaufeln oder Förderelemente zu gewährleisten, ist der Stoff, aus dem die Förderschaufel oder ein Teil der Förderschaufel besteht, derart gewählt, dass er bei Durchlaufen der entsprechenden Reaktion oder des Übergangs, insbesondere des Übergangs in einen anderen Aggregatzustand, beispielsweise einer Kristallisation, eine Erhärtung oder Versteifung erfährt.
  • Es kann auch vorgesehen sein, dass das erste Element, also beispielsweise das Förderelement, Hohlräume aufweist, die mit einem entsprechenden Stoff füllbar sind, beispielsweise über Zuleitungsschläuche, und die danach härtbar, versteifbar oder, wenn es sich um eine Flüssigkeit handelt, in ihrer Viskosität änderbar sind.
  • Die Änderung der Viskosität kann beispielsweise bei magnetorheologischen oder elektrorheologischen Flüssigkeiten durch Anlegen eines Magnetfeldes oder eines elektrischen Feldes von außerhalb eines Patientenkörpers bewirkt werden. Ein entsprechendes Feld kann allerdings auch durch Spulen oder Elektroden im Körper in unmittelbarer Nähe der Pumpe/Fräse bewirkt werden. Die Feldererzeugungselemente können auch direkt an der Pumpe/Fräse befestigt sein.
  • Dabei muss nicht das gesamte Element seine Eigenschaften entsprechend ändern, sondern es genügt beispielsweise, wenn ein Gelenk, das das Förderelement mit einer Nabe verbindet, durch die entsprechende Reaktion versteift wird oder seine Form ändert und dadurch das Förderelement radial expandiert bzw. aufrichtet.
  • Es kann auch vorgesehen sein, dass das erste Element ein anderes Teil eines Rotors einer Fluidpumpe darstellt oder ein Pumpengehäuse entsprechend in eine Betriebsform oder eine dem Betrieb entsprechende Steifigkeit zu bringen ist.
  • Auch in diesem Fall wie bei einer entsprechenden Anwendung bei einem Rotor können Hohlräume vorgesehen sein, die beispielsweise unter Druck mit einem Fluid gefüllt und damit aufgepumpt werden können, um dem entsprechenden ersten Element eine gewünschte Form zu geben, woraufhin der Stoff gehärtet oder versteift werden kann, um diese Form stabil zu erhalten.
  • Durch die entsprechende Reaktion kann alternativ zur Steifigkeit auch eine andere mechanische Eigenschaft wie die geometrische Form oder Größe geändert werden.
  • Beispielsweise kann ein Teil einer Förderschaufel nach Art eines Schrumpfschlauchs durch die Reaktion verkürzt oder verlängert werden und dadurch, also mittels Hebelkräften, die Förderschaufel aufrichten oder versteifen.
  • Der Stoff, aus dem das erste Element teilweise besteht oder mit dem es füllbar ist, kann beispielsweise ein härtbares Material, insbesondere einen härtbaren Kunststoff aufweisen.
  • Eine Härtung kann zum Übergang in den Betriebszustand beispielsweise durch Temperatur- bzw. Druckeinwirkung, elektrische und/oder magnetische Felder bzw. Impulse, Strahlung (IR- bzw. UV-Licht-, α-, β-, γ-), mechanische Einwirkung, z. B. Ultraschall oder Erschütterung erfolgen, oder auch durch Kontakt mit einem weiteren Stoff oder durch Initialisierung einer Kristallisation bei einem flüssigen Stoff herbeigeführt werden.
  • Der weitere Stoff kann dabei ein echter Reaktionspartner sein, der bei der Reaktion ebenfalls reagiert und eine Umwandlung erfährt, oder ein Katalysator bzw. Enzym, der bei Zugabe zu einer Beschleunigung der Reaktion führt.
  • Der weitere Stoff kann beispielsweise in dem Medium enthalten sein, auf das die Vorrichtung einwirken soll, beispielsweise in der Körperflüssigkeit, in der eine entsprechende Fluidpumpe betrieben werden soll. In diesem Fall kann die Körperflüssigkeit beim Einbringen der Vorrichtung in einen Körper eindiffundieren, und die gewünschte Reaktion kann dann vor Aufnahme des Betriebs, entweder selbsttätig oder initiiert oder unterstützt durch zusätzliche Maßnahmen, ablaufen. Der erste Stoff kann zu diesem Zweck z. B. ein Eiweiß enthalten oder aus einem Eiweiß bestehen.
  • Durch die Erfindung gelingt es, für den Betrieb der Vorrichtung, beispielsweise der Pumpe, mechanische Eigenschaften zu gewährleisten, die während des Transports zur Einsatzstelle unvorteilhaft wären und durch die Erfindung vermieden werden können. Diese Eigenschaften werden erst nach dem Verbringen an den Einsatzort mit Ablauf der entsprechenden Reaktionen erreicht. Die entsprechenden Reaktionen können reversibel, jedoch auch irreversibel sein.
  • Eine vorteilhafte Ausgestaltung der Erfindung sieht weiterhin vor, dass durch eine fortgesetzte oder weitere Reaktion das erste Element reversibel oder irreversibel in einen Zustand überführbar ist, in dem die Vorrichtung transportierbar ist oder in dem es durch mechanisches Zerbrechen in einen Transportzustand gebracht werden kann.
  • Beispielsweise kann durch Fortsetzung der Reaktion, die vor Erreichen des Betriebszustandes durchlaufen wurde, eine weitere Änderung der mechanischen Eigenschaften stattfinden, z. B. durch (vernetzende) Versprödung des Stoffes, aus dem das erste Element ganz oder teilweise besteht. Diese Versprödung kann beispielsweise bei einem Kunstharz so weit gehen, dass die entsprechenden Teile von selbst brechen oder zumindest leicht gebrochen werden können, um wieder einen geeigneten Transportzustand zum Rücktransport der Vorrichtung/Fluidpumpe zu erreichen. Es kann jedoch auch eine andere Reaktion vorgesehen sein, um das entsprechende gewünschte Ergebnis zu erzielen.
  • Zusätzlich zu der erfindungsgemäßen Vorrichtung bezieht sich die Erfindung auch auf ein Verfahren, bei dem zunächst die Vorrichtung in einen Körper eines Lebewesens eingeführt wird, wobei darauf der Stoff/das Stoffgemisch des ersten Elementes einer Reaktion, insbesondere Vernetzung, oder eine Kristallisation aus der flüssigen Phase erfährt, bevor die Vorrichtung in Gang gesetzt wird.
  • Durch eine derartige Handhabung wird die Vorrichtung im Transportzustand zunächst innerhalb eines Körpers eines Lebewesens an den Einsatzort gebracht und erst dort bezüglich der mechanischen Eigenschaften in den Betriebszustand und damit eine für den Betrieb effiziente Form gebracht.
  • Besonders vorteilhaft kann vorgesehen sein, dass vor der Reaktion der oder ein Stoff in wenigstens einen Hohlraum des ersten Elementes eingeführt wird.
  • Beispielsweise kann ein Hohlraum oder eine Reihe von Hohlräumen, die beispielsweise durch Blasen eines Schaumstoffs, aus dem das erste Element besteht, gebildet sein können, über Schläuche mit einem Stoff gefüllt, der entweder selbst eine Reaktion zur Änderung seiner mechanischen Eigenschaften durchlaufen kann oder der in den Hohlräumen auf einen weiteren Stoff trifft, mit dem er entsprechend reagiert oder wobei einer der Stoffe als Katalysator für die Reaktion dient.
  • Die eigentliche Reaktion kann dabei durch entsprechende Einflussnahme von außen initiiert, unterstützt oder durchgeführt werden, wobei hierzu beispielsweise Strahlung, Temperaturveränderung, mechanische Einwirkung, wie beispielsweise Ultraschall, oder die Einwirkung durch elektrische und/oder magnetische Felder dienen kann.
  • Die Erfindung bezieht sich zudem auf eine Fluidpumpe oder Fräse mit wenigstens einem ersten Element, das durch Änderung wenigstens einer mechanischen Eigenschaft von einem Transportzustand in einen Betriebszustand gebracht werden kann, wobei das erste Element wenigstens teilweise aus einem Stoff besteht oder mit einem Stoff oder Stoffgemisch füllbar ist, der/das, solange er/es einer Bestrahlung, einem elektrischen und/oder magnetischen Feld ausgesetzt ist, gegenüber dem Zustand ohne derartige Einwirkung geänderte mechanische Eigenschaften, insbesondere bezüglich Steifigkeit, Viskosität, Größe und/oder Form, aufweist.
  • Beispiele für eine derartige Veränderung der mechanischen Eigenschaften durch Felder sind der Piezoeffekt und Magnetostriktion bzw. bei Flüssigkeiten der magnetorheologische Effekt bzw. die Änderung der Viskosität durch elektrische Feldeinwirkung.
  • Ein entsprechendes erfindungsgemäßes Verfahren zur Inbetriebsetzung einer solchen. Vorrichtung sieht vor, dass die Vorrichtung nach ihrer Einführung in einen Körper eines Lebewesens der entsprechenden Einwirkung ausgesetzt wird, um die Vorrichtung funktionsfähig zu machen. Während des Betriebes der Vorrichtung/Fluidpumpe muss meistens die Einwirkung aufrechterhalten werden. Es muss dabei weder eine reversible noch eine irreversible chemische Reaktion stattfinden, sondern es wird lediglich abhängig von der Einwirkung ein anderer mechanischer Zustand des Stoffs eingenommen.
  • In einer Abwandlung kann die Erfindung auch so ausgestaltet sein, dass die entsprechende Einwirkung im Transportzustand aufrechterhalten wird und zum Erreichen bzw. während des Betriebszustandes entfernt wird bzw. wegfällt.
  • Für die gezielte Veränderung der mechanischen Eigenschaften der erwähnten Elemente, insbesondere der Elemente von Pumpen und Fräsen kommen verschiedene in situ anwendbare Mechanismen in Frage, darunter auf chemischem Gebiet insbesondere die Vernetzung.
  • Vernetzung bezeichnet in der makromolekularen Chemie Reaktionen, bei denen eine Vielzahl einzelner Makromoleküle zu einem dreidimensionalen Netzwerk verknüpft werden. Die Verknüpfung kann entweder direkt beim Aufbau der Makromoleküle oder durch Reaktionen an bereits bestehenden Polymeren erreicht werden. Beispiele für direkt vernetzende Reaktionen sind radikalische Polymerisationen von Monomeren mit zwei Vinylfunktionen oder die Polykondensation oder Polyaddition unter Einsatz von Monomeren mit zwei oder mehr Funktionsgruppen. Die Vernetzung bereits bestehender Polymere wird auch als Quervernetzung bezeichnet und kann entweder über bereits im Polymer vorhandene Funktionsgruppen durch geschickte Wahl der Reaktionsbedingungen erfolgen (sog. Selbstvernetzer), oder durch den Zusatz von multifunktionellen, niedermolekularen Substanzen, den Vernetzungsmitteln. Das Härten von Epoxidharzen mit Aminen und die Zugabe schwefelhaltiger Stoffe bei der Vulkanisation von Kautschuk sind Beispiele für Vernetzungsreaktionen.
  • Als vernetzbare Stoffe sind allgemein Kunstharze, Polyvinylchlorid (PVC), Gummi, Polyethylen, PMMA, Polypropylen, PET, PTFE, Polyurethane, Polyester, Polyamide, Polystyrol und Proteine (Beispiel: Keratin) bekannt. Bei der Auswahl für den erfindungsgemäßen Einsatz ist selbstverständlich die Bio-Kompatibilität zu beachten. Gegebenenfalls sind weniger geeignete Stoffe nur als Füllung für Hohlkörper zu verwenden.
  • Zu den einzelnen Stoffklassen im Einzelnen:
  • Nach DIN 55958 werden Kunstharze (auch Reaktionsharz genannt) durch Polymerisations-, Polyadditions- oder Polykondensationsreaktionen synthetisch hergestellt. Sie können durch Naturstoffe, zum Beispiel pflanzliche oder tierische Öle beziehungsweise natürliche Harze, modifiziert sein oder durch Veresterung oder Verseifung natürlicher Harze hergestellt sein.
  • Kunstharze bestehen in der Regel aus zwei Hauptkomponenten. Die Vermischung beider Teile (Harz und Härter) ergibt die reaktionsfähige Harzmasse. Der Reaktionsvorgang ist weitgehend auch von der Umgebungstemperatur abhängig und die Stoffzusammensetzung kann oft so gewählt werden, dass die Härtungsreaktion erst bei einer Erwärmung auf Körpertemperatur mit merklicher Reaktionsgeschwindigkeit erfolgt. Bei der Härtung steigt die Viskosität an und nach abgeschlossener Härtung erhält man einen unschmelzbaren (duroplastischen) Kunststoff.
  • Auch durch die Anwendung von Strahlung (Teilchenstrahlung (Alpha- oder Beta-Partikel) oder auch Röntgen- oder Gammastrahlung oder UV-Strahlung) kann bei vielfältigen Kunststoffen eine Polymerisation initiiert werden.
  • Strahlenvernetzung verleiht preiswerten Massenkunststoffen oder technischen Kunststoffen die mechanischen, thermischen und chemischen Eigenschaften von Hochleistungskunststoffen. Diese Veredelung von Kunststoffen ermöglicht den Einsatz unter Bedingungen, denen diese Kunststoffe ansonsten nicht standhalten würden. Die energiereichen Beta- oder Gammastrahlen lösen chemische Reaktionen in den Kunststoffteilen aus und führen so zu einer Vernetzung der Moleküle – vergleichbar der Vulkanisation bei Kautschuken.
  • Mengenmäßig am bedeutendsten ist die Vernetzung von Polyethylen, Polyamid, PVC und PBT. Die Vernetzung von thermoplastischen Elastomeren (TPO, TPC und TPA) gewinnt zunehmend an Bedeutung. Grundsätzlich ist auch eine Vernetzung von Polypropylen möglich, obwohl bei diesem Material in der Regel Abbaureaktionen überwiegen. Als generelle Regel kann gelten: Strahlenvernetzung ist immer dann möglich, wenn auch chemische Vernetzung mittels radikalischer Initiatoren wie z. B. Peroxiden möglich ist.
  • Vorteil der Strahlenvernetzung ist, dass das Verfahren bei Raumtemperatur bzw. Körpertemperatur und Normaldruck funktioniert.
  • Die Bestrahlung zur Härtung erfolgt nach oder bei der Formgebung oder Verformung. Es kann aber auch durch die Bestrahlung selbst und eine damit einhergehende Vernetzung und gewollte Schrumpfung oder Dehnung des so behandelten Stoffes eine gezielte Verformung stattfinden. Die vorteilhaften Verarbeitungseigenschaften von Thermoplasten werden so mit den Eigenschaften duroplastischer Systeme kombiniert.
  • Kautschuk wird hauptsächlich synthetisch hergestellt.
  • Synthetischer Kautschuk besteht meist aus Styrol und Butadien; andere Rohstoffbasen sind Styrolacrylat, Reinacrylat, Vinylacetat. Der erste wirtschaftlich nutzbare war der Styrol-Butadien-Kautschuk, ein weiterer ist Neopren.
  • Polyethylen (Kurzzeichen PE) ist ein durch Polymerisation von Ethen hergestellter thermoplastischer Kunststoff.
  • Polyethylen gehört zur Gruppe der Polyolefine. Bekannte Handelsnamen sind: Alathon, Dyneema, Hostalen, Lupolen, Polythen, Spectra, Trolen, Vestolen. Hergestellt wird Polyethylen auf der Basis von Ethylengas, das entweder konventionell petrochemisch, oder aus Ethanol hergestellt werden kann.
