DE10240329B4 - Verfahren zur Ermittlung der einer vollgeladenen Speicherbatterie entnehmbaren Ladungsmenge einer Speicherbatterie und Überwachungseinrichtung für eine Speicherbatterie - Google Patents

Verfahren zur Ermittlung der einer vollgeladenen Speicherbatterie entnehmbaren Ladungsmenge einer Speicherbatterie und Überwachungseinrichtung für eine Speicherbatterie Download PDF

Info

Publication number
DE10240329B4
DE10240329B4 DE10240329A DE10240329A DE10240329B4 DE 10240329 B4 DE10240329 B4 DE 10240329B4 DE 10240329 A DE10240329 A DE 10240329A DE 10240329 A DE10240329 A DE 10240329A DE 10240329 B4 DE10240329 B4 DE 10240329B4
Authority
DE
Germany
Prior art keywords
battery
smoothing
interval
measure
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
DE10240329A
Other languages
English (en)
Other versions
DE10240329A1 (de
Inventor
Ingo Dipl.-Ing. Koch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Clarios Germany GmbH and Co KGaA
Original Assignee
VB Autobatterie GmbH and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by VB Autobatterie GmbH and Co KGaA filed Critical VB Autobatterie GmbH and Co KGaA
Priority to DE10240329A priority Critical patent/DE10240329B4/de
Priority to DE50312991T priority patent/DE50312991D1/de
Priority to AT03013525T priority patent/ATE478350T1/de
Priority to EP03013525A priority patent/EP1394561B1/de
Priority to ES03013525T priority patent/ES2347225T3/es
Priority to US10/649,960 priority patent/US6967466B2/en
Publication of DE10240329A1 publication Critical patent/DE10240329A1/de
Application granted granted Critical
Publication of DE10240329B4 publication Critical patent/DE10240329B4/de
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements

Abstract

Verfahren zur Ermittlung der einer vollgeladenen Speicherbatterie entnehmbaren Ladungsmenge (QR), gekennzeichnet durch
– Bestimmen der Batteriespannung (U(t)) und des Batteriestroms (I(t)) über mindestens ein Zeitintervall (Δt),
– Glätten der gemessenen Batteriespannungs- (U(t)) und Batteriestromverläufe (I(t)) mit mindestens zwei unterschiedlichen Glättungsmaßen,
– Bilden der Spannungsdifferenzen (ΔU23(t)) der mit einem Glättungsmaß A geglätteten Batteriespannungen (U(t)) und der mit einem Glättungsmaß B geglätteten Batteriespannungen (U(t)), wobei das Glättungsmaß B eine größere Glättung als das Glättungsmaß A bewirkt,
Bilden der Stromdifferenzen (ΔI23(t)) der mit dem Glättungsmaß A geglätteten Batterieströme (I(t)) und der mit dem Glättungsmaß B geglätteten Batterieströme (I(t)), wobei das Glättungsmaß B eine größere Glättung als das Glättungsmaß A bewirkt,
– Berechnen von Kennwerten (K(t)) aus den Quotienten der Spannungsdifferenzen (ΔU23(t)) und der Stromdifferenzen (ΔI23(t)),
– Verrechnen jeweils der Kennwerte (K(t)) eines Zeitintervalls (Δ(t)) zu einem Intervall-Kennwert (Km) und
– Bestimmen der entnehmbaren Ladungsmenge (QR) aus...

