CN1649689A - 抗腐蚀的粉末和涂层 - Google Patents

抗腐蚀的粉末和涂层 Download PDF

Info

Publication number
CN1649689A
CN1649689A CNA038098148A CN03809814A CN1649689A CN 1649689 A CN1649689 A CN 1649689A CN A038098148 A CNA038098148 A CN A038098148A CN 03809814 A CN03809814 A CN 03809814A CN 1649689 A CN1649689 A CN 1649689A
Authority
CN
China
Prior art keywords
weight
powder
chromium
coating
corrosion resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA038098148A
Other languages
English (en)
Other versions
CN1293967C (zh
Inventor
W·J·C·贾罗辛斯基
L·B·坦普勒斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Prax St Technology Co Ltd
Praxair Technology Inc
Original Assignee
Prax St Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Prax St Technology Co Ltd filed Critical Prax St Technology Co Ltd
Publication of CN1649689A publication Critical patent/CN1649689A/zh
Application granted granted Critical
Publication of CN1293967C publication Critical patent/CN1293967C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/06Alloys based on chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/04Alloys based on tungsten or molybdenum
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/08Metallic material containing only metal elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Abstract

本发明是一种适用于通过热喷射装置进行沉积的抗腐蚀粉末。这粉末基本上是由约30~60重 量%的钨,约27~60重量%的铬,约1.5~6重量%的碳,总量约10~40重量%的钴加镍和附带的杂质再加熔点抑制剂组成。

