CN1599808A - 电解碱金属氯化物水溶液的方法 - Google Patents

电解碱金属氯化物水溶液的方法 Download PDF

Info

Publication number
CN1599808A
CN1599808A CNA028240464A CN02824046A CN1599808A CN 1599808 A CN1599808 A CN 1599808A CN A028240464 A CNA028240464 A CN A028240464A CN 02824046 A CN02824046 A CN 02824046A CN 1599808 A CN1599808 A CN 1599808A
Authority
CN
China
Prior art keywords
cell
alkali metal
temperature
chloride solution
alkali
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA028240464A
Other languages
English (en)
Other versions
CN1327033C (zh
Inventor
A·布兰
F·格斯特曼恩
H·-D·平特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Covestro Deutschland AG
Bayer Intellectual Property GmbH
Original Assignee
Bayer MaterialScience AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer MaterialScience AG filed Critical Bayer MaterialScience AG
Publication of CN1599808A publication Critical patent/CN1599808A/zh
Application granted granted Critical
Publication of CN1327033C publication Critical patent/CN1327033C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/34Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis
    • C25B1/46Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis in diaphragm cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation
    • C25B15/021Process control or regulation of heating or cooling
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms

Abstract

一种按照以碱金属氢氧化物,特别是氢氧化钠水溶液作为阴极电解液的隔膜方法而电解碱金属氯化物特别是氯化钠水溶液的方法,其特征在于,调节阳极半电池中的碱金属氯化物溶液的温度和/或阳极半电池中的碱金属氯化物溶液的体积流量,以使流入阴极半电池的碱金属氢氧化物溶液的温度和由阴极半电池流出的碱金属氢氧化物溶液的温度之间的差不超过15℃。