Description

  • Die Erfindung betrifft ein Verfahren zur Ermittlung der einer vollgeladenen Speicherbatterie entnehmbaren Ladungsmenge eine Überwachungseinrichtung für eine Speicherbatterie mit Messmitteln zur Messung von Batteriespannungen und Batterieströmen und mit Auswertemitteln.
  • Es besteht ein Bedarf, die entnehmbare Ladungsmenge einer Speicherbatterie während des Betriebs abzuschätzen.
  • Hierzu ist in dem US-Patent 5,761,072 ein Verfahren zur Bestimmung der Kapazität einer Speicherbatterie beschrieben, bei dem durch einen Filter ein schneller Strom und durch Mittelwertbildung mittels Integration ein langsamer Strom ermittelt wird. Die Werte für den schnellen und langsamen Strom werden in eine sogenannte Peukertbeziehung eingesetzt, um eine Kapazität für einen schnellen Strom und für einen langsamen Strom zu ermitteln. Diese Kapazitäten werden gewichtet und hieraus eine Gesamtkapazität berechnet.
  • In der DE 694 23 918 T2 ist eine Vorrichtung zur Anzeige des Entleerungsgrades einer Batterie beschrieben, bei der periodisch Messwerte z. B. von Leerlaufspannung oder Innenimpedanz erfasst werden. Diese Messwerte werden über einen Tiefpass gefiltert und der Mittelwert davon bestimmt. Wenn der Mittelwert einen Schwellwert überschreitet wird eine Entleerungs-Warnanzeige erzeugt.
  • In der DE 691 31 276 T2 ist ein elektronischer Tester zum Bewerten der prozentualen Energiekapazität einer Batterie oder einer Batteriezelle offenbart. In diesem Verfahren wird der dynamische Leitwert bestimmt und zu einem Referenzleitwert ins Verhältnis gesetzt, der dem dynamischen Leitwert einer Batterie oder Batteriezelle mit 100 prozentiger Kapazität entspricht.
  • Mit diesen vorbekannten Verfahren oder Vorrichtungen kann zwar der Ladezustand einer neuwertigen Batterie ermittelt werden. Eine Aussage über die noch entnehmbare Ladungsmenge einer gebrauchten Batterie insbesondere bei kleinen Strömen kann jedoch nicht getroffen werden.
  • Das Problem bei Speicherbatterien ist nämlich, dass die bei vollgeladener Speicherbatterie entnehmbare Ladungsmenge durch verschiedene Ursachen abnehmen kann. Einer gebrauchten Speicherbatterie kann somit nicht mehr die gleiche Ladungsmenge entnommen werden wie im Neuzustand. Diese Ursachen können z. B. bei Bleiakkumulatoren der Verlust an aktive Masse durch Abschlammung, Sulfatation oder ähnliches sein.
  • Wird z. B. der Ladezustand einer Speicherbatterie durch Messung der Ruhespannung ermittelt, wie dies z. B. bei einem Bleiakkumulator möglich ist, so kann mit diesem Wert keine Aussage darüber getroffen werden, welche Ladungsmenge QR der vollgeladenen Speicherbatterie noch entnommen werden kann, wenn diese nicht mehr im Neuzustand ist. Der Grund hierfür ist, dass zwar in diesem Fall der Ladezustand ein Maß für die der Säure entnehmbare Ladungsmenge ist, die Ladungsmenge, die der aktiven Masse noch entnommen werden kann, korreliert jedoch nur im Neuzustand mit der Ladungsmenge in der Säure.
  • Bei einer Definition des Ladezustands (SOC) als Quotient der Differenz zwischen Nennladungsmenge und entnommener Ladungsmenge zur Nennladungsmenge
    Figure 00030001
    gibt der Ladezustand (SOC) ebenfalls keine Aussage über die entnehmbare Ladungsmenge QR.
  • Der Ladezustand nach diesen Definitionen gibt somit keine Aussage über die einer gebrauchten Speicherbatterie tatsächlich entnehmbare Ladungsmenge QR.
  • Aus den US-Patenten 5,721,688 und 5,572,136 sind Vorrichtungen und Verfahren bekannt, bei denen ein relativ kleiner zeitveränderlicher Strom einer Speicherbatterie aufgeprägt und die zeitabhängige Spannungsantwort der Speicherbatterie beobachtet und ausgewertet wird. Aus der Spannungsantwort kann die Leitfähigkeit der Speicherbatterie ermittelt werden. Im Betrieb ist es jedoch nicht immer möglich und erwünscht, einen separaten Messstrom aufzuprägen.
  • Aufgabe der Erfindung war es daher, ein verbessertes Verfahren zur Ermittlung der einer Speicherbatterie im vollgeladenen Zustand entnehmbaren Ladungsmenge QR sowie eine Überwachungseinrichtung für eine Speicherbatterie zu schaffen, mit dem die entnehmbare Ladungsmenge QR einer gebrauchten Speicherbatterie mit einfachen Mitteln möglichst genau ermittelbar ist.
  • Die Aufgabe wird mit dem gattungsgemäßen Verfahren erfindungsgemäß gelöst durch
    • – Bestimmen der Batteriespannung und des Batteriestroms über mindestens ein Zeitintervall,
    • – Glätten der gemessenen Batteriespannungs- U(t) und Batteriestromverläufe I(t) mit mindestens zwei unterschiedlichen Glättungsmaßen A, B,
    • – Bilden der Spannungsdifferenzen ΔU23(t) der mit einem Glättungsmaß A geglätteten Batteriespannungen und der mit einem Glättungsmaß B geglätteten Batteriespannungen, wobei das Glättungsmaß B eine größere Glättung als das Glättungsmaß A bewirkt,
    • – Bilden der Stromdifferenzen ΔI23(t) der mit dem Glättungsmaß A geglätteten Batterieströme und der mit dem Glättungsmaß B geglätteten Batterieströme, wobei das Glättungsmaß B eine größere Glättung als das Glättungsmaß A bewirkt,
    • – Berechnen von Kennwerten aus den Quotienten der Spannungsdifferenzen und der Stromdifferenzen,
    • – Verrechnen jeweils der Kennwerte eines Zeitintervalls zu einem Intervall-Kennwert und
    • – Bestimmen der entnehmbaren Ladungsmenge aus mindestens einen Intervall-Kennwert für mindestens ein Zeitintervall.
  • Es wurde erkannt, dass durch einfache rechnerische Auswertung der gemessenen Batteriespannungen und Batterieströme einer Speicherbatterie im Betrieb die entnehmbare Ladungsmenge ermittelt werden kann. Dies wird dadurch erreicht, dass durch geeignete Glättung der Batteriespannungen und Batterieströme eine Referenzspannung und ein Referenzstrom durch die Wahl einer großen Zeitkonstanten als Glättungsmaß erzeugt wird, von dem die Abweichung des mit einer kleineren Zeitkonstanten geglätteten Batteriestroms und Batteriespannung bewertet wird. Hierzu müssen lediglich die Batteriespannung und Batterieströme über mindestens ein Zeitintervall fortlaufend gemessen und rechnerisch ausgewertet werden.
  • Die Glättung erfolgt vorzugsweise durch Filterung mit Zeitkonstanten, durch Mittelwertbildung, insbesondere des gleitenden Mittelwerts, oder ähnlichem.
  • Aus den berechneten Kennwerten wird vorzugsweise ein Mittelwert als Intervall-Kennwert berechnet. Der Mittelwert kann auch ein gleitender Mittelwert oder Median etc. sein.
  • Vorteilhaft ist es, wenn die Kennwerte nur dann berechnet oder zur Bestimmung des Intervall-Kennwertes hinzugezogen werden, wenn bestimmte Bedingungen erfüllt sind. Die Ermittlung der entnehmbaren Ladungsmenge erfolgt somit nur auf der Basis zulässiger Kennwerte.
  • Eine Bedingung kann sein, dass der Betrag der Stromdifferenz ΔI23(t) kleiner als ein festgelegter Grenzwert Igranz2 ist.
  • Alternativ oder zusätzlich hierzu kann eine weitere Bedingung sein, dass der Betrag der Stromdifferenz ΔI12(t) des mit dem Glättungsmaß A geglätteten Batteriestroms und des mit einem weiteren Glättungsmaß C geglätteten Batteriestroms kleiner als ein festgelegter Grenzwert Igrenz1 ist, wobei das Glättungsmaß C eine größere Glättung als das Glättungsmaß A bewirkt.
  • Als weitere Bedingung kann vorgesehen sein, dass die mit dem Glättungsmaß A geglätteten Batterieströme größer als ein Grenzwert Igrenz3 und kleiner als ein Grenzwert Igrenz4 sind.
  • Es kann weiterhin vorgeschrieben sein, dass der Betrag der Stromdifferenz ΔI23(t) größer als ein festgelegter Grenzwert Igrenz5 und/oder der Betrag der Stromdifferenz ΔI12(t) des mit einer Zeitkonstanten τ2 als Glättungsmaß A gefilterten Batteriestroms und des mit einer Zeitkonstanten τ1 als Glättungsmaß C gefilterten Batteriestroms größer als ein festgelegter Grenzwert Igrenz6 ist.
  • Vorzugsweise liegen die Grenzwerte Igrenz1 und Igrenz2 in einem Bereich des 30-stündigen bis 80-stündigen Stroms und entspricht vorzugsweise etwa dem 50-stündigen Strom. Der Grenzwert Igrenz3 entspricht vorzugsweise etwa dem 10-stündigen Strom und der Grenzwert Igrenz4 etwa dem 30-stündigen Strom, wobei eine Toleranz von etwa 50% noch zu vergleichbaren Ergebnissen führt.
  • Für Bleiakkumulatoren mit ca. 70 Ah hat sich ein Grenzwert Igrenz1 im Bereich von etwa 1 A, ein Grenzwert Igrenz2 im Bereich von etwa 1 A, ein Grenzwert Igrenz3 von etwa –5 A und ein Grenzwert Igrenz4 im Bereich von etwa –2 A als vorteilhaft herausgestellt. Die Grenzwerte sind nur als ungefähre Richtgrößen zu verstehen, da das Verfahren von der Batterie-Bauart und -Größe abhängt.
  • Besonders vorteilhaft ist es, wenn die zulässigen Kennwerte, die die oben genannten Bedingungen erfüllen, in einem Zeitintervall integriert werden. Die Zeiten, in denen zulässige Kennwerte vorliegen, werden ebenfalls integriert, um eine Zeitdauer des Zeitintervalls zu berechnen. Der Intervall-Kennwert wird dann als Quotient aus dem durch Integration der zulässigen Kennwerte berechneten integrierten Kennwertes des Zeitintervalls und der Zeitdauer des Zeitintervalls berechnet.
  • Die Intervall-Kennwerte werden vorzugsweise in Abhängigkeit von dem Betriebszustand der Speicherbatterie gewichtet. Beispielsweise können für den Entladebetrieb der Speicherbatterie andere Wichtungsfaktoren als für den Ladebetrieb vorgesehen sein.
