DE10314557A1 - Kompakter Mikrowellen-Anstandsensor mit geringer Leistungsaufnahme durch Leistungsmessung an einem stimulierten Empfangsoszillator - Google Patents

Kompakter Mikrowellen-Anstandsensor mit geringer Leistungsaufnahme durch Leistungsmessung an einem stimulierten Empfangsoszillator Download PDF

Info

Publication number
DE10314557A1
DE10314557A1 DE10314557A DE10314557A DE10314557A1 DE 10314557 A1 DE10314557 A1 DE 10314557A1 DE 10314557 A DE10314557 A DE 10314557A DE 10314557 A DE10314557 A DE 10314557A DE 10314557 A1 DE10314557 A1 DE 10314557A1
Authority
DE
Germany
Prior art keywords
signal
arrangement
local oscillator
oscillator
arrangement according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE10314557A
Other languages
English (en)
Inventor
Andreas Kornbichler
Martin Nalezinski
Martin Dr. Vossiek
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to DE10314557A priority Critical patent/DE10314557A1/de
Priority to PCT/EP2004/001441 priority patent/WO2004088354A1/de
Priority to EP04711353A priority patent/EP1608998A1/de
Priority to US10/550,974 priority patent/US20060220947A1/en
Priority to JP2006500032A priority patent/JP2006515424A/ja
Publication of DE10314557A1 publication Critical patent/DE10314557A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/0209Systems with very large relative bandwidth, i.e. larger than 10 %, e.g. baseband, pulse, carrier-free, ultrawideband
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/10Systems for measuring distance only using transmission of interrupted, pulse modulated waves
    • G01S13/12Systems for measuring distance only using transmission of interrupted, pulse modulated waves wherein the pulse-recurrence frequency is varied to provide a desired time relationship between the transmission of a pulse and the receipt of the echo of a preceding pulse
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • G01S13/341Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal wherein the rate of change of the transmitted frequency is adjusted to give a beat of predetermined constant frequency, e.g. by adjusting the amplitude or frequency of the frequency-modulating signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles

Abstract

Pulsradar mit einem Empfangsoszillator, dessen Einschwingverhalten durch ein empfangenes Echo beeinflusst wird.