Description

电解碱金属氯化物水溶液的方法
本发明涉及一种电解碱金属水溶液的方法。
采用气体扩散电极作为耗氧阴极以通过电解碱金属氯化物溶液如氯化钠溶液来制备氯和碱金属氢氧化物水溶液如氢氧化钠溶液(下面也称为苛性钠)是已知的。这里电解槽由阳极半电池和阴极半电池组成,并且该两半电池是由阳离子交换膜分隔开。阴极半电池由电解质室构成,该室通过气体扩散电极与气室分隔开。电解质室装满碱金属氢氧化物溶液。向气室供入氧、空气或富氧空气。含碱金属氯化物的溶液存在于阳极半电池中。
从EP-A 1067215中已知一种在应用气体扩散电极作为耗氧阴极情况下电解碱金属氯化物水溶液的方法,在该方法中,在阴极半电池的电解质室中的碱金属氢氧化物溶液的流速至少为1cm/s。按照EP-A1067215,该碱金属氢氧化物溶液的高流速起到了良好的混合作用,以达到电解质室中的碱金属氢氧化物的浓度的均匀性。与此相反,在不用气体扩散电极作为耗氧阴极的碱金属氯化物电解中,不需采用高的流速,因为电解运行过程中在阴极形成的氢对碱金属氢氧化物溶液有足够的混合作用。
EP-A 1067215中已知的方法的缺点在于,电流产率随碱金属氢氧化物溶液的流速增加而下降。另外,在阴极半电池中碱金属氢氧化物溶液的温度随流速的下降而剧烈上升。
本发明的目的在于提供一种电解碱金属氯化物水溶液的可简单操作的方法,该方法可在尽可能低的流速下运行,同时不会使电解槽或电解装置的性能,特别是由于阴极半电池中的碱金属氢氧化物溶液的过高温度而恶化。
本发明的目的通过权利要求1的特征部分达到。
由此,本发明的目的是提供一种按照以碱金属氢氧化物,特别是氢氧化钠水溶液作为阴极电解液的隔膜方法而电解碱金属氯化物特别是氯化钠水溶液的方法,在该方法中,调节阳极半电池中的碱金属氯化物溶液的温度和/或阳极半电池中的碱金属氯化物溶液的体积流量,以使流入阴极半电池的碱金属氢氧化物溶液的温度和由阴极半电池流出的碱金属氢氧化物溶液的温度之间的差不超过15℃。
惊人地发现,按照本发明方法,借助于阳极半电池中的碱金属氯化物溶液的温度,以及只要存在阳极电解液循环,即碱金属氯化物溶液的循环,还借助于该碱金属氯化物溶液的体积流量,就可成功地调节阴极半电池中碱金属氢氧化物溶液的温度。该两措施之一或两措施的组合,就可克服碱金属氢氧化物溶液的变热,特别是在碱金属氢氧化物溶液的流速小于1cm/s情况下也可实现。此外,碱金属氢氧化物溶液的进出之间的温差大于15℃,优选大于10℃是不希望的,因为在进出之间的大的温度梯度会伴随产生碱金属氢氧化物溶液的大的电导率梯度。
在阳极半电池中碱金属氯化物溶液的给定体积流量和给定流出温度下借助于碱金属氯化物溶液的较低流入温度或在碱金属氯化物溶液的给定的流入温度和给定的流出温度下借助于碱金属氯化物溶液的较高体积流量即可在电解过程中实现阴极半电池中的碱金属氢氧化物溶液的冷却,以使阴极半电池中的碱金属氢氧化物溶液不超过所需的温度。两种手段可彼此组合。碱金属氯化物溶液的体积流量可借助碱金属氯化物溶液的循环泵送量来调节。
本发明方法的优点在于,碱金属氢氧化物溶液的温度不必通过阴极半电池中至少是1cm/s的高流速来调节。因为随较高流速会使电流产率下降,所以在小于1cm/s的低流速下运行是特别有利的。
或者,碱金属氢氧化物溶液的温度调节也可借助于阴极半电池前设置的热交换器来实现。但是,这在本发明方法中是不需要的,因此节省了附加的设备投资,这种投资是由安置热交换器产生的。
在本发明的一个优选实施方案中,碱金属氯化物溶液从阳极半电池流出时的温度和碱金属氢氧化物溶液从阴极半电池流出时的温度为80-100℃,优选85-95℃。
另一实施方案是优选的,该方案中阴极半电池中的碱金属氢氧化物溶液的流速小于1cm/s。
本发明方法优选在采用气体扩散电极作为阴极的条件下运行。作为阳极电解液的碱金属氯化物溶液和作为阴极电解液的碱金属氢氧化物溶液由碱金属如钠或钾本身得到。优选是该碱金属氯化物溶液是氯化钠溶液,碱金属氢氧化物溶液是氢氧化钠溶液。
在阳极半电池中的碱金属氯化物溶液的体积流量与电解装置运行中的电流密度有关。在电流密度为2.5kA/m2时,每个半电池的体积流量为0.02-0.1m3/h。在电流密度为4kA/cm2时,其体积流量为0.11-0.25m3/h。
本发明方法可以以2-8kA/m2的电流密度运行。
实施例:
相应于下述实施例的碱金属氯化物水溶液的电解用由15个电解槽组成的电解装置进行。在各电解槽中应用气体扩散电极作为阴极,其中该气体扩散电极与离子交换膜之间的距离为3mm,离子交换膜和气体扩散电极之间的间隙长度为206cm。采用钛阳极作为阳极,钛阳极上涂有钌-铱-氧化物。阳极面积为2.5m2。采用Dupont公司的NafionNX 981作为离子交换膜。由阳极半电池流出的氯化钠溶液(NaCl)的浓度为210g/l。在阴极半电池中的苛性钠(NaOH)的浓度为30-33重量%。如在下述实施例中不明确给出,则其电流密度为2.45kA/m2,苛性钠的体积流量为3m3/h。该流量相应于离子交换膜和气体扩散电极之间间隙中的苛性钠的流速为0.85cm/s。
实施例的结果综述于表1、2和3。
实施例1
在上述条件下,阳极半电池中的氯化钠溶液的体积流量选为1.0m3/h。氯化钠溶液的温度在流入时为50℃,流出时为85℃。由此,阳极半电池的流入和流出之间的温差为35℃。苛性钠以80℃流入阴极半电极,以85℃流出。电流产率为96.20%。
实施例2
在上述条件下,阳极半电池中的氯化钠溶液的体积流量选为1.1m3/h。氯化钠溶液的温度在流入时为50℃,流出时为86℃。由此,阳极半电池的流入和流出之间的温差为36℃。苛性钠以79℃流入阴极半电池,以85℃流出。电流产率为96.09%。
实施例3
在上述条件下,阳极半电池中的氯化钠溶液的体积流量选为1.2m3/h。氯化钠溶液的温度在流入时为51℃,流出时为85℃。由此,阳极半电池的流入和流出之间的温差为34℃。苛性钠以76℃流入阴极半电池,以83℃流出。电流产率为96.11%。
实施例4
在上述条件下,阳极半电池中的氯化钠溶液的体积流量选为1.3m3/h。氯化钠溶液的温度在流入时为55℃,流出时为86℃。由此,阳极半电池的流入和流出之间的温差为31℃。苛性钠以77℃流入阴极半电池,以83℃流出。电流产率为95.63%。
实施例5(对比例)
在上述条件下,阳极半电池中的氯化钠溶液的体积流量选为1.3m3/h。电流密度为2.5kA/m2。氯化钠溶液的温度在流入时为85℃,流出时为86℃。由此阳极半电池的流入和流出之间的温差为1℃。在阴极半电池中的苛性钠的体积流量为10.5m3/h,相应于苛性钠在离子交换膜和气体扩散电极之间的间隙中的流速为2.95cm/s。苛性钠以80℃流入阴极半电池,以86℃流出。电流产率为95.4%。
实施例6
电流密度为4kA/m2。阳极半电池的氯化钠的体积流量选为2.08m3/h。氯化钠溶液的温度在流入时为77℃,流出时为86℃。由此,阳极半电池的流入和流出之间的温差为9℃。阴极半电池中的苛性钠的体积流量为3m3/h,相应于苛性钠在离子交换膜和气体扩散电极之间的间隙中的流速为0.85m/s。苛性钠以82℃流入阴极半电池,以87℃流出。电流产率为96.1%。这表明,本发明方法也可在较高电流密度下运行并具有良好的电流产率。
表1:阳极半电池中的测量值
实施例     NaCl流入温度[℃]     NaCl流出温度[℃]   NaCl温差[℃]     NaCl体积流量[m3/h]
    1     50     85     35     1
    2     50     86     36     1.1
    3     51     85     34     1.2
    4     55     86     31     1.3
    5     85     86     1     1.3
    6     77     86     9     2.08
表2:阴极半电池中的测量值
实施例     Na0H流入温度[℃]     NaOH流出温度[℃]   NaOH温差[℃]     NaOH体积流量[m3/h]
    1     80     85     5     3
    2     79     85     6     3
    3     76     83     7     3
    4     77     83     6     3
    5     80     86     6     10.5
    6     82     87     5     3
表3:电流密度和电流产率
  实施例     电流密度[kA/m2]     电流产率[%]
    1     2.45     96.20
    2     2.45     96.09
    3     2.45     96.11
    4     2.45     95.63
    5     2.5     95.40
    6     4.0     96.10

