CN1705459A - 超声波探头 - Google Patents

超声波探头 Download PDF

Info

Publication number
CN1705459A
CN1705459A CNA2003801016149A CN200380101614A CN1705459A CN 1705459 A CN1705459 A CN 1705459A CN A2003801016149 A CNA2003801016149 A CN A2003801016149A CN 200380101614 A CN200380101614 A CN 200380101614A CN 1705459 A CN1705459 A CN 1705459A
Authority
CN
China
Prior art keywords
ultrasonic element
initial point
slit
signal
swing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2003801016149A
Other languages
English (en)
Other versions
CN100379387C (zh
Inventor
入冈一吉
大川荣一
小泉顺
长谷川重好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Opto Inc
Original Assignee
松下电器产业株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 松下电器产业株式会社 filed Critical 松下电器产业株式会社
Publication of CN1705459A publication Critical patent/CN1705459A/zh
Application granted granted Critical
Publication of CN100379387C publication Critical patent/CN100379387C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8934Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a dynamic transducer configuration
    • G01S15/8938Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a dynamic transducer configuration using transducers mounted for mechanical movement in two dimensions
    • G01S15/894Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a dynamic transducer configuration using transducers mounted for mechanical movement in two dimensions by rotation about a single axis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/42Details of probe positioning or probe attachment to the patient
    • A61B8/4272Details of probe positioning or probe attachment to the patient involving the acoustic interface between the transducer and the tissue
    • A61B8/4281Details of probe positioning or probe attachment to the patient involving the acoustic interface between the transducer and the tissue characterised by sound-transmitting media or devices for coupling the transducer to the tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4444Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
    • A61B8/4461Features of the scanning mechanism, e.g. for moving the transducer within the housing of the probe
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/347Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells using displacement encoding scales
    • G01D5/3473Circular or rotary encoders
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/18Methods or devices for transmitting, conducting or directing sound
    • G10K11/26Sound-focusing or directing, e.g. scanning
    • G10K11/35Sound-focusing or directing, e.g. scanning using mechanical steering of transducers or their beams
    • G10K11/352Sound-focusing or directing, e.g. scanning using mechanical steering of transducers or their beams by moving the transducer
    • G10K11/355Arcuate movement
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/22Analogue/digital converters pattern-reading type
    • H03M1/24Analogue/digital converters pattern-reading type using relatively movable reader and disc or strip
    • H03M1/28Analogue/digital converters pattern-reading type using relatively movable reader and disc or strip with non-weighted coding
    • H03M1/30Analogue/digital converters pattern-reading type using relatively movable reader and disc or strip with non-weighted coding incremental
    • H03M1/308Analogue/digital converters pattern-reading type using relatively movable reader and disc or strip with non-weighted coding incremental with additional pattern means for determining the absolute position, e.g. reference marks

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Acoustics & Sound (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

本发明的超声波探头,包括用于发送接收超声波的超声波元件单元;用于使所述超声波元件单元摆动的摆动机构;用于检测所述超声波元件单元的摆动运动的检测器。所述检测器检测所述超声波元件单元的摆动角度和摆动原点,并且在以所述摆动原点为边界将所述超声波元件单元的摆动范围二分为正区域和负区域时,检测所述超声波元件单元存在于所述正区域和所述负区域的哪一个中。在使用该超声波探头时,根据检测器的检测结果,进行用于使所述超声波元件单元复原到所述摆动原点的原点复原控制。