Description

  • Zur Messung von Abständen mit Mikrowellen werden häufig Pulsradarsensoren verwendet. Die Verfahren und Anordnungen zum Aufbau und Betrieb von Pulsradarsensoren existieren in vielfältiger Form und sind seit langem z.B. aus US 3,117,317 , US 4,132,991 und US 4,521,778 bekannt. Eingesetzt werden Pulsradar-Sensoren als Füllstandsensoren in der industriellen Messtechnik, als Einparkhilfe oder Nahdistanzsensor in Kraftfahrzeugen zur Kollisionsvermeidung, zur Abbildung der Umgebung und zur Navigation von autonomen Fahrzeugen und Transportsystemen wie z.B. Roboter und Förderanlagen.
  • Üblicherweise arbeiten Pulsradar-Sensoren in den aufgeführten Anwendungsgebieten bei Mittenfrequenzen von ca. 1 GHz bis 100 GHz mit typischen Pulslängen von 100 ps bis 20 ns. Wegen der großen Bandbreite werden derartige Sensoren seit einiger Zeit als Ultrawideband (UWB)-Radar bezeichnet. Gemeinsam ist fast allen Pulsradar-Sensoren, dass die Pulssignale eine so große Bandbreite besitzen, dass diese mit den üblichen Methoden der Signalerfassung nicht direkt aufgezeichnet und verarbeitet werden können, sondern hierfür zunächst auf eine tiefere Frequenz umgesetzt werden müssen. Hierzu verwenden fast alle bekannten Pulssysteme die Methode des so genannten sequentiellen Abtastens. Bei diesem Prinzip, welches schon aus frühen digitalen Abtastoszilloskopen bekannt ist, wird das Messsignal über mehrere Messzyklen abgetastet, wobei die Abtastzeitpunkte von Zyklus zu Zyklus sequentiell verschoben werden.
  • In US 3,117,317 , US 4,132,991 und US 4,521,778 wird die schaltungstechnische Umsetzung des sequentiellen Samplings so beschrieben, dass ein Sendeimpuls mit einer bestimmten Wiederholfrequenz CLK-Tx (Clock-Transmission) ausgesendet wird und sein Echo mit einem Abtasttor mit einer Wiederholfrequenz CLK-Rx (Clock-Reception) abgetastet wird. Unterscheiden sich die Frequenzen der Sendefolge und der Abtastfolge geringfügig, so verschieben sich die beiden Folgen langsam in ihrer Phase gegeneinander. Diese langsame relative Verschiebung des Abtastpunktes zum Sendezeitpunkt bewirkt einen sequentiellen Abtastvorgang.
  • 1 zeigt eine bekannte Ausführungsform eines nach dem Stand der Technik arbeitenden Pulsradars mit sequentiellem Sampling. Das Ausgangssignal eines kontinuierlich betriebenen Oszillators wird in einen Sende- und einen Empfangspfad aufgeteilt. Diese beiden Signale werden über die Schalter SW-Tx/SW-Rx mit dem Takt CLK-Tx/CLK-Rx für einen kurzen Moment durchschaltet wodurch zwei zyklische Pulsfolgen sTx(t) und sTx(t) mit geringfügig unterschiedlicher Taktrate erzeugt werden. Die Impulsfolge sTx(t) wird über die Antenne ANT-Tx ausgesendet. Die Impulsfolge sRx(t) wird dem ersten Tor des Mischers MIX zugeführt, der als Abtasttor fungiert. Der Mischer wird an seinem zweiten Tor mit dem vom Objekt TARGET1 und vom Objekt TARGET2 reflektierten Empfangssignal gespeist. Die empfangene Impulsfolge wird im Mischer MIX in das niederfrequente Basisband gemischt. Die dabei entstehende Abtastimpulsfolge wird durch ein Bandpassfilter geglättet und ergibt so das niederfrequente Messsignal sm(t).
  • Wie 2 zeigt ist auch bekannt, anstatt getrennter Antennen wie in 1 eine gemeinsame Antenne zum Senden und Empfangen zu verwenden, wobei die Sende- und Empfangssignale beispielsweise durch einen Zirkulator oder Richtkoppler voneinander getrennt werden.
  • Wird mit der herkömmlichen Radartopologie nach 1 und 2 mit sequentiellem Sampling gemessen, ergeben sich folgende Nachteile:
    • – Im Falle, in dem das Messsignal sm(t) reellwertig erfasst wird, ändert sich die Amplitude des Echopulses in Abhängigkeit von der spezifischen Phase zwischen dem Sende- und Empfangssignal. Bewegt sich also das Objekt TARGET2, „wabert" die zu diesem Objekt gehörende Pulshüllkurve, wie in 3 dargestellt (mit TARGET2 gekennzeichnet) in Abhängigkeit von der durch den jeweiligen Abstand des sich bewegenden Objektes TARGET2 gegebenen momentanen Reflexionsphase zwischen den Werten +A und –A hin und her, wobei sich gleichzeitig die Position der Pulshüllkurve entsprechend der Ortsänderung verschiebt. Dabei verschwindet die Hüllkurve zwischen diesen Extrema auch vollständig. Reflektiert das zu messende Objekt mit eben einer solchen Phase, bei der die Pulshüllkurve verschwindet, wird das Objekt nicht erkannt.
    • – Durch eine komplexwertige Erfassung des Messsignals sm(t) kann aus dem Real- und dem Imaginärteil des Messsignals rechnerisch durch eine Betragsbildung eine nicht „wabernde" Pulshüllkurve gemäß 6 gebildet werden. Es ist jedoch dafür die komplexwertige Messwerterfassung, d.h. die Verwendung von zwei Mischern, sowie die Auswertung zweier Signale Re{sm(t)} und Im{sm(t)} notwendig.
    • – Die Schalter SW-Tx/SW-Rx ermöglichen nur einen begrenzten Schaltkontrast. Das bedeutet, dass stets ein Signal abgestrahlt wird und ein Dopplersignal zwischen den Pulshüllen zu sehen sind. Außerdem kann das ausgesendete Dauerstrichsignal problematisch im Sinne der von den Behörden zugelassenen Nebenaussendungen sein.
    • – Der Oszillator HFO ist stets eingeschaltet und verbraucht Strom. In batteriebetriebenen Anwendungen bedeutet das eine reduzierte Batterie-Lebensdauer.
    • – Für die Erzeugung der Pulse werden bei der HF ein Oszillator und zwei aufwändig zu gestaltende Schalter benötigt.
  • Einige der erwähnten Probleme löst eine Anordnung nach 4. Die Funktion entspricht im Wesentlichen der der Anordnung von 1, wobei die Impulsfolgen in diesem Falle durch kurzzeitiges Einschalten der Signalquellen HFO-Tx/HFO-Rx durch einen schnellen Spannungspuls von PO-Tx/PO-Rx erreicht werden. Auch hier besitzen die entstehenden Impulsfolgen geringfügig unterschiedliche Taktraten CLK-Tx/CLK-Rx.