Description

抗腐蚀的粉末和涂层
发明领域
本发明涉及一种用来形成具有极好的腐蚀和磨损综合性能的涂层或对象的铬-钨或钨-铬合金粉末。
技术背景
久已熟知各种硬质表面涂覆金属和合金。例如,多年来金属铬用作电镀层,以便使磨损或损坏的零件恢复到它们的原先的尺寸,增加了耐磨和耐蚀性,和减小了摩擦。可是,硬质表面镀铬有许多局限性。当零件的构形变得复杂时,采用电解沉积法来获得均匀的镀层厚度是困难的。不均匀镀层厚度需要研磨以达到成品表面构形,在表面镀铬的情况下,这是既困难又昂贵的。这些缺点是由于铬的固有的脆性和硬性造成的。此外,铬的电镀工艺有着比较低的沉积速率,并经常需要一笔相当大的用于电镀设备的基本投资。除此之外,常常必需涂敷一层或多层内涂层,或使用昂贵的表面清洗和酸洗程序,以使基质作好供铬沉积的准备。处理废电镀电解液也大大地增加了这工艺方法的成本。
一种替代的金属铬沉积方法是采用金属喷涂法,例如利用等离子体或爆炸喷枪。这方法允许将涂层涂敷在几乎任何金属表面而无须使用内涂层。其沉积速率非常高,基本投资降至最小。此外,涂层厚度可以非常精确地加以控制,以致可以使任何后期的精加工作业量保持最小。最后,过喷能很容易地加以控制和回收,从而使污染控制成为一个简单的问题。
遗憾的是,等离子体沉积铬镀覆层在环境温度下的抗磨损能力,不如电镀铬硬质镀覆层。这是因为电镀铬镀覆层的耐磨性不是元素铬的固有特性,而据信主要是在电镀过程中由于涂层中,引入了杂质和应力而造成的。等离子体沉积铬镀覆层是铬的一种较纯的形态,它缺乏电镀铬硬质镀覆层的耐磨性;但它保留了电镀铬硬质镀覆层的耐蚀性特征。
采用将碳化铬颗粒分散体引入铬基体的方法,可以生产出改善了耐磨性的涂层。这种类型的涂层可利用机械混合的粉末制成。可是,由它们制成的涂层的质量存在一些限制。等离子体和爆炸喷枪沉积二者均会导致涂层具有一种重叠的,薄的,薄片或“纵板”的多层结构。每片纵板是由用来生产涂层的粉末的单个颗粒产生的。在涂层沉积过程中二颗或二颗以上的粉末颗粒发生结合或熔合,即使有,也只有少量的。这导致有些纵板完全是铬合金,而有些完全是碳化铬,同时颗粒间的间隙受最初的铬和碳化铬粉末颗粒尺寸的控制。在US3846084中,J.F.皮尔顿讲述了一种粉末,其中所有的颗粒基本上是由铬和碳化铬的混合物组成。受该专利保护的粉末产生一种其中每块纵板是由铬和碳化铬组成的混合物形成的涂层。
硬质表面涂层也可采用封装碳化钨颗粒的烧结钴结构的方法生成。可是,这些合金用于某些应用时有着不希望有的高孔隙率并受制于其中的碳化钨含量。
含有钨,铬和镍的碳化物的合金已被用于硬质面层。例如,在US4231793中,克鲁斯克等人公开了一种合金,它含有2~15重量%的钨,25~55重量%的铬,0.5~5重量%的碳,和每种用量不超过5重量%的铁,硼,硅和磷,以及剩余部分是镍。同样地,在US4731253中,S.C.杜布伊斯公开了一种合金,它含有3~14重量%的钨,22~36重量%的铬,0.5~1.7重量%的碳,0.5~2重量%的硼,1.0~2.8重量%的,以及剩余部分是镍。
S.C.杜布伊斯在US5141571中讲述了含有钨和铬的别的硬质面层合金。这合金中钨的含量为12~20重量%,铬的含量为13~30重量%,和碳的含量为0.5~1重量%。这合金还含有铁,硼,和硅各2~5重量%,以及剩余部分是镍。这硬质面层合金含有预置的碳化钨和碳化铬的晶粒。
1982年,Cabot Corporation(Now Haynes Intl.)在其出版的书名叫“Stellite镀面合金粉末”的小册子中公布了一组称为“Stellite合金”的抗腐蚀合金(Stellite是德洛罗Stellite公司的注册商标)。公开于这份参考资料中的Stellite合金组合物含有0~15重量%的钨,19~30重量%的铬,0.1~2.5重量%的碳,高达22重量%的镍,和每种用量不超过3重量%的铁,硼,和硅,以及剩余部分是钴。
发明概述
本发明是一种适用于通过热喷射装置进行沉积的抗腐蚀粉末。这粉末基本上是由约30~60重量%的钨,约27~60重量%的铬,约1.5~6重量%的碳,总量约10~40重量%的钴加镍和附带的杂质再加熔点抑制剂组成。这抗腐蚀粉末适用于形成含有同样的组合物的涂层。
附图简述
图1是一张本发明的涂层与早期的抗腐蚀涂层相比的维氏硬度HV300的柱状图表。
图2是一张本发明的涂层与对比的抗腐蚀和抗磨损涂层相比的耐磨性数据的柱状图表。
图3是一张本发明的涂层的碳百分率与容积损失的曲线图。
发明详述
合金的极高的耐蚀性和耐磨性依赖于高浓度的铬和钨。有利地,合金含有至少约27重量%的铬。除非另有明确说明,这项技术条件适用于按重量百分率计的所有组合物。对于许多应用来说,铬含量小于27重量%的粉末具有的耐蚀性和耐磨性不足。通常,增加铬能提高耐蚀性。但是,铬的含量超过约60重量%往往会有损于涂层的耐磨性,因为这涂层变得太脆了。
同样地,钨含量至少约30重量%才能增加硬度和有助于耐磨性以及可以提高在一些环境中的耐蚀性。但是,如果钨的浓度超过60重量%,则该粉末形成的涂层具有的耐蚀性可能不足。
碳的浓度控制着由该粉末形成的涂层的硬度和磨损性能。为了使涂层具有足够的硬度,最少必需有约1.5重量%的碳。可是,如果碳含量超过6重量%,则该粉末的熔化温度变得太高;而且它会变得太难以使粉末雾化。鉴于这种情况,将碳限制在5重量%是最有利的。
基体含有钴和镍的最小总量至少约10重量%。这便于铬/钨/碳组合物的熔化,如果不管,则会形成对雾化来说具有太高熔化温度的碳化物。增加钴和镍的浓度还往往会提高热喷射粉末的沉积效率。但是,钴和镍总的浓度最好保持低于约40重量%,因为钴加镍的总含量高于上述值往往会软化涂层和限制涂层的耐磨性。此外,这合金可以只含有镍或钴,因为仅含镍(亦即约10~30%的镍)或仅含钴(亦即约10~30%的钴)的粉末可以形成具有使耐蚀性满足于特殊应用要求的涂层。但是,对于大多数的应用来说,钴和镍是可互换的。
有趣的是,铬和钨(碳化物的强烈的形成物)的组合物和约1.5~6重量%的碳,典型地并不形成其尺寸通过扫描电子显微镜可观察到的碳化物。这抗腐蚀粉末典型地具有一种缺乏平均横剖面宽度超过10μm碳化物的形态。有利地,抗腐蚀粉末缺乏平均横剖面宽度超过5μm的碳化物,而最有利的是小于2μm。意想不到的是,这粉末中的铬极大部分保留在基体中,而不是在大量的碳化物沉积物中,这看来似乎进一步对涂层的耐蚀性有利。但任凭缺乏用光学显微镜可观察到的碳化物,这粉末具有极高的耐磨性。
有利地,本发明的粉末是,借助于由各种元素按本文中所规定的比例形成的混合物的惰性气体雾化制成的。这些合金粉末典型地在温度约1600℃下熔化然后在保护介质中雾化。最有利的是这气体介质是氩气。为了促进熔化以便雾化,这合金可任选地含有像硼,硅和锰那样的熔点抑制剂。可是,过量的熔点抑制剂往往会既降低腐蚀性能又降低磨损性能。