Claims (4)

1.一种按照以碱金属氢氧化物、特别是氢氧化钠水溶液作为阴极电解液的隔膜方法而电解碱金属氯化物、特别是氯化钠水溶液的方法,其特征在于,调节阳极半电池中的碱金属氯化物溶液的温度和/或阳极半电池中的碱金属氯化物溶液的体积流量,以使流入阴极半电池的碱金属氢氧化物溶液的温度和由阴极半电池流出的碱金属氢氧化物溶液的温度之间的差不超过15℃。
2.权利要求1的方法,其特征在于,碱金属氯化物溶液从阳极半电池流出时的温度和碱金属氢氧化物溶液从阴极半电池流出时的温度为80-100℃,优选85-95℃。
3.权利要求1或2之一的方法,其特征在于,阴极半电池中碱金属氢氧化物的流速小于1cm/s。
4.权利要求1-3之一的方法,其特征在于,应用气体扩散电极作为阴极。
CNB028240464A 2001-12-05 2002-11-22 电解碱金属氯化物水溶液的方法 Expired - Lifetime CN1327033C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10159708.8 2001-12-05
DE10159708A DE10159708A1 (de) 2001-12-05 2001-12-05 Alkalichlorid-Elektrolysezelle mit Gasdiffusionselektroden

Publications (2)

Publication Number Publication Date
CN1599808A true CN1599808A (zh) 2005-03-23
CN1327033C CN1327033C (zh) 2007-07-18

Family

ID=7708113

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB028240464A Expired - Lifetime CN1327033C (zh) 2001-12-05 2002-11-22 电解碱金属氯化物水溶液的方法

Country Status (12)