  • Es hat sich als vorteilhaft herausgestellt, wenn die entnehmbare Ladungsmenge aus dem mindestens einen Intervall-Kennwert in Abhängigkeit von dem Ladezustand der Speicherbatterie und der Batterietemperatur beispielsweise mit Hilfe empirisch oder rechnerisch ermittelter Kennfelder oder mit geeigneten Formeln bestimmt wird.
  • Für die praxisnahe Anwendung ist es vorteilhaft, ein Kennfeld für Neuzustand-Intervall-Kennwerte einer Speicherbatterie im Neuzustand in Abhängigkeit von Ladezuständen und Batterietemperaturen anzulernen.
  • Zur Ermittlung der entnehmbaren Ladungsmenge einer Speicherbatterie im Betrieb wird dann eine Maßzahl J aus einem Intervall-Kennwert bei einem ermittelten Ladezustand und einer gemessenen Batterietemperatur und aus dem angelernten Neuzustand-Intervall-Kennwert für den ermittelten Ladezustand und der gemessenen Batterietemperatur berechnet. Die entnehmbare Ladungsmenge wird dann in Abhängigkeit von der Maßzahl J und dem Ladezustand und der Batterietemperatur ermittelt. Die Intervall-Kennwerte werden somit in Bezug auf Neuzustand-Intervall-Kennwerte ausgewertet.
  • Die Maßzahl J kann beispielsweise die Differenz oder das Verhältnis von dem Intervall-Kennwert und dem Neuzustand-Intervall-Kennwert sein.
  • Die Erfindung wird nachfolgend anhand der beigefügten Zeichnungen näher erläutert. Es zeigen:
  • 1 – Diagramm von mit verschiedenen Zeitkonstanten gefilterten Batteriestromverläufen sowie mit festgelegten Grenzwerten;
  • 2 – Flussdiagramm des erfindungsgemäßen Verfahrens zur Ermittlung der entnehmbaren Ladungsmenge;
  • 3 – Diagramm der entnehmbaren Ladungsmenge über den Intervall-Kennwert bei zwei unterschiedlichen Temperaturen.
  • Mit dem erfindungsgemäßen Verfahren ist es nunmehr möglich durch Auswertung der im Betrieb der Speicherbatterie messbaren Strom- und Spannungsprofile die entnehmbare Ladungsmenge QR zu ermitteln.
  • Hierzu wird die Batteriespannung U(t) und der Batteriestrom I(t) mit einer geeigneten zeitlichen Auflösung von vorzugsweise weniger als 1 s gemessen und die Batteriespannungswerte U(t) und die Batteriestromwerte I(t) beispielsweise mit mindestens zwei Tiefpassfiltern mit unterschiedlichen Zeitkonstanten τ geglättet. Eine Zeitkonstante τ2 (Glättungsmaß A) sollte hierbei kleiner als eine Zeitkonstante τ3 (Glättungsmaß B) sein. Die Glättung kann auch durch Mittelwertbildung, beispielsweise gleitende Mittelwertbildung über verschiedene Zeitfenster, oder ähnlichen erfolgen. Die 1 lässt entsprechende, mit unterschiedlichen Zeitkostanten τ geglättete Batteriestromverläufe erkennen.
  • Anschließend werden für jeweils ein Zeitintervall Spannungsdifferenzen ΔU23(t) aus der Differenz der mit der Zeitkonstanten τ2 gefilterten Batteriespannungen U(t) und der mit der Zeitkonstanten τ3 gefilterten Batteriespannungen U(t) berechnet. Ebenso werden die Stromdifferenzen ΔI23(t) aus der Dif ferenz der mit der Zeitkonstanten τ2 gefilterten Batterieströme I(t) und der mit der Zeitkonstanten τ3 gefilterten Batterieströme U(t) berechnet.
  • Aus den Quotienten der Spannungsdifferenzen ΔU23(t) und der Stromdifferenzen ΔI23(t) wird dann ein Kennwert K(t) als Funktion der Zeit jeweils begrenzt auf die Zeitintervalle Δt berechnet. Aus den Kennwerten K(t) jeweils eines Zeitintervalls Δt wird dann ein Intervall-Kennwert Km vorzugsweise durch Mittelwertbildung berechnet und die entnehmbare Ladungsmenge QR als Funktion des Intervall-Kennwertes Km bestimmt. Dies wird durch die folgenden Gleichungen deutlicher:
    Figure 00090001
  • Die Bestimmung der entnehmbaren Ladungsmenge QR beruht hierbei nur auf zulässigen Kennwerten K(t), die mindestens eine der nachfolgenden Bedingungen erfüllen:
    • a) Der Betrag der Stromdifferenz ΔI12(t) des mit der Zeitkonstanten τ2 gefilterten Batteriestroms I(t) und des mit einer Zeitkonstanten τ1 (Glättungsmaß C) gefilterten Batteriestroms I(t) ist kleiner als ein festgelegter erster Grenzwert Igrenz1.
    • b) Der Betrag der Stromdifferenz ΔI23(t) ist kleiner als ein festgelegter Grenzwert Igrenz2.
    • c) Die mit der Zeitkonstanten τ2 gefilterten Batterieströme I(t) sind größer als ein festgelegter Grenzwert Igrenz3 und kleiner als ein festgelegter Grenzwert Igrenz4.
  • Optional kann auch noch festgelegt sein, dass der Betrag der Stromdifferenz ΔI23(t) größer als ein festgelegter Grenzwert Igrenz5 und der Betrag der Stromdifferenz ΔI12(t) größer als ein festgelegter Grenzwert Igrenz6 ist.
  • Die Bedingungen können durch folgende Gleichung ausgedrückt werden: Igrenz5 < |Iτ3(t) – Iτ2(t)| < Igrenz2 Igrenz6 < |Iτ2(t) – Iτ1(t)| < Igrenz1 Igrenz3 < Iτ2(t) < Igrenz4.
  • Für Starter-Bleiakkumulatoren der Größe von 70 Ah haben sich Größenordnungen für den Grenzwert von Igrenz1 = 1 A, für den Grenzwert von Igrenz2 = 1 A, für den Grenzwert von Igrenz3 = –5 A und für den Grenzwert von Igrenz4 = –2 A als vorteilhaft herausgestellt. Die Strom-Grenzwerte selbst sind neben der Batteriegröße auch bauartabhängig.
  • Die 1 lässt ein Diagramm von mit einer Zeitkonstanten τ1, einer Zeitkonstante τ2 und einer Zeitkonstanten τ3 geglätteten Batteriestromwerten I(t) über die Zeit mit festgelegten Grenzwerten Igrenz1, Igrenz2, Igrenz3 und Igrenz4 erkennen. Es wird deutlich, dass durch die Festlegung der Grenzwerte die Kennzahl K im wesentlichen nur im mittleren und hinteren Bereich der ersten abklingenden Flanke des Strompulses vorgenommen wird, da nur dort die Grenzwertbedingungen erfüllt sind.
  • Die 2 lässt ein mögliches Flussdiagramm für das erfindungsgemäße Verfahren zur Ermittlung der entnehmbaren Ladungsmenge QR erkennen. Hierbei wird die Auswertung beschränkt auf die Zeiten, in denen die Batterie entladen wird.
  • Es wird deutlich, dass die Batterieströme I(t) mit drei Tiefpassfiltern unterschiedlicher Zeitkonstanten τ1, τ2, τ3 gefiltert werden. Es wird überprüft, ob die gefilterten Stromwert Iτ1(t), Iτ2(t), Iτ3(t) die oben beschriebenen Bedingungen erfüllt, d. h. dass |Iτ1 – Iτ2| < Igrenz1, |Iτ2 – Iτ3| < Igrenz2, Igrenz3 < Iτ2 < Igrenz4, Iτ2 < 0ist. Wenn dies der Fall ist, wird aus den gedämpften Stromwerten I(t) und den mit einem Tiefpassfilter mit einer Zeitkonstante τ2 und einem Tiefpassfilter mit einer Zeitkonstante τ3 gedämpften Spannungswerten Uτ2(t) und Uτ3(t) ein Kennwert K(t) nach der Formel
    Figure 00110001
    berechnet. Aus den Kennwerten K(t) eines Zeitintervalls Δt wird beispielsweise durch Integralbildung ein integrierter Kennwert Ki Ki = ∫K·dtund durch Integration der Zeiten, in denen die Bedingungen erfüllt sind, die Zeit dauer T des Zeitintervalls T = ∫dt bestimmt.
  • Dann wird der Intervall-Kennwert
    Figure 00120001
    als Mittelwert der zulässigen Kennwerte K(t) berechnet.
  • Am Ende eines Zeitintervalls Δt wird der Intervall-Kennwert Km vorzugsweise in Abhängigkeit von dem Ladezustand SOC und der Batterietemperatur TBat bewertet und die entnehmbare Ladungsmenge QR bestimmt.
  • Die Bestimmung der entnehmbaren Ladungsmenge QR kann mit Hilfe von vorgegebenen empirisch oder rechnerisch ermittelten Kennfeldern in Abhängigkeit des Ladezustands SOC und der Batterietemperatur TBat vorgenommen werden.
  • Bei bekannter Abhängigkeit von dem Ladezustand und der Batterietemperatur TBat ist es auch möglich, den Kennwert K(t) entsprechend zu korrigieren. Auch ist es sinnvoll, den Kennwert K(t) in Abhängigkeit von der Betriebssituation der Speicherbatterie zu gewichten. Beispielsweise können Zeitintervalle Δt, in denen die Speicherbatterie geladen wird, anders gewichtet werden als Zeitintervalle Δt, in denen die Batterie entladen wird.
  • Um aus dem Intervall-Kennwert Km auf die entnehmbare Ladungsmenge QR schließen zu können, wird vorzugsweise ein Neuwert-Intervall-Kennwert Kmneu in Abhängigkeit von Ladezuständen SOC und Batterietemperaturen TBat ermittelt und als Kennwert festgehalten. Die Ermittlung kann durch Anlernen eines Kennfeldes erfolgen.
  • Im Betrieb wird dann eine Maßzahl J aus der Differenz oder dem Verhältnis des Intervall-Kennwertes Km und des Neuwert-Intervall-Kennwertes Kmneu für die jeweils vorliegenden Ladezustände SOC und Batterietemperaturen TBat bestimmt. Die Neuwert-Intervall-Kennwerte Kmneu werden somit mit den ermittelten Intervall-Kennwerten Km bei gleichem Ladezustand SOC und Batterietemperatur TBat verglichen. Die entnehmbare Ladungsmenge QR wird dann als Funktion des Ladezustands SOC, der Batterietemperatur TBat und der Maßzahl J beispielsweise mit Hilfe von Kennfeldern bestimmt.
  • Die 3 lässt ein Diagramm einer Starterbatterie mit 70 Ah der über den Kennwert Km aufgetragenen entnehmbaren Ladungsmenge QR in Abhängigkeit von der Batterietemperatur TBat von 0° und 25° erkennen. Der Ladezustand SOC beträgt 70%.
  • Es wird deutlich, dass ein eindeutiger Zusammenhang zwischen der entnehmbaren Ladungsmenge QR und dem Kennwert Km besteht, sofern die Batterietemperatur TBat und der Ladezustand SOC bekannt ist. Entsprechende Kennfelder können für weitere Ladezustände SOC und Batterietemperaturen TBat ermittelt und abgespeichert werden. Aufgrund dieser Daten kann dann aus den Intervall-Kennwerten Km, die nach dem oben beschriebenen erfindungsgemäßen Verfahren berechnet wurden, die entnehmbare Ladungsmenge QR bestimmt werden.