有利地,烧结和轧碎,烧结和喷射干燥,烧结和等离子体压实均是可以用来制造粉末的方法。但是,气体雾化是制造粉末的最有效的方法。气体雾化技术典型地生产出具有粒径分布约1~10微米的粉末。
下表是“大约”宽的、中等的和窄的粉末用量的组合物和由该粉末形成的涂层。
                         表1
元素 宽的  中等的  窄的
30-60  30-55  30-50
27-60  27-55  30-50
1.5-6  1.5-6  1.5-5
熔点抑制剂的总用量  0-5  0-3
钴和镍的总用量* 10-40**  10-35  10-30
*加上附带的杂质
**加上熔点抑制剂
表2含有形成具有极高腐蚀和磨损性能的涂层之组合物的三种具体化学组成的用量范围。
表2
元素 范围1 范围2 范围3
35-45  30-40  30-40
30-40  40-50  45-50
3-5  1.5-5  3-5
钴和镍的总用量 15-25  15-25  10-15
这些涂层可以利用本发明的合金采用本领域内众所周知的方法生产出来。这些方法包括如下这些:热喷涂,等离子体喷涂,HVOF(高速氧燃料),爆炸喷枪等等;激光镀敷;和等离子体迁移弧(PTA)。
实施例
以下实例用于阐明本发明的一些优选实施方案,但并没有限制的意思。表3中的粉末采用在温度1500℃下在氩气中雾化的方法制得。对这些粉末作进一步分离,提取粒径分布10~50微米的粉末。
表3
  粉末                        组合物(重量%)
    Cr     W     Co     Ni     C
    1     40     43     13     0.5     4.0
    2     36     40     20     0     3.9
    3     48     36     12     0     4.0
    4     48     31     17     0     3.9
    5     27     47     22     0     4.5
    6     45     34     0.5     19     1.9
    7     45     34     0     18     3.6
    A     28     4.5     61     2.5     1.3
    B     3.8     81     10     0     5.2
注:粉末A和B表示比较实例。粉末A表示Stellite6号组合物和粉末B表示WC抗磨损粉末。
然后利用JP——5000HVOF系统遵照以下条件,将表3中的粉末喷镀在钢基质上:氧气流量1900scfh(标英尺3/小时)(53.8m3/h),煤油流量5.7gph(加仑/小时)(21.6l/h),载气流量22scfh(0.62m3/h),粉末进料速度80g/min.,喷射距离15英寸(38.1cm),喷枪筒体长度8英寸(20.3cm),从而形成表4的涂层。
表4
    粉末     HV300     沉积效率(%)
    1     840     46
    2     1040     58
    3     950     55
    4     860     60
    5     950     51
    6     750     -
    7     1000     51
    A     600     66
    B     1240     40
表4中的数据阐明了沉积效率比粉末B的典型的WC粉末要好。此外,图1的柱状图表表明利用本发明的粉末能得到极高的硬度。
通过多种试验测得的耐磨性代表了潜在的不同磨损应用。这些试验方法包括以下方法:试验方法ASTM G-65(干砂/橡胶轮);和试验方法ASTMG-76(利用纯氧化铝进行30度角和90度角的浸蚀)。对于平均摩擦试验,按照圆盘试验法在10N(牛顿)载荷作用下测量滚珠(钢质)来确定摩擦系数。下表5包括了采用这些试验方法产生的数据。
表5
  粉末 砂的容积损失(mm3/1000转)   浸蚀30度角(μm/g)   浸蚀90度角(μm/g)   摩擦系数平均值
    1     4.0     21     121    -
    2     5.5     30.3     107     0.62
    3     3.0     22     115     -
    4     5.4     26.9     103     0.64
    5     4.0     25     115     -
    6     19.8     35.8     120     0.69
    7     6.7     29.6     97     0.59
    A     56.5     32.6     69     0.69
    B     0.9     11     75     0.61
图2的柱状图表阐明了所生成的涂层能得到极好的耐喷砂磨损性。图3标出了碳的百分率与图2的涂层的容积损失百分率之间的关系曲线。这看来似乎说明在碳化物相的容积百分率与耐磨性之间有着强烈的相关性。
将粉末放在盐酸(HCl)和磷酸(H3PO4)的酸类中,在100℃下加热1小时,以确定因加速化学侵蚀造成的重量损失。在测量了重量损失之后,将粉末放在硝酸(HNO3)中,再在100℃下加热1小时,以试验第二次高腐蚀环境。下表6提供了在第一次加热浸提,第二次加热浸提之后测得的重量损失百分率,并提供了总的重量损失百分率。
表6
    粉末     腐蚀%第一次     腐蚀%第二次     总计
    2     2.4     1.8     4.1
    4     4.5     1.9     6.3
    6     10.0     3.9     13.6
    7     4.6     1.8     6.3
    A     90.6     47.0     95.0
    B     8.6     <1.0     8.6
这些粉末具有比Stellite 6粉末--一种众所周知的具有极好耐蚀性的组合物--更好的耐蚀性。
总之,本发明提供了一种能形成具有均衡的综合性能的涂层的粉末。这些涂层具有常规粉末不能达到的综合的耐磨和耐蚀性。此外,这些涂层能有利地抑制大量的含铬碳化物的生成,从而进一步改善了耐磨性--这涂层对啮合表面有较小的侵蚀性。
本发明的其它的变更和修改,对于本领域的那些技术人员来说是显而易见。只要不超出权利要求所规定的,本发明不受限制。