Description

超声波探头
技术领域
本发明涉及超声波探头,更详细的,涉及使超声波元件机械摆动而使扫描面变化,对被检体发送接收超声波的超声波探头。
背景技术
在医疗领域中,广泛使用了超声波诊断装置。其通过使用超声波探头,对被检体发送接收超声波,从而根据被检体的各部位的音响特性,而得到该部位的信息。在这种超声波装置中,作为发送接收超声波的超声波元件,使用排列振动器,通过使该排列振动器机械摆动,以使该超声波扫描面变化,从而可得到被检体的三维信息。
用于这种超声波诊断装置的探头通常包括超声波元件和用于使其摆动的摆动机构。摆动机构为例如经齿轮将支撑轴连接到电机的输出轴,并将保持了超声波元件的保持器连接到该支撑轴的构造。在这种摆动机构中,若使电机驱动,则其旋转力经齿轮传到支撑轴,支撑轴旋转,连动于该支撑轴的运动,超声波元件与保持器一起旋转。于是,通过在预定的时间间隔内使电机的旋转方向反转,并反转超声波元件的旋转方向,从而实现了超声波元件的摆动。
进一步,提出了在摆动机构上设置用于检测超声波元件的摆动角度的角度检测器(例如,日本专利申请特开平3-184532号公报)。图7是表示构成现有的超声波探头的角度检测器的结构的斜视图。该角度检测器70由与上述支撑轴71连动地旋转,并且多个狭缝设置成以其旋转轴为中心的圆状的狭缝板72和配置为夹着狭缝板72的光学式计数器73构成。光学式计数器73以狭缝板72为边界,在一侧进行发光,在另一侧接收通过了狭缝的光,并通过该受光计数的数目来检测狭缝板72的旋转角度,即,支撑轴71的旋转角度。这样,通过检测出支撑轴的旋转角度,就可以检测出与该支撑轴连动旋转的超声波元件的旋转角度(摆动角度)。
但是,在上述现有的超声波探头中,由于检测器仅检测出受光计数的数目,所以不能正确地进行摆动原点的检测和对超声波探头进行电源接通时的超声波元件的位置检测。因此,电源接通时的超声波元件的原点复原控制变得复杂,存在用于原点复原的时间变慢的问题。
发明内容
本发明的目的是提供一种可以容易且高速地进行超声波元件的原点复原控制的超声波探头。
为了实现所述目的,本发明的超声波探头,其特征在于,包括:用于发送接收超声波的超声波元件单元;用于使所述超声波元件单元摆动的摆动机构;用于检测所述超声波元件单元的摆动运动的检测器;所述检测器检测所述超声波元件单元的摆动角度和摆动原点,并且在以所述摆动原点为边界将所述超声波元件单元的摆动范围分为正区域和负区域时,检测所述超声波元件单元存在于所述正区域和所述负区域的哪一个中;根据所述检测器的检测结果,进行用于使所述超声波元件单元复原到所述摆动原点的原点复原控制。
附图说明
图1是表示本发明的第一实施方式的超声波探头的一个例子的截面图;
图2是表示构成上述超声波探头的检测器的一个例子的模式图;
图3是表示由上述检测器得到的角度信号和原点复原用信号的一个例子的时序图;
图4是表示使用了上述超声波探头的超声波断层诊断装置的电路结构的框图;
图5是表示本发明的第二实施方式的超声波探头的一个例子的截面图;
图6是表示构成上述超声波探头的检测器的一个例子的模式图;
图7是表示构成现有的超声波探头的检测器的模式图。
具体实施方式
本发明的超声波探头具有检测超声波元件单元的摆动角度和摆动原点的检测器。进一步,该检测器在以摆动原点为边界将超声波元件单元的摆动范围二分为正区域和负区域时,检测出超声波元件单元存在于所述正区域和所述负区域的哪一个中。在该超声波探头使用时,根据检测器的检测结果,进行用于使所述超声波元件复原到所述摆动原点的原点复原控制。即,例如,在电源接通时的原点恢复控制时,对超声波诊断装置主体的控制机构,提供与超声波元件单元的位置和摆动原点有关的信息,并可根据该信息进行用于原点复原的控制。因此,可以容易且高速地实施复原动作。
上述超声波探头中,所述检测器可以构成为将至少单相的回转式编码器脉冲信号作为角度信号输出,并根据该角度信号检测出所述摆动角度,在所述超声波元件单元存在于所述正区域的情况下和存在于所述负区域的情况下,输出表示不同的逻辑电平的原点复原用信号,并根据该原点复原用信号的逻辑电平的变化点(即,上升沿或下降沿),检测出所述摆动原点。
另外,所述超声波探头中,所述检测器可以构成为包括:狭缝板,与所述超声波元件单元连动摆动,并形成有第一狭缝,该第一狭缝形成开口部从对应于所述摆动原点的位置到至少对应于所述正区域或所述负区域的端部的位置的以其摆动轴为中心的圆弧状;向所述狭缝板照射光的光源;检测从所述光源透过了所述第一狭缝的光,转换为电信号后输出所述原点复原用信号的第一受光元件。
另外,所述超声波探头中,所述检测部可以构成为包括:狭缝板,与所述超声波元件单元连动摆动,并具有以预定间距排列成以其摆动轴为中心的圆或圆弧状的多个第二狭缝;向所述狭缝板照射光的光源;检测从所述光源透过了所述第二狭缝的光,并转换为电信号后,输出所述角度信号的第二受光元件。
在这种情况下,所述第一狭缝和所述第二狭缝最好形成在同一狭缝板上。
另外,上述超声波探头中,所述检测器也可构成为包括:磁鼓,与所述超声波元件单元连动摆动,并具有以预定间距排列成以其摆动轴为中心的圆或圆弧状的多个磁化图形;检测所述磁鼓的磁化图形,转换为电信号后输出所述角度信号的磁阻元件。
在这种情况下,所述磁鼓最好设置在直接固定在所述超声波元件单元上的摆动轴上。
下面,参照附图说明本发明的最佳实施方式。
(第一实施方式)
图1是表示本发明的第一实施方式的超声波探头的构造的一个例子的截面图。该超声波探头中,通过将窗11和框架15接合来构成介质室,并在该介质室内充填除气后的音响结合介质12。另外,在介质室内,容纳有配置了多个振动器后构成的超声波元件单元13。超声波元件单元13通过摆动轴固定器10固定在摆动轴14上。该摆动轴14通过设置在框架15上的轴承9,而被自由旋转地支撑。
这样,通过将摆动轴14直接固定在超声波元件单元13上,可以减小摆动半径,相对超声波元件单元13的摆动扫描角,可以更小地构成窗11的大小,同时,可以减小对于摆动轴14的惯性力矩,可以实现电机的低转矩化。
进一步,在该超声波探头上内置用于使超声波元件单元13摆动的摆动机构。该摆动机构由作为驱动源的电机2和用于将电机2的旋转驱动力传到超声波元件单元的摆动传递机构构成。摆动传递机构包括安装在电机的输出轴3上的驱动带轮5、安装在所述摆动轴上的从动带轮7和跨接在这两个带轮之间的传送带8。电机2经油封4固定在框架15上,通过该油封4防止了音响结合介质12浸入到电机内部。另外,电机的输出轴3通过在框架15上设置的轴承6来支撑。另外,电机2通过与框架15接合的框体16而被覆盖。
根据这种摆动机构,若驱动电机5,则其输出轴上安装的驱动带轮5旋转。该驱动带轮5的旋转运动经传送带8传到从动带轮7,从动带轮7旋转。摆动轴14连动于该从动带轮7的旋转运动而旋转,连动于该摆动轴14的旋转,超声波元件单元13旋转。于是,通过使电机的旋转方向以预定的时间间隔反转,以使超声波元件单元的旋转方向反转,可实现超声波元件的摆动。
进一步,在该超声波探头上内置有用于检测超声波元件单元13的摆动运动的检测器1。该检测器1构成为可检测出超声波元件单元13的摆动角度和摆动原点。进一步,检测器1构成为在以超声波元件单元13的位置——换言之是摆动原点——为边界而对摆动范围进行二分时(下面,将二分后的区域分别称作“正区域”和“负区域”),可检测出超声波元件单元13存在于正区域和负区域的哪一个。
另外,检测器可以构成为通过安装在摆动轴上,直接检测出超声波元件单元的摆动运动。另外,也可构成为通过检测出与超声波元件单元连动地摆动(旋转)的部件(例如,电机的输出轴等)的运动,而可间接检测出超声波元件单元的摆动运动。
例如,图1所示的超声波探头中,检测器1构成为通过安装在电机2上,检测出电机的旋转运动。如前所述,由于超声波元件单元的摆动运动与电机的旋转运动连动,所以通过检测出电机的旋转运动,可以求出超声波元件单元的旋转运动。
图2是表示检测器1的结构的一个例子的模式图。该检测器1作为光学式的增加型回转式编码器构成。该检测器1中,将狭缝板23安装在电机的输出轴3上,使其与电机的输出轴连动旋转。在狭缝板23上,将用于检测超声波元件单元的位置和摆动原点的第一狭缝24和用于检测摆动角度的第二狭缝20设置成以狭缝板的旋转轴为中心的同心圆。来自光源21的光到达第二狭缝20的位置,通过了第二狭缝20的光L2的光量通过第二受光元件22而被检测出来。并且,由第二受光元件22检测出的光信号转换为电信号后,作为角度信号输出。另外,来自光源21的光也到达第一狭缝24的位置,通过了第一狭缝24的光L1的光量通过第一受光元件25而被检测出来。并且,由第二受光元件22检测出的光信号在转换为电信号后,作为原点复原用信号输出。