  • Zur Erzielung eines guten Signal-zu-Rausch-Verhältnisses (SNR) des Messsignals ist entscheidend, dass die Oszillatoren PO-Tx/PO-Rx über alle Pulse einer Folge in einem deterministischen, also in einem nicht stochastischem, Phasenverhältnis zueinander stehen. Ein deterministischer Zusammenhang ergibt sich, wenn die Pulssignale, die die Pulsoszillatoren HFO-Tx/HFO-Rx einschalten, sehr reich an Oberwellenanteilen im Frequenzband der Hochfrequenzoszillatoren sind. Die Oberwellen führen dazu, dass die Oszillatoren nicht stochastisch anschwingen, sondern bezogen auf die Spannungspulse PO-Tx/PO-Rx mit einer starren, charakteristischen Anfangsphase. Also stehen auch die Ausgangssignale der beiden Oszillatoren in einem deterministischen, durch die Sendesignalfolge und die Abtastsignalfolge vorgegebenen Phasen- und Zeit-Verhältnis zueinander.
  • Die Vorteile der Anordnung von 4 sind:
    • – Das System besitzt eine deutlich geringere Stromaufnahme als das von 1, da die Hochfrequenzoszillatoren die meiste Zeit eines Messzyklus ausgeschaltet sind.
    • – Das System besitzt keine aufwändigen Hochfrequenzschalter mehr.
  • Nachteilig ist aber:
    • – Es erfordert auch einen hohen Aufwand ausreichend starke, schnelle, oberwellenreiche Spannungspulse zu erzeugen.
    • – Sind die Oberwellen sehr schwach, wird die Anschwingphase auch durch andere einstreuende Signale beeinflusst, die Messsignalamplitude rauscht und jittert.
    • – Zur Abstandsermittlung aus dem Messsignal muss üblicherweise dessen Hüllkurve ermittelt werden. Hierfür ist in der Regel eine sehr hohe Verstärkung des niederfrequenten Messsignals notwendig, die ebenfalls aufwändig zu gewährleisten ist.
  • Auf einem anderen technischen Gebiet, nämlich dem der Transponder, ist aus US 5,630,216 bekannt, dass ein Oszillator in seinem Anschwingverhalten nicht nur in seiner Phase, sondern auch in seiner Anschwinggeschwindigkeit von einem eingekoppelten Signal ähnlicher Frequenz beeinflusst wird. Dieser Effekt wird zu einer sehr leistungsarmen Demodulation eines empfangenen AM-Code-Signals genutzt. Dieser Verstärkungseffekt ist jedoch nicht für ein kohärentes Messverfahren wie das zuvor beschriebene geeignet.
  • Aufgabe der vorliegenden Erfindung ist es, Systeme aufzuzeigen, die die Aufgabe der beschriebenen Radaranordnungen in anderer und verbesserter Form erfüllen.
  • Diese Aufgabe wird durch die in den unabhängigen Ansprüchen angegebenen Erfindungen gelöst. Vorteilhafte Ausgestaltungen ergeben sich aus den abhängigen Ansprüchen.
  • Dementsprechend verfügt eine Anordnung oder Vorrichtung über Sendemittel, zum Erzeugen und Senden eines elektromagnetischen Signals, und über Empfangsmittel zum Empfangen eines Echos des gesendeten elektromagnetischen Signals. Die Empfangsmittel weisen einen Empfangsoszillator auf, dessen Einschwingverhalten, insbesondere die Einschwingdauer und damit die mittlere abgegebene Leistung, durch die Stärke, insbesondere Amplitude, der empfangenen Reflexion des gesendeten elektromagnetischen Signals beeinflussbar ist. Der Empfangsoszillator ist also so beschaltet, dass er durch Reflexion des gesendeten elektromagnetischen Signals anregbar und/oder stimulierbar ist, wodurch ein Messsignal in Abhängigkeit der Stärke, insbesondere Amplitude, der Reflexion des gesendeten elektromagnetischen Signals erzeugbar ist.
  • Vorzugsweise weist die Anordnung dazu einen Detektor auf, durch den die mittlere Leistung des Empfangsoszillators messbar ist.
  • Es ist weiterhin vorteilhaft, wenn die Anordnung für einen Pulsbetrieb im Sende- und/oder Empfangszweig ausgebildet ist, indem die Sendemittel und/oder Empfangsmittel Mittel zum periodischen Ein- und Ausschalten aufweisen. Insbesondere kann die Anordnung Mittel zum periodischen Ein- und Ausschalten des Empfangsoszillators mit einer Taktrate aufweisen.
  • Besonders kostengünstig und Platz sparend kann der Empfangsoszillator so geschaltet sein, dass er auch als Sendeoszillator zum Generieren des zu sendenden elektromagnetischen Signals fungiert.
  • Alternativ kann die Anordnung einen zweiten Oszillator aufweisen, der als Sendeoszillator zum Generieren des zu sendenden elektromagnetischen Signals fungiert.
  • Die Anordnung ist insbesondere eine Anordnung zur Abstandsmessung, ein Radar, bevorzugt ein Pulsradar.
  • Sie kann zur Detektion eines Messsignals einen Mischer aufweisen, in dem ein erstes Teilmesssignal und ein zweites Teilmesssignal addiert werden, insbesondere einen Mischer mit zwei Dioden, wobei die Dioden mit gleicher Polarität, also parallel, eingesetzt werden und das Messsignal als Summe zweier Teilmesssignale gebildet wird oder wobei die Dioden mit gegensätzlicher Polarität, also antiparallel, eingesetzt werden und das Messsignal durch Differenz der beiden Teilsignale gebildet wird. Der Vorteil in der Verwendung eines solchen symmetrischen Mischers besteht in der Verdopplung der Messsignalamplitude und in seinen besonders guten Transmissionseigenschaften, die für die dämpfungsarme Übertragung des Sendesignals sowie die Anregung des Empfangsoszillators durch ein Empfangssignal besonders wünschenswert sind.
  • Bei einem Messverfahren, insbesondere zur Abstandsmessung, wird
    • – mit Sendemitteln ein elektromagnetisches Signal erzeugt und gesendet,
    • – mit Empfangsmitteln, die einen Empfangsoszillator aufweisen, eine Reflexion, also ein Echo des gesendeten elektromagnetischen Signals empfangen,