  • Polyurethane (PU, DIN-Kurzzeichen: PUR) sind Kunststoffe oder Kunstharze, welche aus der Polyadditionsreaktion von Diolen beziehungsweise Polyolen mit Polyisocyanaten entstehen. Charakteristisch für Polyurethane ist die Urethan-Gruppe.
  • Polyurethane können je nach Herstellung hart und spröde, aber auch welch und elastisch sein. Besonders die Elastomere weisen eine vergleichsweise hohe Reißfestigkeit auf. In aufgeschäumter Form ist Polyurethan als dauerelastischer Weichschaum oder als harter Montageschaum bekannt.
  • Polyurethane können je nach Wahl des Isocyanats und des Polyols unterschiedliche Eigenschaften aufweisen. Die Dichte von ungeschäumtem Polyurethan variiert zwischen rund 1000 und 1250 kg/m3.
  • Im Wesentlichen werden die späteren Eigenschaften durch die Polyolkomponente bestimmt, weil zum Erreichen gewünschter Eigenschaften üblicherweise nicht die Isocyanatkomponente angepasst wird, sondern die Polyolkomponente. Es kommen grundsätzlich die folgenden Isocyanatkomponenten zum Einsatz:
    Diphenylmethandiisocyanat (MDI)
    Polymeres Diphenylmethandiisocyanat (PMDI)
    Toluylendiisocyanat (TDI)
    Naphthylendiisocyanat (NDI)
    Hexamethylendiisocyanat (HDI)
    Isophorondiisocyanat (IPDI)
    4,4'-Diisocyanatodicyclohexylmethan (H12MDI)
  • Abhängig von Kettenlänge und Anzahl der Verzweigungen im Polyol können mechanische Eigenschaften beeinflusst werden. So führt ein Einsatz von Polyesterpolyolen zusätzlich zu den üblicheren Polyetherpolyolen zu besserer Standfestigkeit, weil Polyesterpolyole einen höheren Schmelzpunkt haben und somit beim Applizieren des Polyurethans erstarren.
  • Das Aufschäumen von Polyurethanschäumen kommt durch die Zugabe von Wasser zustande. Bei der Reaktion von Wasser mit Isocyanat wird Kohlenstoffdioxid abgespalten, welches den Schaum auftreibt. Durch die Menge des zugegebenen Wassers kann das Raumgewicht des entstehenden Schaumes variiert werden. Typische Dichten sind rund 5 bis 40 kg/m3 für weichen Blockschaum oder 30 bis 90 kg/m3 für harten Blockschaum.
  • Wenn Polyurethane ausreagiert sind und keine Monomere mehr enthalten, besitzen sie in der Regel keine gesundheitsschädlichen Eigenschaften. Isocyanate können allerdings Allergien auslösen und stehen im Verdacht, Krebs zu verursachen. Das für einige Polyurethane verwendete Toluylendiisocyanat verdampft bei Raumtemperatur und kann beim Einatmen Schäden in der Lunge verursachen. Solche Stoffe werden überwiegend nur als Füllung eines im Patientenkörper befindlichen, abgeschlossenen Hohlkörpers mit nachfolgender Härtung verwendet.
  • Polyurethane entstehen durch die Polyadditionsreaktion von Polyisocyanaten mit mehrwertigen Alkoholen, den Polyolen. Die Verknüpfung erfolgt durch die Reaktion einer Isocyanatgruppe (-N=C=O) eines Moleküls mit einer Hydroxylgruppe (-OH) eines anderen Moleküls unter Bildung einer Urethangruppe (-NH-CO-O-). Dabei erfolgt keine Abspaltung von Nebenprodukten wie bei der Polykondensation.
  • Die Polyurethanbildung durch Polykondensation erfordert mindestens zwei verschiedene Monomere, im einfachsten Fall Diol und Diisocyanat. Sie verläuft in Stufen. Zunächst entsteht aus Diol und Diisocyanat ein bifunktionelles Molekül mit einer Isocyanatgruppe (-N=C=O) und einer Hydroxylgruppe (-OH). Dieses kann an beiden Enden mit weiteren Monomeren reagieren. Dabei entstehen kurze Molekülketten, sogenannte Oligomere. Diese können mit weiteren Monomeren, anderen Oligomeren oder bereits gebildeten Polymeren reagieren.
  • Je nach Ausgangsstoffen können lineare oder vernetzte Polymere erhalten werden. Lineare Polyurethane können beispielsweise aus Diolen und Diisocyanaten erhalten werden. Durch Zugabe von weiterem Diisocyanat können lineare Polyurethane nachträglich vernetzt werden. Alternativ können vernetzte Polyurethane auch durch die Reaktion von Di- oder Triisocyanaten mit Polyolen hergestellt werden.
  • In einer Nebenreaktion reagiert Wasser mit einigen Isocyanatgruppen, dabei wird Kohlenstoffdioxid frei, das den noch weichen Kunststoff aufquellen lässt. Die gleichzeitig entstandene primäre Aminogruppe reagiert mit einer Isocyanatgruppe zu einem substituierten Harnstoff.
  • Soll in der Praxis ein bestimmtes Polyurethan hergestellt werden, so bieten sich zwei Wege an:
    Direkte Reaktion eines Polyols mit einem Polyisocyanat (ein Einstufen-Verfahren)
    Herstellen eines funktionalisierten kleineren Polymers (sogenanntes Präpolymer) als Zwischenprodukt, welches in einem zweiten Schritt durch Verlinken der funktionellen Gruppen zum gewünschten Polymer reagiert (ein Zweistufen-Verfahren)
  • Biogene Polyole
  • Im Regelfall entstammen sowohl die Polyole wie auch die Polyisocyanate der Produktion aus petrochemischen Rohstoffen, es können jedoch auch Polyole auf der Basis von Pflanzenölen eingesetzt werden. Vor allem Rizinusöl ist hierfür geeignet, da es selbst über Hydroxygruppen verfügt und so direkt mit Isocyanaten umgesetzt werden kann. Weiterhin werden Derivate des Rizinusöls verwendet. Des Weiteren können Polyole auf Basis von Pflanzenölen zum einen durch Epoxidierung der Pflanzenöle mit anschließender Ringöffnung wie auch über eine Umesterung von Pflanzenölen mit Glycerin hergestellt werden. Polyurethane auf Basis von Pflanzenölen werden aufgrund der biogenen Herkunft eines Teils der Rohstoffe auch als „Bio-Polyurethane” vermarktet.
  • Polyester sind Polymere mit Esterfunktionen -[-CO-O-]- in ihrer Hauptkette. Zwar kommen auch in der Natur Polyester vor, doch heute versteht man unter Polyester eher eine große Familie synthetischer Polymere (Kunststoffe), zu denen die viel verwendeten Polycarbonate (PC) und vor allem das technisch wichtige, thermoplastische Polyethylenterephthalat (PET) gehören. Eine besondere Verarbeitungsform des Polyethylenterephthalat – als Folie – ist das Mylar. Eine weitere Form ist das duroplastische ungesättigte Polyesterharz (UP), welches als preisgünstiges Matrixharz im Bereich Faserverbundkunststoffe verwendet wird.
  • Als Polyester kommen beispielsweise in Frage:
    • – PES oder PEs Polyester (Gruppenbezeichnung)
    • – PBT Polybutylenterephthalat, ein Derivat der Terephthalsäure
    • – PC Polycarbonat, ein Derivat der Kohlensäure
    • – PET Polyethylenterephthalat, ein Derivat der Terephthalsäure
    • – PEN Polyethylennaphthalat
    • – UP ungesättigtes Polyesterharz
    • – Polyamide
  • Die Bezeichnung Polyamide wird üblicherweise als Bezeichnung für synthetische, technisch verwendbare thermoplastische Kunststoffe verwendet und grenzt diese Stoffklasse damit von den chemisch verwandten Proteinen ab. Fast alle bedeutsamen Polyamide leiten sich von primären Aminen ab, das heißt, in ihren Wiederholeinheiten kommt die funktionelle Gruppe -CO-NH- vor. Daneben existieren auch Polyamide von sekundären Aminen (-CO-NR-, R = organischer Rest). Als Monomere für die Polyamide finden besonders Aminocarbonsäuren, Lactame und/oder Diamine und Dicarbonsäuren Verwendung.
  • Polyamide lassen sich in folgende Klassen einordnen:
  • nach der Art der Monomere
    • aliphatische Polyamide: die Monomere leiten sich von aliphatischen Grundkörpern ab, z. B. PA aus ε-Caprolactam (Polycaprolactam, kurz PA 6) oder aus Hexamethylendiamin und Adipinsäure (PA 66).
    • teilaromatische Polyamide: die Monomere leiten sich zum Teil von aromatischen Grundkörpern ab, z. B. PA aus Hexamethylendiamin und Terephthalsäure (PA 6T).
    • aromatische Polyamide (Polyaramide): die Monomere leiten sich von rein aromatischen Grundkörpern ab, z. B. para-Phenylendiamin und Terephthalsäure (Aramid)
  • nach der Art der Monomerzusammensetzung
    • Homopolyamide: das Polyamid leitet sich von einer Aminocarbonsäure oder einem Lactam bzw. einem Diamin und einer Dicarbonsäure ab. Solche Polyamide lassen sich durch eine einzige Wiederholeinheit beschreiben. Beispiele hierfür sind das PA aus Caprolactam [NH-(CH2)5-CO]n (PA 6) oder das PA aus Hexamethylendiamin und Adipinsäure [NH-(CH2)6-NH-CO-(CH2)4-CO]n (PA 66).
    • Copolyamide: das Polyamid leitet sich von mehreren unterschiedlichen Monomeren ab. Solche Polyamide lassen sich nur durch Angabe mehrerer Wiederholeinheiten beschreiben. Beispiele hierfür sind das PA aus Caprolactam, Hexamethylendiamin und Adipinsäure [NH-(CH2)6-NH-CO-(CH2)4-CO]n-[NH-(CH2)5-CO]m (PA 6/66), oder PA aus Hexamethylendiamin, Adipinsäure und Sebacinsäure [NH-(CH2)6-NH-CO-(CH2)4-CO]n-[NH-(CH2)6-NH-CO-(CH2)8-CO]m (PA 66/610). Zu beachten ist, dass die angegebenen Formeln lediglich die Polymerzusammensetzung beschreiben, nicht aber die Abfolge der Monomereinheiten; diese sind üblicherweise statistisch über die Polymerketten verteilt.
  • nach Art des Erweichungs-/Erstarrungsverhaltens
    • teilkristalline Polyamide: bilden beim Abkühlen aus der Schmelze kristalline Domänen (Phasenübergang 1. Ordnung). In der Regel erstarrt nicht die gesamte Schmelze kristallin, sondern es bilden sich auch amorphe Domänen (siehe unten). Das Verhältnis zwischen kristallinen und amorphen Domänen wird von der chemischen Natur des Polyamids und den Abkühlbedingungen bestimmt. Zusätzlich kann die Kristallisation durch nukleierende oder antinukleierende Additive gefördert oder behindert werden. Leicht kristallisierende Polyamide sind z. B. das PA 46 oder das PA 66, schwer kristallisierende Polyamide sind z. B. das PA mXD6 aus m-Xylylendiamin und Adipinsäure oder bestimmte Copolyamide.
    • amorphe Polyamide: erstarren glasartig aus der Schmelze. Im festen Zustand gibt es keine Fernordnung der Wiederholungseinheiten. Der Übergang zwischen fest und flüssig wird durch die Glasübergangstemperatur (Phasenübergang 2. Ordnung) beschrieben. Beispiele sind das PA aus Hexamethylendiamin und Isophthalsäure (PA 6I) und bestimmte Copolyamide. Im Allgemeinen enthalten amorphe Polyamide Monomereinheiten, die eine regelmäßige, kristalline Anordnung der Ketten unmöglich machen. Unter extremen Abkühlbedingungen können auch ansonsten teilkristalline Polyamide amorph erstarren.
  • Polystyrol (Kurzzeichen PS, andere Namen: Polystyren, IUPAC-Name: Poly(1-phenylethan-1,2-diyl)) ist ein transparenter, amorpher oder teilkristalliner Thermoplast. Amorphes Polystyrol ist für vielfältige Zwecke einsetzbar.
  • Polystyrol wird entweder als thermoplastisch verarbeitbarer Werkstoff oder als Schaumstoff (expandiertes Polystyrol) eingesetzt. Polystyrol ist physiologisch unbedenklich. Polystyrol wird überwiegend durch Suspensions-Polymerisation des Monomers Styrol gewonnen, das außergewöhnliche Polymerisationseigenschaften aufweist. Es kann radikalisch, kationisch, anionisch oder mittels Ziegler-Natta-Katalysatoren polymerisiert werden. Heute wird aus Rohöl Ethen gewonnen. Chlor wird großtechnisch vor allem in der Chlor-Alkali-Elektrolyse aus Kochsalz gewonnen. Das Chlor wird im ersten Schritt an das Ethen addiert, und es entsteht 1,2-Dichlorethan. In einem zweiten Schritt wird daraus HCl abgespalten, wobei VCM entsteht. Unter Druck und Zugabe von Initiatoren und anderen Additiven wird VCM in einem Autoklaven zum PVC polymerisiert. Im Wesentlichen sind drei verschiedene Polymerisationsverfahren bekannt. Das historisch gesehen älteste Verfahren ist die Emulsionspolymerisation. Die Initiatoren (zum Beispiel Peroxide und andere Perverbindungen) sind in diesem Falle wasserlöslich. Man erhält das sogenannte E-PVC. Wird das VCM durch intensives Rühren im Wasser verteilt und ist der Initiator (zum Beispiel organische Peroxide, Azobisisobutyronitril [AIBN]) im Monomeren löslich, so spricht man von der Suspensionspolymerisation, das zum S-PVC führt. Wird kein Wasser während der Polymerisation genutzt, so spricht man von Block- bzw. Masse-PVC, auch M-PVC genannt. Dabei ist der Initiator im monomeren Vinylchlorid gelöst.
  • Magneto-rheologische Flüssigkeiten:
  • Die eingesetzte Flüssigkeit, ein spezielles magnetorheologisches Öl, ist mit mikroskopisch kleinen, magnetisch polarisierbaren Metallpartikeln durchsetzt. Über einen Elektromagneten oder einen Dauermagneten ist es möglich, ein Magnetfeld zu erzeugen. Die Metallpartikel werden dadurch in Richtung Magnetfeld ausgerichtet und beeinflussen damit entscheidend die Viskosität, d. h. die Fließfähigkeit des Öls. Durch Anlegen einer Spannung wird die Anordnung der Magnetpartikel und somit die physikalische Konsistenz (Viskosität) der nahezu verzögerungsfrei reagierenden Flüssigkeit variiert.
  • Auch die Eigenschaft der Dilatanz eines Stoffes kann gezielt zu einer Erhöhung der Viskosität in situ verwendet werden. Hierzu sei zunächst der der Dilatanz entgegengesetzte Effekt der sogenannten strukturviskosität erläutert.
  • Strukturviskosität, auch Scherentzähung genannt, ist die Eigenschaft eines Fluids, bei hohen Scherkräften eine abnehmende Viskosität zu zeigen. D. h., je stärker die Scherung ist, die auf das Fluid wirkt, desto weniger viskos, also dünnflüssiger, wird es. Im Englischen wird solch ein Fluid daher treffenderweise „shear-thinning” genannt, im Deutschen also „scherverdünnend”, was gelegentlich als Synonym für strukturviskos verwendet wird.
  • Die Abnahme der Viskosität entsteht durch eine Strukturänderung im Fluid, die dafür sorgt, dass die einzelnen Fluid-Partikel (z. B. Polymerketten) besser aneinander vorbei gleiten können.
  • Da in einem strukturviskosen Fluid die Viskosität bei wachsender Scherung nicht konstant bleibt, wird es als nichtnewtonsches Fluid klassifiziert.
  • Andere Fluide aus dieser Klassifizierung haben u. a. folgende Eigenschaften:
    Dilatanz, das gegensätzliche Verhalten zur Strukturviskosität,
    Thixotropie, die Viskosität steigt nach Verminderung der Scherkraft nicht sofort wieder an;
    Rheopexie, das gegensätzliche Verhalten zur Thixotropie.
  • Beispiele:
  • Strukturviskosität: In Polymerlösungen und -schmelzen sind die einzelnen Polymerketten miteinander verschlauft (= verhakt). Bei steigender Scherkraft lösen sich diese Verschlaufungen und die Viskosität sinkt. Dieser Effekt spielt bei der Verarbeitung von Thermoplasten eine große Rolle. So werden bei der Erstellung von dünnwandigen Spritzgussteilen geringere Einspritzdrücke benötigt als bei Dickwandigen.
  • Nicht-tropfende Wandfarbe tropft nicht von der Rolle, da die Scherung klein und somit die Zähigkeit bzw. Viskosität groß ist, wogegen sie auf die Wand leicht aufzutragen ist, da die dünne Schicht zwischen Wand und Rolle eine große Scherung hervorruft und somit die Viskosität klein ist.
  • Assoziative Materialien sind Systeme, bei denen sich über physikalische Wechselwirkungen, beispielsweise Wasserstoffbrückenbindungen oder Ion-Dipol-Wechselwirkungen, kleine Moleküle zusammenlagern – zu supramolekularen Systemen. Durch Scherung werden diese (im Vergleich zu kovalenten Bindungen) schwachen Bindungen aufgebrochen, was die Viskosität senkt. Die Besonderheit hierbei ist, dass die Bindungen erst nach einer gewissen materialspezifischen Zeit sich vollständig zurückbilden (→ Thixotropie). Technisch wichtige Vertreter sind Ionomere.
  • Dilatanz (auch Scherverzähung, ist in der Rheologie die Eigenschaft eines nichtnewtonschen Fluids, bei hohen Scherkräften eine höhere Viskosität zu zeigen. Im Englischen nennt man ein dilatantes Fluid auch shear-thickening, also „scherverdickend” oder „scherverfestigend”.
  • Die Zunahme der Viskosität entsteht durch eine Strukturänderung im Fluid, die dafür sorgt, dass die einzelnen Fluid-Partikel stärker miteinander wechselwirken (zum Beispiel sich verhaken) und so schlechter aneinander vorbei gleiten.
  • Die Viskosität (Zähigkeit) eines dilatanten Fluids steigt mit der Schergeschwindigkeit an, hängt aber bei konstanter Schergeschwindigkeit nicht von der Zeit ab.
  • Wenn die Viskosität nach Verminderung der Scherkraft nicht sofort wieder absinkt, spricht man von Rheopexie, die sehr wohl zeitabhängig ist.
  • Der US-Hersteller Dow Corning produziert aus Silikon-Polymer die dilatante Knetmasse Silly Putty (auch bouncing putty, thinking Putty, Intelligente Knete genannt), die bisher vor allem als Kinderspielzeug auf dem Markt war. Neben der normalen Knetbarkeit verhält sich diese Substanz bei plötzlicher mechanischen Belastung völlig anders: wirft man eine Kugel aus dem Material zu Boden, springt sie wie ein Gummiball zurück; schlägt man mit dem Hammer sehr schnell auf ein Stück, zerspringt dieses in viele kleine scharfkantige Stücke, fast wie Keramik. Auch beim Zerreißen bilden sich scharfe Kanten und glatte Bruchflächen. Technische Anwendungen waren nicht bekannt.
  • Ein Material mit ähnlichen Eigenschaften wird seit kurzem als Active Protection System (APS) beispielsweise in Motorradbekleidung eingesetzt: speziell geformte Pads, die einen dilatanten Compound enthalten, erlauben die freie Beweglichkeit des Trägers. Bei einem abrupten Schlag in Folge eines Sturzes jedoch „verhärtet” das Material zu einer hartgummiähnlichen Konsistenz, verteilt die einwirkenden Kräfte auf eine größere Körperpartie und verhindert so Verletzungen.
  • Elektrorheologische Flüssigkeiten (ERF):
  • Man unterscheidet zwischen homogenen und heterogenen elektrorheologischen Flüssigkeiten. Die homogenen ERF bestehen z. B. aus Aluminiumsalzen der Stearinsäure. Der Wirkmechanismus der homogenen ERF ist nicht mit letzter Gewissheit bekannt. Die heterogenen ERF bestehen aus polarisierbaren Teilchen oder Tröpfchen, welche in einer elektrisch nichtleitendenden Trägerflüssigkeit, z. B. Silicon- oder Mineralöl, dispergiert sind.
  • Durch ein externes elektrisches Feld werden in den Partikeln Dipole induziert. Die Teilchen bilden Ketten und Säulen entlang der Feldlinien des elektrischen Feldes. Dieses sogenannte Kettenmodell nach Winslow ist das einfachste Strukturmodell zur Erklärung des elektrorheologischen Effektes.
  • Praktische Anwendung und Einsatzgebiete Elektrorheologische Flüssigkeiten werden meist als zentraler Bestandteil eines mechatronischen Systems verwendet. Zusammen mit einem Gehäuse, einem Hochspannungsnetzteil und einer entsprechenden Steuerung bzw. Regelung können diese Systeme auf unterschiedliche Rahmenbedingungen reagieren.
  • So sind beispielsweise die Dämpfungseigenschaften von hydraulischen Lagern durch die Verwendung einer elektrorheologischen Flüssigkeit steuerbar, indem die Viskosität der elektrorheologischen Flüssigkeit steuerbar ist. Bei Verwendung eines solchen Lagers als Motorlager in einem Automobil könnte die Dämpfung dynamisch an die Drehzahl des Motors und die Beschaffenheit des Untergrunds angepasst werden, um die Geräuschbelastung für die Insassen zu reduzieren.
  • Elektrorheologische Flüssigkeiten sind ebenso belastbar wie ihre Grundstoffe. Bei Verwendung als variable Bremse sind moderne ERF anders als Feststoffbremsen nicht abrasiv und vergleichsweise temperaturstabil. Es gibt jedoch auch ERF-Formulierungen, die aufgrund ihrer starken Abrasivität als Schleifmittel eingesetzt werden könnten.
  • Die Forschungen und Entwicklungen der vergangenen Jahre haben zu deutlichen Verbesserungen sowohl der rheologischen als auch der elektrischen Eigenschaften von elektrorheologischen Flüssigkeiten geführt. Dabei hat sich die Entwicklung besonders auf ERF aus Polymerpartikeln konzentriert. Mit diesen elektrorheologischen Suspensionen z. B. aus Polyurethanpartikeln, dispergiert in einem Silikonöl als Träger, spielen Abrasion und Verschleiß keine Rolle mehr. Die weichen und elastischen Partikel haben zum Einen keinen abrasiven Einfluss auf die mechanischen Komponenten der ER-Systeme (Pumpen, Ventile), zum Anderen sind sie aufgrund ihrer Flexibilität selbst extrem beständig gegen mechanischen Verschleiß, so dass auch unter heftigster mechanischer Belastung keine Degradation der ERF selbst zu verzeichnen ist.
  • Im Folgenden wird die Erfindung anhand mehrerer Ausführungsbeispiele in einer Zeichnung gezeigt und nachfolgend beschrieben.
  • Dabei zeigt
  • 1 schematisch in einem Längsschnitt ein Blutgefäß mit einem in dieses eingeführten Hohlkatheter und einer Fräse,
  • 2 schematisch ein in eine Herzkammer mündendes Blutgefäß, durch das ein Hohlkatheter mit einer Herzpumpe eingeschoben ist,
  • 3 einen Rotor einer Pumpe im Transportzustand,
  • 4 den Rotor aus 3 im Betriebszustand,
  • 5 einen weiteren Rotor im Transportzustand,
  • 6 den weiteren Rotor aus 5 im Betriebszustand,
  • 7 einen dritten Rotor im Transportzustand,
  • 8 den Rotor aus 7 im Betriebszustand während des Versteifungsprozesses,
  • 9 ein Detail eines Rotors mit einem Förderelement, das einen Hohlraum aufweist, der teilweise gefüllt ist,
  • 10 das Detail aus 9, wobei der Hohlraum vollständig ausgefüllt ist,
  • 11 schematisch eine Ansicht eines Rotors im Transportzustand mit einem Pumpengehäuse, das zusammengefallen ist,
  • 12 die Pumpe aus 11 im Betriebszustand,
  • 13 einen Rotor im Betriebszustand in versteifter Form mit einem im Betriebszustand befindlichen Gehäuse einer Pumpe,
  • 14 die Teile der Pumpe aus 13 nach einer weiteren Behandlung, die das Brechen der Förderelemente ermöglicht,
  • 15 einen Rotor mit Förderelementen, der durch einen Hohlkatheter im Transportzustand durchgeschoben wird,
  • 16 den Rotor aus 15, der durch Zurückziehen der Nabe in den Hohlkatheter aufgerichtet wird,
  • 17 einen Rotor, der durch Verschieben eines Stützrades mittels Schubelementen aufgerichtet wird, sowie
  • 18 eine Ansicht des Schubrades.
  • 1 zeigt als ein Beispiel für eine erfindungsgemäße Vorrichtung eine Fräse 1, die am distalen Ende eines Hohlkatheters 2 in ein Blutgefäß 3 eines menschlichen Körpers eingeführt ist, um eine Verengung 4 durch Wegfräsen von Belägen an der Wand des Blutgefäßes zu beseitigen. Innerhalb des Hohlkatheters 2 verläuft eine Welle 5, die für eine Rotation mit hoher Drehzahl ausgelegt ist und von außerhalb des Hohlkatheters durch einen Motor angetrieben werden kann.
  • Die Fräse 1 wird vorteilhaft zunächst in einem Transportzustand in das Blutgefäß 3 eingeführt, beispielsweise in radial komprimierter Form, und dann vor Ort in einen Betriebszustand überführt, der beispielsweise dadurch unterschiedlich zum Transportzustand sein kann, dass der Fräskopf radial vergrößert oder versteift wird. Die Erfindung löst das Problem, diese Änderung der mechanischen Eigenschaften der Fräse nach dem Durchlaufen des Transportweges in günstiger Form zu bewerkstelligen.
  • 2 zeigt ein weiteres Anwendungsbeispiel für eine erfindungsgemäße Vorrichtung, die in diesem Fall durch eine Herzkatheterpumpe 6 gebildet ist. Diese weist ein Gehäuse 7 auf, in dem ein Rotor mit einer Nabe 8 und Förderelementen 9, 10 in Form von Förderschaufeln untergebracht ist.
  • Die Pumpe weist typischerweise im Betrieb einen größeren Durchmesser auf als während des. Transportes, um ihr die erforderliche Effektivität zu verleihen. Aus diesem Grund wird die Pumpe vor dem Einbringen in ein Blutgefäß 11, durch das sie in eine Herzkammer 12 geschoben werden soll, radial komprimiert. Dann wird sie durch eine Schleuse 13 in das Blutgefäß 10 eingebracht und bis zur Herzkammer 12 durchgeschoben. Darauf wird die Pumpe, beispielsweise der Rotor und das Pumpengehäuse, gemeinsam oder jeweils für sich radial expandiert. Die Erfindung kann die Expansionsbewegung an sich erzeugen oder unterstützen. Sie kann jedoch auch erst nach der Expansionsbewegung dadurch wirken, dass beispielsweise der Rotor oder das Pumpengehäuse in der expandierten Stellung versteift und damit stabilisiert wird.
  • Danach ist die Pumpe mit hohen Drehzahlen und unter hoher mechanischer Belastung betreibbar, indem der Motor 14 die Welle 15 mit beispielsweise 10000 U/min antreibt.
  • Das Aufrichten der einzelnen Elemente der Pumpe 6 nach dem Verbringen an den Einsatzort in der Herzkammer 12 kann beispielsweise dadurch geschehen, dass der Rotor 8, 9, 10 in Rotation versetzt wird und entweder durch die wirkenden Zentrifugalkräfte oder durch die Fluidgegenkräfte, die sich mit der Drehung einstellen, oder durch beides gemeinsam aufgerichtet wird. Zudem oder alternativ können auch mechanische Vorrichtungen wie beispielsweise Züge oder Druckeinrichtungen vorgesehen sein, die entlang des Hohlkatheters 16 von außerhalb des Patientenkörpers betätigbar sind und die auf den Pumpenkopf wirken und dort eine entsprechende Expansionsbewegung verursachen oder unterstützen. Es sind auch andere Mechanismen möglich, über die auf eine Expansion hingewirkt werden kann. Diese werden beispielhaft anhand der übrigen Figuren erläutert.
  • 3 zeigt eine Ansicht eines Rotors mit Förderschaufeln bzw. Rotorblättern 9', 10', die an einer Nabe 8' ansetzen und die in der 3 noch im Transportzustand gezeigt sind, in dem sie radial an die Nabe 8' angelegt sind.
  • Jeweils ein Teilbereich 17, 18 jedes Förderelementes 9', 10' ist derart gestaltet, dass er sich durch bestimmte äußere Einflüsse wie beispielsweise Bestrahlung mit UV-Licht oder Teilchenstrahlung (α-, β-, γ-), elektrische und/oder magnetische Felder, Ultraschall oder mechanische Belastung kontrahiert. Es können als Materialien für die Bereiche 17, 18 beispielsweise selbstvernetzende Kunststoffe gewählt werden, die bei der Vernetzung einerseits erhärten und sich andererseits zusammenziehen.
  • Die 4 zeigt, dass durch eine Kontraktion der Bereiche 17, 18 die Förderelemente 9', 10' in deren Bereich stärker an die Nabe 8' herangezogen und damit radial aufgerichtet werden, wie durch den Pfeil 19 angedeutet. Diese Wirkung ist bei einer dauerhaften Vernetzung stabil und dauerhaft. Es ist jedoch auch denkbar, Stoffe einzusetzen, die eine solche Kontraktion vorübergehend zeigen, beispielsweise durch Effekte der Magnetostriktion oder Piezoeffekt. In dem letztgenannten Fall wird der Rotor radial nur so lange expandiert, wie (oder bei Einwirkung nur im Transportzustand bis) die entsprechenden Felder wirken.
  • Anderenfalls stabilisiert sich der Rotor, und die äußere Einwirkung kann wegfallen, ohne dass der Rotor instabil wird.
  • Es ist auch denkbar, den gesamten Bereich der Förderelemente im Bereich der Nabe aus einem entsprechenden Material herzustellen, das sich entweder kontrahiert oder versteift, wobei die Geometrie entsprechend gewählt werden muss, um eine selbsttätige Aufrichtung der Förderelemente zu erreichen, wenn nicht die Aufrichtung durch einen anderen Effekt, beispielsweise Manipulation mittels Drahtzügen oder Ähnlichem erreicht wird. Wird die Expansion durch andere Effekte erreicht, so kann es ausreichen, Teile der Förderelemente 9', 10' oder die gesamten Förderelemente zu versteifen, indem sie aus einem entsprechenden vernetzbaren Material oder einem Material, das sich unter entsprechender Einwirkung versteift, hergestellt werden. Es existieren beispielsweise Elastomere, die auf Magnetfelder durch Versteifung reagieren.
  • In der 5 ist eine weitere Ausführungsform der Erfindung mit einem Rotor mit einer Nabe 8'' und zwei Förderschaufeln 9'', 10'' und darin angeordneten Hohlräumen 20, 21 dargestellt.
  • Die Hohlräume 20, 21 sind über ein Leitungssystem mit Zuleitungen 22, 23, die durch die Nabe 8'' verlaufen, mit einer Druckquelle verbunden. Entsprechende Leitungen können entweder durch ein Lumen des Hohlkatheters oder durch zusätzlich dort innen oder außen am Hohlkatheter angeordnete Schläuche gespeist werden.