下面,使用图2,详细说明在狭缝板23上设置的各狭缝。图2中,O是相当于超声波元件单元的摆动原点的位置,即,在超声波元件单元位于摆动原点时,与受光元件重合的位置。另外,R是相当于超声波元件单元的摆动范围的区域,即,超声波元件单元在摆动期间在受光元件的前面可以通过的区域。
第一狭缝24是用于检测超声波元件单元的位置和摆动原点的狭缝,设置为以狭缝板23的旋转轴为中心的圆弧状。该第一狭缝24如图2所示,具有一端与相当于摆动原点的位置(O)匹配,另一端与相当于超声波元件单元的摆动范围的区域(R)的一个端部匹配,或超过其而开口的形状。即,该狭缝的形状为,在以相当于摆动原点的位置(O)为边界而将相当于超声波元件单元的摆动范围的区域(R)分割为两个区域的情况下,在一个区域中跨过整体形成开口,但是在另一个区域上为没有形成开口。
第二狭缝20是用于角度检测的狭缝,在狭缝板23的外周部以预定间距设置多个。另外,尽管第二狭缝20并不进行特别限定,但是其数目越多(间距越短),摆动角度的检测分辨能力越高,因此是最好的。另外,虽然省略了图示,但是作为角度检测用的追加狭缝,也可按同心圆状设置与第二狭缝为同一间距(P),且设置P/4的相位差来排列的多个狭缝(下面,称作“第三狭缝”)。
接着,使用图3说明由上述检测器1进行的摆动运动的检测动作。图3是表示由上述检测器得到的检测信号的一个例子的时序图。图3中,检测信号S1和S3是相对第二和第三狭缝而得到的信号,用作角度信号。另外,检测信号S2是相对第一狭缝24而得到的信号,用作原点复原用信号。
超声波元件单元的位置检测通过检测透过第一狭缝24的光来实施。如前所述,第一狭缝24形成为,在以相当于摆动原点的位置(O)为边界来将相当于超声波元件单元的摆动范围的区域(R)分割为两个区域时,在一个区域中跨过整体形成了开口,但是在另一个区域上没有形成开口的形状。因此,在超声波元件单元13存在于以摆动原点为边界分割摆动范围时的一个区域(例如,正区域)时,由于在光源和第一受光元件之间存在第一狭缝24,所以检测出了来自第一狭缝24的透过光。另一方面,在超声波元件单元13存在于另一个区域(例如,负区域)的情况下,由于在光源和第一受光元件之间不存在第一狭缝24,所以没有检测出透过光。这样,可以通过检测有无透过第一狭缝24的光来判断超声波元件单元相对摆动原点位于左右的哪个区域中(即,正区域和负区域的哪一个区域中)。
另外,从通过检测对于上述第一狭缝24的透过光而得到的信号(即,原点复原用信号),可以检测出摆动原点。使用图3说明该摆动原点的检测。若电机的输出轴旋转,与其连动狭缝板23旋转,则由上述第一狭缝24得到的原点复原用信号例如如图3的S2所示,为二值的信号。该原点复原用信号的各逻辑电平对应于相对第一狭缝的透过光,在检测出了透过光的情况下,输出逻辑高电平,在实质上没有检测出透过光的情况下,输出逻辑低电平。并且,该原点复原用信号从逻辑高电平向逻辑低电平的变化点,在相当于摆动范围的区域(R)中,仅存在于一个位置,该变化点(O)相当于摆动原点。即,通过检测出从逻辑高电平向逻辑低电平的变化点,可以检测出摆动原点。
超声波元件单元的摆动角度的检测,通过检测出透过第二狭缝24的光来实现。若狭缝板23旋转,由上述第二狭缝24得到的信号(角度信号)例如图3的S1所示,为二值的脉冲信号。该角度信号的各逻辑电平分别对应于有无相对于第二狭缝的透过光。另外,脉冲数相当于在预定期间内通过了第二受光元件之前的第二狭缝的数目。因此,通过计数该脉冲数,可以求出摆动角度。
另外,在存在第三狭缝的情况下,若狭缝板23旋转,则由第三狭缝得到的信号(角度信号)例如如图3的S2所示,为相对于从第二狭缝20得到的信号S1的周期(T)具有T/4的相位差的二值脉冲信号。这样,通过设置第三狭缝,作为角度信号可以得到双相脉冲,可以进一步提高角度检测分辨能力。
例如,在500脉冲的编码器(即,狭缝数500)的情况下,若角度信号为单相脉冲,则虽然角度检测的分辨能力为0.36度,但是若为双相脉冲,则分辨能力为0.18度。另外,在角度信号为单相脉冲的情况下,可以在相对该脉冲的周期T为T/2的精度下进行控制,在双相脉冲的情况下,可以在相对周期T为T/4的高精度下进行控制。
另外,上述说明中,示例了在不透明板上设置了狭缝的情况,但是本发明并不限于此,即使构成为在玻璃板等的透明板上设置黑色的格子,当然也可实现同样的功能。另外,本实施方式中,作为检测器1,虽然示例了透过型的光学回转式编码器,但是利用反射型也可实现同样的功能。
下面,说明使用了上述超声波探头的超声波诊断。图4是表示使用了上述超声波探头的超声波诊断装置的电路结构的一个例子的框图。图4中,31表示超声波探头内的结构,33表示超声波诊断装置主体内的结构。
检测器32中,生成角度信号S1、S3和原点复原用信号S2,将这些信号送到诊断装置主体33的检测信号处理电路35中。检测信号处理电路35根据来自检测器32的角度信号S1、S3和原点复原用信号S2,生成用于执行超声波元件单元的摆动控制和原点复原控制的控制信号S4,并送到摆动驱动控制电路39中。摆动驱动控制电路39生成驱动信号S5,并将其送到超声波探头的电机2上,而对其进行驱动控制。电机的旋转驱动力通过摆动传递机构37传送到超声波元件单元13中,进行超声波元件单元13的摆动动作和原点复原控制。
另外,角度检测信号处理电路35将控制信号S6送到发送接收电路38中,从发送接收电路38发送对于超声波元件单元13的驱动信号S7。将该信号在超声波元件单元中转换为超声波后,发送到被检体。该超声波通过被检体反射,其反射波的一部分被超声波元件单元接收,转换为电信号(接收信号)S8后,发送到发送接收电路。该信号S8通过图像处理电路50转换为图像信号S9,而在监视器51上显示对应于图像信号S9的被检体的断层图像。
如上所述,根据本实施方式的超声波探头,通过检测器,除了超声波元件单元的摆动角度和摆动原点之外,还可检测出超声波元件单元的位置。因此,例如,在电源接通时的原点复原控制时,对超声波诊断装置主体的控制机构,提供作为原点复原用信号S2的与超声波元件单元的位置和摆动原点有关的信息,并根据该信息,进行用于原点复原的控制,所以可以容易且快速地实施复原动作。
另外,根据本实施方式,具有可以通过一个检测器容易地检测出超声波元件单元的摆动角度和摆动原点的优点。
(第二实施方式)
图5是表示本发明的第二实施方式的超声波探头的结构的一个例子的截面图。本实施方式中,说明了检测器通过各自分离的摆动角度检测器和摆动原点检测器来构成的情况。另外,图5中,对于与图1相同的部分,标以相同符号,并省略其说明。
原点检测器43检测超声波元件单元的位置和摆动原点。其作为光学回转式编码器构成,并安装在电机2的输出轴上。另外,原点检测器43可以是从图2所示的检测器的结构中去除了第二狭缝20和第二受光元件22的结构。另外,对于其检测动作,与在第一实施方式中,与第二狭缝有关的说明中所描述的动作实质上相同。
摆动角度检测器40检测超声波元件单元的摆动角度,可以作为磁回转式编码器构成。图6是摆动角度检测器40的详细构成图。该摆动角度检测器40包括在摆动轴14上安装的磁鼓41和在框架15上安装的磁阻元件42。在磁鼓41的表面43上以预定的间距形成磁化图形44,由磁阻元件42检测出该磁化图形44,并通过所得的检测信号进行摆动角度检测。
根据本实施方式,通过摆动角度检测器40检测出摆动角度,并且通过原点检测器43检测出超声波元件单元的位置和摆动原点。因此,在原点复原控制时,由于对超声波诊断装置主体的控制机构,提供了作为原点复原用信号的与超声波元件单元的位置和摆动原点有关的信息,所以可以容易且快速地实施复原动作。
另外,本实施方式中,由于使用磁回转式编码器构成摆动角度检测器40,所以在音响结合介质12中也可进行摆动角度的检测。因此,可以将在超声波探头内设置的角度检测器的配置设置在较大的范围。
另外,根据本实施方式,由于与第一实施方式不同,角度检测器40设置在直接固定于超声波元件单元13的摆动轴14上,所以可以不经摆动传递机构,直接检测出超声波元件单元13的摆动角度。由此,避免了因摆动传递结构产生的齿隙等的传递误差的影响,可以高精度地检测出超声波元件单元13的摆动角度。
【产业上的可用性】
如上所述,本发明的超声波探头由于可以进行例如电源接通时的超声波元件单元的位置检测和原点检测,所以超身波元件单元的原点复原控制变得容易,可以快速地实施原点复原。这种超声波探头对于通过对生物体进行超身波的发送接收而得到生物体内的信息的超声波诊断装置尤其有用。