    • – das Einschwingverhalten, insbesondere die Einschwingdauer und damit die mittlere abgegebene Leistung, des Empfangsoszillators durch die Stärke, insbesondere Amplitude, der Reflexion des gesendeten elektromagnetischen Signals beeinflusst.
  • Vorteilhafte Ausgestaltungen des Verfahrens ergeben sich analog zu den vorteilhaften Ausgestaltungen der Anordnung.
  • Weitere Vorteile und Merkmale der Erfindung ergeben sich aus der Beschreibung von Ausführungsbeispielen. Dabei zeigt:
  • 1 Ein Pulsradar nach dem Stand der Technik;
  • 2 ein zweites Pulsradar nach dem Stand der Technik;
  • 3 eine mit dem Pulsradar nach 1 oder dem Pulsradar nach 2 durchgeführte Messung;
  • 4 ein drittes Pulsradar nach dem Stand der Technik;
  • 5 eine Anordnung mit Sendemitteln und Empfangsmitteln;
  • 6 eine mit der Anordnung nach 5 durchgeführte Messung;
  • 7 eine alternative Anordnung mit Sendemitteln und Empfangsmitteln;
  • 8 noch eine alternative Anordnung mit Sendemitteln und Empfangsmitteln;
  • 9 ein in den Anordnungen verwendbarer Mischer.
  • Im Folgenden sind Anordnungen beschrieben, die die Nachteile der Systeme der 1, 2 und 4 vermeiden.
  • Wie bereits erwähnt wird ein Oszillator in seinem Anschwingverhalten nicht nur in seiner Phase, sondern auch in seiner Anschwinggeschwindigkeit von einem eingekoppelten Signal ähnlicher Frequenz beeinflusst. Ein periodisch ein- und ausgeschalteter Oszillator schwingt danach unter dem Einfluss eines empfangenen Signals ähnlicher Frequenz schneller an, als ohne dieses Signal. Je größer die Amplitude des Empfangssignals am geschalteten Oszillator ist, desto kürzer ist dessen Einschwingzeit und desto länger schwingt der Oszillator während einer vorgegebenen Einschaltzeit.
  • Führt man das Ausgangssignal eines geschalteten Oszillators, der durch ein Empfangssignal stimuliert wurde, einem Detektor DET mit anschließendem Tiefpass zu, so funktioniert der Detektor in dieser Anordnung als Leistungsmesser, der die mittlere Leistungsabgabe des stimulierten Oszillators misst. Wird der Oszillator von einem AM-Empfangssignal stimuliert, schwankt die mittlere Ausgangsleistung des Oszillators in Abhängigkeit von der augenblicklich am Oszillator anliegenden Signalamplitude des stimulierenden Empfangssignals. Das Messsignal sm(t) stellt damit ein hoch verstärktes Abbild des AM-Empfangssignals dar.
  • Im vorliegenden Fall wird der Verstärkungseffekt mit geschaltetem Oszillator zur Realisierung eines sehr einfachen Abstandsradars mit äußerst geringer Leistungsaufnahme nach dem Verfahren des sequentiellen Samplings genutzt. Ein entsprechendes Radarsystem zeigt 5.
  • Dieses Radarsystem weist einen Sendeoszillator HFO-Tx auf, der über einen schnellen Schalter PO-Tx mit einer Taktrate CLK-Tx periodisch kurzzeitig eingeschaltet wird. Typische Einschaltdauern sind 100 ps – 20 ns, typische Taktraten 0,1–10 MHz. Das Signal wird über einen Diplexer DIP, der im dargestellten Fall als Zirkulator ausgeführt ist, ausgesendet, an einem Objekt reflektiert, über den Diplexer DIP wieder empfangen und erreicht über einen Detektor DET einen Empfangsoszillator HFO-Rx in Form eines Lokaloszillators, der über einen Schalter PO-Rx mit einer Taktrate CLK-Rx ein- und ausgeschaltet wird. In dem Fall, in dem beispielsweise durch praktisch unvermeidliche Überkopplung von der Empfangsantenne über Detektor DET zum Lokaloszillator HFO-Rx Signalanteile des reflektierten Empfangssignal zum Einschaltzeitpunkt des Lokaloszillators HFO-Rx an diesem anliegen, bewirken diese Signale wie oben beschrieben ein schnelleres Anschwingen des Oszillators gegenüber dem Fall, dass der Oszillator aus dem Rauschen heraus anschwingt. Bei einer Abstandsmessung treffen entsprechend dem Reflektorszenario über der Zeit verteilt verschieden starke Echos ein. Es gelangen also verschieden starke Empfangssignale über Antenne ANT, Diplexer DIP und Detektor DET zum Lokaloszillator HFO-Rx. Die Stärke der Reflexion zum Einschaltzeitpunkt bildet sich als mittlere Einschaltdauer des Oszillators ab, also als mittlere Oszillatorleistung. Der Detektor DET bildet aus dieser mittleren Oszillatorleistung die in 6 dargestellte Pulshüllkurve.
  • Die Vorteile dieser Systemtopologie und Messmethode bestehen in folgenden Punkten:
    • – Nachdem das Messsignal sm(t) nicht kohärent durch Mischen sondern durch Leistungsdetektion erzeugt wird, entfällt das „Wabern" der Signalamplitude in Abhängigkeit von der Phase der Reflexion auch für einen bewegten Reflektor TARGET2. Das Messsignal muss hierfür nicht komplexwertig erzeugt werden.
    • – Typische Reflexionen führen zu Messsignalamplituden im Bereich von einigen hundert Millivolt im Gegensatz zu Mischsignalen die in einem kohärenten System typisch bei wenigen zehn Millivolt liegen. Ohne schaltungstechnischen Mehraufwand im HF-Bereich können damit Verstärkerstufen von 20–30 dB im NF-Bereich eingespart werden.
    • – Das Radarsystem arbeitet dabei mit äußerst geringer Leistungsaufnahme.
    • – Für die Erzeugung der Pulse werden bei HF-Frequenzen nur zwei Oszillatoren benötigt. Für den Gehalt an Oberwellen in den von den Schaltern erzeugten Spannungspulsen bestehen nicht die hohen Anforderungen wie bei den Spannungspulsen der Schalter SW-Rx bzw. SW-Tx für die Anordnung von 4.
  • Eine besonders einfache Ausgestaltung des Radarsystems stellt 7 dar: Der Oszillator HFO arbeitet sowohl als Sendeoszillator wie auch als stimulierter Empfangsoszillator, der sowohl vom Schalter PO-Tx mit der Taktrate CLK-Tx eingeschaltet wird, als auch vom Schalter PO-Rx mit der Taktrate CLK-Rx eingeschaltet wird. Alternativ kann das Einschalten auch durch eine Anordnung wie in 8 durchgeführt werden. Das setzt allerdings einen Schalter voraus, der äußerst schnelle Pulswiederholraten realisieren kann.