  • Zum Aufrichten der Förderelemente 9'', 10'' kann beispielsweise ein Gas oder eine Flüssigkeit in die Hohlräume 20, 21 eingepresst werden, so dass die Förderelemente 9'', 10'' sich, wie in 6 gezeigt, aufrichten und straffen. Eine entsprechende eingepresste Flüssigkeit in den Hohlräumen 20, 21 wird danach entweder durch Vernetzung oder eine chemische Reaktion mit einem weiteren Stoff verfestigt, oder die Eigenschaften der Flüssigkeit werden durch Feldeinwirkung geändert, was beispielsweise bei magnetorheologischen Flüssigkeiten durch Einwirkung eines magnetischen Feldes und entsprechende Änderung der Viskosität und bei elektrorheologischen Eigenschaften durch elektrische Felder möglich ist. Damit wird der Rotor bei hoher Viskosität der Flüssigkeit stabilisiert und versteift.
  • Wird zunächst ein Gas eingepresst, so muss darauf ein weiterer Stoff eingebracht werden, um die Versteifung dauerhaft zu erhalten. Es können beispielsweise auch mehrere Stoffe in Form von Flüssigkeiten und/oder Gasen eingebracht werden, die entweder miteinander nach dem Zusammentreffen in den Hohlräumen 20, 21 reagieren oder die noch um einen Katalysator ergänzt werden, sobald die Förderelemente 9'', 10'' aufgerichtet sind, um die Reaktion zu beschleunigen. Wird durch die äußere Einwirkung eine irreversible Reaktion ausgelöst, so kann die Einwirkung nach der Versteifung des Rotors entfallen. Andererseits kann auch die Aufrechterhaltung beispielsweise eines Feldes notwendig sein, um die entsprechenden gewünschten mechanischen Eigenschaften des Rotors zu erhalten.
  • Es kann das Einpressen von Gas in die Hohlräume auch ausschließlich zum Aufrichten der Förderelemente genutzt werden, wenn danach andere Elemente des Rotors zur Stabilisierung dieses Zustands versteift werden.
  • Die 7 zeigt einen Rotor mit zwei Förderelementen in Form von Schaufelblättern 9''', 10''', wobei jedes der Förderelemente zwei Versteifungsstege 24, 25, 26, 27 aufweist. Diese sind in dem Transportzustand der 7 noch schlaff, so dass die Förderelemente 9''', 10''' an der Nabe 8''' anliegen können.
  • Nach dem Verbringen an den Einsatzort wird, wie in 8 durch den Pfeil 28 bezeichnet, der Rotor in Drehung versetzt, so dass sich die Förderelemente 9''', 10''' durch Zentrifugalkraft und/oder Fluidgegendruck aufrichten. Zu diesem Zeitpunkt kann die Reaktion zur Versteifung der Stege 24, 25, 26, 27 einsetzen, entweder durch Bestrahlung, wie mittels der Einwirkungsquelle 29 dargestellt, die allerdings auch durch eine magnetische oder elektrische Feldquelle ersetzt werden kann, oder durch eine Ultraschallquelle oder durch eine chemische Reaktion, die beispielsweise durch Eindiffundieren eines Stoffes 30, in dem sich die Förderelemente bewegen, ausgelöst oder befördert werden kann. Dieser Stoff kann beispielweise beim Einsatz der Pumpe im menschlichen Blut als Bestandteil des Blutes in natürlicher Form vorliegen. Diffundiert dieser Stoff in die Förderelemente und trifft die Verstärkungs- oder Versteifungsstege, so findet dort eine Härtungsreaktion statt, die die Förderelemente versteift.
  • Die 9 zeigt schematisch ein einzelnes Förderelement 31 mit einem Hohlraum 32, der teilweise mit einer Flüssigkeit 33 gefüllt ist.
  • Zur Aufrichtung und/oder Versteifung des Förderelementes 31 ist vorgesehen, dass entlang der Pfeile 34, 35 ein Gas durch ein Lumen in der Nabe 8'''' und das Förderelement 31 in den Hohlraum 32 einströmt und dort mit der Flüssigkeit 33 unter Bildung eines Schaumstoffs reagiert. Hierdurch und durch die entsprechende Reaktion findet eine Expansion statt, durch die der Hohlraum 32 unter Druck gesetzt und aufgeblasen wird. Gleichzeitig versteift sich der Schaumstoff 36 entweder durch die Reaktion oder durch eine nachfolgende Härtung und stabilisiert somit das Förderelement 31, wie in der 10 dargestellt.
  • 11 zeigt im Transportzustand eine Pumpe mit einem Pumpengehäuse 36 in Form einer Membran, die zusammengefallen ist und den ebenfalls komprimierten Rotor mit den Förderschaufeln 37 eng umgibt. Das Gehäuse 36 ist am Ende 38 der Nabe 39 befestigt und wird in diesem Zustand am Ende eines Hohlkatheters durch ein Blutgefäß geschoben.
  • Ist der Pumpenkopf bei der Anwendung als Herzpumpe durch den Aortenbogen durch- und in eine Herzkammer eingeschoben, so kann der Rotor langsam in Drehung versetzt werden, wie in der 12 gezeigt. Durch die Zentrifugalkräfte und/oder durch Fluidgegenkräfte des zu fördernden Blutes werden die Förderschaufeln 37 aufgerichtet, saugen Blut durch Öffnungen an der Vorderseite des Gehäuses 36, angedeutet durch die Pfeile 40, 41, ein und erhöhen damit den Druck im Innenraum des Pumpengehäuses 36. Hierdurch wird die Membran 36 aufgeweitet und aufgeblasen und spannt sich straff. Gleichzeitig öffnet sich der Raum zur vollständigen Entfaltung der Förderschaufeln 37, so dass der Rotor seine volle Umdrehungszahl aufnehmen kann. Aus dem Innenraum 42 des Pumpengehäuses 36 kann dann das Blut durch die Öffnungen 43 in das Blutgefäß 10 gepresst werden.
  • Das Pumpengehäuse 36 ist dabei auf dem distalen Ende 44 des Hohlkatheters 45 abgestützt, wobei durch den Hohlkatheter 45 auch die Antriebswelle 46 verläuft, die an der Nabe 47 endet. Die Nabe 47 ist sinnvollerweise an beiden Enden des Pumpengehäuses 36 drehbar gelagert.
  • Ist der Betriebszustand durch völlige Entfaltung des Rotors bzw. der Förderschaufeln 37 und Aufpumpen des Pumpengehäuses 36 erreicht, so kann die Pumpe in diesem Zustand durch Härten sowohl des Pumpengehäuses als auch der Förderschaufeln stabilisiert werden. Dies geschieht beispielsweise durch Bestrahlung von außen mit UV-Licht, einer anderen Strahlung oder Ultraschall oder durch chemische Einwirkung entweder durch Zugabe eines geeigneten, eine Reaktion an den Förderelementen oder am Pumpengehäuse in Gang setzenden Stoffes oder durch Reaktion mit einem ohnehin im zu fördernden Blut befindlichen Stoff, der als Reaktionspartner oder Katalysator wirkt.
  • Auch hier kann alternativ dazu eine vorübergehende Versteifung oder Erhöhung einer Viskosität im Falle von Füllflüssigkeiten durch Anwendung von magnetischen oder elektrischen Feldern vorgesehen sein.
  • Entsprechende Felder können entweder von außerhalb des Patientenkörpers eingebracht bzw. eingestrahlt werden oder sie können durch entsprechende Sonden, die in die Nähe der Pumpe gebracht werden oder am Ende des die Pumpe tragenden Hohlkatheters angeordnet sind, appliziert werden.
  • In einer Ausführungsform, die auch als eigenständige Erfindung schutzfähig ist kann beispielsweise bei einer entsprechenden Pumpe, ein Motor am Pumpenkopf angeordnet sein, der beim Einschalten mittels seiner Spule ein magnetisches Drehfeld erzeugt. Da dieses mit der Drehzahl des Rotors rotiert stellt es gegenüber den Schaufelblättern des Rotors ein stehendes Magnetfeld dar, welches also zusätzlich zur Antriebsfunktion auf ein magnetorheologisches Fluid der Rotorschaufel einwirken kann, um diese zu stabilisieren. In einer weiteren Ausbildung kann auch eine Spule ohne Antriebsfunktion am Pumpenkopf angeordnet sein, die die Stabilisierung des entsprechenden Rotors bewirkt wobei der Rotor durch einen separaten Antrieb, beispielsweise eine flexible Welle, angetrieben würde.
  • Es ist auch für sämtliche in dieser Anmeldung dargestellten Ausführungsformen sowie auch davon unabhängig möglich, dass beispielsweise Elektromagnetische Strahlung wie zum Beispiel Licht, UV-Strahlung, Infrarotstrahlung, Kurzwellen oder Röntgenstrahlung zum Pumpenkopf geleitet wird, um dort eine Härtungsreaktion hervorzurufen. Dies kann zum Beispiel über einen geeigneten Lichtleiter, der beispielsweise durch den Hohlkatheter geführt werden kann, erfolgen.
  • 13 zeigt schematisch einen Pumpenkopf mit einem Gehäuse 36 und Förderschaufeln 37, die Verstärkungsrippen 48 aufweisen. Diese sind typischerweise zur Stabilisierung des Betriebszustandes beispielsweise durch Vernetzung eines vernetzbaren Polymers versteift.
  • Um die Probleme zu lösen, die bei der Entnahme des Pumpenkopfes nach der Behandlung bei einem Patienten auftreten können, ist es notwendig, die Förderschaufeln 37 zu komprimieren. Dies kann beispielsweise dadurch geschehen, dass durch eine Strahlungsquelle 49 der Rotor weiter bestrahlt wird, so dass sich die Härtung durch weitere Vernetzung bis zur Versprödung fortsetzt. Sind die Versteifungsstege 48 versprödet, so können sie von selbst brechen oder einfach beim Entnehmen der Pumpe durch Zurückziehen des Pumpenkopfes in den Hohlkatheter 49 gebrochen werden.
  • Die 14 zeigt die Verstärkungsstege 48 innerhalb der Förderschaufeln 37 in geknicktem bzw. gebrochenem Zustand, wie der Pumpenkopf mitsamt dem Gehäuse 36 in das trichterförmige, distale Ende des Hohlkatheters 49 mittels der Antriebswelle 46 zurückgezogen wird. Das Zurückziehen kann jedoch auch durch andere Mittel wie beispielsweise parallel zu der Antriebswelle 46 in dem Hohlkatheter 49 verlaufende Züge erfolgen.
  • Auf die beschriebene Weise kann der Pumpenkopf ohne größeren mechanischen Widerstand in den Hohlkatheter eingezogen und zusammen mit diesem aus der Herzkammer bzw. durch das Blutgefäß hindurch aus dem Patientenkörper entfernt werden.
  • Alternativ zur Fortsetzung des Härtungsprozesses, der nach dem Transport zur Versteifung des Rotors genutzt wurde, bis zur Versprödung kann auch eine Behandlung erfolgen, die von der anfänglichen Versteifungsbehandlung unterschiedlich ist. Beispielsweise kann eine Versprödung oder ein Brechen durch Ultraschallbehandlung vorgesehen sein. Auch eine Temperaturabsenkung beispielsweise durch Einbringen eines Kühlmittels durch den Hohlkatheter 49 kann lokal bewerkstelligt werden, um den Rotor und/oder das Pumpengehäuse zu verspröden und bruchempfindlich zu machen.
  • Am sinnvollsten ist dabei, lediglich den Rotor entsprechend zu brechen und das Pumpengehäuse intakt zu lassen, damit eventuell entstehende Bruchsplitter nicht in die Blutbahn gelangen können.
  • In den 15 und 16 ist ein möglicher Aufstellmechanismus für einen Rotor nach dem Transport und zum Übergang in den Betriebszustand dargestellt.
  • In 15 ist ein Rotor mit der Nabe 50 und den Förderschaufeln 51 im komprimierten Zustand innerhalb des Hohlkatheters 52 dargestellt, kurz bevor er in Richtung des Pfeils 53 aus dem Hohlkatheter innerhalb der Herzkammer herausgeschoben wird. Das Herausschieben kann mittels der Antriebswelle 54 oder weiterer nicht dargestellter Drähte bzw. Züge erfolgen. In diesem Zustand ist der Rotor noch ungehärtet und beweglich. Ist er aus dem Hohlkatheter herausgefahren, so ist es alternativ oder zusätzlich zu anderen Möglichkeiten der Expansion auch möglich, nachfolgend den Rotor ein Stück weit in Richtung des Pfeils 55 in 16 zurückzuziehen, so dass die Förderschaufeln 51 durch das Anstoßen am Rand des distalen Endes des Hohlkatheters 52 anstoßen und radial in Richtung der Pfeile 56, 57 aufgerichtet werden. Sodann kann ein Härten des Rotors oder ausschließlich der Förderschaufeln oder von Teilen der Förderschaufeln erfolgen, so dass der Rotor in expandierter Form stabilisiert ist. Daraufhin kann der Rotor wieder in Richtung des Pfeils 53 aus dem Hohlkatheter 52 heraus- und von diesem weggeschoben werden, um in die Betriebsposition zu gelangen. Bei der obigen Betrachtung ist das Gehäuse der Pumpe außer Betracht gelassen, dieses wird jedoch in der überwiegenden Zahl der Ausführungsformen zusätzlich vorgesehen sein und den Rotor umgeben.
  • Die 17 zeigt eine weitere Ausführungsform eines Rotors mit einer Nabe 58, an der Förderschaufeln 59 befestigt sind. Nach dem Ausfahren aus dem Hohlkatheter 60, ähnlich wie in der 15 dargestellt, können durch Nachschieben eines Aufrichtrades 61, das in der 18 in der Draufsicht deutlicher dargestellt ist, der Rotor bzw. die Förderschaufeln des Rotors aufgerichtet werden. Das Aufrichtrad 61 wird durch Schieben mittels mehrerer Schubelemente 63, 64 oder eines innerhalb des Hohlkatheters 60 verlaufenden schlauchartigen Elementes, das beispielsweise die Antriebswelle 65 umgeben kann, bewerkstelligt.
  • Im aufgerichteten Zustand des Rotors wird dieser dann gehärtet, und danach kann das Aufrichtrad 61 in den Hohlkatheter 60 zurückgezogen werden. Das Aufrichtrad 61 ist mit großen Durchgangsöffnungen 66 versehen, um die Strömungsverhältnisse der Pumpe nicht oder nur minimal zu beeinträchtigen.
  • In Ergänzung aller oben genannten Beispiele und auch als eigenständige Erfindung anwendbar ist es darüber hinaus auch möglich, den Vorgang des Härtens und/oder des Erweichens der Vorrichtung jeweils durch eine kurzzeitige Einwirkung eines Impulses, elektromagnetischen Feldes oder eines ähnlichen Effektes hervorzurufen, so dass die jeweilige Einwirkdauer auf das minimal notwendige Ausmaß beschränkt ist. So kann beispielsweise der Kristallisationsprozess der Flüssigkeit durch einen kurzen mechanischen Impuls ausgelöst werden, ähnlich dem Vorgehen bei sogenannten Wärmekissen. Das entsprechend kristallisierte Medium kann dann durch kurzzeitige lokale Wärmeeinwirkung wieder verflüssigt werden. Durch Versetzen des Mediums mit beispielsweise Metallpartikeln, die in einem entsprechenden Feld angeregt werden, könnte die Wärmeeinwirkung soweit lokal begrenzt werden, dass eine Schädigung des umgebenden Gewebes auf ein unschädliches Maß reduziert bzw. ganz vermieden wird.
  • Die erfindungsgemäße Vorrichtung und die erfindungsgemäßen Verfahren erlauben mit technisch übersichtlichem Aufwand die Beeinflussung der mechanischen Eigenschaften von Elementen einer in einen Patientenkörper eingebrachten Vorrichtung, speziell einer Blutpumpe, so dass diese in die geeignete Form für den Betrieb gebracht oder mit der erforderlichen Steifigkeit versehen werden kann, ohne dass die entsprechenden mechanischen Eigenschaften schon beim Einführen in den Patientenkörper vorhanden sein müssten. Dadurch werden neue Aufbauformen entsprechender Vorrichtungen/Pumpen möglich.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • US 6860713 [0007]
    • US 739318132 [0007]
    • WO 2009/132309 [0010]
  • Zitierte Nicht-Patentliteratur
    • DIN 55958 [0041]

