CN1527944A - 在真核细胞中产生和鉴定免疫球蛋白分子的体外方法 - Google Patents

在真核细胞中产生和鉴定免疫球蛋白分子的体外方法 Download PDF

Info

Publication number
CN1527944A
CN1527944A CNA018209041A CN01820904A CN1527944A CN 1527944 A CN1527944 A CN 1527944A CN A018209041 A CNA018209041 A CN A018209041A CN 01820904 A CN01820904 A CN 01820904A CN 1527944 A CN1527944 A CN 1527944A
Authority
CN
China
Prior art keywords
antigen
immunoglobulin
polynucleotide
host cell
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA018209041A
Other languages
English (en)
Other versions
CN1306272C (zh
Inventor
M�����¶�
M·佐德尔
ʷ
E·S·史密斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Rochester
Original Assignee
University of Rochester
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Rochester filed Critical University of Rochester
Publication of CN1527944A publication Critical patent/CN1527944A/zh
Application granted granted Critical
Publication of CN1306272C publication Critical patent/CN1306272C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/21Immunoglobulins specific features characterized by taxonomic origin from primates, e.g. man
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/22Immunoglobulins specific features characterized by taxonomic origin from camelids, e.g. camel, llama or dromedary
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/55Fab or Fab'
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/60Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
    • C07K2317/62Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
    • C07K2317/622Single chain antibody (scFv)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2799/00Uses of viruses
    • C12N2799/02Uses of viruses as vector
    • C12N2799/021Uses of viruses as vector for the expression of a heterologous nucleic acid
    • C12N2799/023Uses of viruses as vector for the expression of a heterologous nucleic acid where the vector is derived from a poxvirus

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

本发明涉及在真核细胞内表达免疫球蛋白分子的高效方法。本发明进一步涉及特别是利用三分子重组法制备免疫球蛋白重链和轻链文库以便在真核细胞内表达的方法。本发明还提供了选择和筛选抗原特异性免疫球蛋白分子及其抗原特异性片段的方法。本发明还提供了制备,筛选和选择抗原特异性免疫球蛋白分子的试剂盒。最后,本发明提供了通过文中提供的方法制备的免疫球蛋白分子及其抗原特异性片段。

Description

在真核细胞中产生和鉴定免疫球 蛋白分子的体外方法
                      发明背景
发明领域
本发明涉及一种在真核细胞中高效表达免疫球蛋白分子的方法,产生用于在真核细胞内表达的免疫球蛋白重链和轻链文库的方法,分离结合特异抗原的免疫球蛋白的方法,以及这些方法之一所产生的免疫球蛋白。
相关技术
免疫球蛋白制备
具有特定特异性的抗体正被越来越多不同的医疗用途所采用。
针对自身抗原的特定抗体对体内的治疗和诊断目的尤其有价值。利用杂交瘤技术已经分离了许多啮齿类动物单克隆抗体,并且这些抗体被用于人的体内治疗和诊断用途。例如,这些小鼠单克隆抗体的一个早期应用是作为导靶剂来杀死肿瘤或使肿瘤成像(F.H.Deland和D.M.Goldenberg 1982在“放射性核素显影”D.E.Kuhl编,289-297页,Pergamon,Paris;R.Levy和R.A.Miller ANN.Rev.Med.1983,34:107-116)。但是,体内使用这类抗体会引起问题。外源免疫球蛋白能引发干扰治疗的抗免疫球蛋白应答(R.A.Miller等,1983Blood62:988-995)或者引起过敏或免疫复合体超敏感(B.Ratner,1943,Allergy,Anaphylaxis and Immunotherapy,Williams and Wilkins,Baltimore)。相应的,开发那些自身在宿主内不是免疫原性的抗体对于这类应用尤其重要,例如开发针对在人体内本身不具有免疫原性的人抗原的抗体。
分离对自身抗原具有特异性的抗体片段是一项困难的任务。动物通常不产生针对自身抗原的抗体,这种现象称为耐受性。一般来说,用自身抗原进行免疫接种不会导致循环抗体的产生。因此很难培育针对自身抗原的抗体。
以前,有三种策略被用于产生能特异性识别自身抗原的免疫球蛋白分子。一个方案中,通过将包含选定啮齿类动物单克隆抗体的抗原结合位点的特化互补性决定区(CDR)移植到人抗体构架区,从而将啮齿类动物的抗体序列转化为人抗体序列(Winter等,英国专利No.GB21886 38B(1987);Reichmann L.等,Nature(London)332:323-327(1988);Foote J.和Winter G;J.Mol.Biol.224:487-499(1992))。在这个已被命名为抗体人源化的方法中,啮齿类动物免疫球蛋白每个重链和轻链的三个CDR环被移植到相应人免疫球蛋白链的四个构架区的同源位置。因为有些构架残基也对抗体亲合力有贡献,因此通常结构必须通过另外的构架取代来进一步修正,以便增强亲合力。这可能是一个费力费钱的过程。
近期,人们制备了表达人免疫球蛋白序列的转基因小鼠(MendezM.J.等,Nat.Genet.15:146-156(1997))。这个策略具有加速对人抗体进行选择的潜力,但它与抗体人源化方法有同样的局限性,即抗体选自小鼠中已存在的库,这些库是由小鼠而非人的基因组编码的蛋白质所形成的。这可能影响到针对特定抗原所选择的抗体的表位特异性。例如,用那些在小鼠内存在同系物的人蛋白质来免疫小鼠,可能会导致主要产生那些在人和小鼠中不一样的表位的特异抗体。而这些可能并不是最佳的靶表位。
一个不受同样限制的替代方法是筛选展示在噬菌体上的重组人抗体片段(Vaughan T.J.,Nat.Biotechnol.14:309-314(1996);Barbas C.F.,III,Nat.Med.1:837-839(1995);Kay B.K.等,“肽和蛋白质的噬菌体展示”,Academic press(1996))。在噬菌体展示法中,功能性的免疫球蛋白结构域被展示在噬菌体颗粒的表面,这些颗粒携带了编码它们的多核苷酸序列。在典型的噬菌体展示法中,免疫球蛋白片段,例如Fab,Fv或者二硫键稳定的Fv免疫球蛋白结构域以融合蛋白形式被展示,即融合到噬菌体表面蛋白上。可以用于制备抗体的噬菌体展示法的例子包括Brinkman U.等(1995)(J.Immunol.Methods 182:41-50;);Ames,R.S.等(1995)(J.Immunol.Methods184:177-186);Kettleborough,C.A.等(1994)(Eur.J.Immunol.24:952-958);Persic,L.等(1997)(Gene187:9-18);Burton,D.R.等(1994)(Advances inImmunology57:191-280);PCT/GB91/01134;WO95/15982;WO95/20401;以及美国专利5698426,5223409,5403484,5580717,5427908,5750753,5821047,5571698,5427908,5516637,5780225,5658727和5733743(这些文献均全文引作参考)中公开的。
由于噬菌体展示法通常的结果只是免疫球蛋白分子的抗原结合片段的表达,在选择噬菌体后,必须从噬菌体中分离免疫球蛋白编码区域,进行重新克隆以便制备整个抗体(包括人抗体)或者任何其他目的抗原结合片段,并在任何目的宿主(动物细胞、昆虫细胞、植物细胞、酵母、细菌)中表达。例如,也可使用现有技术中已知的方法,例如下述文献中公开的方法,应用重组生产Fab、Fab’和F(ab’)2片段的技术:WO92/22324;Mullinax R.L.等(BioTechniques12(6):864-869(1992);和Sawai,H。等AJRI34:26-34(1995);以及Better,M.等,Science240:1041-1043(1988))中有公开(这些文献均全文引作参考)。
在噬菌体中构建的免疫球蛋白文库可以来源于天然的抗体产生细胞或者特异性免疫的个体,并且在理论上可以包括人免疫球蛋白重链和轻链的新的和不同的组合。虽然这个策略不受内在抗体库的限制,但它需要被表达的免疫球蛋白片段的互补决定区(CDR)能在细菌中合成并正确折叠。但是许多抗原结合区以融合蛋白存在时很难在细菌细胞内正确地装配。此外,蛋白质不会进行正常的真核细胞翻译后修饰。因此,这个方法给能获得的抗体特异性施加了不同的选择方式。
因此需要这样一种或者方法,它能从不存在偏向性的免疫球蛋白库中鉴定到免疫球蛋白分子及其抗原特异片段,这些分子或片段能在真核细胞中合成,适当地糖基化并正确地装配。
真核表达文库。分子生物学领域的一个基本工具是将poly(A)+mRNA转化为双链(ds)cDNA,然后后者可以被插入克隆载体并在合适的宿主细胞内表达。许多cDNA克隆策略中常用的一个方法包括构建cDNA文库,这是从来自目标生物细胞的poly(A)+mRNA衍生的cDNA克隆的池。例如,为了分离表达免疫球蛋白基因的cDNA,可以由前B细胞、B细胞或者浆细胞来制备cDNA文库。在不同表达载体(包括丝状噬菌体,噬菌体λ,粘粒和质粒载体)中构建cDNA文库的方法是已知的。在例如Sambrook等,Molecular Cloning:ALaboratory Manual,2nd Edition,Cold Spring HarborLaboratory,publisher,Cold Spring Harbor,N.Y.(1990)中描述了一些常用的方法。