Country Link
US (1) US6890418B2 (zh)
EP (1) EP1453990B1 (zh)
JP (1) JP4498740B2 (zh)
KR (1) KR20050044700A (zh)
CN (1) CN1327033C (zh)
AR (1) AR037637A1 (zh)
AU (1) AU2002363856A1 (zh)
DE (1) DE10159708A1 (zh)
ES (1) ES2448399T3 (zh)
HU (1) HUP0600453A2 (zh)
TW (1) TW200304502A (zh)
WO (1) WO2003048419A2 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102459709A (zh) * 2009-05-26 2012-05-16 氯工程公司 安装有气体扩散电极的离子交换膜电解槽
CN102459708A (zh) * 2009-05-26 2012-05-16 氯工程公司 安装有气体扩散电极的离子交换膜电解槽
CN108419139A (zh) * 2018-02-05 2018-08-17 李秀荣 互联网大数据弹幕处理系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005024068A (ja) * 2003-07-02 2005-01-27 Toyo Tanso Kk ハロゲンガス又はハロゲン含有ガスの供給装置
DE10335184A1 (de) * 2003-07-30 2005-03-03 Bayer Materialscience Ag Elektrochemische Zelle
KR20220017587A (ko) 2020-08-05 2022-02-14 한국과학기술연구원 반응물 유체를 재순환할 수 있는 전기화학장치