Claims (14)

  1. Pumpe oder Fräse zum Betrieb in einem Fluid mit wenigstens einem ersten Element (9, 9', 9'', 9''', 10, 10', 10'', 10''', 31, 37, 59), das nach dem Einbringen in einen Patientenkörper in situ durch Änderung wenigstens einer mechanischen Eigenschaft von einem Transportzustand in einen Betriebszustand gebracht werden kann, wobei das erste Element wenigstens teilweise aus einem Stoff (17, 18, 21, 22, 26, 27, 33, 36) besteht oder mit einem Stoff oder Stoffgemisch füllbar ist, der/das zum Übergang in den Betriebszustand eine Stoffumwandlung durch eine chemische Reaktion, insbesondere Vernetzung, oder einen Übergang vom flüssigen Zustand in einen festen Zustand oder von einem ersten rheologischen Zustand in einen zweiten rheologischen Zustand durchläuft.
  2. Pumpe oder Fräse nach Anspruch 1, dadurch gekennzeichnet, dass das erste Element (9, 9', 9'', 9''', 10, 10', 10'', 10''', 31, 37, 59) ein Teil eines Rotors, insbesondere ein Förderelement ist.
  3. Pumpe oder Fräse nach Anspruch 2, dadurch gekennzeichnet, dass das erste Element (9, 9', 9'', 9''', 10, 10', 10'', 10''', 31, 37, 59) eine Förderschaufel einer Pumpe ist.
  4. Pumpe oder Fräse nach Anspruch 1, dadurch gekennzeichnet, dass das erste Element ein Pumpengehäuse (7) ist.
  5. Pumpe oder Fräse nach Anspruch 1 oder einem der folgenden, dadurch gekennzeichnet, dass die änderbare mechanische Eigenschaft die Steifigkeit und/oder die geometrische Form ist.
  6. Pumpe oder Fräse nach Anspruch 1 oder einem der folgenden, dadurch gekennzeichnet, dass das erste Element (9, 9', 9'', 9''', 10, 10', 10'', 10''', 31, 37, 59) ein härtbares Material aufweist.
  7. Pumpe oder Fräse nach Anspruch 6, dadurch gekennzeichnet, dass das Material durch Temperatureinwirkung, elektrische und/oder magnetische Felder, Strahlung, mechanische Einwirkung oder Hinzufügung eines weiteren Stoffs oder Kontakt mit einem weiteren Stoff oder durch Initialisierung einer Kristallisation härtbar ist.
  8. Pumpe oder Fräse nach Anspruch 7, dadurch gekennzeichnet, dass der weitere Stoff in dem Medium enthalten ist, auf das die Vorrichtung einwirkt.
  9. Pumpe oder Fräse nach Anspruch 1 oder einem der folgenden, dadurch gekennzeichnet, dass durch eine fortgesetzte oder weitere Reaktion das erste Element reversibel oder irreversibel in einen Zustand überführbar ist, in dem die Vorrichtung transportierbar ist oder in dem es durch mechanisches Zerbrechen in einen Transportzustand gebracht werden kann.
  10. Pumpe oder Fräse nach Anspruch 1, 2, 3 oder 4 mit wenigstens einem ersten Element (9, 9', 9'', 9''', 10, 10', 10'', 10''', 31, 37, 59), das durch Änderung von wenigstens einer mechanischen Eigenschaft von einem Transportzustand in einen Betriebszustand gebracht werden kann, dadurch gekennzeichnet, dass das erste Element wenigstens teilweise aus einem Stoff (17, 18, 21, 22, 26, 27, 33, 36) besteht oder mit einem Stoff oder Stoffgemisch füllbar ist, der/das, solange er einer Bestrahlung, einem elektrischen und/oder einem magnetischen Feld ausgesetzt ist, gegenüber dem Zustand ohne derartige Einwirkung geänderte mechanische Eigenschaften, insbesondere geänderte Steifigkeit/Viskosität oder Form aufweist.
  11. Verfahren zur Inbetriebnahme einer Vorrichtung gemäß Anspruch 1 oder einem der folgenden, dadurch gekennzeichnet, dass der Stoff/das Stoffgemisch des ersten Elements nach dem Einführen in einen Körper eines Lebewesens vor dem Betrieb bzw. unmittelbar beim Einschalten eine Reaktion, insbesondere Vernetzung, oder eine Kristallisation erfährt.
  12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass vor der Reaktion oder Kristallisation der oder ein Stoff in wenigstens einen Hohlraum des ersten Elementes eingeführt wird.
  13. Verfahren nach Anspruch 11 oder 12, dadurch gekennzeichnet, dass zur Initiierung, Unterstützung oder Durchführung der Reaktion oder Kristallisation auf die Vorrichtung durch Strahlung, Temperaturveränderung oder mechanische Einwirkung, insbesondere Ultraschall, oder durch elektrische und/oder magnetische Felder eingewirkt wird.
  14. Verfahren zum Betrieb einer Vorrichtung gemäß Anspruch 13, dadurch gekennzeichnet, dass die Vorrichtung nach ihrer Einführung in den Körper eines Lebewesens der entsprechenden Einwirkung ausgesetzt und währenddessen in Gang gesetzt wird oder dass die Vorrichtung während des Transports einer entsprechenden Einwirkung ausgesetzt wird, die zum Übergang in den Betriebszustand geändert oder beendet wird.
DE112011100800T 2010-03-05 2011-03-02 Pumpe oder Fräse zum Betrieb in einem Fluid Pending DE112011100800T5 (de)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US31075010P 2010-03-05 2010-03-05
US61/310,750 2010-03-05
EP10075103A EP2363157A1 (de) 2010-03-05 2010-03-05 Vorrichtung zur mechanischen Einwirkung auf ein Medium, insbesondere Fluidpumpe
EP100751031 2010-03-05
PCT/EP2011/001125 WO2011107296A1 (en) 2010-03-05 2011-03-02 Pump or rotary cutter for operation in a fluid