许多从cDNA文库中分离靶基因的不同方法已被运用,取得了不同程度的成功。这些方法包括,例如使用核酸杂交探针,即具有与靶基因DNA序列互补之序列的标记过的核酸片段。对被转化的细菌宿主中的cDNA克隆运用这个方法时,那些与所述探针强烈杂交的集落或噬菌斑可能就含有靶DNA序列。但是杂交法不要求也不检测某个特定cDNA克隆是否被表达。或者筛选方法依赖在细菌宿主中的表达,例如可以通过免疫检测法来筛选集落或噬菌斑,这些免疫检测法检测它们与针对目标蛋白质的抗体的结合力。但是测定细菌细胞中表达的检测法经常受到阻碍,因为蛋白质可能不能在细菌宿主内高效地表达,也可能表达成错误的构型,或者它可能不能象在真核系统中一样地加工和/或转运。在细菌宿主中生产免疫球蛋白分子所作的尝试中已经碰到许多上面提及的这些问题。
因此,利用哺乳动物表达文库来分离编码免疫球蛋白分子的cDNA相对细菌文库有一些优点。例如,在真核宿主中表达的免疫球蛋白分子及其亚基应当是有功能的并能进行正常的翻译后修饰。通常情况下通过细胞内膜系统转运到细胞表面的蛋白质应当会经历完整的转运过程。此外,使用真核系统就使得有可能根据真核RNA或蛋白质的功能性表达来分离多核苷酸。例如,可以根据它们对特定抗原的特异性来分离免疫球蛋白分子。
除了某些最近通过在COS细胞内进行表达而分离到的淋巴因子cDNA(Wong,G.G.,等,Science228:810-815(1985);Lee,F.等,Proc.Natl.Acad.Sci.USA83:2061-2065(1986);Yokota,T.,等,Proc.Natl.Acad.Sci.USA83:5894-5898(1986);Yang,Y.等,Cell47:3-10(1986)),从哺乳动物表达文库中只分离到少数cDNA。这主要有两个原因:首先,现有构建大的质粒文库的技术很难掌握,并且文库大小难以接近噬菌体克隆技术所能达到的大小(Huynh,T.等,DNA Cloning,Vol I,A Practical Approach,Glover,D.M.(编),IRL Press,Oxford(1985),pp49-78)。其次,已有载体很难适宜于高水平表达,只有一个例外(Wong,G.G.,等,Science228:810-815(1985))。因此,以前在哺乳动物宿主中进行表达最常作为一种手段来证实那些通过常规克隆方法分离到的基因所编码的蛋白质的身份。
痘病毒载体。痘病毒载体被广泛地用作在真核细胞内进行蛋白质和抗原表达的表达载体。在各种宿主细胞中克隆和繁殖牛痘的简便易行使得痘病毒载体被广泛地用于表达外源蛋白质和作为疫苗递送载体(Moss,B.,Science252:1662-7(1991))。
大的DNA病毒是在研究细胞过程中特别有用的表达载体,因为它们能将许多不同蛋白质以其天然形式在多种细胞系中表达。此外,在重组痘病毒中表达的基因产物显示出能被有效地加工,与I类MHC一起呈递来激活细胞毒性T细胞。目标基因通常被克隆在质粒中处于启动子的调控下,其中所述启动子旁侧是与病毒非必要区域同源的序列,然后将该盒通过同源重组导入基因组。已经设计出整套用于表达,选择和检测的载体来实现各种克隆和表达策略。但是,同源重组在需要产生复杂文库或者插入的DNA很大的情况下不是一个有效的制备重组病毒的手段。构建重组基因组的一个替代策略已被应用于痘病毒(Merchlinsky等,1992,Virology 190:522-526;Pfleiderer等,1995,J.General Virology 76:2957-2962;Scheiflinger等,1992,Proc.Natl.Acad.Sci.USA 89:9977-9981),疱疹病毒(Rixon等,1990,J.General Virology 71:2931-2939)和杆状病毒(Ernst等,1994,Nucleic Acids Research 22:2855-2856)的基因组,该策略依赖于将病毒DNA“臂”直接连接到一个插入片段上,并且随后拯救感染性病毒。
痘病毒是真核细胞研究中通用的载体,因为它们易于构建并工程化来高水平表达外源蛋白质。该病毒的广泛宿主范围使得人们能在许多细胞类型中可靠地表达蛋白质。定向克隆策略已被设计来扩展痘病毒病毒嵌合体的应用范围,该策略中通过在体外将DNA片段直接连接上牛痘“臂”并将该DNA混合物转染到感染了辅助病毒的细胞内来构建重组基因组(Merchlinsky等,1992,Virology 190:522-526;Scheiflinger等,1992,Proc.Natl.Acad.Sci.USA 89:9977-9981)。该方法已被用于高水平表达外源蛋白质(Pfleiderer等,1995,J.General Virology 76:2957-2962),并能高效克隆长达26kb的片段(MerchlinSky等,1992,Virology 190:522-526)。
裸露的牛痘病毒DNA没有感染性,因为这样的病毒不能利用细胞转录机制,而是依赖它自己的蛋白质来合成病毒RNA。以前,温度敏感性条件致死(Merchlinsky等,1992,Virology 190:522-526)或者非同源的禽痘病毒(Scheiflinger等,1992,Proc.Natl.Acad.Sci.USA 89:9977-9981)被用作包装的辅助病毒。理想的辅助病毒能有效地协助由输入DNA产生感染性病毒,但不会在宿主细胞中复制或者与痘苗病毒DNA产物发生重组。由于这些原因,禽痘病毒是一个非常有用的辅助病毒。它可以进入哺乳动物细胞并提供输入痘苗病毒DNA复制所需的蛋白质。但是它不与痘苗病毒DNA重组,并且在哺乳动物细胞内不产生感染性的禽痘病毒。因此,可以以较高的感染复数(MOI)使用它。
通常,外源蛋白质编码序列通过与感染性病毒的同源重组被导入痘病毒基因组。在这个常规方法中,将事先分离好的外源DNA克隆到转移质粒中,位于痘苗病毒启动子之后,旁侧是与痘病毒中病毒复制非必要区同源的序列。所述转移载体被导入痘病毒感染的细胞中,以使该转移质粒和痘病毒基因组通过同源重组在体内进行重组。同源重组的结果是外源DNA被转移到病毒基因组中。
虽然常规的同源重组可以用于在痘病毒中表达已分离的外源DNA,但这种方法不能有助于文库的构建,因为回收到的病毒绝大多数没有获得外源DNA插入片段。利用传统的同源重组,重组效率在大约0.1%或更低。因此,痘病毒载体的用途局限在亚克隆先前分离的DNA分子以便进行蛋白质表达和疫苗开发。
已经建立了利用直接连接载体的替代方法,以便在不适合进行同源重组的情况下高效地构建嵌合体基因组(Merchlinsky等,1992,Virology 190:522-526;Scheiflinger等,1992,Proc.Natl.Acad.Sci.USA.89:9977-9981)。在这样的方案中,来自基因组的DNA被消化,与插入片段在体外连接,并转染到感染了辅助病毒的细胞内(Merchlinsky等,1992,Virology 190:522-526;Scheiflinger等,1992,Proc.Natl.Acad.Sci.USA.89:9977-9981)。一个方案中,基因组在单一NotI位点被消化,并且含有用于选择或检测嵌合基因组的元件的DNA插入片段被连接到基因组臂上(Scheiflinger等,1992,Proc.Natl.Acad.Sci.USA.89:9977-9981)。用这种直接连接法将外源DNA插入到痘苗病毒基因组中已有描述(Pfleiderer等,1995,J.General Virology 76:2957-2962)。
或者,将痘苗WR基因组进行修饰从而产生vNotI/tk,所述修饰是将HindIII F片段中的NotI位点去掉,并重新在胸苷激酶基因近端引入一个NotI位点,这样在这个位置插入一个序列将破坏胸苷激酶基因,使得可以利用药物选择来分离嵌合基因组(Merchlinsky等,1992,Virology 190:522-526)。
直接连接载体vNotI/tk使得人们可以有效地克隆和增殖先前分离的至少长26kb的DNA插入片段(Merchlinsky等,1992,Virology 190:522-526)。尽管大DNA片段被有效地克隆到基因组中,但该DNA插入片段所编码的蛋白质只能以相当于胸苷激酶基因的低水平被表达,但该基因是痘苗病毒中表达比较弱的一个早期基因。此外,所述DNA会以两个方向插入到NotI位点,因此可能根本不被表达。另外,尽管采用直接连接的重组效率比在常规同源重组中观察到的效率高,得到的滴度还是比较低。
因此,以前不用痘病毒载体来从复杂的克隆群体中鉴定未知的目标基因,因为没有用于痘病毒的高效、产生高滴度的克隆方法。但是最近,本发明人建立了一种利用三分子重组来制备重组痘病毒的方法。参见公开于2000年5月18日的WO00/028016(Zauderer),该文此处全文引作参考文献。
三分子重组是一种用于制备重组痘病毒的新的、高效的并产生高滴度的方法。在痘苗病毒中采用三分子重组法,本发明人已经达到至少90%的重组效率,比通过直接连接所获得的滴度高两个数量级。根据三分子重组法,痘病毒基因组被切割而产生两个非同源片段或者“臂”。制备一个转移载体,它携带旁侧是与两个痘病毒臂同源的区域的异源插入物DNA。将臂和转移载体递送到受体宿主细胞,使得这三个DNA分子能在体内进行重组。重组的结果是产生了包含两个痘病毒臂和所述插入DNA的痘病毒基因组单分子。
                        发明概述
对应本发明的一个方面,提供了这样一种方法,该方法能从在真核细胞中表达的多核苷酸文库中鉴定编码抗原特异性免疫球蛋白分子或其抗原特异性片段的多核苷酸。
同时提供的是一种鉴定编码免疫球蛋白分子或其片段的多核苷酸的方法,所述分子或其片段具有发生改变的效应子功能。
还提供了一种利用病毒载体在真核细胞内构建编码免疫球蛋白亚基多肽的多核苷酸文库的方法,其中所述文库是通过三分子重组法构建的。
另外提供了鉴定在其表面上表达抗原特异性免疫球蛋白分子或其抗原特异性片段的宿主细胞的方法,所述鉴定是通过对抗原诱导的细胞死亡、抗原诱导的信号传递或者抗原特异性结合进行选择和/或筛选实现的。
还提供了由真核宿主细胞表达的可溶性免疫球蛋白分子或其抗原特异性片段的筛选方法,所述宿主细胞表达编码可溶性的分泌免疫球蛋白分子的多核苷酸文库,筛选是通过抗原结合或者通过检测所述免疫球蛋白分子的抗原或生物体特异性功能进行的。
                         附图简述
图1:通过抗原诱导的细胞凋亡来选择特异性人抗体。
图2A:制备响应表面免疫球蛋白的抗原交联而直接或间接经历细胞死亡的宿主细胞。
图2B:修饰的CH33宿主细胞的证实,该细胞被设计成在表面免疫球蛋白的抗原交联时会发生CTL-诱导的裂解或细胞死亡。
图3:pVHE的构建。
图4:pVKE和pVLE的构建。
图5:通过抗原依赖性附着来选择特异人抗体。
图6:三分子重组法的示意图。
图7:p7.5/tk和pEL/tk启动子的核苷酸序列。该图显示了所述启动子和胸苷激酶基因开始处的核苷酸序列(对于V7.5/tk而言,为SEQ ID NO:140;对于VEL/tk而言,为SEQ ID NO:142),以及相应的包括启始密码子和部分开放读码框的氨基酸序列,此处分别命名为SEQ ID NO:141和SEQ ID NO:143。
图8:pVHEs的构建。
图9:痘病毒介导的致细胞病变效应的减弱。
图10:scFv表达载体的构建。
图11:pVHE-X-G1的构建。
图12A:p7.5/tk痘苗转移质粒的核苷酸序列的一个修饰(SEQID NO:1)。一个如文中所述由p7.5/tk痘苗转移质粒衍生的新载体p7.5/ATG0/tk(SEQ ID NO:2)。
图12B:如文中所述由p7.5/tk痘苗转移质粒衍生的新载体p7.5/ATG1/tk(SEQ ID NO:3)。
图12C:如文中所述由p7.5/tk痘苗转移质粒衍生的新载体p7.5/ATG2/tk(SEQ ID NO:4)。
图12D:如文中所述由p7.5/tk痘苗转移质粒衍生的新载体p7.5/ATG3/tk(SEQ ID NO:5)。
图13:IgM-Fas融合产物的构建。
图14:Igα和Igβ在被转染的COS7和HeLaS3细胞系中的表达。总RNA分离自(A)COS7-Igαβ-1,(B)COS7-Igαβ-2,(C)HeLaS3-Igαβ-1,(D)EBV-转化的人B细胞,在有或没有逆转录酶的情况下逆转录为cDNA,然后用igα5’/igα3’和igβ5’/igβ3’引物组进行PCR扩增。然后在0.8%琼脂糖凝胶上分析PCR产物。应当注意的是人B细胞对Igα和Igβ均显示出另外的剪接方式。参见例如,Hashimoto,S.等,Mol.Immunol.32:651(1995).