Family Cites Families (96)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3868956A (en) * 1972-06-05 1975-03-04 Ralph J Alfidi Vessel implantable appliance and method of implanting it
US3890977A (en) * 1974-03-01 1975-06-24 Bruce C Wilson Kinetic memory electrodes, catheters and cannulae
GB1600000A (en) * 1977-01-24 1981-10-14 Raychem Ltd Memory metal member
JPS5393199A (en) * 1977-01-27 1978-08-15 Tokuyama Soda Co Ltd Electrolytic method
JPS5946316B2 (ja) * 1978-12-28 1984-11-12 鐘淵化学工業株式会社 電解法
JPS5641392A (en) * 1979-09-11 1981-04-18 Toyo Soda Mfg Co Ltd Electrolytic method of alkali chloride aqueous solution
SE444640B (sv) * 1980-08-28 1986-04-28 Bergentz Sven Erik I djur eller menniska implanterbar kerlprotes samt sett for dess framstellning
US4553545A (en) * 1981-09-16 1985-11-19 Medinvent S.A. Device for application in blood vessels or other difficultly accessible locations and its use
US4425908A (en) * 1981-10-22 1984-01-17 Beth Israel Hospital Blood clot filter
US4445896A (en) * 1982-03-18 1984-05-01 Cook, Inc. Catheter plug
SE445884B (sv) * 1982-04-30 1986-07-28 Medinvent Sa Anordning for implantation av en rorformig protes
EP0110425A3 (en) * 1982-12-06 1985-07-31 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha An electrolytic process of an aqueous alkali metal halide solution and electrolytic cell used therefor
US4494531A (en) * 1982-12-06 1985-01-22 Cook, Incorporated Expandable blood clot filter
US4512338A (en) * 1983-01-25 1985-04-23 Balko Alexander B Process for restoring patency to body vessels
US4503569A (en) * 1983-03-03 1985-03-12 Dotter Charles T Transluminally placed expandable graft prosthesis
US4719916A (en) * 1983-10-03 1988-01-19 Biagio Ravo Intraintestinal bypass tube
US4572186A (en) * 1983-12-07 1986-02-25 Cordis Corporation Vessel dilation
US4636313A (en) * 1984-02-03 1987-01-13 Vaillancourt Vincent L Flexible filter disposed within flexible conductor
US4657530A (en) * 1984-04-09 1987-04-14 Henry Buchwald Compression pump-catheter
US4687468A (en) * 1984-10-01 1987-08-18 Cook, Incorporated Implantable insulin administration device
US4580568A (en) * 1984-10-01 1986-04-08 Cook, Incorporated Percutaneous endovascular stent and method for insertion thereof
IT1186142B (it) * 1984-12-05 1987-11-18 Medinvent Sa Dispositivo di impiantazione transluminale
US4699611A (en) * 1985-04-19 1987-10-13 C. R. Bard, Inc. Biliary stent introducer
DE8513185U1 (de) * 1985-05-04 1985-07-04 Koss, Walter, 6222 Geisenheim Endotubus
US4733665C2 (en) * 1985-11-07 2002-01-29 Expandable Grafts Partnership Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft
DE3640745A1 (de) * 1985-11-30 1987-06-04 Ernst Peter Prof Dr M Strecker Katheter zum herstellen oder erweitern von verbindungen zu oder zwischen koerperhohlraeumen
US4681110A (en) * 1985-12-02 1987-07-21 Wiktor Dominik M Catheter arrangement having a blood vessel liner, and method of using it
US4665918A (en) * 1986-01-06 1987-05-19 Garza Gilbert A Prosthesis system and method
US4649922A (en) * 1986-01-23 1987-03-17 Wiktor Donimik M Catheter arrangement having a variable diameter tip and spring prosthesis
EP0257091B1 (en) * 1986-02-24 1993-07-28 Robert E. Fischell An intravascular stent and percutaneous insertion system
US4878906A (en) * 1986-03-25 1989-11-07 Servetus Partnership Endoprosthesis for repairing a damaged vessel
US4723549A (en) * 1986-09-18 1988-02-09 Wholey Mark H Method and apparatus for dilating blood vessels
SE455834B (sv) * 1986-10-31 1988-08-15 Medinvent Sa Anordning for transluminal implantation av en i huvudsak rorformig, radiellt expanderbar protes
US4762128A (en) * 1986-12-09 1988-08-09 Advanced Surgical Intervention, Inc. Method and apparatus for treating hypertrophy of the prostate gland
US4907336A (en) * 1987-03-13 1990-03-13 Cook Incorporated Method of making an endovascular stent and delivery system
US4800882A (en) * 1987-03-13 1989-01-31 Cook Incorporated Endovascular stent and delivery system
US5041126A (en) * 1987-03-13 1991-08-20 Cook Incorporated Endovascular stent and delivery system
US4794928A (en) * 1987-06-10 1989-01-03 Kletschka Harold D Angioplasty device and method of using the same
US5133732A (en) * 1987-10-19 1992-07-28 Medtronic, Inc. Intravascular stent
US4820298A (en) * 1987-11-20 1989-04-11 Leveen Eric G Internal vascular prosthesis
US4877030A (en) * 1988-02-02 1989-10-31 Andreas Beck Device for the widening of blood vessels
US4830003A (en) * 1988-06-17 1989-05-16 Wolff Rodney G Compressive stent and delivery system
US4921484A (en) * 1988-07-25 1990-05-01 Cordis Corporation Mesh balloon catheter device
US5019090A (en) * 1988-09-01 1991-05-28 Corvita Corporation Radially expandable endoprosthesis and the like
US4913141A (en) * 1988-10-25 1990-04-03 Cordis Corporation Apparatus and method for placement of a stent within a subject vessel
US4856516A (en) * 1989-01-09 1989-08-15 Cordis Corporation Endovascular stent apparatus and method
US4955899A (en) * 1989-05-26 1990-09-11 Impra, Inc. Longitudinally compliant vascular graft