Claims (15)

  1. Verfahren zur Ermittlung der einer vollgeladenen Speicherbatterie entnehmbaren Ladungsmenge (QR), gekennzeichnet durch – Bestimmen der Batteriespannung (U(t)) und des Batteriestroms (I(t)) über mindestens ein Zeitintervall (Δt), – Glätten der gemessenen Batteriespannungs- (U(t)) und Batteriestromverläufe (I(t)) mit mindestens zwei unterschiedlichen Glättungsmaßen, – Bilden der Spannungsdifferenzen (ΔU23(t)) der mit einem Glättungsmaß A geglätteten Batteriespannungen (U(t)) und der mit einem Glättungsmaß B geglätteten Batteriespannungen (U(t)), wobei das Glättungsmaß B eine größere Glättung als das Glättungsmaß A bewirkt, Bilden der Stromdifferenzen (ΔI23(t)) der mit dem Glättungsmaß A geglätteten Batterieströme (I(t)) und der mit dem Glättungsmaß B geglätteten Batterieströme (I(t)), wobei das Glättungsmaß B eine größere Glättung als das Glättungsmaß A bewirkt, – Berechnen von Kennwerten (K(t)) aus den Quotienten der Spannungsdifferenzen (ΔU23(t)) und der Stromdifferenzen (ΔI23(t)), – Verrechnen jeweils der Kennwerte (K(t)) eines Zeitintervalls (Δ(t)) zu einem Intervall-Kennwert (Km) und – Bestimmen der entnehmbaren Ladungsmenge (QR) aus mindestens einem Intervall-Kennwert (Km) für mindestens ein Zeitintervall (Δt).
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Glätten durch Filtern mit unterschiedlichen Zeitkonstanten τ, erfolgt, wobei eine zweite Zeitkonstante τ2 als Glättungsmaß A größer als eine dritte Zeitkonstante τ3 als Glättungsmaß B ist.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Glätten eine Mittelwertbildung enthält.
  4. Verfahren nach einem der Ansprüche 1 bis 3, gekennzeichnet durch Bilden des Mittelwertes der Kennwerte (K(t)) eines Zeitintervalls (Δt) zur Berechnung des Intervall-Kennwertes (Km) für das Zeitintervall (Δt).
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Kennwerte (K(t)) nur dann berechnet oder zur Bestimmung des Intervall-Kennwertes (Km) hinzugezogen werden, wenn der Betrag der Stromdifferenz (ΔI23(t)) kleiner als ein festgelegter Grenzwert Igrenz2 ist.
  6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Kennwerte (K(t)) nur dann berechnet oder zur Bestimmung des Intervall-Kennwertes (Km) hinzugezogen werden, wenn der Betrag der Stromdifferenz (ΔI12(t)) des mit dem Glättungsmaß A geglätteten Batteriestroms (I(t)) und des mit einem Glättungsmaß C geglätteten Batteriestroms (I(t)) kleiner als ein festgelegter erster Grenzwert Igrenz1 ist, wobei das Glättungsmaß C eine größere Glättung als das Glättungsmaß A bewirkt.
  7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Kennwerte (K(t)) nur dann berechnet oder zur Bestimmung des Intervall-Kennwertes (Km) hinzugezogen werden, wenn die mit dem Glättungsmaß A geglätteten Batterieströme (I(t)) größer als ein Grenzwert Igrenz3 und kleiner als ein Grenzwert Igrenz4 sind.
  8. Verfahren nach einem der vorhergehenden Ansprüche, gekennzeichnet durch Integration von zulässigen Kennwerten (K(t)) in einem Zeitintervall (Δt) zur Berechnung eines integrierten Kennwertes (Ki) für das Zeitintervall (Δt) und Integration der Zeiten, in denen zulässige Kennwerte (K(t)) vorliegen, zur Bestimmung einer Zeitdauer (t) des Zeitintervalls (Δt) und Berechnung des Intervall-Kennwertes (Km) als Quotient aus dem integrierten Kennwert (Ki) des Zeitintervalls (Δt) und der Zeitdauer (t).
  9. Verfahren nach einem der vorhergehenden Ansprüche, gekennzeichnet durch Bestimmen der entnehmbaren Ladungsmenge (QR) aus mindestens einem Intervall-Kennwert (Km) in Abhängigkeit von dem Betriebszustand der Speicherbatterie.
  10. Verfahren nach Anspruch 9, gekennzeichnet durch Bestimmen der entnehmbaren Ladungsmenge (QR) aus mindestens einem Intervallkennwert (Km) in Abhängigkeit von dem Ladezustand (SOC) der Speicherbatterie und/oder der Batterietemperatur (TBat).
  11. Verfahren nach Anspruch 9 oder 10, dadurch gekennzeichnet, dass der Zusammenhang zwischen der entnehmbaren Ladungsmenge (QR) und den Intervall-Kennwerten (Km), dem Ladezustand (SOC) und der Batterietemperatur (TBat) mit empirisch oder rechnerisch ermittelten Kennfeldern beschrieben ist.
  12. Verfahren nach einem der Ansprüche 1 bis 10, gekennzeichnet durch – Anlernen eines Kennfeldes für Neuzustand-Intervall-Kennwerte (Kmneu) einer Speicherbatterie im Neuzustand in Abhängigkeit von Ladezuständen (SOC) und Batterietemperaturen (TBat), – Berechnen einer Maßzahl (J) aus einem Intervall-Kennwert (Km) bei einem ermittelten Ladezustand (SOC) und einer ermittelten Batterietemperatur (TBat) und aus dem Neuzustand-Intervall-Kennwert (Kmneu) für den Ladezustand (SOC) und die Batterietemperatur (TBat), – Ermitteln der entnehmbaren Ladungsmenge (QR) in Abhängigkeit von der Maßzahl (J) und dem Ladezustand (SOC) sowie der Batterietemperatur (TBat).
  13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass die Maßzahl (J) die Differenz von dem Intervall-Kennwert (Km) und dem Neuzustand-Intervall-Kennwert (Kmneu) ist.
  14. Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass die Maßzahl (J) das Verhältnis von dem Intervall-Kennwert (Km) und dem Neuzustand-Intervall-Kennwert (Kmneu) ist.
  15. Überwachungseinrichtung für eine Speicherbatterie mit Messmitteln zur Messung von Batteriespannungen (U(t)) und Batterieströmen (I(t)), und mit Auswertemitteln, dadurch gekennzeichnet, dass die Auswertemittel zur Durchführung des Verfahrens nach einem der vorhergehenden Ansprüche ausgebildet sind.
DE10240329A 2002-08-31 2002-08-31 Verfahren zur Ermittlung der einer vollgeladenen Speicherbatterie entnehmbaren Ladungsmenge einer Speicherbatterie und Überwachungseinrichtung für eine Speicherbatterie Expired - Fee Related DE10240329B4 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE10240329A DE10240329B4 (de) 2002-08-31 2002-08-31 Verfahren zur Ermittlung der einer vollgeladenen Speicherbatterie entnehmbaren Ladungsmenge einer Speicherbatterie und Überwachungseinrichtung für eine Speicherbatterie
DE50312991T DE50312991D1 (de) 2002-08-31 2003-06-13 Verfahren zur Ermittlung der entnehmbaren Ladungsmenge einer Speicherbatterie und Überwachungseinrichtung für eine Speicherbatterie
AT03013525T ATE478350T1 (de) 2002-08-31 2003-06-13 Verfahren zur ermittlung der entnehmbaren ladungsmenge einer speicherbatterie und überwachungseinrichtung für eine speicherbatterie
EP03013525A EP1394561B1 (de) 2002-08-31 2003-06-13 Verfahren zur Ermittlung der entnehmbaren Ladungsmenge einer Speicherbatterie und Überwachungseinrichtung für eine Speicherbatterie
ES03013525T ES2347225T3 (es) 2002-08-31 2003-06-13 Procedimiento para la determinacion de la cantidad de carga que se puede extraer de una bateria de almacenamiento y dispositivo de supervision para una bateria de almacenamiento.
US10/649,960 US6967466B2 (en) 2002-08-31 2003-08-26 Method for determining the amount of charge which can be drawn on a storage battery, and monitoring device for a storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE10240329A DE10240329B4 (de) 2002-08-31 2002-08-31 Verfahren zur Ermittlung der einer vollgeladenen Speicherbatterie entnehmbaren Ladungsmenge einer Speicherbatterie und Überwachungseinrichtung für eine Speicherbatterie