  • Es ist vorteilhaft aber nicht zwingend, wenn der Detektor DET in dem System von 7 und 8 als symmetrischer Mischer auf Basis eines 90°-Hybrids (siehe z.B. A. Maas: „The RF and Microwave Circuit Design Cookbook", Artech House 1998, S. 107–109), wie in 9 dargestellt mit einer Besonderheit ausgeführt ist. Die Besonderheit besteht darin, dass die beiden Dioden, wie bei einem Frequenzverdoppler, mit gleicher Polarität, also parallel, eingesetzt werden und das Messsignal dennoch als Summe beider Teilsignale sm1(t) und sm2(t) gebildet wird oder die Dioden mit gegensätzlicher Polarität, also antiparallel, eingesetzt werden und das Messsignal durch Differenz der beiden Teilsignale gebildet wird. Hierbei verdoppelt sich die Messsignalamplitude im Vergleich zu einer Anordnung mit nur einer Diode oder dem Abgriff nur eines Teilsignals sm1(t) oder sm2(t). Der Vorteil in der Verwendung eines symmetrischen Mischers nach 9 besteht weiter in seinen besonders guten Transmissionseigenschaften, die für die Anregung des Oszillators durch ein Empfangssignal besonders wünschenswert sind.
  • Im Gegensatz zum hier vorgestellten Mischer wird in einem herkömmlichen Mischer das Messsignal gebildet, indem entweder die beiden Dioden antiparallel eingesetzt und die Teilssignale addiert werden oder die Dioden parallel eingesetzt und die beiden Teilsignale subtrahiert werden. Im Gegensatz zu einem herkömmlichen Mischer werden die Dioden beim hier vorgestellten Mischer nicht reflexionsarm angepasst, sondern bewusst hochohmig und damit reflektiv (typ. 100 Ω – 100 kΩ in einem 50-Ω-System). Gegebenenfalls kann in Serie mit den Dioden ein Serienwiderstand R geschaltet werden, um die Hochohmigkeit zu erzielen.
  • Neben den Vorteilen, die auch schon für das System gemäß 5 genannt wurden, gilt für dieses System zusätzlich, dass es sehr einfach ist. Zur Erzeugung der Pulse wird lediglich ein HF-Oszillator benötigt.
  • Ausgestaltungen:
    • – Mit dem beschriebenen Radarsensor können statt nach der Methode des sequentiellen Samplings auch alle anderen für Pulsradare gängigen Verfahren zur Abstandsmessung angewendet werden. So kann das Radarsystem nur für einen vorgegebenen Entfernungsbereich sensitiv gemacht werden, in dem die beiden Taktraten CLK-Tx und CLK-Rx identisch sind und um eine Zeitspanne gegeneinander versetzt sind, die der Signallaufzeit zwischen dem Sensor und dem zu überwachenden Entfernungsbereich entspricht. In dieser Betriebsart könnte das System z.B. sehr gut als sehr kostengünstiger Grenzschalter (z.B. in der industriellen Füllstandmesstechnik als Über- oder Unterlaufsicherung) oder als eine Art Radar-Schranke (etwa zum Zählen/Detektieren von Personen und Fahrzeugen oder zur Detektion von Objekten auf Fließbändern) eingesetzt werden.
    • – Genauso wenig müssen die Takte CLK-Tx und CLK-Rx noch die Verschiebung der Takte zueinander regelmäßig sein um ein komplettes Entfernungsprofil zu erzeugen sondern man kann eine Serie von Abtastwerten auch nach einem beliebigen Schema (z.B. stochastisch oder kodiert) über die Objektszene erzeugen und die korrekte An- und Zuordnung der Entfernungsmesspunkte zueinander anschließend in einer Auswerteeinheit durchführen. Weitere Verfahren zur Betriebsart des Radars sind denkbar.
    • – Statt des Zirkulators nach 5 kann die Sende-Empfangstrennung auch über einen Richtkoppler erfolgen oder ganz auf sie verzichtet werden. Die Ankopplung der Antenne kann in letzterem Falle über eine einfache Stichleitung erfolgen. Dabei ist allerdings mit einer deutlich schlechteren Performance bei der Abstandsmessung zu rechnen, da direktes Übersprechen vom Sende- in den Empfangspfad oder an der Stichleitung reflektierte Signale wie ein sehr naher Reflektor wirken.
    • – Der Eindeutigkeitsbereich des Radars ist wie bei Pulsradaren üblich durch die Pulswiederholrate bestimmt. Reflektierte Pulse, die erst nach der Aussendung des nächsten Sendepulses am Radarsensor eintreffen, werden als sehr nahe Reflektoren interpretiert. Da die mittlere empfangene Energie das S/N bestimmt, ist es wünschenswert die Pulswiederholrate hoch und zwangsläufig damit auch den Eindeutigkeitsbereich möglichst klein zu wählen.
    • – Die Größenordnung der Einschaltdauer von CLK-Tx und CLK-Rx muss im Bereich von Q Schwingungsperioden der Oszillatoren HFO-Tx/HFO-Rx liegen, wobei Q die belastete Güte des Resonators im Oszillator darstellt. Andernfalls kann der Oszillator während der Einschaltzeit nicht vollständig bis zu seiner maximalen Amplitude anschwingen. Insofern sollte der Resonator eine möglichst kleine Güte besitzen.
    • – Im Gegensatz zu vielen Pulsradarsensoren (wie z.B. dem in 4) ist es nicht notwendig, dass der Einschaltpuls besonders steil anschwingt und Oberwellen im Hochfrequenzbereich erzeugt.
  • Aufgrund des besonders einfachen und kostengünstigen Aufbaus eigen sich die Radaranordnungen hervorragend für alle kostensensitiven Anwendungen. Insbesondere zu nennen wäre die Nahdistanzsensorik rund um Fahrzeuge (Kfz-Einparkhilfe, Kfz-blind-spot, Kfz-Airbag, pre-crash, Roboter-Navigation, generell als Sensor für autonome Fahrzeuge), die Nahdistanzsensorik in Fahrzeugen (Sitzbelegungskontrolle, Einbruchmelder, Fenster- Schiebedach-Einklemmschutz) und der ganze Bereich der industriellen Abstandsensorik und der Bereich der Haussensorik (Überwachung von Fenster, Türen, Räumen und Begrenzungen).