Publications (1)

Publication Number Publication Date
DE112011100800T5 true DE112011100800T5 (de) 2013-02-07

Family

ID=42269499

Family Applications (1)

Application Number Title Priority Date Filing Date
DE112011100800T Pending DE112011100800T5 (de) 2010-03-05 2011-03-02 Pumpe oder Fräse zum Betrieb in einem Fluid

Country Status (5)

Country Link
US (5) US9217442B2 (de)
EP (1) EP2363157A1 (de)
CN (1) CN102791303B (de)
DE (1) DE112011100800T5 (de)
WO (1) WO2011107296A1 (de)

Families Citing this family (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7393181B2 (en) 2004-09-17 2008-07-01 The Penn State Research Foundation Expandable impeller pump
CN102380135A (zh) 2006-03-23 2012-03-21 宾州研究基金会 带有可膨胀叶轮泵的心脏辅助装置
US8439859B2 (en) 2007-10-08 2013-05-14 Ais Gmbh Aachen Innovative Solutions Catheter device
US8489190B2 (en) 2007-10-08 2013-07-16 Ais Gmbh Aachen Innovative Solutions Catheter device
EP2194278A1 (de) 2008-12-05 2010-06-09 ECP Entwicklungsgesellschaft mbH Fluidpumpe mit einem rotor
EP2216059A1 (de) 2009-02-04 2010-08-11 ECP Entwicklungsgesellschaft mbH Kathetereinrichtung mit einem Katheter und einer Betätigungseinrichtung
EP2229965A1 (de) 2009-03-18 2010-09-22 ECP Entwicklungsgesellschaft mbH Fluidpumpe mit besonderer Gestaltung eines Rotorblattes
EP2246078A1 (de) 2009-04-29 2010-11-03 ECP Entwicklungsgesellschaft mbH Wellenanordnung mit einer Welle, die innerhalb einer fluidgefüllten Hülle verläuft
EP2248544A1 (de) 2009-05-05 2010-11-10 ECP Entwicklungsgesellschaft mbH Im Durchmesser veränderbare Fluidpumpe, insbesondere für die medizinische Verwendung
EP2266640A1 (de) 2009-06-25 2010-12-29 ECP Entwicklungsgesellschaft mbH Komprimierbares und expandierbares Schaufelblatt für eine Fluidpumpe
EP2282070B1 (de) 2009-08-06 2012-10-17 ECP Entwicklungsgesellschaft mbH Kathetereinrichtung mit einer Ankopplungseinrichtung für eine Antriebseinrichtung
EP2298371A1 (de) 2009-09-22 2011-03-23 ECP Entwicklungsgesellschaft mbH Funktionselement, insbesondere Fluidpumpe, mit einem Gehäuse und einem Förderelement
EP2299119B1 (de) 2009-09-22 2018-11-07 ECP Entwicklungsgesellschaft mbH Aufblasbarer Rotor für eine Fluidpumpe
EP2298373A1 (de) 2009-09-22 2011-03-23 ECP Entwicklungsgesellschaft mbH Fluidpumpe mit wenigstens einem Schaufelblatt und einer Stützeinrichtung
EP2298372A1 (de) 2009-09-22 2011-03-23 ECP Entwicklungsgesellschaft mbH Rotor für eine Axialpumpe zur Förderung eines Fluids
EP2314331B1 (de) 2009-10-23 2013-12-11 ECP Entwicklungsgesellschaft mbH Katheterpumpenanordnung und flexible Wellenanordnung mit einer Seele
EP2314330A1 (de) 2009-10-23 2011-04-27 ECP Entwicklungsgesellschaft mbH Flexible Wellenanordnung
EP2338539A1 (de) 2009-12-23 2011-06-29 ECP Entwicklungsgesellschaft mbH Pumpeneinrichtung mit einer Detektionseinrichtung
EP2338540A1 (de) 2009-12-23 2011-06-29 ECP Entwicklungsgesellschaft mbH Förderschaufel für einen komprimierbaren Rotor
EP2338541A1 (de) 2009-12-23 2011-06-29 ECP Entwicklungsgesellschaft mbH Radial komprimierbarer und expandierbarer Rotor für eine Fluidpumpe
EP2347778A1 (de) 2010-01-25 2011-07-27 ECP Entwicklungsgesellschaft mbH Fluidpumpe mit einem radial komprimierbaren Rotor
EP2363157A1 (de) 2010-03-05 2011-09-07 ECP Entwicklungsgesellschaft mbH Vorrichtung zur mechanischen Einwirkung auf ein Medium, insbesondere Fluidpumpe
EP2388029A1 (de) 2010-05-17 2011-11-23 ECP Entwicklungsgesellschaft mbH Pumpenanordnung
EP2399639A1 (de) 2010-06-25 2011-12-28 ECP Entwicklungsgesellschaft mbH System zum einführen einer pumpe
EP2407186A1 (de) 2010-07-15 2012-01-18 ECP Entwicklungsgesellschaft mbH Rotor für eine Pumpe, hergestellt mit einem ersten, elastischen Werkstoff
EP2407185A1 (de) 2010-07-15 2012-01-18 ECP Entwicklungsgesellschaft mbH Radial komprimierbarer und expandierbarer Rotor für eine Pumpe mit einem Schaufelblatt
EP2407187A3 (de) * 2010-07-15 2012-06-20 ECP Entwicklungsgesellschaft mbH Blutpumpe für die invasive Anwendung innerhalb eines Körpers eines Patienten
EP2422735A1 (de) 2010-08-27 2012-02-29 ECP Entwicklungsgesellschaft mbH Implantierbare Blutfördereinrichtung, Manipulationseinrichtung sowie Koppeleinrichtung
WO2012094641A2 (en) 2011-01-06 2012-07-12 Thoratec Corporation Percutaneous heart pump
EP2497521A1 (de) 2011-03-10 2012-09-12 ECP Entwicklungsgesellschaft mbH Schubvorrichtung zum axialen Einschieben eines strangförmigen, flexiblen Körpers
EP2564771A1 (de) 2011-09-05 2013-03-06 ECP Entwicklungsgesellschaft mbH Medizinprodukt mit einem Funktionselement zum invasiven Einsatz im Körper eines Patienten
US8926492B2 (en) 2011-10-11 2015-01-06 Ecp Entwicklungsgesellschaft Mbh Housing for a functional element
US20130138205A1 (en) 2011-11-28 2013-05-30 MI-VAD, Inc. Ventricular assist device and method
DE102013008168A1 (de) 2012-05-14 2013-11-14 Thoratec Corporation Laufrad für Katheterpumpe
US9446179B2 (en) 2012-05-14 2016-09-20 Thoratec Corporation Distal bearing support
US8721517B2 (en) 2012-05-14 2014-05-13 Thoratec Corporation Impeller for catheter pump
US9872947B2 (en) 2012-05-14 2018-01-23 Tc1 Llc Sheath system for catheter pump
EP2858711B1 (de) 2012-06-06 2018-03-07 Magenta Medical Ltd. Prothetisches nierenventil
US9421311B2 (en) 2012-07-03 2016-08-23 Thoratec Corporation Motor assembly for catheter pump
EP4186557A1 (de) 2012-07-03 2023-05-31 Tc1 Llc Motoranordnung für katheterpumpe
US9358329B2 (en) 2012-07-03 2016-06-07 Thoratec Corporation Catheter pump
US11033728B2 (en) 2013-03-13 2021-06-15 Tc1 Llc Fluid handling system
EP3656293B1 (de) 2013-03-13 2021-08-25 Magenta Medical Ltd. Blutpumpe und blutundurchlässige hülse
US11077294B2 (en) 2013-03-13 2021-08-03 Tc1 Llc Sheath assembly for catheter pump
US10583231B2 (en) 2013-03-13 2020-03-10 Magenta Medical Ltd. Blood pump
WO2014164136A1 (en) 2013-03-13 2014-10-09 Thoratec Corporation Fluid handling system
EP3797810A1 (de) 2013-03-15 2021-03-31 Tc1 Llc Katheterpumpenanordnung mit einem stator
US9308302B2 (en) 2013-03-15 2016-04-12 Thoratec Corporation Catheter pump assembly including a stator
EP2860849B1 (de) 2013-10-11 2016-09-14 ECP Entwicklungsgesellschaft mbH Komprimierbarer Motor, Implantieranordnung sowie Verfahren zum Positionieren des Motors
EP2860399A1 (de) * 2013-10-14 2015-04-15 ECP Entwicklungsgesellschaft mbH Verfahren zum Betrieb einer Versorgungseinrichtung, die einen Kanal mit einer Flüssigkeit beaufschlagt, sowie Versorgungseinrichtung
EP2868331B1 (de) * 2013-11-01 2016-07-13 ECP Entwicklungsgesellschaft mbH Pumpe, insbesondere Blutpumpe
AU2015223169B2 (en) 2014-02-25 2019-08-29 Zain KHALPEY Ventricular assist device and method
WO2015160990A1 (en) 2014-04-15 2015-10-22 Thoratec Corporation Catheter pump introducer systems and methods
EP3131615B1 (de) 2014-04-15 2021-06-09 Tc1 Llc Sensoren für katheterpumpen
EP3479854A1 (de) 2014-04-15 2019-05-08 Tc1 Llc Katheterpumpe mit zugangsports
US10583232B2 (en) 2014-04-15 2020-03-10 Tc1 Llc Catheter pump with off-set motor position
US10449279B2 (en) 2014-08-18 2019-10-22 Tc1 Llc Guide features for percutaneous catheter pump
WO2016053688A1 (en) 2014-10-01 2016-04-07 Heartware, Inc. Backup controller system with updating
EP3247420B1 (de) 2015-01-22 2019-10-02 Tc1 Llc Motorbaugruppe verringerter rotierender masse für katheterpumpe
WO2016118781A2 (en) 2015-01-22 2016-07-28 Thoratec Corporation Motor assembly with heat exchanger for catheter pump
WO2016118784A1 (en) 2015-01-22 2016-07-28 Thoratec Corporation Attachment mechanisms for motor of catheter pump
EP3088018A1 (de) * 2015-04-30 2016-11-02 ECP Entwicklungsgesellschaft mbH Rotor für eine fluidpumpe sowie verfahren und giessform für seine herstellung
US11291824B2 (en) 2015-05-18 2022-04-05 Magenta Medical Ltd. Blood pump
US11491322B2 (en) 2016-07-21 2022-11-08 Tc1 Llc Gas-filled chamber for catheter pump motor assembly
EP3487549B1 (de) 2016-07-21 2021-02-24 Tc1 Llc Fluiddichtungen für katheterpumpenmotoranordnung
CA3039285A1 (en) 2016-10-25 2018-05-03 Magenta Medical Ltd. Ventricular assist device
WO2018096531A1 (en) 2016-11-23 2018-05-31 Magenta Medical Ltd. Blood pumps
US10533558B2 (en) 2016-12-21 2020-01-14 Saudi Arabian Oil Company Centrifugal pump with adaptive pump stages
JP7150617B2 (ja) * 2017-01-27 2022-10-11 テルモ株式会社 インペラ及び血液ポンプ
US10869689B2 (en) 2017-05-03 2020-12-22 Medtronic Vascular, Inc. Tissue-removing catheter
US11690645B2 (en) 2017-05-03 2023-07-04 Medtronic Vascular, Inc. Tissue-removing catheter
WO2018226991A1 (en) 2017-06-07 2018-12-13 Shifamed Holdings, Llc Intravascular fluid movement devices, systems, and methods of use
US11511103B2 (en) 2017-11-13 2022-11-29 Shifamed Holdings, Llc Intravascular fluid movement devices, systems, and methods of use
US10905808B2 (en) 2018-01-10 2021-02-02 Magenta Medical Ltd. Drive cable for use with a blood pump
CN108261589B (zh) * 2018-01-22 2020-11-27 上海市肺科医院 一种作用于病变靶细胞的微型注射器
DE102018201030A1 (de) 2018-01-24 2019-07-25 Kardion Gmbh Magnetkuppelelement mit magnetischer Lagerungsfunktion
US10722631B2 (en) 2018-02-01 2020-07-28 Shifamed Holdings, Llc Intravascular blood pumps and methods of use and manufacture
DE102018211327A1 (de) 2018-07-10 2020-01-16 Kardion Gmbh Laufrad für ein implantierbares, vaskuläres Unterstützungssystem
CN109083862B (zh) * 2018-08-09 2020-08-14 浙江创美机电有限公司 一种新型磁流变式水泵
CN112996447A (zh) 2018-11-16 2021-06-18 美敦力瓦斯科尔勒公司 组织去除导管
EP3782667B1 (de) 2019-01-24 2022-04-06 Magenta Medical Ltd. Laufrad und rahmen einer blutpumpe
US11819236B2 (en) 2019-05-17 2023-11-21 Medtronic Vascular, Inc. Tissue-removing catheter
JP2022540616A (ja) 2019-07-12 2022-09-16 シファメド・ホールディングス・エルエルシー 血管内血液ポンプならびに製造および使用の方法
US11654275B2 (en) 2019-07-22 2023-05-23 Shifamed Holdings, Llc Intravascular blood pumps with struts and methods of use and manufacture
WO2021062265A1 (en) 2019-09-25 2021-04-01 Shifamed Holdings, Llc Intravascular blood pump systems and methods of use and control thereof
US11534596B2 (en) 2020-01-09 2022-12-27 Heartware, Inc. Pulsatile blood pump via contraction with smart material
US11806518B2 (en) 2020-01-10 2023-11-07 Heartware, Inc. Passive thrust bearing angle
DE102020102474A1 (de) 2020-01-31 2021-08-05 Kardion Gmbh Pumpe zum Fördern eines Fluids und Verfahren zum Herstellen einer Pumpe
CN111329595B (zh) * 2020-02-26 2021-01-29 吉林大学 一种消化科内镜中心患者转移箱
US11499563B2 (en) 2020-08-24 2022-11-15 Saudi Arabian Oil Company Self-balancing thrust disk
US11920469B2 (en) 2020-09-08 2024-03-05 Saudi Arabian Oil Company Determining fluid parameters
US11644351B2 (en) 2021-03-19 2023-05-09 Saudi Arabian Oil Company Multiphase flow and salinity meter with dual opposite handed helical resonators
US11591899B2 (en) 2021-04-05 2023-02-28 Saudi Arabian Oil Company Wellbore density meter using a rotor and diffuser
US11913464B2 (en) 2021-04-15 2024-02-27 Saudi Arabian Oil Company Lubricating an electric submersible pump
CN113520568B (zh) * 2021-06-08 2023-02-28 武汉大学中南医院 一种等离子手术刀

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6860713B2 (en) 2002-11-27 2005-03-01 Nidec Corporation Fan with collapsible blades, redundant fan system, and related method
US7393181B2 (en) 2004-09-17 2008-07-01 The Penn State Research Foundation Expandable impeller pump
WO2009132309A1 (en) 2008-04-25 2009-10-29 Nellix, Inc. Stent graft delivery system