Publications (2)

Publication Number Publication Date
DE10240329A1 DE10240329A1 (de) 2004-03-11
DE10240329B4 true DE10240329B4 (de) 2009-09-24

Family

ID=31197558

Family Applications (2)

Application Number Title Priority Date Filing Date
DE10240329A Expired - Fee Related DE10240329B4 (de) 2002-08-31 2002-08-31 Verfahren zur Ermittlung der einer vollgeladenen Speicherbatterie entnehmbaren Ladungsmenge einer Speicherbatterie und Überwachungseinrichtung für eine Speicherbatterie
DE50312991T Expired - Lifetime DE50312991D1 (de) 2002-08-31 2003-06-13 Verfahren zur Ermittlung der entnehmbaren Ladungsmenge einer Speicherbatterie und Überwachungseinrichtung für eine Speicherbatterie

Family Applications After (1)

Application Number Title Priority Date Filing Date
DE50312991T Expired - Lifetime DE50312991D1 (de) 2002-08-31 2003-06-13 Verfahren zur Ermittlung der entnehmbaren Ladungsmenge einer Speicherbatterie und Überwachungseinrichtung für eine Speicherbatterie

Country Status (5)

Country Link
US (1) US6967466B2 (de)
EP (1) EP1394561B1 (de)
AT (1) ATE478350T1 (de)
DE (2) DE10240329B4 (de)
ES (1) ES2347225T3 (de)