Claims (12)

  1. Anordnung mit Sendemitteln zum Senden eines Signals und mit Empfangsmitteln zum Empfangen einer Reflexion des gesendeten Signals, wobei die Empfangsmittel einen Empfangsoszillator aufweisen, dadurch gekennzeichnet, dass das Einschwingverhalten des Empfangsoszillators durch die Reflexion des gesendeten Signals beeinflussbar ist.
  2. Anordnung nach Anspruch 1, dadurch gekennzeichnet, dass die Einschwingdauer und/oder die mittlere abgegebene Leistung des Empfangsoszillators durch die Reflexion des gesendeten Signals beeinflussbar ist.
  3. Anordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Leistung des Empfangsoszillators messbar ist.
  4. Anordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Anordnung Mittel zum, insbesondere periodischen, Ein- und Ausschalten des Empfangsoszillators mit einer Taktrate aufweist.
  5. Anordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Empfangsoszillator auch als Sendeoszillator zum Generieren des zu sendenden Signals fungiert.
  6. Anordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Anordnung einen zweiten Oszillator aufweist, der als Sendeoszillator zum Generieren des zu sendenden Signals fungiert.
  7. Anordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Anordnung eine Anordnung zur Abstandsmessung ist.
  8. Anordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Anordnung ein Radar ist, insbesondere ein Pulsradar.
  9. Anordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Anordnung zur Detektion eines Messsignals einen Mischer aufweist, in dem ein erstes Teilmesssignal und ein zweites Teilmesssignal addiert werden.
  10. Anordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Anordnung zur Detektion eines Messsignals einen Mischer mit zwei Dioden aufweist, wobei die Dioden mit gleicher Polarität eingesetzt werden und das Messsignal als Summe zweier Teilmesssignale gebildet wird oder wobei die Dioden mit gegensätzlicher Polarität eingesetzt werden und das Messsignal durch Differenz der beiden Teilsignale gebildet wird.
  11. Fahrzeug, Gebäude oder Industrieanlage aufweisend eine Anordnung nach einem der vorhergehenden Ansprüche.
  12. Messverfahren, insbesondere zur Abstandsmessung, bei dem – mit Sendemitteln ein Signal erzeugt und gesendet wird, – mit Empfangsmitteln, die einen Empfangsoszillator aufweisen, eine Reflexion des gesendeten Signals empfangen wird, – das Einschwingverhalten des Empfangsoszillators durch die Reflexion des gesendeten Signals beeinflusst wird.
DE10314557A 2003-03-31 2003-03-31 Kompakter Mikrowellen-Anstandsensor mit geringer Leistungsaufnahme durch Leistungsmessung an einem stimulierten Empfangsoszillator Withdrawn DE10314557A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE10314557A DE10314557A1 (de) 2003-03-31 2003-03-31 Kompakter Mikrowellen-Anstandsensor mit geringer Leistungsaufnahme durch Leistungsmessung an einem stimulierten Empfangsoszillator
PCT/EP2004/001441 WO2004088354A1 (de) 2003-03-31 2004-02-16 Kompakter mikrowellen-abstandsensor mit geringer leistungsaufnahme durch leistungsmessung an einem stimulierten empfangsoszillator
EP04711353A EP1608998A1 (de) 2003-03-31 2004-02-16 Kompakter mikrowellen-abstandsensor mit geringer leistungsaufnahme durch leistungsmessung an einem stimulierten empfangsoszillator
US10/550,974 US20060220947A1 (en) 2003-03-31 2004-02-16 Compact low power consumption microwave distance sensor obtained by power measurement on a stimulated receiving oscillator
JP2006500032A JP2006515424A (ja) 2003-03-31 2004-02-16 励振される受信オシレータにおいて電力測定を行うことにより消費電力が低減されているコンパクトなマイクロ波距離センサ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE10314557A DE10314557A1 (de) 2003-03-31 2003-03-31 Kompakter Mikrowellen-Anstandsensor mit geringer Leistungsaufnahme durch Leistungsmessung an einem stimulierten Empfangsoszillator