US5015253A (en) * 1989-06-15 1991-05-14 Cordis Corporation Non-woven endoprosthesis
DE9010130U1 (zh) * 1989-07-13 1990-09-13 American Medical Systems, Inc., Minnetonka, Minn., Us
US5674278A (en) * 1989-08-24 1997-10-07 Arterial Vascular Engineering, Inc. Endovascular support device
US5035706A (en) * 1989-10-17 1991-07-30 Cook Incorporated Percutaneous stent and method for retrieval thereof
US5089006A (en) * 1989-11-29 1992-02-18 Stiles Frank B Biological duct liner and installation catheter
US5108416A (en) * 1990-02-13 1992-04-28 C. R. Bard, Inc. Stent introducer system
US5057092A (en) * 1990-04-04 1991-10-15 Webster Wilton W Jr Braided catheter with low modulus warp
US5221261A (en) * 1990-04-12 1993-06-22 Schneider (Usa) Inc. Radially expandable fixation member
US5158548A (en) * 1990-04-25 1992-10-27 Advanced Cardiovascular Systems, Inc. Method and system for stent delivery
US5123917A (en) * 1990-04-27 1992-06-23 Lee Peter Y Expandable intraluminal vascular graft
US5078736A (en) * 1990-05-04 1992-01-07 Interventional Thermodynamics, Inc. Method and apparatus for maintaining patency in the body passages
DE9117152U1 (de) * 1990-10-09 1996-07-11 Cook Inc Stent
JPH0717314Y2 (ja) * 1990-10-18 1995-04-26 ソン ホーヨン 自己膨張脈管内ステント
US5316543A (en) * 1990-11-27 1994-05-31 Cook Incorporated Medical apparatus and methods for treating sliding hiatal hernias
US5112900A (en) * 1990-11-28 1992-05-12 Tactyl Technologies, Inc. Elastomeric triblock copolymer compositions and articles made therewith
US5135536A (en) * 1991-02-05 1992-08-04 Cordis Corporation Endovascular stent and method
US5316023A (en) * 1992-01-08 1994-05-31 Expandable Grafts Partnership Method for bilateral intra-aortic bypass
US5176626A (en) * 1992-01-15 1993-01-05 Wilson-Cook Medical, Inc. Indwelling stent
US5405377A (en) * 1992-02-21 1995-04-11 Endotech Ltd. Intraluminal stent
US5683448A (en) * 1992-02-21 1997-11-04 Boston Scientific Technology, Inc. Intraluminal stent and graft
FR2688401B1 (fr) * 1992-03-12 1998-02-27 Thierry Richard Endoprothese expansible pour organe tubulaire humain ou animal, et outil de mise en place.
US5282823A (en) * 1992-03-19 1994-02-01 Medtronic, Inc. Intravascular radially expandable stent
ATE247435T1 (de) * 1992-05-08 2003-09-15 Schneider Usa Inc Stent für den oesophagus
US5817102A (en) * 1992-05-08 1998-10-06 Schneider (Usa) Inc. Apparatus for delivering and deploying a stent
US5507771A (en) * 1992-06-15 1996-04-16 Cook Incorporated Stent assembly
CA2132011C (en) * 1993-01-14 1999-08-10 Peter J. Schmitt Radially expandable tubular prosthesis
IT1263899B (it) * 1993-02-12 1996-09-05 Permelec Spa Nora Migliorato processo di elettrolisi cloro-soda a diaframma e relativa cella
US5334210A (en) * 1993-04-09 1994-08-02 Cook Incorporated Vascular occlusion assembly
EP0621015B1 (en) * 1993-04-23 1998-03-18 Schneider (Europe) Ag Stent with a covering layer of elastic material and method for applying the layer on the stent
KR970004845Y1 (ko) * 1993-09-27 1997-05-21 주식회사 수호메디테크 내강확장용 의료용구
US5782904A (en) * 1993-09-30 1998-07-21 Endogad Research Pty Limited Intraluminal graft
ES2135520T3 (es) * 1993-11-04 1999-11-01 Bard Inc C R Protesis vascular no migrante.
US5405316A (en) * 1993-11-17 1995-04-11 Magram; Gary Cerebrospinal fluid shunt
DE4418336A1 (de) * 1994-05-26 1995-11-30 Angiomed Ag Stent
AU719980B2 (en) * 1995-02-22 2000-05-18 Menlo Care, Inc. Covered expanding mesh stent
BE1009278A3 (fr) * 1995-04-12 1997-01-07 Corvita Europ Tuteur auto-expansible pour dispositif medical a introduire dans une cavite d'un corps, et dispositif medical muni d'un tel tuteur.
US5667523A (en) * 1995-04-28 1997-09-16 Impra, Inc. Dual supported intraluminal graft
US5746766A (en) * 1995-05-09 1998-05-05 Edoga; John K. Surgical stent
US5647834A (en) * 1995-06-30 1997-07-15 Ron; Samuel Speech-based biofeedback method and system
US5788626A (en) * 1995-11-21 1998-08-04 Schneider (Usa) Inc Method of making a stent-graft covered with expanded polytetrafluoroethylene
DE69526857T2 (de) * 1995-11-27 2003-01-02 Schneider Europ Gmbh Buelach Stent zur Anwendung in einem körperlichen Durchgang
US5824042A (en) * 1996-04-05 1998-10-20 Medtronic, Inc. Endoluminal prostheses having position indicating markers
US6010529A (en) * 1996-12-03 2000-01-04 Atrium Medical Corporation Expandable shielded vessel support
US5733330A (en) * 1997-01-13 1998-03-31 Advanced Cardiovascular Systems, Inc. Balloon-expandable, crush-resistant locking stent
US5876450A (en) * 1997-05-09 1999-03-02 Johlin, Jr.; Frederick C. Stent for draining the pancreatic and biliary ducts and instrumentation for the placement thereof
AU747060B2 (en) * 1998-08-31 2002-05-09 Cook Medical Technologies Llc Anti-reflux esophageal prosthesis
JP3112265B1 (ja) * 1999-06-17 2000-11-27 鐘淵化学工業株式会社 塩化アルカリ電解方法
JP3437127B2 (ja) 1999-07-07 2003-08-18 東亞合成株式会社 塩化アルカリ電解槽の運転方法
US6488833B1 (en) * 1999-07-09 2002-12-03 Toagosei Co., Ltd. Method for electrolysis of alkali chloride