                    优选实施方案详述
本发明广泛涉及在真核系统中鉴定和/或产生功能性、抗原特异性免疫球蛋白分子或其抗原特异性片段(即抗原结合片段)的方法。此外,本发明涉及从编码抗原特异性免疫球蛋白分子或其抗原特异性片段的多核苷酸复合表达文库中鉴定编码这些免疫球蛋白分子或片段的多核苷酸的方法,其中所述文库是在真核宿主细胞内构建和表达的。另外的实施方案包括通过任何上述方法制备的分离的抗原特异性免疫球蛋白分子或其抗原特异性片段,以及能制备这类分离的免疫球蛋白的试剂盒。
本发明一个特别优选的方面是利用通过三分子重组构建的痘病毒载体在真核宿主细胞中构建复合免疫球蛋白文库。在基于痘病毒的载体中构建复合cDNA文库的能力,以及根据抗原诱导的细胞死亡、抗原诱导的信号传递或者抗原特异结合进行选择和/或筛选特定重组体的能力,可以作为在真核细胞中鉴定免疫球蛋白、尤其是具有许多非常明确的特异性的人免疫球蛋白的基础。它能克服在啮齿类动物中对抗体库进行选择时造成的偏向性,或者在噬菌体或细菌中进行合成和装配的局限性。
应当提到的是术语“一个”或“一种”,指“一或多个(种)”;例如,“个免疫球蛋白分子”应理解为代表一或多个免疫球蛋白分子。因此,术语“ 一个(种)”,“一或多个(种)”以及“至少一个(种)”在文中可以互换。
术语“真核生物(eukaryote)”或“真核生物(eukaryoticorganism)”是指涵盖动物、植物和原生生物界中的所有生物,包括原生动物,真菌,酵母,绿藻,单细胞植物,多细胞植物以及所有动物,包括脊椎和无脊椎动物。这个术语不包括细菌和病毒。“真核细胞”是指包括单个“真核细胞”以及多个“真核细胞”,并且涵盖来自真核生物的细胞。
术语“脊椎动物”是指涵盖单个“脊椎动物”以及多个“脊椎动物”,包括哺乳动物和鸟类,以及鱼类,爬行类和两栖类。
术语“哺乳动物”是指涵盖单个“哺乳动物”以及多个“哺乳动物”,包括但不限于人;灵长类比如猿,猴,猩猩和黑猩猩;犬科比如狗和狼;猫科比如猫,狮子和虎;马科比如马,驴和斑马;食用动物比如牛,猪和羊;有蹄动物比如鹿和长颈鹿;啮齿类比如小鼠,大鼠,仓鼠以及豚鼠;和熊。优选,所述哺乳动物是人。
术语“组织培养”或“细胞培养”或“培养”是指在能保存细胞结构、细胞功能、进一步的分化或者所有三种的条件下,植物或动物组织或细胞的体外维持或生长。“原代组织细胞”是那些直接取自组织的细胞,即在生物体中执行相同功能的同类细胞群。用蛋白水解酶胰蛋白酶处理这类组织细胞,可将它们解离成接种在培养板上时能生长或者维持细胞结构的单个原代组织细胞。在组织培养中由原代细胞增殖得到的细胞培养物称为“次生细胞培养物”。多数次生细胞分裂有限的几次然后死亡。但是少数次生细胞可以通过这个“危险期”,之后它们能无限增殖从而形成延续的“细胞系”。细胞在其中培养的液体培养基在文中称为“培养基”或“培养介质”。在细胞培养过程中目的分子例如免疫球蛋白分子分泌到其中的培养基在文中称为“条件培养基”。
术语“多核苷酸”指存在于核酸或构建体中的任何一或多个核酸区段,或者核酸分子,例如DNA或RNA片段。“编码免疫球蛋白亚基多肽的多核苷酸”指包含所述多肽的编码区的多核苷酸。此外,多核苷酸可能编码调控元件,比如启动子或转录终止子,或者可能编码多肽或蛋白质的特殊元件,比如分泌信号肽或者功能性结构域。
用在文中,术语“鉴定”是指这样一种方法,该方法能将目的分子,例如编码具有所需特异性或功能的免疫球蛋白分子的多核苷酸从这类分子的群体或文库中区分出来。鉴定方法包括“选择”和“筛选”。用在文中,“选择”法是那些可以直接从文库中分离出目的分子的方法。例如,文中描述的一个选择方法中,通过一次水解,包含目的多核苷酸的宿主细胞从基质上释放下来,而包含文库中其他多核苷酸的细胞仍附着其上,从而将它们直接分离开。用在文中,“筛选”法是那些其中对包含目的分子的池进行一种可以检测到目的分子的分析的方法。然后将检测到所述分子的一个池通过类似的分析分成逐渐缩小的池,直到获得高度富含目的分子的池。例如,在文中描述的一个筛选法中,通过表达报告分子,对包含编码免疫球蛋白分子的多核苷酸文库的宿主细胞池分析其抗原结合力。
免疫球蛋白。用在文中,“免疫球蛋白分子”定义为完整的双分子免疫球蛋白,即通常包含四个“亚基多肽”,即两个相同的重链和两个相同的轻链。在某些情况中,例如,来源于camelid物种或者在camelid免疫球蛋白基础上工程化的免疫球蛋白分子,完整的免疫球蛋白分子可能仅由重链构成,没有轻链。参见例如Hamers-Casterman等,Nature363:446-448(1993)。因此“免疫球蛋白亚基多肽”是指单个重链多肽或单个轻链多肽。免疫球蛋白分子也可以称为“抗体”,在文中这两个术语可以交换使用。“分离的免疫球蛋白”是指一个免疫球蛋白分子,或者两个或更多免疫球蛋白分子,它们基本上脱离蛋白质和其他物质的环境,并且能结合特异抗原。
决定免疫球蛋白分子的“类”的重链是两亚基多肽中较大的,它包含可变区和恒定区。“重链”是指分泌的全长重链形式,即从细胞中释放出来的形式,或者膜结合重链形式,即包含跨膜结构域和胞内结构域。跨膜和胞内结构域可以是天然存在的与某一重链有关的结构域,即可见于记忆B细胞中的结构域,或者它可能是异源跨膜和胞内结构域,例如来自不同种类的免疫球蛋白或者来自异源多肽,即非免疫球蛋白多肽。明显的是,优选使用细胞膜结合型免疫球蛋白分子来实施本发明的某些方面,而其他方面优选用分泌型免疫球蛋白分子(即那些缺乏跨膜和胞内结构域的)来实施。免疫球蛋白“种类”是指在宿主中执行不同功能的免疫球蛋白大组。例如人免疫球蛋白可以分为5类,即IgG(含有γ重链),IgM(含有μ重链),IgA(含有α重链),IgE(含有ε重链)以及IgD(含有δ重链)。某些种类的免疫球蛋白又进一步分为“亚类”。例如,在人体中有四种不同的IgG亚类,即分别包括γ-1、γ-2、γ-3和γ-4重链的IgG1、IgG2、IgG3和IgG4,以及两个不同的IgA亚类,即分别包括α-1和α-2重链的IgA-1和IgA-2。应当提到的是免疫球蛋白的类和亚类命名在动物物种之间是不同的,而且某些动物物种可能包括另外种类的免疫球蛋白。例如,鸟类还产生包含在蛋黄中的IgY。
“轻链”是指与重链氨末端区域连在一起的较小的免疫球蛋白亚基。与重链一样,轻链包括可变区和恒定区。有两种不同的轻链即κ和λ,一对这样的轻链可以与任何一对重链结合,形成免疫球蛋白分子。
免疫球蛋白亚基多肽每个包括恒定区和可变区。在多数物种中,重链可变区或VH结构域,以及轻链可变区或VL结构域结合在一起形成“互补决定区”或CDR,它是免疫球蛋白分子中特异性识别抗原表位的部分。但是在骆驼(camelid)物种中,被称为VHH的重链可变区构成整个CDR。骆驼VHH可变区和来自常规抗体的可变区(VH)的主要区别包括(a)VH的轻链接触表面比VHH中的相应区域有更多疏水氨基酸,(b)VHH的CDR3更长,以及(c)VHH中CDR1和CDR3之间经常存在二硫键。每个完整的免疫球蛋白分子包括两个相同的CDR。动物在抗体产生细胞分化时,通过一系列种系DNA区段的重排,导致形成编码某个特定可变区的基因,从而能够产生与重链和轻链恒定区相关的可变区的巨大池。重链和轻链可变区的其他变化可通过已分化细胞中的体细胞突变实现。免疫球蛋白分子的结构和体内形成是免疫学领域的普通技术人员所熟知的。关于免疫球蛋白多样性的产生的简明综述可见例如,Harlow和Lane,Antibodies,A Laboratory ManualCold Spring Harbor Laboratory,Cold SpringHarbor,N.Y.(1988)(以下称为“Harlow”);以及Roitt等,Immunology Gower Medical Publishing,Ltd.,London(1985)(以下称为“Roitt”)。Harlow和Roitt此处全文引作参考。
免疫球蛋白另外还有一些通过与效应分子结合而介导的效应子功能。例如,补体的C1组分与免疫球蛋白结合能激活补体系统。补体的激活对细胞病原体的调理作用和裂解很重要。补体的活化还能刺激炎症反应,也有可能参与自身免疫超敏反应。此外,通过Fc区域,抗体Fc区域上的Fc受体位点与细胞上的Fc受体(FcR)结合,从而使免疫球蛋白结合到细胞上。有许多特异于不同类抗体的Fc受体,包括但不限于,IgG(γ受体),IgE(η受体),IgA(α受体)和IgM(μ受体)。抗体与细胞表面上的Fc受体的结合激发了许多个要和不同的生物应答,包括对包被抗体的颗粒的吞噬和破坏,清除免疫复合体,杀伤细胞对包被抗体的靶细胞的裂解(称为抗体依赖性细胞介导的细胞毒性,或ADCC),炎症介体的释放,免疫球蛋白产生的胎盘转运和调控。
本发明的免疫球蛋白可以来自任何动物来源,包括鸟类,鱼和哺乳动物。优选,所述抗体来源于人,小鼠,狗,猫,兔,山羊,豚鼠,骆驼,骆马(llama),马或者鸡。在本发明的一个优选方面,鉴定了与“自身”抗原特异地相互作用的免疫球蛋白,例如特异结合人抗原的人免疫球蛋白。
文中使用的免疫球蛋白分子的“抗原特异性片段”是免疫球蛋白分子中保留了抗原结合能力的任何片段或变体。抗原特异性片段包括,但不限于Fab,Fab’和F(ab’)2,Fd,单链Fvs(scFvs),单链免疫球蛋白(例如,重链或其部分和轻链或其部分融合在一起的免疫球蛋白),二硫键连接的Fvs(sdFvs),二体(diabodies),三体(triabodies),四体(tetrabodies),scFvs微体(minibodies),Fab微体(minibodies)以及二聚体scFvs和任何其他包含VL和VH结构域、并且这些结构域处于能形成特异CDR的构象的片段。抗原特异性片段还可能包含来源于camelid抗体的VHH结构域。其中VHH可以被工程化从而包括来自其他物种(例如来自人抗体)的CDR。或者,可以将人源的重链VH片段工程化使之与单链camelid CDR相似,该过程称为“骆驼源化(camelization)”。参见例如,Davies J.和Riechmann,L.,FEBS Letters 339:285-290(1994)以及Riechmann,L.和Muyldermans,S.,J.Immunol.Meth.231:25-38(1999),这两篇文章此处均全文引作参考。
抗原特异性免疫球蛋白片段(包括单链免疫球蛋白),可能只包含可变区或者与以下物质的整体或部分组合:重链恒定结构域或其部分,例如重链上的CH1,CH2,CH3,跨膜和/或细胞质结构域;以及轻链恒定区,例如Cκ或Cλ结构域,或轻链上的一部分。同时包括在本发明中的是可变区和CH1,CH2,CH3,Cκ,Cλ,跨膜和细胞质结构域的任何组合形式。
本领域公知,Fv包含VH结构域和VL结构域,Fab包含连接在CH1上的VH和L链,Fab微体(minibody)包含CH3结构域与Fab的融合等。
本领域公知,scFv包含通过一般长为15-20个残基的肽接头连接到VL的VH,二体(diabodies)包含带有大约长5个残基的肽接头的scFv,三体(triabodies)包含不带肽接头的scFv,四体(tetrabodies)包含带有长为1个残基的肽接头的scFv,scFv微体(minibody)包含融合了CH3结构域的scFv,二聚体scFv包含利用另一个肽接头串联在一起的两个scFv融合体(综述见Chames和Baty,FEMS Microbiol.Letts.189:1-8(2000))。优选,所述抗原特异性免疫球蛋白片段包括两种抗原结合结构域,即VH和VL。其他免疫球蛋白片段是本领域内公知的,在比如文中描述的这些参考文献中都有公开。
在某些实施方案中,本发明涉及鉴定(即选择或筛选)多核苷酸的方法,所述多核苷酸单独或共同编码抗原特异性免疫球蛋白分子,其抗原特异性片段或者具有特异性抗原相关功能的免疫球蛋白分子或片段。在相关的实施方案中,本发明涉及由这些方法鉴定到的多核苷酸所编码的分离的免疫球蛋白分子。