Claims (7)

1、一种超声波探头,其特征在于,包括:
用于发送接收超声波的超声波元件单元;用于使所述超声波元件单元摆动的摆动机构;用于检测所述超声波元件单元的摆动运动的检测器;
所述检测器检测所述超声波元件单元的摆动角度和摆动原点,并且在以所述摆动原点为边界将所述超声波元件单元的摆动范围二分为正区域和负区域时,检测所述超声波元件单元存在于所述正区域和所述负区域的哪一个中;
根据所述检测器的检测结果,进行用于使所述超声波元件单元复原到所述摆动原点的原点复原控制。
2、根据权利要求1所述的超声波探头,其特征在于:
所述检测器将至少单相的回转式编码器脉冲信号作为角度信号输出,并根据该角度信号检测出所述摆动角度;
在所述超声波元件单元处于所述正区域的情况下和处于所述负区域的情况下,输出表示不同的逻辑电平的原点复原用信号,并根据该原点复原用信号的逻辑电平的变化点,检测出所述摆动原点。
3、根据权利要求2所述的超声波探头,其特征在于,所述检测器包括:
狭缝板,与所述超声波元件单元连动地摆动,并形成有第一狭缝,该第一狭缝形成开口部从对应于所述摆动原点的位置到至少对应于所述正区域或所述负区域的端部的位置的以其摆动轴为中心的圆弧状;
光源,向所述狭缝板照射光;
第一受光元件,检测从所述光源透过所述第一狭缝的光,转换为电信号后,输出所述原点复原用信号。
4、根据权利要求3所述的超声波探头,其特征在于,所述检测器包括:
狭缝板,与所述超声波元件单元连动地摆动,并具有以预定间距排列成以其摆动轴为中心的圆或圆弧状的多个第二狭缝;
光源,向所述狭缝板照射光;
第二受光元件,检测从所述光源透过所述第二狭缝的光,转换为电信号后,输出所述角度信号。
5、根据权利要求4所述的超声波探头,其特征在于:所述第一狭缝和所述第二狭缝被形成在同一狭缝板上。
6、根据权利要求3所述的超声波探头,其特征在于,所述检测器包括:
磁鼓,与所述超声波元件单元连动地摆动,并具有以预定间距排列成以其摆动轴为中心的圆或圆弧状的多个磁化图形;
磁阻元件,检测所述磁鼓的磁化图形,转换为电信号后,输出所述角度信号。
7、根据权利要求6所述的超声波探头,其特征在于:所述磁鼓设置在直接固定于所述超声波元件单元的摆动轴上。
CNB2003801016149A 2002-10-18 2003-10-16 超声波探头 Expired - Fee Related CN100379387C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002304912A JP3821435B2 (ja) 2002-10-18 2002-10-18 超音波探触子
JP304912/2002 2002-10-18