Family Cites Families (179)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB536245A (en) * 1940-04-22 1941-05-07 Frederic Drury Wayre Improvements in or relating to apparatus comprising a rotary shaft and intended for dealing with corrosive fluids
US3510229A (en) 1968-07-23 1970-05-05 Maytag Co One-way pump
US3568659A (en) 1968-09-24 1971-03-09 James N Karnegis Disposable percutaneous intracardiac pump and method of pumping blood
CH538410A (fr) 1971-02-17 1973-06-30 L Somers S Brice Dispositif flexible pour le transport de produits granuleux, pulvérulents ou fluides
DE2113986A1 (de) 1971-03-23 1972-09-28 Svu Textilni Kuenstliches Blutkreislauforgan
SU400331A1 (de) 1971-07-06 1973-10-01
US4014317A (en) 1972-02-18 1977-03-29 The United States Of America As Represented By The Department Of Health, Education And Welfare Multipurpose cardiocirculatory assist cannula and methods of use thereof
US3812812A (en) 1973-06-25 1974-05-28 M Hurwitz Trolling propeller with self adjusting hydrodynamic spoilers
US4207028A (en) 1979-06-12 1980-06-10 Ridder Sven O Extendable and retractable propeller for watercraft
US4559951A (en) 1982-11-29 1985-12-24 Cardiac Pacemakers, Inc. Catheter assembly
US4563181A (en) 1983-02-18 1986-01-07 Mallinckrodt, Inc. Fused flexible tip catheter
US4686982A (en) 1985-06-19 1987-08-18 John Nash Spiral wire bearing for rotating wire drive catheter
US4679558A (en) 1985-08-12 1987-07-14 Intravascular Surgical Instruments, Inc. Catheter based surgical methods and apparatus therefor
US4801243A (en) 1985-12-28 1989-01-31 Bird-Johnson Company Adjustable diameter screw propeller
US4747821A (en) 1986-10-22 1988-05-31 Intravascular Surgical Instruments, Inc. Catheter with high speed moving working head
US4753221A (en) 1986-10-22 1988-06-28 Intravascular Surgical Instruments, Inc. Blood pumping catheter and method of use
US4749376A (en) 1986-10-24 1988-06-07 Intravascular Surgical Instruments, Inc. Reciprocating working head catheter
US4817613A (en) 1987-07-13 1989-04-04 Devices For Vascular Intervention, Inc. Guiding catheter
US5154705A (en) 1987-09-30 1992-10-13 Lake Region Manufacturing Co., Inc. Hollow lumen cable apparatus
US5061256A (en) 1987-12-07 1991-10-29 Johnson & Johnson Inflow cannula for intravascular blood pumps
US5183384A (en) 1988-05-16 1993-02-02 Trumbly Joe H Foldable propeller assembly
US5011469A (en) 1988-08-29 1991-04-30 Shiley, Inc. Peripheral cardiopulmonary bypass and coronary reperfusion system
US4919647A (en) 1988-10-13 1990-04-24 Kensey Nash Corporation Aortically located blood pumping catheter and method of use
US4957504A (en) 1988-12-02 1990-09-18 Chardack William M Implantable blood pump
US4969865A (en) 1989-01-09 1990-11-13 American Biomed, Inc. Helifoil pump
US5112292A (en) 1989-01-09 1992-05-12 American Biomed, Inc. Helifoil pump
US4944722A (en) 1989-02-23 1990-07-31 Nimbus Medical, Inc. Percutaneous axial flow blood pump
US5052404A (en) 1989-03-02 1991-10-01 The Microspring Company, Inc. Torque transmitter
US4995857A (en) 1989-04-07 1991-02-26 Arnold John R Left ventricular assist device and method for temporary and permanent procedures
US5097849A (en) 1989-08-17 1992-03-24 Kensey Nash Corporation Method of use of catheter with working head having selectable impacting surfaces
US5042984A (en) 1989-08-17 1991-08-27 Kensey Nash Corporation Catheter with working head having selectable impacting surfaces and method of using the same
US5040944A (en) 1989-09-11 1991-08-20 Cook Einar P Pump having impeller rotational about convoluted stationary member
GB2239675A (en) 1989-12-05 1991-07-10 Man Fai Shiu Pump for pumping liquid
US5118264A (en) 1990-01-11 1992-06-02 The Cleveland Clinic Foundation Purge flow control in rotary blood pumps
US5145333A (en) 1990-03-01 1992-09-08 The Cleveland Clinic Foundation Fluid motor driven blood pump
JPH0636821B2 (ja) 1990-03-08 1994-05-18 健二 山崎 体内埋設形の補助人工心臓
US5108411A (en) 1990-03-28 1992-04-28 Cardiovascular Imaging Systems, Inc. Flexible catheter drive cable
US5092844A (en) 1990-04-10 1992-03-03 Mayo Foundation For Medical Education And Research Intracatheter perfusion pump apparatus and method
US5163910A (en) 1990-04-10 1992-11-17 Mayo Foundation For Medical Education And Research Intracatheter perfusion pump apparatus and method
US5813405A (en) 1990-04-18 1998-09-29 Cordis Corporation Snap-in connection assembly for extension guidewire system
US5117838A (en) 1990-04-18 1992-06-02 Cordis Corporation Rotating guidewire extension system
US5113872A (en) 1990-04-18 1992-05-19 Cordis Corporation Guidewire extension system with connectors
US5191888A (en) 1990-04-18 1993-03-09 Cordis Corporation Assembly of an extension guidewire and an alignment tool for same
ES2020787A6 (es) 1990-07-20 1991-09-16 Figuera Aymerich Diego Bomba intra-ventricular expansible de asistencia circulatoria.
US5192286A (en) 1991-07-26 1993-03-09 Regents Of The University Of California Method and device for retrieving materials from body lumens
US5188621A (en) 1991-08-26 1993-02-23 Target Therapeutics Inc. Extendable guidewire assembly
IT1251758B (it) 1991-11-05 1995-05-23 Roberto Parravicini Elemento pompante di assistenza ventricolare, con azionamento esterno
US5201679A (en) 1991-12-13 1993-04-13 Attwood Corporation Marine propeller with breakaway hub
US5271415A (en) 1992-01-28 1993-12-21 Baxter International Inc. Guidewire extension system
US6387125B1 (en) 1992-06-23 2002-05-14 Sun Medical Technology Research Corporation Auxiliary artificial heart of an embedded type
US5300112A (en) 1992-07-14 1994-04-05 Aai Corporation Articulated heart pump
US5676651A (en) 1992-08-06 1997-10-14 Electric Boat Corporation Surgically implantable pump arrangement and method for pumping body fluids
SE501215C2 (sv) 1992-09-02 1994-12-12 Oeyvind Reitan Kateterpump
US5376114A (en) 1992-10-30 1994-12-27 Jarvik; Robert Cannula pumps for temporary cardiac support and methods of their application and use
US5365943A (en) 1993-03-12 1994-11-22 C. R. Bard, Inc. Anatomically matched steerable PTCA guidewire
JPH06346917A (ja) 1993-06-03 1994-12-20 Shicoh Eng Co Ltd 一方向性動圧軸受を用いた耐圧防水シ−ル機構
US5368438A (en) 1993-06-28 1994-11-29 Baxter International Inc. Blood pump
US5720300A (en) 1993-11-10 1998-02-24 C. R. Bard, Inc. High performance wires for use in medical devices and alloys therefor
DK145093D0 (da) 1993-12-23 1993-12-23 Gori 1902 As Propel
US5531789A (en) 1993-12-24 1996-07-02 Sun Medical Technology Research Corporation Sealing system of an artificial internal organ
US5613935A (en) 1994-12-16 1997-03-25 Jarvik; Robert High reliability cardiac assist system
DE19535781C2 (de) 1995-09-26 1999-11-11 Fraunhofer Ges Forschung Vorrichtung zur aktiven Strömungsunterstützung von Körperflüssigkeiten
DE69531399T2 (de) 1995-10-16 2004-06-09 Sun Medical Technology Research Corp., Suwa Kunstherz
US5701911A (en) 1996-04-05 1997-12-30 Medtronic, Inc. Guide wire extension docking system
US6254359B1 (en) 1996-05-10 2001-07-03 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method for providing a jewel bearing for supporting a pump rotor shaft
IL118352A0 (en) 1996-05-21 1996-09-12 Sudai Amnon Apparatus and methods for revascularization
US5820571A (en) 1996-06-24 1998-10-13 C. R. Bard, Inc. Medical backloading wire
US6015272A (en) 1996-06-26 2000-01-18 University Of Pittsburgh Magnetically suspended miniature fluid pump and method of designing the same
US5779721A (en) 1996-07-26 1998-07-14 Kensey Nash Corporation System and method of use for revascularizing stenotic bypass grafts and other blood vessels
US5851174A (en) 1996-09-17 1998-12-22 Robert Jarvik Cardiac support device
EP2058017A3 (de) 1996-10-04 2011-02-23 Tyco Healthcare Group LP Kreislaufunterstützungssystem
US5882329A (en) 1997-02-12 1999-03-16 Prolifix Medical, Inc. Apparatus and method for removing stenotic material from stents
CA2206644A1 (en) 1997-05-30 1998-11-30 L. Conrad Pelletier Ventricular assist device comprising enclosed-impeller axial flow blood pump
US6129704A (en) 1997-06-12 2000-10-10 Schneider (Usa) Inc. Perfusion balloon catheter having a magnetically driven impeller
WO1999017819A1 (en) 1997-10-02 1999-04-15 Micromed Technology, Inc. Implantable pump system
US5980471A (en) 1997-10-10 1999-11-09 Advanced Cardiovascular System, Inc. Guidewire with tubular connector
US6007478A (en) 1997-11-13 1999-12-28 Impella Cardiotechnik Aktiengesellschaft Cannula having constant wall thickness with increasing distal flexibility and method of making
DE29804046U1 (de) 1998-03-07 1998-04-30 Schmitz Rode Thomas Dipl Ing D Perkutan implantierbare selbstentfaltbare Axialpumpe zur temporären Herzunterstützung
GB9824436D0 (en) 1998-11-06 1999-01-06 Habib Nagy A Methods of treatment
US6308632B1 (en) 1998-11-23 2001-10-30 James E. Shaffer Deployable folded propeller assembly for aerial projectiles
CA2256131A1 (en) 1998-12-16 2000-06-16 Micro Therapeutics, Inc. Miniaturized medical brush
US7780628B1 (en) 1999-01-11 2010-08-24 Angiodynamics, Inc. Apparatus and methods for treating congestive heart disease
US6123659A (en) 1999-01-26 2000-09-26 Nimbus Inc. Blood pump with profiled outflow region
EP1194177B1 (de) 1999-04-20 2005-07-13 Berlin Heart AG Vorrichtung zur axialen Förderung von fluiden Medien
JP2001017552A (ja) 1999-06-18 2001-01-23 Medos Medizintechnik Gmbh 人体の血管中に流体を注入する方法並びに相応するカニューレ
US6458139B1 (en) 1999-06-21 2002-10-01 Endovascular Technologies, Inc. Filter/emboli extractor for use in variable sized blood vessels
US6506025B1 (en) 1999-06-23 2003-01-14 California Institute Of Technology Bladeless pump
US6247892B1 (en) 1999-07-26 2001-06-19 Impsa International Inc. Continuous flow rotary pump
AU5317799A (en) 1999-07-26 2001-02-13 Impsa International, Inc. Continuous flow rotary pump
US6398714B1 (en) 1999-07-29 2002-06-04 Intra-Vasc.Nl B.V. Cardiac assist catheter pump and catheter and fitting for use therein
US7022100B1 (en) 1999-09-03 2006-04-04 A-Med Systems, Inc. Guidable intravascular blood pump and related methods
US6454775B1 (en) 1999-12-06 2002-09-24 Bacchus Vascular Inc. Systems and methods for clot disruption and retrieval
JP2001207988A (ja) 2000-01-26 2001-08-03 Nipro Corp 磁気駆動型軸流ポンプ
US6491672B2 (en) * 2000-02-10 2002-12-10 Harmonia Medical Technologies, Inc. Transurethral volume reduction of the prostate (TUVOR)
US20010031981A1 (en) 2000-03-31 2001-10-18 Evans Michael A. Method and device for locating guidewire and treating chronic total occlusions
US6592612B1 (en) 2000-05-04 2003-07-15 Cardeon Corporation Method and apparatus for providing heat exchange within a catheter body
US6537030B1 (en) 2000-10-18 2003-03-25 Fasco Industries, Inc. Single piece impeller having radial output
DE20119322U1 (de) 2000-11-21 2002-02-21 Schering Ag Röhrenförmige Gefäßimplantate (Stents)
DE10058669B4 (de) 2000-11-25 2004-05-06 Impella Cardiotechnik Ag Mikromotor
DE10059714C1 (de) 2000-12-01 2002-05-08 Impella Cardiotech Ag Intravasale Pumpe
DE10108810A1 (de) 2001-02-16 2002-08-29 Berlin Heart Ag Vorrichtung zur axialen Förderung von Flüssigkeiten
US6517315B2 (en) 2001-05-29 2003-02-11 Hewlett-Packard Company Enhanced performance fan with the use of winglets
DE10155011B4 (de) 2001-11-02 2005-11-24 Impella Cardiosystems Ag Intra-aortale Pumpe
US6981942B2 (en) 2001-11-19 2006-01-03 University Of Medicine And Dentristy Of New Jersey Temporary blood circulation assist device
CA2471484A1 (en) 2002-01-08 2003-07-17 Micromed Technology, Inc. Method and system for detecting ventricular collapse
RU2229899C2 (ru) 2002-03-20 2004-06-10 Федеральный научно-производственный центр закрытое акционерное общество "Научно-производственный концерн (объединение) "ЭНЕРГИЯ" Устройство для вспомогательного кровообращения
US7648619B2 (en) * 2002-06-04 2010-01-19 Industrial Technology Research Hydrogel-driven micropump
AU2003236497A1 (en) 2002-06-11 2003-12-22 Walid Aboul-Hosn Expandable blood pump and related methods
US20030231959A1 (en) 2002-06-12 2003-12-18 William Hackett Impeller assembly for centrifugal pumps
US7118356B2 (en) 2002-10-02 2006-10-10 Nanyang Technological University Fluid pump with a tubular driver body capable of selective axial expansion and contraction
US20040215222A1 (en) 2003-04-25 2004-10-28 Michael Krivoruchko Intravascular material removal device
US7655022B2 (en) 2003-04-28 2010-02-02 Cardiac Pacemakers, Inc. Compliant guiding catheter sheath system
US7074018B2 (en) 2003-07-10 2006-07-11 Sheldon Chang Direct drive linear flow blood pump
DE10336902C5 (de) 2003-08-08 2019-04-25 Abiomed Europe Gmbh Intrakardiale Pumpvorrichtung
EP1673127B1 (de) 2003-09-02 2014-07-02 PulseCath B.V. Katheterpumpe
WO2005030316A1 (en) 2003-09-26 2005-04-07 Medtronic, Inc. Sutureless pump connector
EP1670524A4 (de) 2003-10-09 2012-12-26 Thoratec Corp Laufrad
EP1718361B1 (de) 2004-02-11 2015-06-17 Fort Wayne Metals Research Products Corporation Mit gezogenen fäden gefüllter schlauchdraht
US8048086B2 (en) 2004-02-25 2011-11-01 Femasys Inc. Methods and devices for conduit occlusion
US8052669B2 (en) 2004-02-25 2011-11-08 Femasys Inc. Methods and devices for delivery of compositions to conduits
US7942804B2 (en) 2004-05-20 2011-05-17 Cor-Med Vascular, Inc. Replaceable expandable transmyocardial ventricular assist device
EP1789112B1 (de) 2004-08-13 2010-09-29 Delgado, Reynolds M., III Gerät zur langzeitunterstützung eines linken ventrikels beim pumpen von blut
US7479102B2 (en) 2005-02-28 2009-01-20 Robert Jarvik Minimally invasive transvalvular ventricular assist device
EP1898971B1 (de) 2005-06-06 2015-03-11 The Cleveland Clinic Foundation Blutpumpe
EP1738783A1 (de) 2005-07-01 2007-01-03 Universitätsspital Basel Axialpumpe mit spiralförmiger Schaufel
US7878967B1 (en) * 2005-10-06 2011-02-01 Sanjaya Khanal Heart failure/hemodynamic device
US7438699B2 (en) 2006-03-06 2008-10-21 Orqis Medical Corporation Quick priming connectors for blood circuit
US20070213690A1 (en) 2006-03-08 2007-09-13 Nickolas Phillips Blood conduit connector
CN102380135A (zh) 2006-03-23 2012-03-21 宾州研究基金会 带有可膨胀叶轮泵的心脏辅助装置
EP2026864A2 (de) 2006-05-22 2009-02-25 Koninklijke Philips Electronics N.V. Kathetereinführschleuse mit verstellbarer flexibilität
DE102006036948A1 (de) 2006-08-06 2008-02-07 Akdis, Mustafa, Dipl.-Ing. Blutpumpe
EP2061531B1 (de) 2006-09-14 2016-04-13 CircuLite, Inc. Intravaskuläre blutpumpe und katheter
US7988674B2 (en) 2006-10-30 2011-08-02 Medtronic, Inc. Externally releasable body portal anchors and systems
US9028392B2 (en) 2006-12-01 2015-05-12 NuCardia, Inc. Medical device
US20090112312A1 (en) 2007-02-26 2009-04-30 Larose Jeffrey A Intravascular ventricular assist device
CA2679498C (en) 2007-03-19 2016-08-02 Boston Scientific Neuromodulation Corporation Methods and apparatus for fabricating leads with conductors and related flexible lead configurations
DE102007014224A1 (de) 2007-03-24 2008-09-25 Abiomed Europe Gmbh Blutpumpe mit Mikromotor
EP2136861B1 (de) 2007-04-05 2017-12-20 ReliantHeart Inc. Blutpumpensystem
US20080275427A1 (en) 2007-05-01 2008-11-06 Sage Shahn S Threaded catheter connector, system, and method
US8512312B2 (en) 2007-05-01 2013-08-20 Medtronic, Inc. Offset catheter connector, system and method
US7828710B2 (en) 2007-06-05 2010-11-09 Medical Value Partners, Llc Apparatus comprising a drive cable for a medical device
EP2170577A1 (de) 2007-07-30 2010-04-07 ifw Manfred Otte GmbH Werkzeugintegrierte plastifiziereinheit
US8439859B2 (en) 2007-10-08 2013-05-14 Ais Gmbh Aachen Innovative Solutions Catheter device
EP2047872B1 (de) 2007-10-08 2010-09-08 Ais Gmbh Aachen Innovative Solutions Katheter-Vorrichtung
EP2047873B1 (de) 2007-10-08 2010-12-15 Ais Gmbh Aachen Innovative Solutions Katheter-Vorrichtung
US8489190B2 (en) 2007-10-08 2013-07-16 Ais Gmbh Aachen Innovative Solutions Catheter device
EP2194278A1 (de) 2008-12-05 2010-06-09 ECP Entwicklungsgesellschaft mbH Fluidpumpe mit einem rotor
EP2216059A1 (de) 2009-02-04 2010-08-11 ECP Entwicklungsgesellschaft mbH Kathetereinrichtung mit einem Katheter und einer Betätigungseinrichtung
EP2218469B1 (de) 2009-02-12 2012-10-31 ECP Entwicklungsgesellschaft mbH Gehäuse für ein Funktionselement
EP2229965A1 (de) 2009-03-18 2010-09-22 ECP Entwicklungsgesellschaft mbH Fluidpumpe mit besonderer Gestaltung eines Rotorblattes
DE102010011998A1 (de) 2009-03-24 2010-09-30 Ecp Entwicklungsgesellschaft Mbh Fluidpumpeinrichtung
EP2246078A1 (de) 2009-04-29 2010-11-03 ECP Entwicklungsgesellschaft mbH Wellenanordnung mit einer Welle, die innerhalb einer fluidgefüllten Hülle verläuft
EP2248544A1 (de) 2009-05-05 2010-11-10 ECP Entwicklungsgesellschaft mbH Im Durchmesser veränderbare Fluidpumpe, insbesondere für die medizinische Verwendung
BRPI1010988B8 (pt) 2009-05-18 2021-06-22 Cardiobridge Gmbh "bomba de cateter"
EP2266640A1 (de) 2009-06-25 2010-12-29 ECP Entwicklungsgesellschaft mbH Komprimierbares und expandierbares Schaufelblatt für eine Fluidpumpe
EP2282070B1 (de) 2009-08-06 2012-10-17 ECP Entwicklungsgesellschaft mbH Kathetereinrichtung mit einer Ankopplungseinrichtung für eine Antriebseinrichtung
EP2298373A1 (de) 2009-09-22 2011-03-23 ECP Entwicklungsgesellschaft mbH Fluidpumpe mit wenigstens einem Schaufelblatt und einer Stützeinrichtung
EP2298372A1 (de) 2009-09-22 2011-03-23 ECP Entwicklungsgesellschaft mbH Rotor für eine Axialpumpe zur Förderung eines Fluids
EP2299119B1 (de) 2009-09-22 2018-11-07 ECP Entwicklungsgesellschaft mbH Aufblasbarer Rotor für eine Fluidpumpe
EP2298371A1 (de) 2009-09-22 2011-03-23 ECP Entwicklungsgesellschaft mbH Funktionselement, insbesondere Fluidpumpe, mit einem Gehäuse und einem Förderelement
EP2314330A1 (de) 2009-10-23 2011-04-27 ECP Entwicklungsgesellschaft mbH Flexible Wellenanordnung
EP2314331B1 (de) 2009-10-23 2013-12-11 ECP Entwicklungsgesellschaft mbH Katheterpumpenanordnung und flexible Wellenanordnung mit einer Seele
EP2338539A1 (de) 2009-12-23 2011-06-29 ECP Entwicklungsgesellschaft mbH Pumpeneinrichtung mit einer Detektionseinrichtung
EP2338540A1 (de) 2009-12-23 2011-06-29 ECP Entwicklungsgesellschaft mbH Förderschaufel für einen komprimierbaren Rotor
EP2338541A1 (de) 2009-12-23 2011-06-29 ECP Entwicklungsgesellschaft mbH Radial komprimierbarer und expandierbarer Rotor für eine Fluidpumpe
EP2343091B1 (de) 2010-01-08 2014-05-14 ECP Entwicklungsgesellschaft mbH Fluidpumpe mit einer Fördereinrichtung mit steuerbarer Volumenänderung
EP2347778A1 (de) 2010-01-25 2011-07-27 ECP Entwicklungsgesellschaft mbH Fluidpumpe mit einem radial komprimierbaren Rotor
EP2353626A1 (de) 2010-01-27 2011-08-10 ECP Entwicklungsgesellschaft mbH Fördereinrichtung für ein Fluid
EP2363157A1 (de) 2010-03-05 2011-09-07 ECP Entwicklungsgesellschaft mbH Vorrichtung zur mechanischen Einwirkung auf ein Medium, insbesondere Fluidpumpe
EP2388029A1 (de) 2010-05-17 2011-11-23 ECP Entwicklungsgesellschaft mbH Pumpenanordnung
EP2399639A1 (de) 2010-06-25 2011-12-28 ECP Entwicklungsgesellschaft mbH System zum einführen einer pumpe
EP2407185A1 (de) 2010-07-15 2012-01-18 ECP Entwicklungsgesellschaft mbH Radial komprimierbarer und expandierbarer Rotor für eine Pumpe mit einem Schaufelblatt
EP2407186A1 (de) 2010-07-15 2012-01-18 ECP Entwicklungsgesellschaft mbH Rotor für eine Pumpe, hergestellt mit einem ersten, elastischen Werkstoff
EP2407187A3 (de) 2010-07-15 2012-06-20 ECP Entwicklungsgesellschaft mbH Blutpumpe für die invasive Anwendung innerhalb eines Körpers eines Patienten
EP2497521A1 (de) 2011-03-10 2012-09-12 ECP Entwicklungsgesellschaft mbH Schubvorrichtung zum axialen Einschieben eines strangförmigen, flexiblen Körpers
EP2564771A1 (de) 2011-09-05 2013-03-06 ECP Entwicklungsgesellschaft mbH Medizinprodukt mit einem Funktionselement zum invasiven Einsatz im Körper eines Patienten
EP2606920A1 (de) 2011-12-22 2013-06-26 ECP Entwicklungsgesellschaft mbH Schleuseneinrichtung zum Einführen eines Katheters
EP2606919A1 (de) 2011-12-22 2013-06-26 ECP Entwicklungsgesellschaft mbH Schleuseneinrichtung zum Einführen eines Katheters
EP2607712B1 (de) 2011-12-22 2016-07-13 ECP Entwicklungsgesellschaft mbH Pumpengehäuse mit einem Innenraum zur Aufnahme eines Pumpenrotors