Claims (10)

1.一种适用于通过热喷射装置进行沉积的抗腐蚀粉末,这粉末基本上是由约30~60重量%的钨,约27~60重量%的铬,约1.5~6重量%的碳,总量约10~40重量%的钴加镍和附带的杂质再加熔点抑制剂组成。
2.权利要求1的抗腐蚀粉末,其中该粉末具有一种缺乏平均横剖面宽度超过10μm碳化物的形态。
3.一种适用于通过热喷射装置进行沉积的抗腐蚀粉末,这粉末基本上是由约30~50重量%的钨,约30~50重量%的铬,约1.5~5重量%的碳,总量约10~30重量%的钴加镍和附带的杂质和0~3重量%的熔点抑制剂组成。
4.权利要求3的抗腐蚀粉末,其中该粉末含有约10~30重量%的钴。
5.权利要求3的抗腐蚀粉末,其中该粉末含有约10~30重量%的镍。
6.权利要求3的抗腐蚀粉末,其中该粉末具有一种缺乏平均横剖面宽度超过10μm碳化物的形态。
7.权利要求3的抗腐蚀粉末,其中该粉末含有约35~45重量%的钨,约30~40重量%的铬,约3~5重量%的碳,和钴加镍的总量约为15~25重量%。
8.权利要求3的抗腐蚀粉末,其中该粉末含有约30~40重量%的钨,约40~50重量%的铬,约1.5~5重量%的碳,和钴加镍的总量约为15~25重量%。
9.权利要求3的抗腐蚀粉末,其中该粉末含有约30~40重量%的钨,约45~50重量%的铬,约3~5重量%的碳,和钴加镍的总量约为10~15重量%。
10.一种具有良好耐磨性的抗腐蚀涂层,该涂层基本上是由约30~60重量%的钨,约27~60重量%的铬,约1.5~6重量%的碳,总量约10~40重量%的钴加镍和附带的杂质以及熔点抑制剂组成。
CNB038098148A 2002-03-01 2003-02-19 抗腐蚀的粉末和涂层 Expired - Fee Related CN1293967C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/087,093 US6503290B1 (en) 2002-03-01 2002-03-01 Corrosion resistant powder and coating
US10/087,093 2002-03-01

Publications (2)

Publication Number Publication Date
CN1649689A true CN1649689A (zh) 2005-08-03
CN1293967C CN1293967C (zh) 2007-01-10

Family

ID=22203069

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB038098148A Expired - Fee Related CN1293967C (zh) 2002-03-01 2003-02-19 抗腐蚀的粉末和涂层

Country Status (11)

Country Link
US (1) US6503290B1 (zh)
EP (1) EP1485220B1 (zh)
JP (1) JP4464685B2 (zh)
CN (1) CN1293967C (zh)
AU (1) AU2003211110A1 (zh)
BR (1) BR0308057A (zh)
CA (1) CA2477853C (zh)
ES (1) ES2732785T3 (zh)
MX (1) MXPA04008463A (zh)
TW (1) TWI258509B (zh)
WO (1) WO2003074216A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101935816A (zh) * 2010-09-17 2011-01-05 江西恒大高新技术股份有限公司 一种垃圾焚烧炉专用药芯电弧喷涂丝材
CN102416532A (zh) * 2010-09-28 2012-04-18 钴碳化钨硬质合金公司 耐腐蚀且耐磨损的包覆层
CN101736279B (zh) * 2008-11-05 2012-07-18 沈阳黎明航空发动机(集团)有限责任公司 一种超音速火焰喷涂自润滑耐磨涂层工艺
CN103998164A (zh) * 2011-12-05 2014-08-20 霍加纳斯股份有限公司 用于高速氧燃料喷涂的新材料和由其制成的产品
CN113684438A (zh) * 2021-08-31 2021-11-23 安徽工业大学 一种高强度高硬度表面防护用喷涂粉末及其应用方法