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10325144A1 (de) * 2003-05-30 2004-12-16 Robert Bosch Gmbh Verfahren und Vorrichtung zur Ermittlung der Leistungsfähigkeit eines Ladungsspeichers
US7449891B2 (en) * 2003-10-14 2008-11-11 General Motors Corporation Managing service life of a battery
US7321220B2 (en) * 2003-11-20 2008-01-22 Lg Chem, Ltd. Method for calculating power capability of battery packs using advanced cell model predictive techniques
US7486079B2 (en) * 2004-06-11 2009-02-03 Nissan Motor Co., Ltd. Available input-output power estimating device for secondary battery
US8103485B2 (en) * 2004-11-11 2012-01-24 Lg Chem, Ltd. State and parameter estimation for an electrochemical cell
US7723957B2 (en) * 2005-11-30 2010-05-25 Lg Chem, Ltd. System, method, and article of manufacture for determining an estimated battery parameter vector
US20070135082A1 (en) * 2005-12-08 2007-06-14 Avaya Technology Llc Dynamic content stream delivery to a telecommunications terminal based on the state of the terminal's battery
US7400115B2 (en) * 2006-02-09 2008-07-15 Lg Chem, Ltd. System, method, and article of manufacture for determining an estimated combined battery state-parameter vector
US7723958B2 (en) * 2006-03-31 2010-05-25 Valence Technology, Inc. Battery charge indication methods, battery charge monitoring devices, rechargeable batteries, and articles of manufacture
US7761198B2 (en) * 2007-06-25 2010-07-20 General Electric Company Methods and systems for power system management
DE102007030365B4 (de) 2007-06-29 2013-06-27 Vb Autobatterie Gmbh & Co. Kgaa Verfahren zur Klassifizierung einer Speicherbatterie und Klassifizierungseinheit
US8628872B2 (en) * 2008-01-18 2014-01-14 Lg Chem, Ltd. Battery cell assembly and method for assembling the battery cell assembly
US7994755B2 (en) * 2008-01-30 2011-08-09 Lg Chem, Ltd. System, method, and article of manufacture for determining an estimated battery cell module state
US9759495B2 (en) * 2008-06-30 2017-09-12 Lg Chem, Ltd. Battery cell assembly having heat exchanger with serpentine flow path
US8486552B2 (en) * 2008-06-30 2013-07-16 Lg Chem, Ltd. Battery module having cooling manifold with ported screws and method for cooling the battery module
US8067111B2 (en) * 2008-06-30 2011-11-29 Lg Chem, Ltd. Battery module having battery cell assembly with heat exchanger
US9140501B2 (en) * 2008-06-30 2015-09-22 Lg Chem, Ltd. Battery module having a rubber cooling manifold
US7883793B2 (en) * 2008-06-30 2011-02-08 Lg Chem, Ltd. Battery module having battery cell assemblies with alignment-coupling features
US8426050B2 (en) * 2008-06-30 2013-04-23 Lg Chem, Ltd. Battery module having cooling manifold and method for cooling battery module
US8202645B2 (en) 2008-10-06 2012-06-19 Lg Chem, Ltd. Battery cell assembly and method for assembling the battery cell assembly
US9337456B2 (en) * 2009-04-20 2016-05-10 Lg Chem, Ltd. Frame member, frame assembly and battery cell assembly made therefrom and methods of making the same
US8852778B2 (en) * 2009-04-30 2014-10-07 Lg Chem, Ltd. Battery systems, battery modules, and method for cooling a battery module
US8663829B2 (en) 2009-04-30 2014-03-04 Lg Chem, Ltd. Battery systems, battery modules, and method for cooling a battery module
US8403030B2 (en) * 2009-04-30 2013-03-26 Lg Chem, Ltd. Cooling manifold
US8663828B2 (en) * 2009-04-30 2014-03-04 Lg Chem, Ltd. Battery systems, battery module, and method for cooling the battery module
US8399118B2 (en) * 2009-07-29 2013-03-19 Lg Chem, Ltd. Battery module and method for cooling the battery module
US8703318B2 (en) * 2009-07-29 2014-04-22 Lg Chem, Ltd. Battery module and method for cooling the battery module
US8399119B2 (en) * 2009-08-28 2013-03-19 Lg Chem, Ltd. Battery module and method for cooling the battery module
TWI394972B (zh) * 2009-11-25 2013-05-01 Htc Corp 電池電量的估測方法與系統
US8341449B2 (en) 2010-04-16 2012-12-25 Lg Chem, Ltd. Battery management system and method for transferring data within the battery management system
US9147916B2 (en) 2010-04-17 2015-09-29 Lg Chem, Ltd. Battery cell assemblies
US8469404B2 (en) 2010-08-23 2013-06-25 Lg Chem, Ltd. Connecting assembly
US8353315B2 (en) 2010-08-23 2013-01-15 Lg Chem, Ltd. End cap
US8920956B2 (en) 2010-08-23 2014-12-30 Lg Chem, Ltd. Battery system and manifold assembly having a manifold member and a connecting fitting
US8758922B2 (en) 2010-08-23 2014-06-24 Lg Chem, Ltd. Battery system and manifold assembly with two manifold members removably coupled together
US9005799B2 (en) 2010-08-25 2015-04-14 Lg Chem, Ltd. Battery module and methods for bonding cell terminals of battery cells together
US8662153B2 (en) 2010-10-04 2014-03-04 Lg Chem, Ltd. Battery cell assembly, heat exchanger, and method for manufacturing the heat exchanger
US8288031B1 (en) 2011-03-28 2012-10-16 Lg Chem, Ltd. Battery disconnect unit and method of assembling the battery disconnect unit
US8449998B2 (en) 2011-04-25 2013-05-28 Lg Chem, Ltd. Battery system and method for increasing an operational life of a battery cell
US9178192B2 (en) 2011-05-13 2015-11-03 Lg Chem, Ltd. Battery module and method for manufacturing the battery module
US8974929B2 (en) 2011-06-30 2015-03-10 Lg Chem, Ltd. Heating system for a battery module and method of heating the battery module
US8859119B2 (en) 2011-06-30 2014-10-14 Lg Chem, Ltd. Heating system for a battery module and method of heating the battery module
US8974928B2 (en) 2011-06-30 2015-03-10 Lg Chem, Ltd. Heating system for a battery module and method of heating the battery module
US8993136B2 (en) 2011-06-30 2015-03-31 Lg Chem, Ltd. Heating system for a battery module and method of heating the battery module
US9496544B2 (en) 2011-07-28 2016-11-15 Lg Chem. Ltd. Battery modules having interconnect members with vibration dampening portions
US10664562B2 (en) * 2013-02-24 2020-05-26 Fairchild Semiconductor Corporation and University of Connecticut Battery state of charge tracking, equivalent circuit selection and benchmarking
US20150226807A1 (en) * 2014-02-12 2015-08-13 Seeo, Inc Determination of nominal cell resistance for real-time estimation of state-of-charge in lithium batteries
FR3027403B1 (fr) * 2014-10-17 2017-04-21 Renault Sas Procede pour diagnostiquer des defaillances dans un ensemble de batteries stationnaires
KR20200075100A (ko) * 2018-12-11 2020-06-26 현대자동차주식회사 주정차 시 차량 공조 제어 방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5721688A (en) * 1996-09-06 1998-02-24 Madill Technologies, Inc. Apparatus and method for electrical system measurements including battery condition, resistance of wires and connections, total electrical system quality and current flow
DE10002848A1 (de) * 1999-01-26 2001-01-25 Honda Motor Co Ltd Vorrichtung zum Erfassen der Restladung einer Batterie