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6860713B2 (en) 2002-11-27 2005-03-01 Nidec Corporation Fan with collapsible blades, redundant fan system, and related method
US7393181B2 (en) 2004-09-17 2008-07-01 The Penn State Research Foundation Expandable impeller pump
WO2009132309A1 (en) 2008-04-25 2009-10-29 Nellix, Inc. Stent graft delivery system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DIN 55958

Also Published As

Publication number Publication date
CN102791303B (zh) 2016-03-02
EP2363157A1 (de) 2011-09-07
US20160144088A1 (en) 2016-05-26
US10413646B2 (en) 2019-09-17
WO2011107296A1 (en) 2011-09-09
US20130066139A1 (en) 2013-03-14
US9217442B2 (en) 2015-12-22
US11040187B2 (en) 2021-06-22
US20180200421A1 (en) 2018-07-19
CN102791303A (zh) 2012-11-21
US20210346673A1 (en) 2021-11-11
US9907891B2 (en) 2018-03-06
US20190358379A1 (en) 2019-11-28

Similar Documents

Publication Publication Date Title
DE112011100800T5 (de) Pumpe oder Fräse zum Betrieb in einem Fluid
EP0351728B1 (de) Verfahren zur Erzeugung eines Dicht- und Klebmittelstranges.
DE112011102347T5 (de) Blutpumpe für die invasive Anwendung innerhalb eines Körpers eines Patienten
DE19524297B4 (de) Verfahren zum Schützen der Oberfläche einer Doppelgelenkmanschette
DE1918256A1 (de) Gehaertete Polyurethan-Massen
EP0249603A1 (de) Antithrombogenes, nichtcalcifizierendes material und ein verfahren zur herstellung von gegenständen für medizinische zwecke.
DE1586651A1 (de) Mehrlagige Wandung fuer Fluessigkeitsbehaelter
DE102011108744A1 (de) Verfahren zur Herstellung einer Sohle oder eines Sohlenteils eines Schuhs
WO2018077913A1 (de) Verfahren zum behandeln wenigstens eines teils der oberfläche eines 3d-gedruckten gegenstands
DE2108586A1 (de) Verbundrohr und Verfahren zu seiner Herstellung
EP2606079A1 (de) Faserverbundbauteil und ein verfahren zu dessen herstellung
EP3849778A1 (de) Mittels endlosfasern verstärkte 3d-gedruckte elastische erzeugnisse mit asymmetrischen elastischen eigenschaften
WO2019030267A1 (de) Verfahren zur herstellung eines dreidimensionalen objektes mit individualisiertem und über 3d-druck erzeugtem objektabschnitt
WO2017129483A1 (de) Neuartiger hetero-diels-alder-vernetzer und deren verwendung in reversibel vernetzenden polymersystemen
DE102009050176A1 (de) Vorrichtung zum Mischen eines pulverförmigen Mediums mit einer Flüssigkeit
WO2018122143A1 (de) Lagenweises fertigungsverfahren für einen gegenstand mit unterschiedlichem lagenmaterial und gegenstand mit unterschiedlichem lagenmaterial
EP1800738A1 (de) Vorrichtung und Verfahren zur Bildung einer Klebstoff- und/oder Dichtstoffmasse, dergestalt hergestellte Kleb- und/oder Dichtstoffmasse sowie verklebte Substrate
WO1994014865A1 (de) Aufschäumbares zwei-komponenten-material auf polyurethan-basis
DE10120989A1 (de) Hydrophobe permanente Beschichtungen auf Substraten und Verfahren zu ihrer Herstellung
KR102039441B1 (ko) 수분산성 폴리우레탄 기반의 친환경성 전도성 복합체, 그의 제조방법 및 그를 이용한 용도
DE102008044388A1 (de) Materialien mit elektrisch bzw. magnetisch induzierter Einstellung mechanischer Eigenschaften
EP1945697A1 (de) Artikel enthaltend gummi, thermoplastisches polyurethan und technischen kunststoff
WO1995023035A1 (de) Beflockter artikel auf basis eines schaums oder einer vergussmasse
EP2092208B1 (de) Rundlager
DE1586651C (de) Selbstabdichtende Wand fur Behalter und Leitungen

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R079 Amendment of ipc main class

Free format text: PREVIOUS MAIN CLASS: A61M0001100000

Ipc: A61M0060000000