优选的方法包括两步筛选和/或选择的过程。第一个步骤中,通过将编码第一免疫球蛋白亚基的多核苷酸的文库导入真核宿主细胞群体,并与一或多种第二免疫球蛋白亚基一起表达所述亚基,从而由该文库中鉴定到编码第一免疫球蛋白亚基(即重链或轻链)的多核苷酸,这里该第二免疫球蛋白亚基与第一免疫球蛋白亚基不同,即如果第一免疫球蛋白亚基是重链多肽,则第二免疫球蛋白亚基就是轻链多肽。
一旦在第一个步骤中从文库中分离到编码一或多种第一免疫球蛋白亚基的一或多种多核苷酸,就在第二步骤中鉴定第二免疫球蛋白亚基。将编码分离的第一免疫球蛋白亚基的分离的多核苷酸转移到宿主细胞并进行表达,在所述细胞表达编码第二免疫球蛋白亚基的多核苷酸文库,这样就使得能鉴定到编码第二免疫球蛋白亚基的多核苷酸,该第二免疫球蛋白亚基在与第一个步骤中鉴定到的第一免疫球蛋白亚基结合时就形成了能识别特定抗原和/或执行特异功能的功能性免疫球蛋白分子或其片段。
当免疫球蛋白片段仅由一种多肽构成(即单链片段或包含VHH结构域的片段),因此是由一种多核苷酸编码时,优选的方法包括一步筛选和/或选择的过程。通过将文库导入宿主细胞(比如真核细胞),并从这些宿主细胞中回收该文库中编码免疫球蛋白片段的多核苷酸,从而从所述文库中鉴定出编码单链片段的多核苷酸,其中所述单链片段包含重链可变区和轻链可变区,或者包含VHH区。
在某些实施方案中,通过将表面上表达免疫球蛋白分子的宿主细胞与抗原进行接触来鉴定特定的免疫球蛋白分子,这就使得能以下面描述的许多不同方法来选择和/或筛选抗原结合细胞。在其他实施方案中,通过分析条件培养基集中免疫球蛋白分子的所需功能特点(例如病毒中和作用),可鉴定到所需的可溶性的分泌免疫球蛋白分子。
在免疫球蛋白分子结合在宿主细胞表面的情况中,第一个步骤包括将编码多种第一免疫球蛋白亚基多肽、可操作地连接了转录调控区的第一多核苷酸文库导入到能表达所述免疫球蛋白分子的宿主细胞群;向相同的宿主细胞内导入编码第二免疫球蛋白亚基多肽群、可操纵地连接了转录调控区的第二多核苷酸文库;在所述宿主细胞表面表达免疫球蛋白分子或其抗原特异性片段;将宿主细胞与抗原进行接触,以及从与抗原结合的那些宿主细胞中回收来自第一文库的多核苷酸。
在免疫球蛋白分子完全分泌到细胞培养基的情况中,第一个步骤包括将编码第一免疫球蛋白亚基多肽群、可操纵地连接了转录调控区的第一多核苷酸文库导入到能表达所述免疫球蛋白分子的宿主细胞群中;向相同的宿主细胞内导入编码第二免疫球蛋白亚基多肽群、可操纵地连接了转录调控区的第二多核苷酸文库;使免疫球蛋白分子或其抗原特异性片段分泌表达并分泌到细胞培养基中;分析条件培养基的试样中是否具有所需抗原相关的抗体功能;以及从那些生长在观察到所需功能的条件培养基中的宿主细胞内回收来自第一文库的多核苷酸。
在文中,“文库”是多核苷酸的代表性种类,即这样一群多核苷酸,它们因例如来自同样的动物物种、组织类型、器官或细胞类型而相互关联,其中所述文库总的包含给定的多核苷酸属中的至少两个不同种。优选多核苷酸文库在给定的多核苷酸属中包含至少10,100,103,104,105,106,107,108或109个不同种。更具体地说,本发明的文库编码多个某种免疫球蛋白亚基多肽,即重链亚基多肽或轻链亚基多肽。在本文中,本发明的“文库”包含有共同属性的多核苷酸,该属是编码特定型和类的免疫球蛋白亚基多肽的多核苷酸。例如,文库可能编码人μ,γ-1,γ-2,γ-3,γ-4,α-1,α-2,ε或δ重链,或者编码人κ或λ轻链。虽然本发明任何一个文库的成员编码相同的重链或轻链恒定区,但文库总体包含至少2个,优选至少10,100,103,104,105,106,107,108或109个不同的可变区,即与共有恒定区有关的多个可变区。
在其他实施方案中,文库编码多个免疫球蛋白单链片段,所述片段包含可变区,比如轻链可变区或者重链可变区,优选既包含轻链可变区也包含重链可变区。任选的,这类文库包含编码某一型和类的免疫球蛋白亚基多肽或其结构域的多核苷酸。
本发明的一个方面涵盖制备编码免疫球蛋白亚基的多核苷酸文库的方法。此外,本发明涵盖根据文中描述的方法在真核表达载体中构建的免疫球蛋白亚基文库。优选这类文库是在真核病毒载体、更优选的是痘病毒载体中制备的。文中描述了这样的方法和文库。
“受体细胞”或“宿主细胞”或者“细胞”是指其中导入了本发明的多核苷酸文库的细胞或细胞群。本发明的宿主细胞优选是真核细胞或细胞系,优选是植物,动物,脊椎动物,哺乳动物,啮齿类动物,小鼠,灵长动物或者人细胞或细胞系。“宿主细胞群”是指本发明所述“文库”可以被导入其中并进行表达的一群培养细胞。支持构建在给定载体中的给定文库之表达的任何宿主细胞都包括在内。文中公开了合适的和优选的宿主细胞。此外,文中公开了优选与具体载体或者具体选择和/或筛选方案一起使用的特定宿主细胞。虽然优选宿主细胞群是单一培养物,即群体中的每个细胞是相同的细胞类型,但也可以考虑细胞混合培养物。本发明的宿主细胞可以是附着的,即贴在固体基质上生长的宿主细胞,或者,宿主细胞可以悬浮生长。宿主细胞可以是来源于原发肿瘤的细胞,来源于转移瘤的细胞,原代细胞,丧失接触抑制的细胞,转化的原代细胞,永生化的原代细胞,可能经历细胞程序死亡的细胞以及由这些细胞衍生的细胞系。
正如上文提及的,鉴定免疫球蛋白分子的优选方法包括将第一多核苷酸文库导入宿主细胞群,以及向相同的宿主细胞群导入第二多核苷酸文库。所述第一和第二文库是互补的,即如果第一文库编码免疫球蛋白重链,第二文库则编码免疫球蛋白轻链,从而可以在宿主细胞群中装配成免疫球蛋白分子或其抗原特异性片段。同样如上文提及的,鉴定免疫球蛋白或免疫球蛋白片段的另一种方法包括将编码单链片段的单一多核苷酸文库导入宿主细胞群。因此对多核苷酸文库的描述,文库中多核苷酸的组成,以及由这些多核苷酸编码的多肽涵盖了构成第一文库的多核苷酸和构成第二文库的多核苷酸,以及它们编码的多肽。可以在任何合适的载体中构建这些文库,并且两种文库可以、但并非必须构建在相同的载体中。下文公开了用于第一和第二文库的合适和优选的载体。
包含在本发明所述文库中的多核苷酸通过“与转录调控区可操纵地连接”从而编码免疫球蛋白亚基多肽。当给定多核苷酸中的一或多个核酸分子处于功能性关系,它们就是“可操纵地连接”的。这种关系可以存在于多肽的编码区和调控序列之间,它们连接的方式使得当适当的分子(例如,转录激活蛋白,聚合酶等)结合到调控序列上时,编码区将进行表达。“转录调控区”包括,但不限于启动子,增强子,操纵子以及转录终止信号,并且它与多核苷酸一起存在以指导它的转录。例如,如果启动子能影响编码免疫球蛋白亚基多肽的核酸分子的转录,则该启动子是与所述核酸分子可操纵地连接在一起的。通常,“可操纵地连接”是指多核苷酸中DNA序列是毗邻或紧密的连接在一起的。但是某些转录调控区,例如增强子不一定是毗邻的。
“调控序列”或“调控区”是指在特定宿主生物内表达可操纵连接的编码序列所必需的DNA序列。适用于原核生物的调控序列,例如包括启动子,任选操纵子序列,以及核糖体结合位点。已知真核细胞能利用启动子,多腺苷酸化信号和增强子。
各种转录调控区是本领域技术人员所公知的。优选的转录调控区包括那些能在脊椎动物细胞内发挥作用的,比如包括,但不限于来自痘病毒,腺病毒,疱疹病毒,例如人巨细胞病毒(优选中早期启动子,并优选连接了内含子A)、猿猴病毒40(优选早期启动子)、逆转录病毒(比如劳氏肉瘤病毒)以及微小RNA病毒(特别是内部核糖体进入位点或者IRES,增强子区,文中又称为CITE序列)的启动子和增强子序列。其他优选的转录调控区包括那些来源于哺乳动物基因,比如肌动蛋白、热休克蛋白和牛生长激素的调控区,以及其他能控制基因在真核细胞内的表达的序列。另外合适的转录调控区包括组织特异性启动子和增强子以及诱导性启动子(例如可被四环素诱导的启动子,以及温度敏感性启动子)。特别优选的是能在被痘病毒感染的细胞的细胞质内发挥作用的启动子,这在下文将详细讨论。
在某些优选实施方案中,每个“免疫球蛋白亚基多肽”(即“第一免疫球蛋白亚基多肽”或“第二免疫球蛋白亚基多肽”)包含(i)选自重链恒定区(重链恒定区的膜结合形式或完全分泌形式)和轻链恒定区的第一免疫球蛋白恒定区,(ii)与第一恒定区对应的免疫球蛋白可变区,即如果所述免疫球蛋白恒定区是重链恒定区,则免疫球蛋白可变区优选包含VH区,而如果免疫球蛋白恒定区是轻链可变区,则优选免疫球蛋白恒定区包含VL区,以及(iii)能够引导免疫球蛋白亚基多肽穿过内质网膜和宿主细胞质膜进行运输的信号肽,其中所述免疫球蛋白亚基多肽是膜结合或者完全分泌的重链,或者连接有重链的轻链。因此,通过两个相同重链和两个相同轻链的相互结合,能形成表面免疫球蛋白分子或完全分泌的免疫球蛋白分子。
关于免疫球蛋白片段的某些优选实施方案中,单链片段包含免疫球蛋白可变区,其选自重链可变区和轻链可变区,优选包括两种可变区。如果所述免疫球蛋白片段既包括重链可变区又包括轻链可变区,它们可以是直接连在一起的(即它们没有肽或其他种类的接头),或者通过其他手段连接。如下文所述,如果它们是以其他方式连接的,它们可以是直接连接的,或者通过表达过程中形成的二硫键,或者通过肽接头连接。相应的,通过重链可变区和轻链可变区的联合就形成了CDR。
一个单链片段中的重链可变区和轻链可变区可以相互关联,或者一个单链片段的重链可变区可以与另外一个单链片段的轻链可变区关联,反之亦然,这取决于接头的类型。在一个实施方案中,所述单链片段还可以包含恒定区,其选自由重链恒定区或其结构域和轻链恒定区或其结构域组成的组。两个单链片段可以通过它们的恒定区相互关联。
如上文提及的,在某些实施方案中,编码所述单链片段的轻链可变区和重链可变区的多核苷酸还编码接头。所述单链片段可能包含具有VH-接头-VL或者VL-接头-VH序列的单一多肽。在一些实施方案中,所选的接头使单链片段的重链和轻链能以适当的构象方向结合在一起。参见,例如Huston,J.S.等,Methods in Enzym.203:46-121(1991)。因此在这些实施方案中,接头应当能跨越它与可变区的融合点之间的3.5nm距离而不扭曲天然的Fv构象。在这些实施方案中,构成接头的氨基酸残基能够跨越这个距离,应当有5个氨基酸或更长。带有5氨基酸接头的单链片段可以单体形式存在,但主要是二聚体形式。优选,所述接头至少长大约10或至少15个残基。在另一些实施方案中,对接头长度的选择要能促进形成scFv四聚体(四体),它是1个氨基酸长。在一些实施方案中,可变区被直接连接(即单链片段不含肽接头)以便促进形成scFv三聚体(三体)。这些变化是本领域公知的(参见例如,Chames和Baty,FEMSMicrobiol.Letts.189:1-8(2000))。接头不应长到导致对结合位点发生立体干扰。因此,优选接头长大约25个残基或更短。
优选所选肽接头的氨基酸使得接头是亲水性的,这样它不会被包埋在抗体中。接头(Gly-Gly-Gly-Gly-Ser)3(SEQ ID NO:6)是一个广泛用于许多抗体的优选接头,因为它能提供充分的柔性。其他接头包括Glu Ser Gly Arg Ser Gly Gly Gly Gly Ser Gly Gly Gly GlySer(SEQ ID NO:7),Glu Gly Lys Ser Ser Gly Ser Gly Ser GluSer Lys Ser Thr(SEQ ID NO:8),Glu Gly Lys Ser Ser Gly SerGly Ser Glu Ser Lys Ser Thr Gln(SEQ ID NO:9),Glu Gly LysSer Ser Gly Ser Gly Ser Glu Ser Lys Val Asp(SEQ IDNO:10),Gly Ser Thr Ser Gly Ser Gly Lys Ser Ser Glu Gly LysGly(SEQ ID NO:11),Lys Glu Ser Gly Ser Val Ser Ser Glu GlnLeu Ala Gln Phe Arg Ser Leu Asp(SEQ ID NO:12),以及Glu SerGly Ser Val Ser Ser Glu Glu Leu Ala Phe Arg Ser Leu Asp(SEQID NO:13)。或者,对接头比如(Gly-Gly-Gly-Gly-Ser)3(SEQ IDNO:6)进行诱变,或者将接头中的氨基酸随机化,利用噬菌体展示载体或者本发明的方法,筛选或选择带有不同接头的抗体中亲合力最高或者对表现型影响最大的,当然也可以使用任何序列。较短接头的例子包括上述接头的片段,长接头的例子包括上述接头的组合形式,上述接头的片段的组合形式,以及上述接头和接头片段的组合形式。