Publications (2)

Publication Number Publication Date
CN1705459A true CN1705459A (zh) 2005-12-07
CN100379387C CN100379387C (zh) 2008-04-09

Family

ID=32105145

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2003801016149A Expired - Fee Related CN100379387C (zh) 2002-10-18 2003-10-16 超声波探头

Country Status (8)

Country Link
US (1) US7431697B2 (zh)
EP (2) EP2314220B1 (zh)
JP (1) JP3821435B2 (zh)
KR (1) KR100707237B1 (zh)
CN (1) CN100379387C (zh)
CA (1) CA2502384A1 (zh)
DE (1) DE60335398D1 (zh)
WO (1) WO2004034911A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102238914A (zh) * 2008-12-02 2011-11-09 松下电器产业株式会社 超声波探头
CN102421370A (zh) * 2009-05-14 2012-04-18 松下电器产业株式会社 超声波探头和使用该超声波探头的超声波诊断装置
WO2022007963A1 (zh) * 2020-07-10 2022-01-13 上海安翰医疗技术有限公司 一种磁控装置及磁控胶囊内窥镜系统

Families Citing this family (129)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4652752B2 (ja) * 2004-09-06 2011-03-16 パナソニック株式会社 超音波探触子
JP4740647B2 (ja) * 2005-05-18 2011-08-03 パナソニック株式会社 超音波探触子
JP2006346125A (ja) * 2005-06-15 2006-12-28 Nippon Dempa Kogyo Co Ltd 超音波探触子
US8784336B2 (en) 2005-08-24 2014-07-22 C. R. Bard, Inc. Stylet apparatuses and methods of manufacture
US8219178B2 (en) 2007-02-16 2012-07-10 Catholic Healthcare West Method and system for performing invasive medical procedures using a surgical robot
US10893912B2 (en) 2006-02-16 2021-01-19 Globus Medical Inc. Surgical tool systems and methods
US10357184B2 (en) 2012-06-21 2019-07-23 Globus Medical, Inc. Surgical tool systems and method
US10653497B2 (en) 2006-02-16 2020-05-19 Globus Medical, Inc. Surgical tool systems and methods
US8388546B2 (en) 2006-10-23 2013-03-05 Bard Access Systems, Inc. Method of locating the tip of a central venous catheter
US7794407B2 (en) 2006-10-23 2010-09-14 Bard Access Systems, Inc. Method of locating the tip of a central venous catheter
US10524691B2 (en) 2007-11-26 2020-01-07 C. R. Bard, Inc. Needle assembly including an aligned magnetic element
US8849382B2 (en) 2007-11-26 2014-09-30 C. R. Bard, Inc. Apparatus and display methods relating to intravascular placement of a catheter
US9649048B2 (en) 2007-11-26 2017-05-16 C. R. Bard, Inc. Systems and methods for breaching a sterile field for intravascular placement of a catheter
US9521961B2 (en) 2007-11-26 2016-12-20 C. R. Bard, Inc. Systems and methods for guiding a medical instrument
US10449330B2 (en) 2007-11-26 2019-10-22 C. R. Bard, Inc. Magnetic element-equipped needle assemblies
EP2992825B1 (en) 2007-11-26 2017-11-01 C.R. Bard Inc. Integrated system for intravascular placement of a catheter
US8781555B2 (en) 2007-11-26 2014-07-15 C. R. Bard, Inc. System for placement of a catheter including a signal-generating stylet
US9456766B2 (en) 2007-11-26 2016-10-04 C. R. Bard, Inc. Apparatus for use with needle insertion guidance system
US10751509B2 (en) 2007-11-26 2020-08-25 C. R. Bard, Inc. Iconic representations for guidance of an indwelling medical device
US8478382B2 (en) 2008-02-11 2013-07-02 C. R. Bard, Inc. Systems and methods for positioning a catheter
EP2313143B1 (en) 2008-08-22 2014-09-24 C.R. Bard, Inc. Catheter assembly including ecg sensor and magnetic assemblies
US8437833B2 (en) 2008-10-07 2013-05-07 Bard Access Systems, Inc. Percutaneous magnetic gastrostomy
US9339206B2 (en) 2009-06-12 2016-05-17 Bard Access Systems, Inc. Adaptor for endovascular electrocardiography
US9125578B2 (en) 2009-06-12 2015-09-08 Bard Access Systems, Inc. Apparatus and method for catheter navigation and tip location
US9532724B2 (en) 2009-06-12 2017-01-03 Bard Access Systems, Inc. Apparatus and method for catheter navigation using endovascular energy mapping
EP2464407A4 (en) 2009-08-10 2014-04-02 Bard Access Systems Inc DEVICES AND METHODS FOR ENDOVASCULAR ELECTROGRAPHY
EP2517622A3 (en) 2009-09-29 2013-04-24 C. R. Bard, Inc. Stylets for use with apparatus for intravascular placement of a catheter
WO2011044421A1 (en) * 2009-10-08 2011-04-14 C. R. Bard, Inc. Spacers for use with an ultrasound probe
EP4122385A1 (en) 2010-05-28 2023-01-25 C. R. Bard, Inc. Insertion guidance system for needles and medical components
CA2806353A1 (en) 2010-08-09 2012-02-16 C.R. Bard Inc. Support and cover structures for an ultrasound probe head
KR101856267B1 (ko) 2010-08-20 2018-05-09 씨. 알. 바드, 인크. Ecg-기반 카테터 팁 배치의 재확인
US8801693B2 (en) 2010-10-29 2014-08-12 C. R. Bard, Inc. Bioimpedance-assisted placement of a medical device
US9308050B2 (en) 2011-04-01 2016-04-12 Ecole Polytechnique Federale De Lausanne (Epfl) Robotic system and method for spinal and other surgeries
AU2012278809B2 (en) 2011-07-06 2016-09-29 C.R. Bard, Inc. Needle length determination and calibration for insertion guidance system
USD724745S1 (en) 2011-08-09 2015-03-17 C. R. Bard, Inc. Cap for an ultrasound probe
USD699359S1 (en) 2011-08-09 2014-02-11 C. R. Bard, Inc. Ultrasound probe head
WO2013070775A1 (en) 2011-11-07 2013-05-16 C.R. Bard, Inc Ruggedized ultrasound hydrogel insert
CN104837413B (zh) 2012-06-15 2018-09-11 C·R·巴德股份有限公司 检测超声探测器上可移除帽的装置及方法
US11253327B2 (en) 2012-06-21 2022-02-22 Globus Medical, Inc. Systems and methods for automatically changing an end-effector on a surgical robot
US10231791B2 (en) 2012-06-21 2019-03-19 Globus Medical, Inc. Infrared signal based position recognition system for use with a robot-assisted surgery
US11864745B2 (en) 2012-06-21 2024-01-09 Globus Medical, Inc. Surgical robotic system with retractor
US10624710B2 (en) 2012-06-21 2020-04-21 Globus Medical, Inc. System and method for measuring depth of instrumentation
US11317971B2 (en) 2012-06-21 2022-05-03 Globus Medical, Inc. Systems and methods related to robotic guidance in surgery
US11399900B2 (en) 2012-06-21 2022-08-02 Globus Medical, Inc. Robotic systems providing co-registration using natural fiducials and related methods
US11298196B2 (en) 2012-06-21 2022-04-12 Globus Medical Inc. Surgical robotic automation with tracking markers and controlled tool advancement
US11864839B2 (en) 2012-06-21 2024-01-09 Globus Medical Inc. Methods of adjusting a virtual implant and related surgical navigation systems
US11395706B2 (en) 2012-06-21 2022-07-26 Globus Medical Inc. Surgical robot platform
US10136954B2 (en) 2012-06-21 2018-11-27 Globus Medical, Inc. Surgical tool systems and method
US11045267B2 (en) 2012-06-21 2021-06-29 Globus Medical, Inc. Surgical robotic automation with tracking markers
US11607149B2 (en) 2012-06-21 2023-03-21 Globus Medical Inc. Surgical tool systems and method
JP2015528713A (ja) 2012-06-21 2015-10-01 グローバス メディカル インコーポレイティッド 手術ロボットプラットフォーム
US11857149B2 (en) 2012-06-21 2024-01-02 Globus Medical, Inc. Surgical robotic systems with target trajectory deviation monitoring and related methods
US11116576B2 (en) 2012-06-21 2021-09-14 Globus Medical Inc. Dynamic reference arrays and methods of use
US10758315B2 (en) 2012-06-21 2020-09-01 Globus Medical Inc. Method and system for improving 2D-3D registration convergence
US11857266B2 (en) 2012-06-21 2024-01-02 Globus Medical, Inc. System for a surveillance marker in robotic-assisted surgery
US11793570B2 (en) 2012-06-21 2023-10-24 Globus Medical Inc. Surgical robotic automation with tracking markers
US10350013B2 (en) 2012-06-21 2019-07-16 Globus Medical, Inc. Surgical tool systems and methods
JP6114663B2 (ja) * 2013-08-27 2017-04-12 富士フイルム株式会社 超音波診断装置および超音波画像生成方法
US9283048B2 (en) 2013-10-04 2016-03-15 KB Medical SA Apparatus and systems for precise guidance of surgical tools
US9241771B2 (en) 2014-01-15 2016-01-26 KB Medical SA Notched apparatus for guidance of an insertable instrument along an axis during spinal surgery
ES2811323T3 (es) 2014-02-06 2021-03-11 Bard Inc C R Sistemas para el guiado y la colocación de un dispositivo intravascular
WO2015121311A1 (en) 2014-02-11 2015-08-20 KB Medical SA Sterile handle for controlling a robotic surgical system from a sterile field