Families Citing this family (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6391005B1 (en) * 1998-03-30 2002-05-21 Agilent Technologies, Inc. Apparatus and method for penetration with shaft having a sensor for sensing penetration depth
DE10057832C1 (de) * 2000-11-21 2002-02-21 Hartmann Paul Ag Blutanalysegerät
US8641644B2 (en) * 2000-11-21 2014-02-04 Sanofi-Aventis Deutschland Gmbh Blood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means
US9226699B2 (en) * 2002-04-19 2016-01-05 Sanofi-Aventis Deutschland Gmbh Body fluid sampling module with a continuous compression tissue interface surface
WO2002100460A2 (en) * 2001-06-12 2002-12-19 Pelikan Technologies, Inc. Electric lancet actuator
US7981056B2 (en) * 2002-04-19 2011-07-19 Pelikan Technologies, Inc. Methods and apparatus for lancet actuation
AU2002348683A1 (en) * 2001-06-12 2002-12-23 Pelikan Technologies, Inc. Method and apparatus for lancet launching device integrated onto a blood-sampling cartridge
US7041068B2 (en) * 2001-06-12 2006-05-09 Pelikan Technologies, Inc. Sampling module device and method
US7316700B2 (en) * 2001-06-12 2008-01-08 Pelikan Technologies, Inc. Self optimizing lancing device with adaptation means to temporal variations in cutaneous properties
US8337419B2 (en) * 2002-04-19 2012-12-25 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US20070100255A1 (en) * 2002-04-19 2007-05-03 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
US9795747B2 (en) 2010-06-02 2017-10-24 Sanofi-Aventis Deutschland Gmbh Methods and apparatus for lancet actuation
US7331931B2 (en) * 2002-04-19 2008-02-19 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7229458B2 (en) * 2002-04-19 2007-06-12 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7175642B2 (en) * 2002-04-19 2007-02-13 Pelikan Technologies, Inc. Methods and apparatus for lancet actuation
US7648468B2 (en) * 2002-04-19 2010-01-19 Pelikon Technologies, Inc. Method and apparatus for penetrating tissue
US8360992B2 (en) * 2002-04-19 2013-01-29 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8267870B2 (en) * 2002-04-19 2012-09-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for body fluid sampling with hybrid actuation
US7976476B2 (en) * 2002-04-19 2011-07-12 Pelikan Technologies, Inc. Device and method for variable speed lancet
US8702624B2 (en) * 2006-09-29 2014-04-22 Sanofi-Aventis Deutschland Gmbh Analyte measurement device with a single shot actuator
US7291117B2 (en) * 2002-04-19 2007-11-06 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7909778B2 (en) * 2002-04-19 2011-03-22 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7708701B2 (en) * 2002-04-19 2010-05-04 Pelikan Technologies, Inc. Method and apparatus for a multi-use body fluid sampling device
US9795334B2 (en) * 2002-04-19 2017-10-24 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7892183B2 (en) * 2002-04-19 2011-02-22 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
US7371247B2 (en) * 2002-04-19 2008-05-13 Pelikan Technologies, Inc Method and apparatus for penetrating tissue
US8579831B2 (en) * 2002-04-19 2013-11-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7232451B2 (en) * 2002-04-19 2007-06-19 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US9314194B2 (en) * 2002-04-19 2016-04-19 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US7491178B2 (en) * 2002-04-19 2009-02-17 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7297122B2 (en) * 2002-04-19 2007-11-20 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7901362B2 (en) * 2002-04-19 2011-03-08 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US20070142748A1 (en) * 2002-04-19 2007-06-21 Ajay Deshmukh Tissue penetration device
US8221334B2 (en) * 2002-04-19 2012-07-17 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7674232B2 (en) 2002-04-19 2010-03-09 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8372016B2 (en) * 2002-04-19 2013-02-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for body fluid sampling and analyte sensing
US7547287B2 (en) * 2002-04-19 2009-06-16 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8784335B2 (en) * 2002-04-19 2014-07-22 Sanofi-Aventis Deutschland Gmbh Body fluid sampling device with a capacitive sensor
US20040067481A1 (en) * 2002-06-12 2004-04-08 Leslie Leonard Thermal sensor for fluid detection
EP1578286A4 (en) * 2002-12-13 2009-01-14 Pelikan Technologies Inc METHOD AND DEVICE FOR MEASURING ANALYTES
US8574895B2 (en) 2002-12-30 2013-11-05 Sanofi-Aventis Deutschland Gmbh Method and apparatus using optical techniques to measure analyte levels
WO2004060174A2 (en) * 2002-12-31 2004-07-22 Pelikan Technologies Inc. Method and apparatus for loading penetrating members
WO2004103147A2 (en) * 2003-05-02 2004-12-02 Pelikan Technologies, Inc. Method and apparatus for a tissue penetrating device user interface
ES2347248T3 (es) * 2003-05-30 2010-10-27 Pelikan Technologies Inc. Procedimiento y aparato para la inyeccion de fluido.
US7850621B2 (en) * 2003-06-06 2010-12-14 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
WO2006001797A1 (en) * 2004-06-14 2006-01-05 Pelikan Technologies, Inc. Low pain penetrating
EP1635702A4 (en) * 2003-06-11 2009-01-21 Pelikan Technologies Inc METHOD AND APPARATUS FOR SAMPLING BODY LIQUID AND ANALYTE DETECTION