Family Cites Families (108)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1437025A (en) 1972-08-30 1976-05-26 Deutsche Automobilgesellsch Method and device for determining the state of charge of galvanic energy sources
AT346429B (de) 1976-11-16 1978-11-10 Jungfer Akkumulatoren Elektrische anzeigevorrichtung fuer den ladezustand einer sekundaerbatterie
US4193025A (en) 1977-12-23 1980-03-11 Globe-Union, Inc. Automatic battery analyzer
US4207611A (en) 1978-12-18 1980-06-10 Ford Motor Company Apparatus and method for calibrated testing of a vehicle electrical system
FR2473730A1 (fr) * 1980-01-14 1981-07-17 Cristec Ind Procede de mesure de l'etat de charge d'un accumulateur et dispositif pour la mise en oeuvre de ce procede
US4322685A (en) 1980-02-29 1982-03-30 Globe-Union Inc. Automatic battery analyzer including apparatus for determining presence of single bad cell
US4665370A (en) 1980-09-15 1987-05-12 Holland John F Method and apparatus for monitoring and indicating the condition of a battery and the related circuitry
US4719427A (en) 1983-06-20 1988-01-12 Mitsubishi Denki Kabushiki Kaisha Vehicle battery diagnostic device
US4595880A (en) 1983-08-08 1986-06-17 Ford Motor Company Battery state of charge gauge
DE3414664A1 (de) 1984-04-18 1985-10-24 Varta Batterie Ag, 3000 Hannover Vorrichtung zur anzeige des volladezustandes eines elektrischen akkumulators
US4659977A (en) 1984-10-01 1987-04-21 Chrysler Motors Corporation Microcomputer controlled electronic alternator for vehicles
JPH0650340B2 (ja) 1986-04-14 1994-06-29 株式会社日立製作所 自動車用バツテリの寿命診断装置
US4816736A (en) 1987-03-12 1989-03-28 Globe-Union Inc. Polyphase alternator and dual voltage battery charging system for multiple voltage loads
DE3732339A1 (de) 1987-09-25 1989-04-13 Varta Batterie Ladeverfahren fuer wartungsfreie bleibatterien mit festgelegtem elektrolyten
JP2581571B2 (ja) 1987-10-26 1997-02-12 三信工業株式会社 バツテリ電圧警告装置
US5159272A (en) 1988-07-27 1992-10-27 Gnb Incorporated Monitoring device for electric storage battery and configuration therefor
US4937528A (en) 1988-10-14 1990-06-26 Allied-Signal Inc. Method for monitoring automotive battery status
US4968942A (en) * 1988-10-14 1990-11-06 Allied-Signal Inc. Method for monitoring aircraft battery status
US5281919A (en) 1988-10-14 1994-01-25 Alliedsignal Inc. Automotive battery status monitor
US4876513A (en) 1988-12-05 1989-10-24 Globe-Union Inc. Dynamic state-of-charge indicator for a battery and method thereof
US5002840A (en) 1989-06-12 1991-03-26 Globe-Union Inc. Switched emergency battery system
US5162164A (en) 1989-06-12 1992-11-10 Globe-Union Inc. Dual battery system
US5055656A (en) 1989-12-21 1991-10-08 Globe-Union, Inc. Battery heating system using instantaneous excess capacity of a vehicle electrical power generating subsystem
US5032825A (en) 1990-03-02 1991-07-16 Motorola, Inc. Battery capacity indicator
US5079716A (en) 1990-05-01 1992-01-07 Globe-Union, Inc. Method and apparatus for estimating a battery temperature
US5280231A (en) 1990-07-02 1994-01-18 Nippondenso Co., Ltd. Battery condition detecting apparatus and charge control apparatus for automobile
US5563496A (en) 1990-12-11 1996-10-08 Span, Inc. Battery monitoring and charging control unit
US5204610A (en) 1991-02-15 1993-04-20 Globe-Union, Inc. Long lived dual battery with automatic latching switch
US5130699A (en) 1991-04-18 1992-07-14 Globe-Union, Inc. Digital battery capacity warning device
US5223351A (en) 1991-11-14 1993-06-29 Globe-Union Inc. Dual battery system
US5321627A (en) * 1992-03-11 1994-06-14 Globe-Union, Inc. Battery monitor and method for providing operating parameters
FR2689986A1 (fr) 1992-04-08 1993-10-15 Aerospatiale Simulateur notamment de piles thermiques.
US5381096A (en) * 1992-04-09 1995-01-10 Hirzel; Edgar A. Method and apparatus for measuring the state-of-charge of a battery system
DE69325388T2 (de) * 1992-05-01 2000-01-13 Keith S Champlin Elektronischer batterietester mit automatischer kompensation für ungenügenden ladungszustand
US5352968A (en) 1992-05-28 1994-10-04 Apple Computer, Inc. Battery charge state determination
US5316868A (en) 1992-07-21 1994-05-31 Globe-Union, Inc. Dual battery switch circuit
US5364508A (en) 1992-11-12 1994-11-15 Oleh Weres Electrochemical method and device for generating hydroxyl free radicals and oxidizing chemical substances dissolved in water
AU680210B2 (en) 1993-01-29 1997-07-24 Canon Kabushiki Kaisha Electric power accumulating apparatus and electric power system
US5416402A (en) 1993-03-12 1995-05-16 Globe Union, Inc. State of charge indicator for deep-cycle application
US5404129A (en) 1993-07-27 1995-04-04 Globe-Union Inc. Anti-theft battery system for vehicles
US5488283A (en) 1993-09-28 1996-01-30 Globe-Union, Inc. Vehicle battery system providing battery back-up and opportunity charging
US5451881A (en) * 1993-12-10 1995-09-19 Curtis Instruments, Inc. Method and means for adjusting battery monitor based on rate of current drawn from the battery
US5680050A (en) 1994-03-07 1997-10-21 Nippondenso Co., Ltd. Battery condition detection method
US5552642A (en) 1994-03-09 1996-09-03 Globe-Union, Inc. Protection system with voltage switching
JPH08284719A (ja) 1995-04-11 1996-10-29 Hitachi Ltd 車両用発電機の制御システム
US5549984A (en) 1994-07-25 1996-08-27 Globe-Union Inc. Control and indicator circuit for a dual battery system
US5578915A (en) 1994-09-26 1996-11-26 General Motors Corporation Dynamic battery state-of-charge and capacity determination
US5631540A (en) * 1994-11-23 1997-05-20 Lucent Technologies Inc. Method and apparatus for predicting the remaining capacity and reserve time of a battery on discharge
JPH08240647A (ja) 1995-03-03 1996-09-17 Yazaki Corp 電池残存容量算出方法及び電池残存容量測定装置
IL113477A0 (en) 1995-04-25 1995-07-31 Yaffe Yacob A device for warning when a vehicle battery has almost ended its ability to start the motor
US6037749A (en) 1995-06-21 2000-03-14 Batteryguard Limited Battery monitor
US5656915A (en) 1995-08-28 1997-08-12 Eaves; Stephen S. Multicell battery pack bilateral power distribution unit with individual cell monitoring and control
US5761072A (en) * 1995-11-08 1998-06-02 Ford Global Technologies, Inc. Battery state of charge sensing system
US5698965A (en) 1995-12-01 1997-12-16 Flight Systems, Inc. Apparatus and method for determining the current state of charge of a battery by monitoring battery voltage increases above and decreases below a threshold
US5808445A (en) 1995-12-06 1998-09-15 The University Of Virginia Patent Foundation Method for monitoring remaining battery capacity
JP3610687B2 (ja) 1995-12-12 2005-01-19 トヨタ自動車株式会社 内燃機関の始動制御装置およびその制御方法
US5773977A (en) 1996-04-18 1998-06-30 Johnson Controls Technology Company Method of testing an electric storage battery by determining a bounce-back voltage after a load has been removed
JP3111405B2 (ja) 1996-05-09 2000-11-20 本田技研工業株式会社 電池の残容量推定方法
US6445158B1 (en) 1996-07-29 2002-09-03 Midtronics, Inc. Vehicle electrical system tester with encoded output
US6331762B1 (en) 1997-11-03 2001-12-18 Midtronics, Inc. Energy management system for automotive vehicle
DE19643012B4 (de) 1996-10-18 2008-01-03 Vb Autobatterie Gmbh & Co. Kgaa Verfahren zur Ladung eines elektrischen Akkumulators mit einem Generator
DE69730413T2 (de) 1996-11-21 2005-09-08 Koninklijke Philips Electronics N.V. Batteriesteuerungssystem und batteriesimulator
US5914605A (en) 1997-01-13 1999-06-22 Midtronics, Inc. Electronic battery tester
US6222341B1 (en) 1997-09-17 2001-04-24 Johnson Controls Technology Company Dual battery charge maintenance system and method
US6057666A (en) 1997-09-17 2000-05-02 Johnson Controls Technology Company Method and circuit for controlling charging in a dual battery electrical system
US5977654A (en) 1997-09-25 1999-11-02 Johnson Controls Technology Company Anti-theft System for disabling a vehicle engine that includes a multi-contact switch for disconnecting the battery and loading the vehicle electrical system
US5965954A (en) 1997-09-25 1999-10-12 Johnson Controls Technology Company Anti-theft system for disabling a vehicle engine
FR2769095B1 (fr) 1997-10-01 1999-11-26 Siemens Automotive Sa Procede de detection de defaillance d'une batterie de vehicule automobile
DE19750309A1 (de) 1997-11-13 1999-05-20 Vb Autobatterie Gmbh Verfahren zur Bestimmung der Startfähigkeit der Starterbatterie eines Kraftfahrzeugs
DE19803312A1 (de) 1998-01-29 1999-08-05 Varta Batterie Verfahren zur Verbesserung der Lade- und Entladefähigkeit von Akkumulatoren
US6271642B1 (en) 1998-02-13 2001-08-07 Johnson Controls Technology Company Advanced battery controller with state of charge control
US5936383A (en) 1998-04-02 1999-08-10 Lucent Technologies, Inc. Self-correcting and adjustable method and apparatus for predicting the remaining capacity and reserve time of a battery on discharge
KR100262465B1 (ko) 1998-06-25 2000-08-01 박찬구 펄스전류의 전압 응답신호를 이용한 전지용량 측정방법 및 측정장치
CA2338234A1 (en) 1998-07-20 2000-01-27 Alliedsignal Inc. System and method for monitoring a vehicle battery
US6037777A (en) 1998-09-11 2000-03-14 Champlin; Keith S. Method and apparatus for determining battery properties from complex impedance/admittance
JP3514142B2 (ja) 1998-11-04 2004-03-31 日産自動車株式会社 車両制御装置
KR100395516B1 (ko) 1998-11-19 2003-12-18 금호석유화학 주식회사 비선형등가회로모형을이용한축전장치의특성인자수치화방법및장치
US6144185A (en) 1999-03-22 2000-11-07 Johnson Controls Technology Company Method and apparatus for determining the condition of a battery through the use of multiple battery tests
US6087808A (en) 1999-04-23 2000-07-11 Pritchard; Jeffrey A. System and method for accurately determining remaining battery life
US6359441B1 (en) 1999-04-30 2002-03-19 Midtronics, Inc. Electronic battery tester
US6441585B1 (en) 1999-06-16 2002-08-27 Midtronics, Inc. Apparatus and method for testing rechargeable energy storage batteries
US6313607B1 (en) * 1999-09-01 2001-11-06 Keith S. Champlin Method and apparatus for evaluating stored charge in an electrochemical cell or battery
US6091325A (en) 1999-09-24 2000-07-18 Battery Alert Ltd. Device and method for warning of vehicle battery deterioration
DE19955406A1 (de) 1999-11-18 2001-05-23 Vb Autobatterie Gmbh Verfahren zur Steuerung von mehreren gleichzeitig von einer Stromquelle betriebenen elektrischen Verbrauchern
DE10002473A1 (de) 2000-01-21 2001-07-26 Vb Autobatterie Gmbh Verfahren zur Bestimmung des Ladezusatandes von Akkumulatoren
DE10008354A1 (de) * 2000-02-23 2001-08-30 Vb Autobatterie Gmbh Verfahren zur Ermittlung des Ladezustands von Bleiakkumulatoren
JP2001275205A (ja) 2000-03-24 2001-10-05 Nissan Motor Co Ltd 2次電池と発電機の併用システムの制御装置
US6515456B1 (en) 2000-04-13 2003-02-04 Mixon, Inc. Battery charger apparatus
US20020026252A1 (en) 2000-05-15 2002-02-28 Wruck William J. Computer system for vehicle battery selection based on vehicle operating conditions
US6304059B1 (en) 2000-06-22 2001-10-16 Subhas C. Chalasani Battery management system, method of operation therefor and battery plant employing the same
US20020031700A1 (en) 2000-08-02 2002-03-14 Johnson Controls Technology Company High current low resistance double latching battery switch
DE10045622A1 (de) * 2000-09-15 2002-03-28 Nbt Gmbh Verfahren zur Überwachung der Ladung gasdichter alkalischer Akkumulatoren
US6268712B1 (en) 2000-09-26 2001-07-31 Vb Autobatterie Gmbh Method for determining the starting ability of a starter battery in a motor vehicle
US6300763B1 (en) 2000-11-27 2001-10-09 Delphi Technologies, Inc. Method of calculating dynamic state-of-charge within a battery
KR100395637B1 (ko) 2000-11-27 2003-08-21 삼성전자주식회사 배터리의 잔량보정장치 및 그 제어방법
US6417668B1 (en) 2001-01-31 2002-07-09 International Truck International Property Company, L.L.C. Vehicle battery condition monitoring system
JP4292721B2 (ja) 2001-02-14 2009-07-08 株式会社日本自動車部品総合研究所 ハイブリッド車の電池状態制御方法
DE10107583A1 (de) 2001-02-17 2002-08-29 Vb Autobatterie Gmbh Verfahren zur Bestimmung der Leistungsfähigkeit einer Speicherbatterie
JP4380932B2 (ja) 2001-03-30 2009-12-09 三洋電機株式会社 電池の残容量の演算方法
JP4786058B2 (ja) 2001-05-01 2011-10-05 本田技研工業株式会社 蓄電装置の残容量検出装置
US6369578B1 (en) 2001-06-05 2002-04-09 Delphi Technologies, Inc. State of health for automotive batteries
DE10128033A1 (de) 2001-06-08 2002-12-12 Vb Autobatterie Gmbh Verfahren zur Vorhersage der äquilibierten Ruhespannung eines elektrochemischen Energiespeichers
US20030047366A1 (en) 2001-07-10 2003-03-13 Johnson Controls Technology Company Module for battery and/or other vehicle components
JP4118035B2 (ja) 2001-08-03 2008-07-16 トヨタ自動車株式会社 電池制御装置
US20030082440A1 (en) 2001-10-29 2003-05-01 Johnson Controls Technology Company Battery system
US20030142228A1 (en) 2002-01-25 2003-07-31 Matthew Flach Apparatus and method for power saving and rapid response in a digital imaging device
US20040021468A1 (en) * 2002-05-31 2004-02-05 Johnson Controls Technology Company Battery test system
US20030236656A1 (en) 2002-06-21 2003-12-25 Johnson Controls Technology Company Battery characterization system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5721688A (en) * 1996-09-06 1998-02-24 Madill Technologies, Inc. Apparatus and method for electrical system measurements including battery condition, resistance of wires and connections, total electrical system quality and current flow
DE10002848A1 (de) * 1999-01-26 2001-01-25 Honda Motor Co Ltd Vorrichtung zum Erfassen der Restladung einer Batterie