同样优选的是作为以上描述的免疫球蛋白亚基多肽的变体或片段的那些免疫球蛋白亚基多肽。任何能产生免疫球蛋白分子的抗原结合片段的变体或片段都涵盖在内。这类变体可能通过例如与天然跨膜区的关联,受体-配体相互作用,或者与异源跨膜区的融合而附着在宿主细胞表面,或者可能分泌到细胞培养基中。文中描述了免疫球蛋白分子的抗原结合片段的例子。
在那些免疫球蛋白亚基多肽包含重链多肽的实施方案中,来自任何动物物种的任何免疫球蛋白重链都包括在内。文中描述了合适和优选的免疫球蛋白重链。所述免疫球蛋白重链包括来自脊椎动物比如鸟(特别是鸡)、鱼和哺乳动物的重链,其中哺乳动物免疫球蛋白重链是优选的。免疫球蛋白重链的例子包括人,小鼠,狗,猫,马,山羊,大鼠,绵羊,牛,猪,豚鼠,骆驼,骆马和仓鼠免疫球蛋白重链。在这些中,人免疫球蛋白重链是尤其优选的。还可以考虑的是杂合免疫球蛋白重链,其包含来自一或多个物种的重链部分,比如小鼠/人杂合免疫球蛋白重链,或者“骆驼源化”的人免疫球蛋白重链。对于人免疫球蛋白重链而言,优选本发明的免疫球蛋白重链选自下述组中:μ重链(即IgM免疫球蛋白的重链),γ-1重链(即IgG1免疫球蛋白的重链),γ-2重链(即IgG2免疫球蛋白的重链),γ-3重链(即IgG3免疫球蛋白的重链),γ-4重链(即IgG4免疫球蛋白的重链),α-1重链(即IgA1免疫球蛋白的重链),α-2重链(即IgA2免疫球蛋白的重链),ε重链(即IgE免疫球蛋白的重链),以及δ重链(即IgD免疫球蛋白的重链)。在某些实施方案中,优选的免疫球蛋白重链包括膜结合形式的人μ,γ-1,γ-2,γ-3,γ-4,α-1,α-2,ε和δ重链。特别优选的是膜结合形式的人μ重链。
膜结合形式的免疫球蛋白通常是通过跨膜结构域被锚定在细胞表面,其中的跨膜区经重链信使RNA的可变转录终止和剪接而构成重链多肽的部分。参见例如Roitt第9和10页。“跨膜结构域”、“跨膜区”或者可以互换的相关术语,是指被锚定在细胞膜上的重链多肽的一部分。典型的跨膜结构域包含疏水氨基酸,这在下文将更详细地讨论。“胞内结构域”,“细胞质结构域”或者可以互换的相关术语是指多肽中处于细胞内的部分,它与那些或者锚定在细胞膜上或者暴露在细胞表面上的部分不同。膜结合形式的免疫球蛋白重链多肽通常包含大约三个氨基酸的非常短的细胞质结构域。本发明的膜结合形式免疫球蛋白重链多肽优选包含通常与该免疫球蛋白重链关联的跨膜以及胞内结构域,例如与前B细胞中的μ和δ重链相关联的跨膜和胞内结构域,或者与B记忆细胞中的任何免疫球蛋白重链相关联的跨膜和胞内结构域。但是,也可以考虑异源跨膜和胞内结构域与给定免疫球蛋白重链多肽相结合,例如μ重链的跨膜和胞内结构域可以与γ重链的胞外部分相结合。或者,可以使用完全异源的多肽的跨膜和/或胞质结构域,例如主要组织相容性分子、细胞表面受体、病毒表面蛋白质的跨膜和胞质结构域,嵌合结构域或者合成结构域。
在那些所述免疫球蛋白亚基多肽包含轻链多肽的实施方案中,来自任何动物物种的任何免疫球蛋白轻链都包括在内。文中描述了合适和优选的免疫球蛋白轻链。所述免疫球蛋白轻链包括来自脊椎动物比如鸟(特别是鸡)、鱼和哺乳动物的轻链,其中哺乳动物免疫球蛋白轻链是优选的。免疫球蛋白轻链的例子包括人,小鼠,狗,猫,马,山羊,大鼠,绵羊,牛,猪,豚鼠和仓鼠免疫球蛋白轻链。在这些中,人免疫球蛋白轻链是尤其优选的。还可以考虑的是杂合免疫球蛋白轻链,其包含来自一或多个物种的轻链的部分,比如小鼠/人杂合免疫球蛋白轻链。优选的免疫球蛋白轻链包括人κ和λ轻链。任何一对轻链可以联合同样的一对重链形成免疫球蛋白分子,它具有特征性的H2L2结构,这是本领域普通技术人员所熟知的。
根据本发明一个优选的方面,文中描述的多核苷酸文库(例如第一多核苷酸文库或第二多核苷酸文库)的每个成员包括(a)编码文库中所有成员共有的免疫球蛋白恒定区的第一核酸分子,和(b)编码免疫球蛋白可变区的第二核酸分子,其中该第二核酸分子处于第一核酸分子的上游并符合其读框。相应的,由本发明多核苷酸文库的每个成员所编码的免疫球蛋白亚基多肽(即由这样的多核苷酸编码的免疫球蛋白轻链或重链)优选包含与免疫球蛋白可变区相关联的免疫球蛋白恒定区。
由“第一核酸分子”编码的轻链的恒定区包含该亚基多肽的大约一半,并位于C末端,即处于轻链多肽的后半部分。文中称为CL恒定区的轻链恒定区,或者更具体地说是Cκ恒定区或Cλ恒定区,包含被链间二硫键保持在一个“环”内的大约110个氨基酸。
由“第一核酸分子”编码的重链的恒定区包含亚基多肽的四分之三或更多,并位于C末端,即处于重链多肽的后半部分。文中称为CH恒定区的重链恒定区,包含大约110个氨基酸的3或4个肽环或者“结构域”,它们各由链间二硫键所封闭。更具体地说,人免疫球蛋白的重链恒定区包括Cμ恒定区,Cδ恒定区,Cγ恒定区,Cα恒定区和Cε恒定区。Cγ,Cα和Cδ重链各含有3个恒定区结构域,通常称为CH1,CH2和CH3,而Cμ和Cε重链含有4个恒定区结构域,通常称为CH1,CH2,CH3和CH4。编码人免疫球蛋白恒定区的核酸分子可很容易从得自例如人B细胞或它们的前体的cDNA文库,通过比如PCR等方法获得,这是本领域技术人员所熟知的,下面的实施例中也有公开。
本发明的免疫球蛋白亚基多肽各含有一个由“第二核酸分子”编码的免疫球蛋白可变区。在多核苷酸文库内,每个多核苷酸包含相同的恒定区,但该文库含有多个,即至少2个,优选至少10,100,103,104,105,106,107,108或109个不同的可变区。正如本领域普通技术人员所熟知的,轻链可变区是由重排的核酸分子编码的,每个包含轻链VL区(具体说是Vκ区或Vλ区)和轻链J区(具体说是Jκ区或Jλ区)。类似的,重链可变区也是由重排的核酸分子编码的,每个包含重链VH区、D区和J区。这些重排在细胞分化时发生在DNA水平。编码重链和轻链可变区的核酸分子可以通过例如PCR从成熟B细胞和浆细胞获得,所述细胞最终分化,从而表达对特定表位有特异性的抗体。此外,如果需要针对特定抗原的抗体,可变区可以自用该抗原免疫过、因此产生含量扩大的能与该抗原相互作用的抗体可变区的动物的成熟B细胞和浆细胞分离。或者,如果需要一个更多样化的文库,可以从前体细胞,例如前B细胞和未成熟B细胞分离可变区,因为这些细胞中已经发生了免疫球蛋白基因的重排,但还没有暴露给自身或非自身抗原。例如,可以通过PCR从取自多个供体的正常人骨髓中分离可变区。或者,可变区可以是合成的,例如在实验室中通过产生合成寡核苷酸来制备,或者来源于对种系DNA的体外操作,导致免疫球蛋白基因重排。
除了分别编码免疫球蛋白恒定区和可变区的第一和第二核酸分子,本发明多核苷酸文库的每个成员如上所述进一步包含编码信号肽的第三核酸分子,该第三核酸分子直接位于编码可变区的第二核酸分子的上游并与其读框相符。
“信号肽”是指例如能够引导新生的免疫球蛋白多肽亚基转运到宿主细胞表面的多肽序列。在本领域中信号肽也可以称为“信号序列”,“前导序列”,“分泌信号肽”或者“分泌信号序列”。信号肽通常表达为完整或“未成熟”多肽的一部分,并且一般位于N末端。来自不同蛋白质的信号肽的共同结构通常被描述为带正电荷的n-区,随后是一个疏水的h-区和一个电中性但是极性的c-区。在许多情况中,一旦蛋白质到达其最终目的地,包含信号肽的氨基酸就被切除从而产生该多肽的“成熟”形式。切割是由称为信号肽酶的酶所催化。(-3,-1)规则说明,为了切割的正确进行,位置-3和-1(相对切割位点)的残基必须小而且是中性的。参见例如,McGeoch,Virus Res.3:271-286(1985)和von Heinje,NucleicAcids Res.14:4683-4690(1986).
所有的细胞,包括本发明的宿主细胞,都具有组成型的分泌途径,其中要被输出的蛋白质,包括分泌的免疫球蛋白亚基多肽通过该途径从细胞中分泌出来。这些蛋白质通过ER-高尔基体加工途径,并可能在此发生修饰。如果蛋白质上检测不到其他信号,它就被引导到细胞表面被分泌。或者,免疫球蛋白亚基多肽可以最终成为表达在宿主细胞表面的内在膜成分。膜结合形式的免疫球蛋白亚基多肽开始遵循与分泌形式相同的途径,穿过ER腔,但它们由于终止转运信号或“跨膜结构域”的存在而停留在ER膜中。跨膜结构域是大约20个氨基酸残基的疏水片段,它们在跨越膜的时候采取α螺旋构象。包埋在膜里的蛋白质被锚定在细胞质膜的磷脂双层中。对于分泌蛋白质,跨膜蛋白质的N末端区域有一个信号肽,它能穿过膜并在离开ER腔的时候被切割。免疫球蛋白重链多肽的跨膜形式与分泌形式使用相同的信号肽。
本发明的信号肽可以是天然免疫球蛋白信号肽,即由天然重链或轻链转录物的一部分序列所编码;或者是该序列保留了引导与它可操纵连接的免疫球蛋白亚基多肽进行分泌的能力的功能性衍生物。或者,可以使用异源信号肽或其功能性衍生物。例如,可以用人组织纤溶酶原激活物或小鼠β-葡糖醛酸酶的信号肽取代免疫球蛋白亚基多肽的天然信号肽。
已知许多种类的膜结合蛋白质的信号序列、跨膜结构域以及胞质结构域。可以相应地使用这些序列,即或者将来自特定蛋白质的所述序列成对地使用(例如信号序列和跨膜结构域,或者信号序列和胞质结构域,或者跨膜结构域和胞质结构域),或者三个一起使用,或者与取自不同蛋白质的每个成分使用,或者,这些序列可以是合成的,如前面提到的完全来源于人工递送结构域共有序列。
尤其优选的信号序列和跨膜结构域包括,但不限于来源于CD8,ICAM-2,IL-8R,CD4和LFA-1的那些。另外有用的序列包括这样一些序列,它们来自1)I型内在膜蛋白质,比如IL-2受体β链(残基1-26是信号序列,241-265是跨膜残基;参见Hatakeyama等,Science244:551(1989)和von Heijne等,Eur.J.Biochem.174:671(1988)和胰岛素受体β链(残基1-27是信号序列,957-959是跨膜区,960-1382是胞质结构域;参见Hatakeyama等,同上,和Ebina等,Cell40:747(1985)));2)II型膜内在蛋白质,比如中性内肽酶(残基29-51是跨膜区,2-28是胞质结构域;参见Malfroy等,Biochem.Biophys.Res.Commun.144:59(1987));3)III型蛋白质,比如人细胞色素P450 NF25(Hatakeyama等,同上);以及4)IV型蛋白质,比如人P-糖蛋白(Hatakeyama等,同上)。在这种情况中,CD8和ICAM-2是尤其优选的。例如CD8和ICAM-2的信号序列位于转录产物的最5’端。在CD8的情况中,信号序列由氨基酸1-32构成(Nakauchi等,PNAS USA82:5126(1985)),在ICAM-2的情况中,信号序列由氨基酸1-21构成(Staunton等,Nature(London)339:61(1989))。这些跨膜结构域在CD8中由氨基酸145-195构成(Nakauchi,同上),在ICAM-2中由氨基酸224-256构成(Staunton,同上)。
或者,膜锚定结构域包括GPI锚,它在所述分子和脂双层之间通过糖基磷脂酰肌醇键形成共价键,例如在DAF中(参见Homans等,Nature333(6170):269-72(1988),和Moran等,J.Biol.Chem.266:1250(1991))。为了达到这种情况,可以用来自Thy-1的GPI序列替代跨膜序列放置在免疫球蛋白或免疫球蛋白片段的3’。