CN106659537B (zh) 2014-04-24 2019-06-11 Kb医疗公司 结合机器人手术系统使用的手术器械固持器
EP3169252A1 (en) 2014-07-14 2017-05-24 KB Medical SA Anti-skid surgical instrument for use in preparing holes in bone tissue
US10973584B2 (en) 2015-01-19 2021-04-13 Bard Access Systems, Inc. Device and method for vascular access
US10013808B2 (en) 2015-02-03 2018-07-03 Globus Medical, Inc. Surgeon head-mounted display apparatuses
EP3258872B1 (en) 2015-02-18 2023-04-26 KB Medical SA Systems for performing minimally invasive spinal surgery with a robotic surgical system using a percutaneous technique
WO2016210325A1 (en) 2015-06-26 2016-12-29 C.R. Bard, Inc. Connector interface for ecg-based catheter positioning system
US10058394B2 (en) 2015-07-31 2018-08-28 Globus Medical, Inc. Robot arm and methods of use
US10646298B2 (en) 2015-07-31 2020-05-12 Globus Medical, Inc. Robot arm and methods of use
US10080615B2 (en) 2015-08-12 2018-09-25 Globus Medical, Inc. Devices and methods for temporary mounting of parts to bone
JP6894431B2 (ja) 2015-08-31 2021-06-30 ケービー メディカル エスアー ロボット外科用システム及び方法
US10034716B2 (en) 2015-09-14 2018-07-31 Globus Medical, Inc. Surgical robotic systems and methods thereof
US9771092B2 (en) 2015-10-13 2017-09-26 Globus Medical, Inc. Stabilizer wheel assembly and methods of use
US11000207B2 (en) 2016-01-29 2021-05-11 C. R. Bard, Inc. Multiple coil system for tracking a medical device
US10448910B2 (en) 2016-02-03 2019-10-22 Globus Medical, Inc. Portable medical imaging system
US11883217B2 (en) 2016-02-03 2024-01-30 Globus Medical, Inc. Portable medical imaging system and method
US10842453B2 (en) 2016-02-03 2020-11-24 Globus Medical, Inc. Portable medical imaging system
US11058378B2 (en) 2016-02-03 2021-07-13 Globus Medical, Inc. Portable medical imaging system
US10117632B2 (en) 2016-02-03 2018-11-06 Globus Medical, Inc. Portable medical imaging system with beam scanning collimator
US10866119B2 (en) 2016-03-14 2020-12-15 Globus Medical, Inc. Metal detector for detecting insertion of a surgical device into a hollow tube
CN105891890B (zh) 2016-03-31 2017-09-05 山东大学 一种盾构搭载的非接触式频域电法实时超前探测系统与方法
JP7233841B2 (ja) 2017-01-18 2023-03-07 ケービー メディカル エスアー ロボット外科手術システムのロボットナビゲーション
US11071594B2 (en) 2017-03-16 2021-07-27 KB Medical SA Robotic navigation of robotic surgical systems
CN107037134B (zh) * 2017-04-25 2024-02-13 中国科学院声学研究所 一种潜水式超声探头对位结构及调整方法
US10675094B2 (en) 2017-07-21 2020-06-09 Globus Medical Inc. Robot surgical platform
EP3492032B1 (en) 2017-11-09 2023-01-04 Globus Medical, Inc. Surgical robotic systems for bending surgical rods
US11794338B2 (en) 2017-11-09 2023-10-24 Globus Medical Inc. Robotic rod benders and related mechanical and motor housings
US11382666B2 (en) 2017-11-09 2022-07-12 Globus Medical Inc. Methods providing bend plans for surgical rods and related controllers and computer program products
US11134862B2 (en) 2017-11-10 2021-10-05 Globus Medical, Inc. Methods of selecting surgical implants and related devices
US20190254753A1 (en) 2018-02-19 2019-08-22 Globus Medical, Inc. Augmented reality navigation systems for use with robotic surgical systems and methods of their use
US10573023B2 (en) 2018-04-09 2020-02-25 Globus Medical, Inc. Predictive visualization of medical imaging scanner component movement
US10992079B2 (en) 2018-10-16 2021-04-27 Bard Access Systems, Inc. Safety-equipped connection systems and methods thereof for establishing electrical connections
US11337742B2 (en) 2018-11-05 2022-05-24 Globus Medical Inc Compliant orthopedic driver
US11278360B2 (en) 2018-11-16 2022-03-22 Globus Medical, Inc. End-effectors for surgical robotic systems having sealed optical components
US11744655B2 (en) 2018-12-04 2023-09-05 Globus Medical, Inc. Drill guide fixtures, cranial insertion fixtures, and related methods and robotic systems
US11602402B2 (en) 2018-12-04 2023-03-14 Globus Medical, Inc. Drill guide fixtures, cranial insertion fixtures, and related methods and robotic systems
US11571265B2 (en) 2019-03-22 2023-02-07 Globus Medical Inc. System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices
US20200297357A1 (en) 2019-03-22 2020-09-24 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices
US11806084B2 (en) 2019-03-22 2023-11-07 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, and related methods and devices
US11419616B2 (en) 2019-03-22 2022-08-23 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices
US11382549B2 (en) 2019-03-22 2022-07-12 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, and related methods and devices
US11317978B2 (en) 2019-03-22 2022-05-03 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices
US11045179B2 (en) 2019-05-20 2021-06-29 Global Medical Inc Robot-mounted retractor system
US11628023B2 (en) 2019-07-10 2023-04-18 Globus Medical, Inc. Robotic navigational system for interbody implants
US11571171B2 (en) 2019-09-24 2023-02-07 Globus Medical, Inc. Compound curve cable chain
US11864857B2 (en) 2019-09-27 2024-01-09 Globus Medical, Inc. Surgical robot with passive end effector
US11890066B2 (en) 2019-09-30 2024-02-06 Globus Medical, Inc Surgical robot with passive end effector
US11426178B2 (en) 2019-09-27 2022-08-30 Globus Medical Inc. Systems and methods for navigating a pin guide driver
US11510684B2 (en) 2019-10-14 2022-11-29 Globus Medical, Inc. Rotary motion passive end effector for surgical robots in orthopedic surgeries
WO2021095591A1 (ja) * 2019-11-13 2021-05-20 株式会社デンソー 測距装置
US11382699B2 (en) 2020-02-10 2022-07-12 Globus Medical Inc. Extended reality visualization of optical tool tracking volume for computer assisted navigation in surgery
US11207150B2 (en) 2020-02-19 2021-12-28 Globus Medical, Inc. Displaying a virtual model of a planned instrument attachment to ensure correct selection of physical instrument attachment
US11253216B2 (en) 2020-04-28 2022-02-22 Globus Medical Inc. Fixtures for fluoroscopic imaging systems and related navigation systems and methods
US11382700B2 (en) 2020-05-08 2022-07-12 Globus Medical Inc. Extended reality headset tool tracking and control
US11510750B2 (en) 2020-05-08 2022-11-29 Globus Medical, Inc. Leveraging two-dimensional digital imaging and communication in medicine imagery in three-dimensional extended reality applications
US11153555B1 (en) 2020-05-08 2021-10-19 Globus Medical Inc. Extended reality headset camera system for computer assisted navigation in surgery
US11317973B2 (en) 2020-06-09 2022-05-03 Globus Medical, Inc. Camera tracking bar for computer assisted navigation during surgery
US11382713B2 (en) 2020-06-16 2022-07-12 Globus Medical, Inc. Navigated surgical system with eye to XR headset display calibration
US11877807B2 (en) 2020-07-10 2024-01-23 Globus Medical, Inc Instruments for navigated orthopedic surgeries
US11793588B2 (en) 2020-07-23 2023-10-24 Globus Medical, Inc. Sterile draping of robotic arms
US11737831B2 (en) 2020-09-02 2023-08-29 Globus Medical Inc. Surgical object tracking template generation for computer assisted navigation during surgical procedure
US11523785B2 (en) 2020-09-24 2022-12-13 Globus Medical, Inc. Increased cone beam computed tomography volume length without requiring stitching or longitudinal C-arm movement
US11911112B2 (en) 2020-10-27 2024-02-27 Globus Medical, Inc. Robotic navigational system
US11941814B2 (en) 2020-11-04 2024-03-26 Globus Medical Inc. Auto segmentation using 2-D images taken during 3-D imaging spin
US11717350B2 (en) 2020-11-24 2023-08-08 Globus Medical Inc. Methods for robotic assistance and navigation in spinal surgery and related systems
US11857273B2 (en) 2021-07-06 2024-01-02 Globus Medical, Inc. Ultrasonic robotic surgical navigation
US11439444B1 (en) 2021-07-22 2022-09-13 Globus Medical, Inc. Screw tower and rod reduction tool
US11918304B2 (en) 2021-12-20 2024-03-05 Globus Medical, Inc Flat panel registration fixture and method of using same