Also Published As

Publication number Publication date
DE10240329A1 (de) 2004-03-11
DE50312991D1 (de) 2010-09-30
ATE478350T1 (de) 2010-09-15
US20040189255A1 (en) 2004-09-30
EP1394561A1 (de) 2004-03-03
US6967466B2 (en) 2005-11-22
EP1394561B1 (de) 2010-08-18
ES2347225T3 (es) 2010-10-27

Similar Documents

Publication Publication Date Title
DE10240329B4 (de) Verfahren zur Ermittlung der einer vollgeladenen Speicherbatterie entnehmbaren Ladungsmenge einer Speicherbatterie und Überwachungseinrichtung für eine Speicherbatterie
DE10231700B4 (de) Verfahren zur Ermittlung des Alterungszustandes einer Speicherbatterie hinsichtlich der entnehmbaren Ladungsmenge und Überwachungseinrichtung
EP1505402B1 (de) Verfahren zur Vorhersage von elektrischen Eigenschaften einer elektrochemischen Speicherbatterie
DE10252760B4 (de) Verfahren zur Vorhersage des Innenwiderstands einer Speicherbatterie und Überwachungseinrichtung für Speicherbatterien
EP1562049B1 (de) Verfahren zur Bestimmung von Kenngrössen für elektrische Zustände einer Speicherbatterie und Überwachungseinrichtung hierzu
DE19540827C2 (de) Verfahren zur Bestimmung des Alterungszustandes einer Batterie
DE10345057B4 (de) Verfahren und Vorrichtung zur Bestimmung des Ladezustandes einer Batterie
EP1588176B1 (de) Verfahren und vorrichtung zum ermitteln der aus einem energiespeicher entnehmbaren ladung
EP2442125B1 (de) Verfahren und Vorrichtung zum Überwachen der maximal verfügbaren Kapazität einer Batterie
DE102005062148B4 (de) Verfahren zum Ermitteln des Betriebszustands eines Energiespeichers für elektrische Energie
DE10021161A1 (de) Verfahren zur Ermittlung des Ladezustands und der Belastbarkeit eines elektrischen Akkumulators
DE102013208046A1 (de) Schätzvorrichtung für einen Batterieladezustand, die einen robusten H∞-Beobachter verwendet
EP1391742B1 (de) Überwachungseinrichtung und Verfahren zur Ermittlung des Betriebszustands einer Speicherbatterie
WO2017182497A1 (de) Verfahren und system zur bewertung einer elektrochemischen speichereinheit
DE102013000572A1 (de) Verfahren und System zur Bestimmung der Modellparameter eines elektrochemischen Energiespeichers
EP2223132B1 (de) Ermittlung der kapazität elektrischer energiespeicher
EP2856186A1 (de) Verfahren und vorrichtung zum feststellen der tatsächlichen kapazität einer batterie
WO2011057846A1 (de) Batteriemanagementeinheit zur schätzung der batterieimpendanz
DE102009042194B4 (de) Verfahren zur Bestimmung des Betriebsbereichs eines wiederaufladbaren elektrischen Energiespeichers
DE102017211506A1 (de) Verfahren zur Zustandsbestimmung einer elektrischen Energiespeichereinheit, entsprechende Vorrichtung zur Durchführung des Verfahrens sowie entsprechende elektrische Energiespeichereinheit
DE102019132768A1 (de) Kalibriereinrichtung zur Kalibrierung einer elekrischen Ersatzschaltung
DE102007030365B4 (de) Verfahren zur Klassifizierung einer Speicherbatterie und Klassifizierungseinheit
DE102022201676B4 (de) Verfahren zur Bestimmung des Alterungverlaufs eines Batteriespeichers
DE102008056304A1 (de) Verfahren zur Erkennung und Quantifizierung von Säureschichten in nassen Blei-Säure-Batterien
DE102007004488B4 (de) Verfahren zur Bestimmung einer integralen Kenngröße für einen aktuellen Zustand einer elektrochemischen Speicherbatterie nebst zugehöriger Einrichtung, zugehörigem Computerprogramm sowie Batterieüberwachungsgerät

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8127 New person/name/address of the applicant

Owner name: VB AUTOBATTERIE GMBH & CO. KGAA, 30419 HANNOVER, D

8364 No opposition during term of opposition
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee

Effective date: 20110301