类似的,十四烷基化序列可以作为膜锚定结构域。已知c-src的十四烷基化能使它募集到质膜上。这是一种简单有效的膜定位方法,条件是蛋白质的前14个氨基酸残基完全负责这一功能(参见Cross等,Mol.Cell.Biol.4(9)1834(1984);Spencer等,Science262:1019-1024(1993))。这个基元已经显示出对报告基因的定位很有效,可以用于锚定TCR的zeta链。该基元被放置在免疫球蛋白或免疫球蛋白片段的5’,以便将构建体定位到质膜上。其他一些修饰比如十六烷酰化可以用于将构建体锚定在质膜中;例如,G蛋白耦联受体激酶GRK6序列的十六烷酰化序列(Stoffel等,J.Biol.Chem.269:27791(1994));视紫红质的十六烷酰化序列(Barnstable等,J.Mol.Neurosci.5(3):207(1994));以及p21 H-ras1蛋白(Capon等,Nature302:33(1983))。
除了分别编码免疫球蛋白恒定区和可变区的第一和第二核酸分子,如上所述本发明的多核苷酸文库的每个成员可以另外包含编码异源多肽的其他核酸分子。这些附加多核苷酸可以是对编码信号肽的第三核酸分子的补充或替代物。这类编码异源多肽的附加核酸分子可以位于编码可变链区域(variable chain region)或重链区域的核酸分子的上游或下游。
由附加核酸分子编码的异源多肽可以是一个拯救序列。所谓拯救序列是可以用来对免疫球蛋白或其片段或者是编码它们的多核苷酸进行纯化或分离的序列。因此,例如肽拯救序列包括纯化序列,比如用于Ni亲合柱的6-His标签,和用于检测、免疫沉淀或者FACS(荧光激活细胞分选)的表位标签。合适的表位标签包括myc(与市售9E10抗体一起使用),细菌酶BirA的BSP生物素化靶序列,flu标签,LacZ和GST。所述附加核酸分子还可以编码肽接头。
在一个优选实施方案中,异源多肽被组合使用。因此,例如可以使用信号序列、拯救序列和稳定序列的任何数目的组合,并且可以有或没有接头序列。人们可以将编码异源多肽的各种融合多核苷酸放置在免疫球蛋白或其片段的编码多核苷酸的5’和3’。本领域技术人员可以理解,这些序列组件可以以许多组合方式和变化进行使用。
将包含在第一和第二文库中的多核苷酸导入合适的宿主细胞。合适的宿主细胞特征在于能表达附着在它们的表面的免疫球蛋白分子。可以通过本领域技术人员所熟知的方法将所述多核苷酸导入宿主细胞。文中公开了合适的和优选的导入方法。容易理解的是,导入方法根据构建多核苷酸文库所用的载体的性质而不同。例如,可以通过例如脂质转染(比如用阴离子脂质体(参见例如Felgner等,1987 Proc.Natl.Acad Sci.USA84:7413),或阳离子脂质体(参见例如Brigham,K.L.等,Am.J Med Sci.298(4):278-2821(1989);美国专利4897355(Eppstein等)),电穿孔,磷酸钙沉淀(一般可参考Sambrook等,Molecular Cloning:ALaboratory Manual,第二版,Cold  Spring Harbor Laboratory,Cold Spring Harbor,New York,1989),原生质体融合,原生质球融合,或者通过DEAE葡聚糖法(Sussman等,Cell.Biol.4:1641-1643(1984))将DNA质粒载体导入宿主细胞。以上文献均全文引入此处作为参考。
当所选方法是脂质转染时,可以将核酸与阳离子脂质体形成复合物,其中的阳离子脂质体包括比如DOTMA:DOPE,DOTMA,DOPE,DC-胆固醇,DOTAP,Transfectam(Promega),Tfx(Promega),LipoTAXITM(Stratagene),PerFect LipidTM(Invitrogen),SuperFectTM(Qiagen)。当核酸是通过阴离子脂质体进行转染时,该阴离子脂质体可以包裹住核酸。优选,采用制造商的实验方案(比如对于Lipofectamine;Life Technologies Incorporated)通过脂质体介导转染导入DNA。
在所述质粒是病毒载体的情况下,向宿主细胞导入最方便的是通过常规感染进行。但是许多情况下,可以通过以上描述的任何一种方法将病毒核酸导入细胞,由于病毒核酸是“感染性”的,即病毒核酸导入到细胞中后,不需其他条件,就足够使细胞产生活性的子代病毒颗粒。但应当提到的是,某些病毒核酸,例如痘病毒核酸不是感染性的,因此必须与所提供的附加成分一起导入,例如通过包裹病毒核酸的病毒颗粒,通过已经被工程化能产生所需病毒元件的细胞,或者通过辅助病毒。
所述第一和第二多核苷酸文库可以按任何顺序或者同时导入宿主细胞。例如,如果第一和第二多核苷酸文库都是在病毒载体中构建的,无论是感染性或失活的,载体可以以混合物的形式通过同时感染来导入,或者连续感染来导入。如果一个文库是在病毒载体中构建的,另一个是在质粒载体中,最方便的是先导入一个文库,再导入另一个文库。
将第一和第二多核苷酸文库导入宿主细胞后,使免疫球蛋白分子或其抗原特异性片段在所述宿主细胞的膜表面上表达或者分泌到细胞培养基中。“使……表达”是指使被导入宿主细胞的载体进行免疫球蛋白亚基多肽的转录和翻译,优选使宿主细胞将装配完全的免疫球蛋白分子或其抗原特异性片段转运到膜表面或细胞培养基中。通常,使……表达需要在合适的条件下培养其中导入了多核苷酸的宿主细胞以便表达的进行。这些条件和表达所需时间根据所选的宿主细胞和载体而变化,是本领域技术人员所熟知的。
在某些实施方案中,将那些在表面上表达免疫球蛋白分子将可溶性免疫球蛋白分子分泌到细胞培养基中的宿主细胞与抗原进行接触。在本文中,“抗原”是能够与抗体、免疫球蛋白分子或其抗原特异性片段特异结合的任何分子。“特异结合”是指抗原结合到抗体的CDR上。抗原中与CDR特异地相互作用的部分是“表位”,或者“抗原决定簇”。抗原可能包含一个表位,但通常来说,抗原包含至少两个表位,并且根据抗原的大小、构象和类型,可能包括任何数量的表位。
抗原通常是肽或多肽,但也可以是任何分子或化合物。例如,有机化合物,例如二硝基苯酚或DNP,核酸,碳水化合物或者这些化合物的任何混合物,无论是有还是没有肽或多肽,都可以是合适的抗原。最小的肽或多肽表位被认为是大约4或5个氨基酸。优选肽或多肽表位包含至少7个,更优选至少9个,最优选在大约15到30个氨基酸。因为CDR能够识别三级结构的抗原性肽或多肽,所以构成表位的氨基酸不必是连续的,某些情况中,甚至不在同一个肽链上。本发明中,肽或多肽抗原优选含有至少4个,至少5个,至少6个,至少7个,更优选至少8个,至少9个,至少10个,至少15个,至少20个,至少25个,最优选大约15到30个氨基酸构成的序列。优选含有表位或者由表位组成的肽或多肽至少长10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,或100个氨基酸残基。所述抗原可以是任何形式,也可以是游离的,例如溶解在溶液中,或者附着在任何基质上。文中公开了合适和优选的基质。在某些实施方案中,如下文的详细描述,抗原可能是表达抗原的递呈细胞的一部分。
应当理解,根据本发明的方法可以制备特异于任何抗原的免疫球蛋白分子。优选的抗原是“自身”抗原,即与所产生的免疫球蛋白分子来源于相同物种的抗原。举一个例子,可能希望制备针对人肿瘤抗原的人抗体,所述抗原包括,但不限于CEA抗原,GM2抗原,Tn抗原,sTn抗原,Thompson-Friedenreich抗原(TF),Globo H抗原,Le(y)抗原,MUC1抗原,MUC2抗原,MUC3抗原,MUC4,MUC5AC抗原,MUC5B抗原,MUC7抗原,癌胚抗原,人绒毛膜促性腺激素的β链(hCGβ)抗原,HER2/neu抗原,PSMA抗原,EGFRvIII抗原,KSA抗原,PSA抗原,PSCA抗原,GP100抗原,MAGE1抗原,MAGE2抗原,TRP1抗原,TRP2抗原,以及酪氨酸酶抗原。其他目的“自身”抗原包括,但不限于细胞因子,受体,配体,糖蛋白和激素。
本发明还包括制备针对感染因子上的抗原的抗体。这类抗原的例子包括,但不限于细菌抗原,病毒抗原,寄生虫抗原和真菌抗原。病毒抗原的例子包括,但不限于腺病毒抗原,α病毒抗原,杯状病毒抗原,例如杯状病毒衣壳抗原,冠状病毒抗原,犬瘟病毒抗原,埃博拉病毒抗原,肠道病毒抗原,黄病毒抗原,肝炎病毒(A-E)抗原,例如乙肝核心或表面抗原,疱疹病毒抗原,例如单纯疱疹病毒或水痘带状疱疹病毒糖蛋白抗原,免疫缺陷病毒抗原,例如人免疫缺陷病毒包膜或蛋白酶抗原,感染性腹膜炎病毒抗原,流感病毒抗原,例如甲型流感血凝素或神经氨酸酶抗原,白血病病毒抗原,马尔堡病毒抗原,致癌病毒抗原,正粘病毒抗原,乳头瘤病毒抗原,副流感病毒抗原,例如血凝素/神经氨酸酶抗原,副粘病毒抗原,细小病毒抗原,瘟病毒抗原,微小RNA病毒抗原,例如骨髓灰质炎病毒衣壳抗原,狂犬病毒抗原,例如狂犬病毒糖蛋白G抗原,呼肠病毒抗原,逆转录病毒抗原,轮状病毒抗原,以及其他致癌或癌症相关的病毒抗原。
细菌抗原的例子包括,但不限于放线菌抗原,芽孢杆菌抗原,拟杆菌抗原,博德特氏菌抗原,巴尔通氏体抗原,疏螺旋体抗原,例如B.bergdorferi OspA抗原,布鲁氏菌属抗原,弯曲杆菌属抗原,二氧化碳嗜纤维菌属抗原,衣原体属抗原,梭菌属抗原,棒杆菌属抗原,考克斯氏体属抗原,嗜皮菌属抗原,肠球菌属抗原,埃里希氏体属抗原,埃希氏菌抗原,弗郎希氏菌属抗原,梭杆菌属抗原,血巴通氏体属抗原,嗜血杆菌属抗原,例如流感嗜血杆菌b型外膜蛋白抗原,螺杆菌属抗原,克雷伯氏菌属抗原,L-型细菌抗原,钩端螺旋体属抗原,李斯特氏菌属抗原,分枝杆菌属抗原,枝原体属抗原,奈瑟氏球菌属抗原,新立克次氏体属抗原,诺卡氏菌属抗原,巴斯德氏菌属抗原,消化球菌属抗原,消化链球菌属抗原,肺炎球菌属抗原,变形菌属抗原,假单胞菌属抗原,立克次氏体属抗原,罗卡利马氏体属抗原,沙门氏菌属抗原,志贺氏菌属抗原,葡萄球菌属抗原,链球菌属抗原,例如酿脓链球菌M蛋白抗原,密螺旋体属抗原,和耶尔森氏菌属抗原,例如鼠疫耶尔森氏菌F1和V抗原。
真菌抗原的例子包括,但不限于犁头霉属抗原,支顶孢属(Acremonium)抗原,链格孢属抗原,曲霉属抗原,蛙粪霉属抗原,Bipolaris抗原,芽酵母属抗原,假丝酵母属抗原,球孢菌属(Coccidioides)抗原,耳霉抗原,隐球酵母属抗原,弯孢属抗原,表皮癣菌属抗原,外瓶柄霉属抗原,地霉属抗原,组织胞浆菌属抗原,马杜拉分支菌属抗原,鳞斑霉属抗原,小孢霉属抗原,Moniliella抗原,被孢霉属抗原,毛霉属抗原,拟青霉属抗原,青霉属抗原,Phialemonium抗原,瓶霉属抗原,Prototheca抗原,Pseudallescheria抗原,Pseudomicrodochium抗原,腐霉属抗原,鼻孢子菌属抗原,根霉属抗原,Scolecobasidium抗原,Sporothrix抗原,匍柄霉属抗原,发癣菌属抗原,丝孢酵母属抗原,和Xylohypha抗原。
原生动物寄生虫抗原的例子包括,但不限于巴倍虫属抗原,肠袋虫属抗原,贝斯虫属(Besnoitia)抗原,隐孢子虫属(Cryptosporidium)抗原,艾美虫属(Eimeri)抗原a抗原,脑居虫属(Encephalitozoon)抗原,内变形虫属抗原,贾弟虫属抗原,Hammondia抗原,肝簇虫属(Hepatozoon)抗原,等孢子虫属抗原,利什曼虫属抗原,微孢子虫属(Microsporidia)抗原,新孢子虫属(Neospora)抗原,微粒子虫属抗原,Pentatrichomonas抗原,疟原虫属抗原,例如P.falciparum circumsporozoite(PfCSP),孢子虫表面蛋白2(PfSSP2),肝态(liver state)抗原1羧基端(PfLSA-1 c-term),和外运蛋白1(PfExp-1)抗原,肺囊虫属(Pneumocystis)抗原,肉孢子虫属抗原,裂体属(Schistosoma)抗原,泰来虫属(Theileria)抗原,弓形虫属抗原,和锥虫属抗原.