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4141347A (en) * 1976-09-21 1979-02-27 Sri International Real-time ultrasonic B-scan imaging and Doppler profile display system and method
US4399703A (en) * 1980-10-16 1983-08-23 Dymax Corporation Ultrasonic transducer and integral drive circuit therefor
FR2529073B1 (fr) * 1982-06-29 1985-10-25 Cgr Ultrasonic Sonde a ultrasons et installation d'echographie utilisant une telle sonde
JPS5951346A (ja) 1982-08-20 1984-03-24 Fujitsu Ltd 超音波断層撮像装置の符号変換回路
US4690150A (en) * 1985-08-20 1987-09-01 North American Philips Corporation Producing pseudocolor images for diagnostic ultrasound imaging
JPS63270032A (ja) * 1987-04-30 1988-11-08 Olympus Optical Co Ltd 超音波内視鏡
JPS63281015A (ja) * 1987-05-13 1988-11-17 Matsushita Electric Ind Co Ltd 位置検出器の基準信号発生装置
JPS6427538A (en) * 1987-07-23 1989-01-30 Toshiba Corp Ultrasonic scanner
JPS6427538U (zh) 1987-08-10 1989-02-16
JPH02116748A (ja) 1988-10-27 1990-05-01 Toshiba Corp メカニカルセクタスキャナ
JPH02144047A (ja) 1988-11-28 1990-06-01 Matsushita Electric Ind Co Ltd 超音波変換器の首振装置
US5088495A (en) * 1989-03-27 1992-02-18 Kabushiki Kaisha Toshiba Mechanical ultrasonic scanner
US5070879A (en) * 1989-11-30 1991-12-10 Acoustic Imaging Technologies Corp. Ultrasound imaging method and apparatus
CA2032204C (en) 1989-12-14 1995-03-14 Takashi Mochizuki Three-dimensional ultrasonic scanner
JPH0738851B2 (ja) 1989-12-14 1995-05-01 アロカ株式会社 三次元データ取り込み用超音波探触子
US5336884A (en) * 1992-07-01 1994-08-09 Rockwell International Corporation High resolution optical hybrid absolute incremental position encoder
US5427107A (en) * 1993-12-07 1995-06-27 Devices For Vascular Intervention, Inc. Optical encoder for catheter device
JPH0898838A (ja) * 1994-09-30 1996-04-16 Toshiba Corp エンコーダ装置、超音波プローブおよび超音波検査装置
EP0704680B1 (en) * 1994-09-30 2000-04-26 Kabushiki Kaisha Toshiba An optical rotary encoder device and an apparatus using same
JPH0938087A (ja) 1995-08-04 1997-02-10 Toshiba Corp 超音波プローブ及び超音波診断装置
JP2000275066A (ja) * 1999-03-23 2000-10-06 Ono Sokki Co Ltd ロータリーエンコーダ
DE50014404D1 (de) * 1999-11-05 2007-07-26 Micronas Gmbh Programmierbare Gebereinrichtung
JP2001149372A (ja) * 1999-11-26 2001-06-05 Matsushita Electric Ind Co Ltd 超音波探触子
JP2001170053A (ja) * 1999-12-16 2001-06-26 Toshiba Corp 超音波プローブとその操作方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102238914A (zh) * 2008-12-02 2011-11-09 松下电器产业株式会社 超声波探头
CN102238914B (zh) * 2008-12-02 2014-02-05 松下电器产业株式会社 超声波探头
CN102421370A (zh) * 2009-05-14 2012-04-18 松下电器产业株式会社 超声波探头和使用该超声波探头的超声波诊断装置
CN102421370B (zh) * 2009-05-14 2014-01-29 松下电器产业株式会社 超声波探头和使用该超声波探头的超声波诊断装置
WO2022007963A1 (zh) * 2020-07-10 2022-01-13 上海安翰医疗技术有限公司 一种磁控装置及磁控胶囊内窥镜系统