WO2005033659A2 (en) 2003-09-29 2005-04-14 Pelikan Technologies, Inc. Method and apparatus for an improved sample capture device
US9351680B2 (en) * 2003-10-14 2016-05-31 Sanofi-Aventis Deutschland Gmbh Method and apparatus for a variable user interface
US8668656B2 (en) 2003-12-31 2014-03-11 Sanofi-Aventis Deutschland Gmbh Method and apparatus for improving fluidic flow and sample capture
US7822454B1 (en) * 2005-01-03 2010-10-26 Pelikan Technologies, Inc. Fluid sampling device with improved analyte detecting member configuration
US20080312555A1 (en) * 2004-02-06 2008-12-18 Dirk Boecker Devices and methods for glucose measurement using rechargeable battery energy sources
US8828203B2 (en) * 2004-05-20 2014-09-09 Sanofi-Aventis Deutschland Gmbh Printable hydrogels for biosensors
JP5222553B2 (ja) * 2004-05-28 2013-06-26 プラックセアー エス.ティ.テクノロジー、 インコーポレイテッド 耐摩耗性合金粉末および被覆
US9775553B2 (en) * 2004-06-03 2017-10-03 Sanofi-Aventis Deutschland Gmbh Method and apparatus for a fluid sampling device
EP1765194A4 (en) 2004-06-03 2010-09-29 Pelikan Technologies Inc METHOD AND APPARATUS FOR MANUFACTURING A DEVICE FOR SAMPLING LIQUIDS
US7186092B2 (en) 2004-07-26 2007-03-06 General Electric Company Airfoil having improved impact and erosion resistance and method for preparing same
US20060167382A1 (en) * 2004-12-30 2006-07-27 Ajay Deshmukh Method and apparatus for storing an analyte sampling and measurement device
US20080214917A1 (en) * 2004-12-30 2008-09-04 Dirk Boecker Method and apparatus for analyte measurement test time
EP1835848A4 (en) * 2004-12-30 2009-07-29 Pelikan Technologies Inc METHOD AND DEVICE FOR ANALYTE MEASUREMENT TEST TIME
US8652831B2 (en) * 2004-12-30 2014-02-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for analyte measurement test time
US20060184065A1 (en) * 2005-02-10 2006-08-17 Ajay Deshmukh Method and apparatus for storing an analyte sampling and measurement device
US20070191736A1 (en) * 2005-10-04 2007-08-16 Don Alden Method for loading penetrating members in a collection device
US20070276290A1 (en) * 2005-10-04 2007-11-29 Dirk Boecker Tissue Penetrating Apparatus
US20100145158A1 (en) * 2005-10-06 2010-06-10 Hamilton Scott E Pod Connected Data Monitoring System
US8603930B2 (en) 2005-10-07 2013-12-10 Sulzer Metco (Us), Inc. High-purity fused and crushed zirconia alloy powder and method of producing same
US8507105B2 (en) * 2005-10-13 2013-08-13 Praxair S.T. Technology, Inc. Thermal spray coated rolls for molten metal baths
US7799384B2 (en) * 2005-11-02 2010-09-21 Praxair Technology, Inc. Method of reducing porosity in thermal spray coated and sintered articles
US8524375B2 (en) * 2006-05-12 2013-09-03 Praxair S.T. Technology, Inc. Thermal spray coated work rolls for use in metal and metal alloy sheet manufacture
US8394484B2 (en) 2006-05-26 2013-03-12 Praxair Technology, Inc. High purity zirconia-based thermally sprayed coatings
US8465602B2 (en) 2006-12-15 2013-06-18 Praxair S. T. Technology, Inc. Amorphous-nanocrystalline-microcrystalline coatings and methods of production thereof
US20090209883A1 (en) * 2008-01-17 2009-08-20 Michael Higgins Tissue penetrating apparatus
US9386944B2 (en) * 2008-04-11 2016-07-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for analyte detecting device
US20100272982A1 (en) * 2008-11-04 2010-10-28 Graeme Dickinson Thermal spray coatings for semiconductor applications
US9375169B2 (en) * 2009-01-30 2016-06-28 Sanofi-Aventis Deutschland Gmbh Cam drive for managing disposable penetrating member actions with a single motor and motor and control system
US8965476B2 (en) 2010-04-16 2015-02-24 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8906130B2 (en) 2010-04-19 2014-12-09 Praxair S.T. Technology, Inc. Coatings and powders, methods of making same, and uses thereof
TW201209957A (en) 2010-05-28 2012-03-01 Praxair Technology Inc Substrate supports for semiconductor applications
US20120177908A1 (en) 2010-07-14 2012-07-12 Christopher Petorak Thermal spray coatings for semiconductor applications
US20120196139A1 (en) 2010-07-14 2012-08-02 Christopher Petorak Thermal spray composite coatings for semiconductor applications
US11298251B2 (en) 2010-11-17 2022-04-12 Abbott Cardiovascular Systems, Inc. Radiopaque intraluminal stents comprising cobalt-based alloys with primarily single-phase supersaturated tungsten content
FI123710B (fi) * 2011-03-28 2013-09-30 Teknologian Tutkimuskeskus Vtt Termisesti ruiskutettu pinnoite
BRPI1101402A2 (pt) * 2011-03-29 2013-06-04 Mahle Metal Leve Sa elemento deslizante
US9724494B2 (en) 2011-06-29 2017-08-08 Abbott Cardiovascular Systems, Inc. Guide wire device including a solderable linear elastic nickel-titanium distal end section and methods of preparation therefor
CN104005018A (zh) * 2014-05-29 2014-08-27 耿荣献 高抗磨耐火材料模具表面的耐磨涂层工艺
US10801097B2 (en) 2015-12-23 2020-10-13 Praxair S.T. Technology, Inc. Thermal spray coatings onto non-smooth surfaces
RU2636210C2 (ru) * 2016-02-15 2017-11-21 Общество С Ограниченной Ответственностью "Технологические Системы Защитных Покрытий" (Ооо "Тсзп") Состав коррозионно-стойкого покрытия для защиты технологического нефтехимического оборудования
US20210106729A1 (en) * 2019-10-14 2021-04-15 Abbott Cardiovascular Systems, Inc. Methods for manufacturing radiopaque intraluminal stents comprising cobalt-based alloys with supersaturated tungsten content