蠕虫寄生虫抗原的例子包括,但不限于棘唇线虫属(Acanthocheilonema)抗原,Aelurostrongylus抗原,钩口线虫属抗原,管圆线虫属抗原,蛔虫属抗原,布鲁线虫属(Brugia)抗原,仰口线虫属(Bunostomum)抗原,毛细线虫属抗原,夏柏特线虫属(Chabertia)抗原,古柏线虫属(Cooperia)抗原,环体线虫属(Crenosoma)抗原,四尾线虫属(Dictyocaulus)抗原,膨结线虫属(Dioctophyme)抗原,双瓣线虫属(Dipetalonema)抗原,双叶槽属(Diphyllobothrium)抗原,Diplydium抗原,恶丝虫属抗原,龙线虫属(Dracunculus)抗原,住肠线虫属抗原,Filaroides抗原,血矛线虫属(Haemonchus)抗原,兔唇蛔虫属(Lagochilascaris)抗原,罗阿线虫属(Loa)抗原,曼森线虫属抗原,缪勒线虫属(Muellerius)抗原,侏体属(Nanophyetus)抗原,板口线虫属抗原,细颈线虫属(Nematodirus)抗原,结节线虫属抗原,盘尾丝虫属抗原,后睾吸虫属抗原,奥斯脱线虫属(Ostertagia)抗原,副线虫属(Parafilaria)抗原,并殖属抗原,副蛔虫属抗原,泡翼线虫属抗原,原圆线虫属抗原,腹腔丝虫属(Setaria)抗原,旋尾线虫属(Spirocerca)抗原,旋宫属(Spirometra)抗原,Stephanofilaria抗原,类圆线虫属抗原,圆线虫属抗原,吸吮线虫属(Thelazia)抗原,弓蛔虫属(Toxascaris)抗原,弓首线虫属抗原,毛形线虫属抗原,毛圆线虫属抗原,鞭虫属抗原,钩线虫属抗原,和吴策线虫属抗原。
在那些免疫球蛋白分子表达在宿主细胞表面上的选择和筛选方案中,将本发明的宿主细胞通过这样一个方法与抗原进行接触,该方法使得特异识别表达在宿主细胞表面的免疫球蛋白分子的CDR的抗原与CDR结合,从而使与抗原特异结合的宿主细胞和那些不结合抗原的宿主细胞区别开来。任何能使表达抗原特异性抗体的宿主细胞与抗原进行接触的方法都包括在本发明中,例如,如果宿主细胞是悬浮的,抗原附着在固体基质上,则与抗原特异结合的细胞将被捕获到固体基质上,从而使得不结合抗原的那些细胞可被洗掉,随后可以回收结合细胞。或者,如果宿主细胞附着在固体基质上,通过特异结合抗原,导致这些细胞从基质上释放下来(例如,由于细胞死亡),则可以从细胞上清液中回收它们。文中公开了使本发明所述宿主细胞与抗原进行接触的优选方法,尤其是利用通过三分子重组构建在痘苗病毒载体中的文库。
在一个优选的用于检测表达在宿主细胞表面上的抗原特异性免疫球蛋白分子的筛选方法中,将本发明的宿主细胞与选择抗原一起温育,其中所述抗原直接标记了荧光素-5-异硫氰酸(FITC),或者间接标记生物素,然后用FITC标记的链霉亲合素检测。可以采用本领域技术人员熟悉的其他荧光探针。在温育过程中,标记好的选择抗原与抗原特异性免疫球蛋白分子结合。通过荧光激活细胞分选术可以选择出表达针对特定的荧光标记抗原的抗体受体的细胞,从而使得与抗原特异结合的宿主细胞和不结合抗原的宿主细胞区分开。随着能在1小时内分选1×108个以上细胞的细胞分选仪的出现,就可以对感染了免疫球蛋白基因的重组痘苗文库的大量细胞进行筛选,从而选择出表达针对选择抗原的特异性抗体受体的细胞亚群。
收获与抗原特异结合的宿主细胞后,从这些宿主细胞中回收第一文库的多核苷酸。“回收”是指粗略地将所需成分与不需要的成分分离开。例如,根据宿主细胞从固体基质上的脱离来“回收”与抗原结合的宿主细胞,通过与其他细胞成分的粗分离而从这些细胞中“回收”第一文库的多核苷酸。应当提到的是术语“回收”不代表任何类型的纯化或分离除去病毒和其他成分。多核苷酸的回收可以通过本领域普通技术人员已知的任何常规方法来进行。一个优选的方面,所述多核苷酸通过收获感染性病毒颗粒而回收,例如,其中构建了第一文库的痘苗病毒载体颗粒,它们包含在与抗原结合的宿主细胞内。
在某些免疫球蛋白分子被完全从宿主细胞表面分泌出来的筛选方案中,其中培养着宿主细胞池的细胞培养基,即“条件培养基”,可以通过这样一种方法与抗原进行“接触”,该方法使得特异识别免疫球蛋白分子的CDR的抗原与CDR结合,并能检测抗原-抗体相互作用。这类方法包括,但不限于免疫印迹,ELISA测定法,RIA测定法,RAST测定法和免疫荧光测定法。或者,对所述条件培养基进行特定抗体的功能测定。这类测定法的例子包括,但不限于病毒中和法(用于针对特定病毒的抗体),细菌调理/吞噬检测法(用于针对特定细菌的抗体),抗体依赖性细胞毒(ADCC)检测法,检测对某些细胞功能的抑制或促进的测定法,检测肥大细胞的IgE介导的组胺释放的方法,血凝试验以及血凝抑制试验。这些测定方法能够检测到具有所需功能特征的抗原特异性抗体。
鉴定到含有能特异地结合抗原或者具有所需的功能特征的免疫球蛋白分子的条件培养基后,进行进一步筛选步骤,直到回收到产生目标免疫球蛋白分子的宿主细胞,然后从这些宿主细胞中回收第一文库的多核苷酸。
本领域普通技术人员很容易理解,鉴定编码免疫球蛋白亚基多肽的多核苷酸可能需要两或更多轮上述选择,必须进行两或更多轮上述筛选。一轮选择不一定能分离到纯的编码所需第一免疫球蛋白亚基多肽的多核苷酸;第一轮选择后得到的混合物可能富含所需多核苷酸,但也污染有杂质插入序列。文中描述的筛选法可鉴定到含有活性宿主细胞和/或免疫球蛋白分子的池,但这些池还含有非活性种类。因此,活性池被进一步细分,进行其他几轮的筛选。所以鉴定编码第一免疫球蛋白亚基多肽(它与第二免疫球蛋白亚基多肽联合时能形成目标免疫球蛋白分子或其抗原特异性片段)的多核苷酸可能需要几轮的选择和/或筛选或者更为有利,这样就提高了含有所需多核苷酸的细胞的比例。相应地,该实施方案进一步要求将第一轮回收到的多核苷酸导入第二群细胞,并进行第二轮选择。
因此,如上所述的第一个选择步骤可能或必须被重复1或更多次,以便富集编码目的免疫球蛋白亚基多肽的多核苷酸。为了重复该实施方案的第一个步骤,将如上所述回收到的多核苷酸或多核苷酸池导入宿主细胞群,这些细胞群能表达由文库中的多核苷酸编码的免疫球蛋白分子。这些宿主细胞可以与第一轮选择中使用的细胞类型相同,或者不同,条件是能表达所述免疫球蛋白分子。将第二多核苷酸文库也导入这些宿主细胞,使免疫球蛋白分子或其抗原特异性片段在所述宿主细胞的细胞膜表面或细胞培养基内进行表达。类似地,将细胞或条件培养基与抗原进行接触,或者在功能性测定方法中检测该培养基,再次从表达与抗原特异结合和/或具有所需功能特性的免疫球蛋白分子的那些细胞或者宿主细胞集中回收第一文库的多核苷酸。可以将这些步骤重复一或多次,使来自第一文库的多核苷酸得以富集,所述多核苷酸编码免疫球蛋白亚基多肽,它是能特异结合抗原和/或具有所需功能特性的免疫球蛋白分子的一部分,或其抗原特异性片段。
如上所述将来自第一文库的目的多核苷酸进行适当的富集之后,这些被回收的多核苷酸即是“分离的”,即它们基本上从其天然环境中脱离,大部分与文库中不编码抗原特异性免疫球蛋白亚基多肽的多核苷酸分离开了。例如,就本发明的目的而言,包含在载体中的克隆多核苷酸被认为是分离的。应当理解的是,通过文中描述的方法,可以回收到能特异结合相同抗原的两种或多种不同免疫球蛋白亚基多肽。相应的,编码与相同抗原结合的多肽的多核苷酸混合物也被认为是“分离的”。分离的多核苷酸的其他例子包括那些保持在异源宿主细胞中的或溶液中的(部分或基本上)纯化的DNA分子。但是就本发明的目的而言,包含在这样的克隆中的多核苷酸不是“分离的”,这些克隆是混合文库的成员,并且没有例如由于编码抗原特异性免疫球蛋白亚基多肽而与文库中的其他克隆分离开。例如,包含在病毒载体中的多核苷酸在回收并进行噬菌斑纯化后是“分离的”,包含在质粒载体中的多核苷酸在从单个细菌菌落中扩增后是分离的”。
已知一种抗原可包含两个或更多表位,任何一个表位可能结合几种不同的免疫球蛋白分子,因此预期由该实施方案的第一步可以回收到几个合适的多核苷酸,例如2个,3个,4个,5个,10个,100或更多个均编码免疫球蛋白亚基多肽的多核苷酸,所述亚基多肽在与第二文库的多核苷酸所编码的合适的免疫球蛋白亚基多肽结合时,能够形成与目的抗原特异结合的免疫球蛋白分子或其抗原特异性片段。预期从第一文库中回收的每个不同多核苷酸能被单独地分离出来。但是,这些多核苷酸可能作为编码具有相同抗原特异性的多肽的一群多核苷酸而被分离出来,这些多核苷酸可能是一起“分离的”。这类多核苷酸混合物,无论是单独分离的或共同分离的,可以象下面解释的那样,单独或者与2个,3个,4个,5个,10个,100个或更多个多核苷酸池一起在第二步中导入宿主细胞。
一旦从第一文库中分离到一或多个合适的多核苷酸,在该实施方案的第二步中,鉴定一或多个多核苷酸,它们编码的免疫球蛋白亚基多肽与分离自第一文库的多核苷酸所编码的免疫球蛋白亚基多肽能够联合形成可特异结合目的抗原或具有所需功能特性的免疫球蛋白分子或其抗原特异性片段。
相应的,第二步包括将编码第二免疫球蛋白亚基多肽的第二多核苷酸文库导入能表达免疫球蛋白分子的宿主细胞群,向相同的宿主细胞群导入至少一个如上所述分离自第一文库的多核苷酸,使在所述宿主细胞表面表达免疫球蛋白分子或其抗原特异性片段,或者完全分泌到细胞培养基内,将这些宿主细胞或宿主细胞生长的条件培养基与目的特异抗原进行接触,或者对条件培养基进行功能检测,然后从那些可结合目的抗原的宿主细胞或者在显示所需活性的培养基中生长的宿主细胞内回收第二文库的多核苷酸。因此第二步与第一步非常类似,只是第二文库的多核苷酸所编码的第二免疫球蛋白亚基多肽与那些分离自第一文库的多核苷酸在宿主细胞内结合。正如上面提到的,可以使用分离自第一文库的单个克隆多核苷酸,或者可同时导入分离自第一文库的几种多核苷酸的池。与上面描述的第一步相同,进行一或几轮富集,即对逐渐缩小的池进行选择或筛选,从而使第二文库中编码第二免疫球蛋白亚基多肽的多核苷酸得以富集,所述第二免疫球蛋白亚基多肽是能够特异结合目的抗原或显示所需功能特性的免疫球蛋白分子的一部分。同样与第一步相同,从第二文库中分离一或多个所需多核苷酸。如果在第二步较早的几轮富集中使用了分离多核苷酸池,优选在随后的富集步骤中利用分离自第一文库的更小的多核苷酸池,或者更优选利用分离自第一文库的单个克隆多核苷酸。对于任何分离自第一文库并用于第二文库多核苷酸的选择过程的单个多核苷酸,有可能从第二文库中分离到几个(即2,3,4,5,10,100或更多个)编码第二免疫球蛋白亚基多肽的多核苷酸,所述第二免疫球蛋白亚基多肽能与分离自第一文库的多核苷酸所编码的第一免疫球蛋白亚基多肽联合形成可特异结合目的抗原或者显示所需功能特性的免疫球蛋白分子,或其抗原结合片段。