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102459709A (zh) * 2009-05-26 2012-05-16 氯工程公司 安装有气体扩散电极的离子交换膜电解槽
CN102459708A (zh) * 2009-05-26 2012-05-16 氯工程公司 安装有气体扩散电极的离子交换膜电解槽
US8940139B2 (en) 2009-05-26 2015-01-27 Chlorine Engineers Corp., Ltd. Gas diffusion electrode equipped ion exchange membrane electrolyzer
CN108419139A (zh) * 2018-02-05 2018-08-17 李秀荣 互联网大数据弹幕处理系统

Also Published As

Publication number Publication date
EP1453990B1 (de) 2014-01-01
EP1453990A2 (de) 2004-09-08
AU2002363856A1 (en) 2003-06-17
AR037637A1 (es) 2004-11-17
HUP0600453A2 (en) 2007-05-02
AU2002363856A8 (en) 2003-06-17
KR20050044700A (ko) 2005-05-12
JP2005511897A (ja) 2005-04-28
ES2448399T3 (es) 2014-03-13
JP4498740B2 (ja) 2010-07-07
TW200304502A (en) 2003-10-01
US6890418B2 (en) 2005-05-10
US20030121795A1 (en) 2003-07-03
WO2003048419A3 (de) 2003-10-02
CN1327033C (zh) 2007-07-18
DE10159708A1 (de) 2003-06-18
WO2003048419A2 (de) 2003-06-12

Similar Documents

Publication Publication Date Title
US3976549A (en) Electrolysis method
US5082543A (en) Filter press electrolysis cell
CN106801233B (zh) 一种电解法制备高纯四丙基氢氧化铵的系统及方法
KR20030019353A (ko) 전해조 및 전기분해 방법
JPS5949318B2 (ja) 次亜ハロゲン酸アルカリ金属塩の電解製造法
JPH0561356B2 (zh)
EP0383243A2 (en) Electrolyser for chlor-alkali electrolysis, and anode
CN1327033C (zh) 电解碱金属氯化物水溶液的方法
US20030106805A1 (en) Method of producing alkali alcoholates
US3948737A (en) Process for electrolysis of brine
WO2001004383A1 (fr) Procede d'electrolyse de chlorure alcalin
CA1088456A (en) Electrolytic cell with cation exchange membrane and gas permeable electrodes
CA2951389A1 (en) Narrow gap, undivided electrolysis cell
AU678410B2 (en) Electrolytic cell and electrode therefor
CN1280211A (zh) 操作碱金属氯化物电解池的方法
US4488947A (en) Process of operation of catholyteless membrane electrolytic cell
EP0565962A2 (en) Electrolysis method using polymer additive for membrane cell operation
CN2688725Y (zh) 一种用于电解合成烷基羟胺盐的电解装置
EP0122775A1 (en) Method for making a cathode, and method for lowering hydrogen overvoltage in a chloralkali cell
US4342630A (en) Brine distribution system for electrolytic cells
JP4582784B2 (ja) イオン交換膜電解方法
CN1619015A (zh) 一种电化学产生二氧化氯的方法
JP3236693B2 (ja) ガス電極を使用する電解槽及び電解方法
CN1041644C (zh) 气体电极的压滤机式盐水溶液电解槽
US4548694A (en) Catholyteless membrane electrolytic cell

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C56 Change in the name or address of the patentee

Owner name: CARCOUSTICS TECHCONSULT GMBH

Free format text: FORMER NAME: BAYER AG

CP01 Change in the name or title of a patent holder

Address after: Germany Leverkusen

Patentee after: BAYER MATERIALSCIENCE AG

Address before: Germany Leverkusen

Patentee before: BAYER MATERIALSCIENCE AG

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20160701

Address after: German Monheim

Patentee after: BAYER INTELLECTUAL PROPERTY GmbH

Address before: Germany Leverkusen

Patentee before: BAYER MATERIALSCIENCE AG

Effective date of registration: 20160701

Address after: Leverkusen, Germany

Patentee after: COVESTRO DEUTSCHLAND AG

Address before: German Monheim

Patentee before: BAYER INTELLECTUAL PROPERTY GmbH

CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20070718