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2124020A (en) 1936-07-20 1938-07-19 Roy T Wirth Metal alloy
DE1198169B (de) * 1963-04-06 1965-08-05 Deutsche Edelstahlwerke Ag Karbidhaltiges Pulvergemisch zum Aufspritzen und Aufschweissen von Metallueberzuegen
US4123266A (en) * 1973-03-26 1978-10-31 Cabot Corporation Sintered high performance metal powder alloy
US3846084A (en) 1973-08-15 1974-11-05 Union Carbide Corp Chromium-chromium carbide powder and article made therefrom
DE2829702C3 (de) 1978-07-06 1982-02-18 Metallgesellschaft Ag, 6000 Frankfurt Nickel-Basis-Legierung
EP0009881B2 (en) 1978-10-03 1987-07-08 Deloro Stellite Limited Cobalt-containing alloys
US4224382A (en) 1979-01-26 1980-09-23 Union Carbide Corporation Hard facing of metal substrates
US4626476A (en) * 1983-10-28 1986-12-02 Union Carbide Corporation Wear and corrosion resistant coatings applied at high deposition rates
US4519840A (en) 1983-10-28 1985-05-28 Union Carbide Corporation High strength, wear and corrosion resistant coatings
US4731253A (en) 1987-05-04 1988-03-15 Wall Colmonoy Corporation Wear resistant coating and process
FI83935C (fi) 1989-05-24 1991-09-25 Outokumpu Oy Saett att behandla och framstaella material.
US4999255A (en) 1989-11-27 1991-03-12 Union Carbide Coatings Service Technology Corporation Tungsten chromium carbide-nickel coatings for various articles
US5030519A (en) 1990-04-24 1991-07-09 Amorphous Metals Technologies, Inc. Tungsten carbide-containing hard alloy that may be processed by melting
US5141571A (en) * 1991-05-07 1992-08-25 Wall Colmonoy Corporation Hard surfacing alloy with precipitated bi-metallic tungsten chromium metal carbides and process
US5419976A (en) * 1993-12-08 1995-05-30 Dulin; Bruce E. Thermal spray powder of tungsten carbide and chromium carbide
US5514328A (en) 1995-05-12 1996-05-07 Stoody Deloro Stellite, Inc. Cavitation erosion resistent steel
US5611306A (en) 1995-08-08 1997-03-18 Fuji Oozx Inc. Internal combustion engine valve
SE9602835D0 (sv) * 1996-07-22 1996-07-22 Hoeganaes Ab Process for the preparation of an iron-based powder
US5863618A (en) 1996-10-03 1999-01-26 Praxair St Technology, Inc. Method for producing a chromium carbide-nickel chromium atomized powder
US6057045A (en) * 1997-10-14 2000-05-02 Crucible Materials Corporation High-speed steel article
US6004372A (en) 1999-01-28 1999-12-21 Praxair S.T. Technology, Inc. Thermal spray coating for gates and seats