Publications (1)

Publication Number Publication Date
DE10314557A1 true DE10314557A1 (de) 2004-10-28

Family

ID=33038822

Family Applications (1)

Application Number Title Priority Date Filing Date
DE10314557A Withdrawn DE10314557A1 (de) 2003-03-31 2003-03-31 Kompakter Mikrowellen-Anstandsensor mit geringer Leistungsaufnahme durch Leistungsmessung an einem stimulierten Empfangsoszillator

Country Status (5)

Country Link
US (1) US20060220947A1 (de)
EP (1) EP1608998A1 (de)
JP (1) JP2006515424A (de)
DE (1) DE10314557A1 (de)
WO (1) WO2004088354A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010063800A1 (de) * 2010-12-21 2012-06-21 Endress + Hauser Gmbh + Co. Kg Diplexer für homodynes FMCW-Radargerät

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI374573B (en) * 2008-08-22 2012-10-11 Ind Tech Res Inst Uwb antenna and detection apparatus for transportation means
US8686895B2 (en) 2011-04-29 2014-04-01 Rosemount Tank Radar Ab Pulsed radar level gauge system with higher order harmonic regulation
JP6378843B2 (ja) * 2014-12-31 2018-08-22 ブリヂストン アメリカズ タイヤ オペレーションズ、 エルエルシー タイヤ用途のためのレーダ摩耗検知
US10008069B2 (en) * 2016-02-26 2018-06-26 Ford Global Technologies, Llc Multi-passenger door detection for a passenger transport
US10062254B1 (en) * 2017-04-03 2018-08-28 Alexander Paul Intrusion detection system
TWI690720B (zh) * 2019-01-30 2020-04-11 昇雷科技股份有限公司 非接觸式振動感測器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3117317A (en) * 1959-05-25 1964-01-07 Sperry Rand Corp Distance measuring circuit
US4132991A (en) * 1975-10-07 1979-01-02 Robert Bosch Gmbh Method and apparatus utilizing time-expanded pulse sequences for distance measurement in a radar
US4521778A (en) * 1981-02-27 1985-06-04 Dornier System Gmbh High-resolution, coherent pulse radar
US5630216A (en) * 1994-09-06 1997-05-13 The Regents Of The University Of California Micropower RF transponder with superregenerative receiver and RF receiver with sampling mixer
US6191724B1 (en) * 1999-01-28 2001-02-20 Mcewan Thomas E. Short pulse microwave transceiver
DE10032822A1 (de) * 2000-07-06 2002-01-24 Siemens Ag Vorrichtung zur Erzeugung eines Oszillatorsignals
US6373428B1 (en) * 1999-04-01 2002-04-16 Mcewan Technologies, Llc Self locking dual frequency clock system

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2939139A (en) * 1959-07-14 1960-05-31 Handler Bernard Transmit-receive systems with means for adjusting receiver output during transmission time
US3140489A (en) * 1961-10-12 1964-07-07 Gen Electric Frequency modulated pulse radar system
US3246322A (en) * 1964-10-23 1966-04-12 Avco Corp Distance measuring equipment
US3739379A (en) * 1971-02-03 1973-06-12 Hoffman Electronics Corp Coherent pulse doppler altimeter
NL162211C (nl) * 1973-07-05 1980-04-15 Hollandse Signaalapparaten Bv Impulsradarapparaat.
FR2344031A1 (fr) * 1976-03-12 1977-10-07 Trt Telecom Radio Electr Appareil a modulation de frequence destine a des mesures de distance de haute precision
FR2343258A1 (fr) * 1976-07-01 1977-09-30 Trt Telecom Radio Electr Systeme radioelectrique de localisation d'un objet determine
DE2907315A1 (de) * 1979-02-24 1980-08-28 Philips Patentverwaltung Schaltungsanordnung zur auswertung von dopplerradarsignalen fuer ein dopplerradar im ghz-bereich
US4328470A (en) * 1980-05-12 1982-05-04 The United States Of America As Represented By The Secretary Of The Navy Pulse modulated IMPATT diode modulator
US4599618A (en) * 1982-07-26 1986-07-08 Rockwell International Corporation Nearest return tracking in an FMCW system
US4725841A (en) * 1983-06-30 1988-02-16 X-Cyte, Inc. System for interrogating a passive transponder carrying phase-encoded information
JPH0616081B2 (ja) * 1988-10-06 1994-03-02 日本鋼管株式会社 距離測定装置
JP2981312B2 (ja) * 1991-08-08 1999-11-22 富士通株式会社 Fm−cwレーダ装置
DE4308373C2 (de) * 1993-03-16 1995-04-13 Siemens Ag Verfahren zur Erkennung und Separation von Nutz- und Störechos im Empfangssignal von Abstandssensoren, welche nach dem Impuls-Echo-Prinzip arbeiten
US5576627A (en) * 1994-09-06 1996-11-19 The Regents Of The University Of California Narrow field electromagnetic sensor system and method
DE19538309C2 (de) * 1995-10-14 1998-10-15 Volkswagen Ag Radarverfahren zur Messung von Abständen und Relativgeschwindigkeiten zwischen einem Fahrzeug und einem oder mehreren Hindernissen
US6107910A (en) * 1996-11-29 2000-08-22 X-Cyte, Inc. Dual mode transmitter/receiver and decoder for RF transponder tags
DE19703237C1 (de) * 1997-01-29 1998-10-22 Siemens Ag Radar-Abstandsmesser
US6633226B1 (en) * 1997-08-18 2003-10-14 X-Cyte, Inc. Frequency hopping spread spectrum passive acoustic wave identification device
FR2772527A1 (fr) * 1997-12-15 1999-06-18 Philips Electronics Nv Circuit melangeur a diodes
US6091356A (en) * 1998-10-05 2000-07-18 Sensor Concepts Incorporated Chirp source with rolling frequency lock for generating linear frequency chirps
DE19925216C1 (de) * 1999-06-01 2001-01-04 Siemens Ag Verfahren zur störsignalfreien Auswertung von Radarsignalen
JP3720662B2 (ja) * 2000-01-19 2005-11-30 三菱電機株式会社 車載用レーダ装置
JP2001242241A (ja) * 2000-02-28 2001-09-07 Aisin Seiki Co Ltd レーダ装置及び車載用レーダ装置
US6725029B1 (en) * 2000-03-10 2004-04-20 Northrop Grumman Corporation Compact, space efficient, sub-harmonic image reject mixer
JP3600499B2 (ja) * 2000-03-17 2004-12-15 三菱電機株式会社 Fmパルスドップラーレーダー装置
JP4228527B2 (ja) * 2000-07-31 2009-02-25 セイコーエプソン株式会社 発振器
WO2002031988A2 (en) * 2000-10-10 2002-04-18 Xtremespectrum, Inc. Ultra wide bandwidth noise cancellation mechanism and method
JP4678945B2 (ja) * 2000-12-28 2011-04-27 富士通テン株式会社 スキャン式レーダの静止物検知方法
JP3995890B2 (ja) * 2001-03-05 2007-10-24 株式会社村田製作所 レーダ
DE10155251A1 (de) * 2001-11-09 2003-06-18 Siemens Ag Transpondersystem und Verfahren zur Entfernungsmessung
DE10210037A1 (de) * 2002-03-07 2003-10-02 Siemens Ag Aktiver Backscatter-Transponder, Kommunikationssystem mit einem solchen und Verfahren zum Übertragen von Daten mit einem solchen aktiven Backscatter-Transponder
US6633254B1 (en) * 2002-08-15 2003-10-14 Bae Systems Information And Electronics Systems Integration Inc. Self-modulating remote moving target detector
US6992614B1 (en) * 2004-04-22 2006-01-31 Honeywell International Inc. Radar altimeter