Also Published As

Publication number Publication date
JP3821435B2 (ja) 2006-09-13
EP1554981A1 (en) 2005-07-20
WO2004034911A1 (ja) 2004-04-29
US7431697B2 (en) 2008-10-07
CA2502384A1 (en) 2004-04-29
EP2314220A1 (en) 2011-04-27
DE60335398D1 (de) 2011-01-27
US20060173329A1 (en) 2006-08-03
EP2314220B1 (en) 2014-01-22
JP2004135966A (ja) 2004-05-13
KR100707237B1 (ko) 2007-04-13
EP1554981B1 (en) 2010-12-15
KR20050049546A (ko) 2005-05-25
CN100379387C (zh) 2008-04-09
EP1554981A4 (en) 2006-04-05

Similar Documents

Publication Publication Date Title
CN1705459A (zh) 超声波探头
KR102036058B1 (ko) 초음파 고속 스캔장치
CN1761428A (zh) 超声波探测器和超声波诊断设备
KR101263285B1 (ko) 단일 모터를 이용한 초음파 트랜스듀서 구동 장치
CA1221447A (en) Movable ultrasonic transducer array
CN108771549A (zh) 一种可降低震动的超声机械线性扫描探头
JPS6321045A (ja) 機械式走査型超音波探触子
CN104655161B (zh) 测距装置及其寻找测距起始点的方法
CN1047042C (zh) 电动机转速控制装置
CN209252914U (zh) 一种可降低震动的超声机械线性扫描探头
JP2697384B2 (ja) 機械走査式超音波探触子
CN1211651C (zh) 样件镜面反射率的测量
JP6321478B2 (ja) メカニカル3d超音波探触子
CN217483480U (zh) 一种超声三维扫描装置
JPH0377056A (ja) 超音波検査装置
JPH07128312A (ja) 機械走査式超音波探触子
JPH0342097B2 (zh)
KR20150021807A (ko) 빠른 측정이 가능한 방광진단용 초음파 장치
JPS60114240A (ja) 機械走査式超音波診断装置
JPH0523342A (ja) 機械走査式超音波探触子
JPS61115546A (ja) 超音波探触子
JP5067704B2 (ja) 歯科用oct装置
JPS62233150A (ja) 超音波探触子
JPS58138443A (ja) 超音波診断装置
JPS6135865B2 (zh)

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: KONICA MINOLTA OPTO INC.

Free format text: FORMER OWNER: MATSUSHITA ELECTRIC INDUSTRIAL CO, LTD.

Effective date: 20140318

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20140318

Address after: Tokyo, Japan, Japan

Patentee after: Konica Minolta Opto, Inc.

Address before: Osaka Japan

Patentee before: Matsushita Electric Industrial Co., Ltd.

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20080409

Termination date: 20181016