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101736279B (zh) * 2008-11-05 2012-07-18 沈阳黎明航空发动机(集团)有限责任公司 一种超音速火焰喷涂自润滑耐磨涂层工艺
CN101935816A (zh) * 2010-09-17 2011-01-05 江西恒大高新技术股份有限公司 一种垃圾焚烧炉专用药芯电弧喷涂丝材
CN102416532A (zh) * 2010-09-28 2012-04-18 钴碳化钨硬质合金公司 耐腐蚀且耐磨损的包覆层
CN103998164A (zh) * 2011-12-05 2014-08-20 霍加纳斯股份有限公司 用于高速氧燃料喷涂的新材料和由其制成的产品
CN113684438A (zh) * 2021-08-31 2021-11-23 安徽工业大学 一种高强度高硬度表面防护用喷涂粉末及其应用方法

Also Published As

Publication number Publication date
US6503290B1 (en) 2003-01-07
CA2477853C (en) 2007-05-01
TW200303927A (en) 2003-09-16
JP2005519195A (ja) 2005-06-30
TWI258509B (en) 2006-07-21
EP1485220B1 (en) 2019-04-17
EP1485220A1 (en) 2004-12-15
BR0308057A (pt) 2004-12-28
JP4464685B2 (ja) 2010-05-19
ES2732785T3 (es) 2019-11-25
CN1293967C (zh) 2007-01-10
WO2003074216A1 (en) 2003-09-12
MXPA04008463A (es) 2005-07-13
EP1485220A4 (en) 2011-03-09
CA2477853A1 (en) 2003-09-12
AU2003211110A1 (en) 2003-09-16

Similar Documents

Publication Publication Date Title
CN1293967C (zh) 抗腐蚀的粉末和涂层
KR950002049B1 (ko) 내마모성 질화티타늄 피복층과 이것의 적용방법
CA2845506C (en) Cermet powder
EP0682577B1 (en) Spray powder for hardfacing and part with hardfacing
US4526618A (en) Abrasion resistant coating composition
CN1019642B (zh) 氮化钛耐磨涂层及其喷涂方法
CA2644533A1 (en) Solid polymer type fuel cell separator and method of production of same
EP2413006B1 (en) Piston ring
EP1936002A1 (en) Environmentally friendly wear resistant coating
CA2567089C (en) Wear resistant alloy powders and coatings
CN1637163A (zh) 热喷涂粉末
US20050132843A1 (en) Chrome composite materials
EP2402474B1 (en) Piston ring
US5837327A (en) Method for producing a TiB2 -based coating
US4678511A (en) Spray micropellets
CN111843277A (zh) 复合焊条和相关包覆制品
JP2006176818A (ja) 溶射用粉末
JP2002173758A (ja) 溶射用粉末およびそれを用いて溶射皮膜された部品
US4588606A (en) Abrasion resistant coating and method for producing the same
CN115198225B (zh) 一种液料等离子喷涂硬质合金-陶瓷梯度复合自润滑涂层的制备方法
Arensburger et al. Coatings deposited by the high-velocity flame spraying method
CN115608977A (zh) 一种耐磨涂层用铁基非晶粉末及其制备方法和耐磨非晶涂层
JP2005154859A (ja) 被膜およびその製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20070110

Termination date: 20210219

CF01 Termination of patent right due to non-payment of annual fee