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3117317A (en) * 1959-05-25 1964-01-07 Sperry Rand Corp Distance measuring circuit
US4132991A (en) * 1975-10-07 1979-01-02 Robert Bosch Gmbh Method and apparatus utilizing time-expanded pulse sequences for distance measurement in a radar
US4521778A (en) * 1981-02-27 1985-06-04 Dornier System Gmbh High-resolution, coherent pulse radar
US5630216A (en) * 1994-09-06 1997-05-13 The Regents Of The University Of California Micropower RF transponder with superregenerative receiver and RF receiver with sampling mixer
US6191724B1 (en) * 1999-01-28 2001-02-20 Mcewan Thomas E. Short pulse microwave transceiver
US6373428B1 (en) * 1999-04-01 2002-04-16 Mcewan Technologies, Llc Self locking dual frequency clock system
DE10032822A1 (de) * 2000-07-06 2002-01-24 Siemens Ag Vorrichtung zur Erzeugung eines Oszillatorsignals

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010063800A1 (de) * 2010-12-21 2012-06-21 Endress + Hauser Gmbh + Co. Kg Diplexer für homodynes FMCW-Radargerät
US9093735B2 (en) 2010-12-21 2015-07-28 Endress + Hauser Gmbh + Co. Kg Diplexer for homodyne FMCW-radar device

Also Published As

Publication number Publication date
JP2006515424A (ja) 2006-05-25
EP1608998A1 (de) 2005-12-28
WO2004088354A1 (de) 2004-10-14
US20060220947A1 (en) 2006-10-05

Similar Documents

Publication Publication Date Title
EP1570291B1 (de) Verfahren und anordnung f r multistatische nachdistanzradarm essungen
DE602004011514T2 (de) Verfahren und Vorrichtung zur Entfernungsmessung mit einem Pulsradar
DE19803660C2 (de) Kraftfahrzeugradar
DE19829762A1 (de) Verfahren zum Betrieb eines Radarsystems
EP2488834A1 (de) Verfahren und vorrichtung zur verbesserten ultraschall-laufzeitdifferenzmessung
DE19926787A1 (de) Entfernungsmeßeinrichtung und Verfahren zum Kalibrieren einer Entfernungsmeßeinrichtung
EP2440949B1 (de) Verfahren und vorrichtung zur messung einer entfernungsänderung
EP1608999B1 (de) Radar mit einem durch einen auswertungsoszillator quasiphasenkohärent anregbaren sendeoszillator
WO2015176889A1 (de) Verfahren zur überwachung der funktionstüchtigkeit einer radarvorrichtung
DE10314557A1 (de) Kompakter Mikrowellen-Anstandsensor mit geringer Leistungsaufnahme durch Leistungsmessung an einem stimulierten Empfangsoszillator
DE112015006258B4 (de) Näherungssensor und Verfahren zur Messung des Abstands eines Targets
EP1245964B1 (de) Verfahren zur Generierung und Auswertung von Radarpulsen sowie Radarsensor
DE4420432C2 (de) Anordnung zur ortsselektiven Geschwindigkeitsmessung nach dem Doppler-Prinzip
EP2031417A1 (de) Mikrowellen-Näherungssensor und Verfahren zur Bestimmung des Abstands zwischen einem Zielobjekt und einem Messkopf eines Mikrowellen-Näherungssensors
DE1805993A1 (de) Vorrichtung zur Entfernungsmessung
EP1815266B1 (de) Vorrichtung zur entfernungsmessung mittels elektromagnetischer wellen
EP1014580B1 (de) Verfahren zum Messen der zeitlichen Verzögerung zwischen zwei periodischen Pulssignalen mit der gleichen Frequenz
DE102005020246B4 (de) Verfahren zur Bestimmung und Einstellung der Zwischenfrequenz bei Frequenz-Puls-Radarsystemen und Frequenz-Puls-Radarsystem
DE1279130B (de) Funkmessgeraet, insbesondere tragbares Patrouillen-Radargeraet
DE10119289A1 (de) Verfahren zum Betreiben eines Radarsystems
EP2416172A2 (de) Distanzmessung für ein RFID-Tag
EP1102089B1 (de) Verfahren und Vorrichtung zum Bestimmen des Abstands zu einem Objekt mittels eines gepulsten elektromagnetischen Signals
EP1434059A2 (de) Sende-/Empfangs-Umschalter für ein Pulsradar zur Verhinderung einer Frequenzdrift des Lokaloszillators

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee

Effective date: 20121002