对于编码单链片段的文库的选择/筛选方法只需要一个文库,而不是第一和第二文库,并且只需要1个选择/筛选步骤。与免疫球蛋白的两步法任何一步类似,这种一步选择/筛选法中进行两轮或更多轮富集也可能更有利。
载体。在真核细胞中构建抗体文库时,可以使用任何能在真核细胞内进行表达的常规载体。例如,可以在病毒、质粒、噬菌体或噬菌粒载体中构建文库,只要所选的具体载体包含能在真核细胞内发挥作用的转录和翻译调控区。但是,优选在真核病毒载体中构建如上所述的抗体库。
真核病毒载体可以是任何类型,例如动物病毒载体或植物病毒载体。病毒载体的天然基因组可以是正链、负链或者双链RNA,或者DNA,并且天然基因组可以是环形或线性。对于动物病毒载体,包括那些感染无脊椎动物(例如昆虫,原生动物或者蠕虫寄生虫)或者脊椎动物(例如哺乳动物,鸟,鱼,爬行动物和两栖动物)的病毒载体。选择病毒载体只受到最大插入片段和蛋白质表达水平的限制。合适的病毒载体是那些感染酵母和其他真菌细胞,昆虫细胞,原生动物细胞,植物细胞,鸟细胞,鱼细胞,爬行动物细胞,两栖动物细胞或者哺乳动物细胞的病毒载体,特别优选哺乳动物病毒载体。任何常规病毒载体都可以用于本发明,包括但不限于痘病毒载体(例如痘苗病毒),疱疹病毒载体(例如单纯疱疹病毒),腺病毒载体,杆状病毒载体,逆转录病毒载体,微小RNA病毒载体(例如脊髓灰质炎病毒),甲病毒载体(例如新培斯病毒)和肠道病毒(例如门戈病毒(mengovirus))。优选DNA病毒载体,例如痘病毒,疱疹病毒,杆状病毒和腺病毒。正如以下详细描述的,特别优选痘病毒,尤其是正痘病毒,特别是痘苗病毒。在一个优选实施方案中,使用能产生任何所选病毒载体的感染性病毒颗粒的宿主细胞。许多常规病毒载体,比如痘苗病毒,有非常宽的宿主范围,因此能使用许多不同的宿主细胞。
正如上面提到的,可以在相同或不同载体中构建本发明的第一和第二文库。但是,在优选实施方案中,第一和第二文库被制备成能方便地回收第一文库和第二文库的多核苷酸,例如在第一步中将第一文库的多核苷酸方便地与第二文库的多核苷酸分离开,在第二步中方便地从第一文库的多核苷酸中回收第二文库的多核苷酸。例如,在第一步中,如果在病毒载体中构建第一文库,第二文库构建在质粒载体中,可以很容易地以感染性病毒颗粒的形式回收到第一文库的多核苷酸,而剩下第二文库的多核苷酸与细胞残骸。类似的,在第二步,如果第二文库构建在病毒载体中,而第一步中分离到的第一文库的多核苷酸被导入质粒载体,则可以容易地回收到含有第二文库多核苷酸的感染性病毒颗粒。
当第二多核苷酸文库或者分离自第一文库的多核苷酸在质粒载体中被导入宿主细胞内,则优选该质粒载体中包含的多核苷酸所编码的免疫球蛋白亚基多肽可操纵地连接了转录调控区,所述调控区由含有其他文库的病毒载体所编码的蛋白质驱动。例如,如果在痘病毒载体中构建第一文库,在质粒载体中构建第二文库,优选构建在质粒文库中的编码第二免疫球蛋白亚基多肽的多核苷酸可操纵地连接能在痘病毒感染的细胞的细胞质内发挥作用的转录调控区,优选启动子。类似地,在第二步中,如果需要将分离自第一文库的多核苷酸插入质粒载体,在痘病毒载体中构建第二文库,则优选分离自第一文库并插入到质粒中的多核苷酸可操纵地连接能在痘病毒感染的细胞的细胞质内发挥作用的转录调控区,优选启动子。文中公开了这类转录调控区的合适和优选的例子。这样,第二文库的多核苷酸仅在那些也感染了痘病毒的细胞内表达。
然而,如果能在一个病毒载体中维持第一和第二文库,以及分离自第一文库的那些多核苷酸,而不必将1个或这两个文库维持在两种不同的载体系统中,将是很方便的。因此,本发明中,可以对维持在病毒载体中的第一或第二文库样品灭活,从而使病毒载体感染细胞,病毒载体的基因组被转录,但载体不复制,即当所述病毒载体导入细胞时,该病毒基因组携带的基因产物,例如免疫球蛋白亚基多肽得到表达,但不产生感染性病毒颗粒。
在一个优选方面,通过用4’-氨甲基-三甲沙林(补骨脂素)处理构建在病毒载体中的文库样品,然后将病毒载体暴露于紫外线(UV),来使构建在真核病毒载体内的第一或第二文库失活。补骨脂素和UV灭活病毒是本领域普通技术人员所熟知的。参见,例如Tsung,K.等,J.Virol.70:165-171(1996),该文全文引入作为参考。
补骨脂素处理通常包括将病毒载体的无细胞样品与浓度在大约0.1μg/ml到大约20μg/ml的补骨脂素温育,优选补骨脂素的浓度为大约1μg/ml到大约17.5μg/ml,大约2.5μg/ml到大约15μg/ml,大约5μg/ml到大约12.5μg/ml,大约7.5μg/ml到大约12.5μg/ml,或者大约9μg/ml到大约11μg/ml。因此,补骨脂素的浓度可以是大约0.1μg/ml,0.5μg/ml,1μg/ml,2μg/ml,3μg/ml,4μg/ml,5μg/ml,6μ g/ml,7μg/ml,8μg/ml,9μg/ml,10μg/ml,11μg/ml,12g/ml,13μg/ml,14μg/ml,15μg/ml,16g/ml,17μg/ml,18μg/ml,19μg/ml,或20μg/ml。优选,补骨脂素的浓度是大约10μg/ml。用在此处,术语“大约”考虑到时间,化学物质浓度,温度,pH和其他通常在实验室或工厂的因素很难准确,可能根据测量的类型和用于测量的设备而在一定数量内变化。
通常在UV照射前将与补骨脂素的温育进行一段时间。时间段优选在UV照射前大约1分钟到大约20分钟。优选,时间段在大约2分钟到大约19分钟内变化,从大约3分钟到大约18分钟,从大约4分钟到大约17分钟,从大约5分钟到大约16分钟,从大约6分钟到大约15分钟,从大约7分钟到大约14分钟,从大约8分钟到大约13分钟,或者从大约9分钟到大约12分钟。因此,温育时间可以是大约1分钟,大约2分钟,大约3分钟,大约4分钟,大约5分钟,大约6分钟,大约7分钟,大约8分钟,大约9分钟,大约10分钟,大约11分钟,大约12分钟,大约13分钟,大约14分钟,大约15分钟,大约16分钟,大约17分钟,大约18分钟,大约19分钟,或者大约20分钟。更优选,在UV照射前进行10分钟温育。
然后将经补骨脂素处理过的病毒暴露于UV光线。UV可以是任何波长,但优选长波UV光,例如大约365nm。暴露于UV要进行大约0.1分钟到大约20分钟的时间范围。优选,时间范围在大约0.2到大约19分钟,大约0.3到大约18分钟,大约0.4到大约17分钟,大约0.5到大约16分钟,大约0.6到大约15分钟,大约0.7到大约14分钟,大约0.8到大约13分钟,大约0.9到大约12分钟,大约1到大约11分钟,大约2到大约10分钟,大约2.5到大约9分钟,大约3到大约8分钟,大约4到大约7分钟,或者大约4.5到大约6分钟。因此,温育时间可以是大约0.1,大约0.5,大约1,大约2,大约3,大约4,大约5,大约6,大约7,大约8,大约9,大约10,大约11,大约12,大约13,大约14,大约15,大约16,大约17,大约18,大约19,或者大约20分钟。更优选,将病毒载体暴露于UV光大约5分钟。
在真核细胞中由编码免疫球蛋白亚基多肽的两个多核苷酸文库装配并表达免疫球蛋白分子或其抗原特异性片段的能力,比在细菌系统中生产单链抗体的方法有了显著的提高,因为两步选择过程可以作为选择具有各种特异性的免疫球蛋白分子或其抗原特异性片段的基础。
以下的实施例提供了具体实施方案的例子,它们进一步阐明但不限制本实施方案。正如前面详细描述的,分两个阶段完成对特定免疫球蛋白亚基多肽,例如免疫球蛋白重链和轻链的选择。首先,在真核病毒载体(例如痘病毒载体)中构建来自天然或经免疫供体的免疫球蛋白产生细胞的多样化重链文库;类似的多样化免疫球蛋白轻链文库构建在质粒载体中,其中重组基因的表达受到病毒启动子的调控,或者构建在已通过例如补骨脂素和UV处理灭活的真核病毒载体中。用感染复数大约1(MOI=1)的编码重链文库的病毒载体感染能表达免疫球蛋白分子或其抗原特异性片段的宿主细胞。“感染复数”指可感染每个宿主细胞的病毒颗粒的平均数。例如,如果需要MOI是1的感染,即每个细胞平均被1个病毒颗粒感染,就将用于感染的感染性病毒颗粒的数目调整到等于待感染细胞的数目。
按照这个策略,在使得每个细胞能摄取并表达平均10个或更多个编码轻链多肽的多核苷酸的条件下,用轻链质粒文库转染宿主细胞,或者用灭活的轻链病毒文库感染宿主细胞。在这样的条件下,单独一个宿主细胞可以表达多种免疫球蛋白分子或其片段,每个宿主细胞中不同轻链与相同的重链构成特征性的H2L2结构。
本领域的普通技术人员会理解,要控制细胞所摄取的质粒数是困难的,因为成功的转染依赖于在细胞中诱导感受态,而这不是统一的,可能导致摄取不同量的DNA。因此,在需要仔细控制每个感染宿主细胞中导入的第二文库的多核苷酸数目的那些实施方案中,优选使用灭活病毒载体,因为此时病毒的感染复数更容易控制。
在单个宿主细胞内表达多种轻链,联合一个重链,有降低特异抗原免疫球蛋白的亲合性(“avidity”)的效果,但对于选择较高亲合力(“affinity”)的结合位点有益。用在文中,术语“亲合力”是指单个表位结合免疫球蛋白分子CDR的强度的衡量标准。参见例如Harlow 27-28页。用在文中,术语“亲和性”指免疫球蛋白群与抗原形成的复合物的总的稳定性,就是免疫球蛋白混合物与抗原的功能性结合强度。参见例如Harlow 29-34页。“亲和性”与群体中的单个免疫球蛋白分子与特定表位的亲和力有关,也和免疫球蛋白及该抗原的效价有关。例如,二价单克隆抗体和一个有高度重复表位结构的抗原(比如多聚体)之间的相互作用,就具备高亲和性。本领域普通技术人员都能理解,如果宿主细胞在其表面表达免疫球蛋白分子,每个都包含特定重链,但表面上的不同免疫球蛋白分子包含不同轻链,则该宿主细胞对给定抗原的“亲和性”就会下降。然而,回收这样一群免疫球蛋白分子的可能性却提高了,这些免疫球蛋白分子的相关性在于包含共同的重链,但通过与不同轻链联合,它们能和特定抗原以一定范围的亲合力反应。相应地,通过调整不同轻链或其片段(它们能够在给定宿主细胞内与一定数量的重链或其片段联合)的数目,本发明提供了一种选择和富集具有各种亲合力水平的免疫球蛋白分子或其抗原特异性片段的方法。
在如上所述的选择免疫球蛋白分子或其抗原特异性片段的方法的第一步中利用该策略时,优选在真核病毒载体中构建第一文库,用MOI在大约1到10(优选大约1)的第一文库感染宿主细胞,在允许每个被感染宿主细胞摄取多达20个第二文库的多核苷酸的条件下导入第二文库。例如,如果第二文库构建在灭活病毒载体中,用MOI在大约1到20的第二文库感染宿主细胞,虽然根据使用的病毒载体和目的免疫球蛋白分子的特性不同,可能需要高于或低于这个范围的MOI。如果第二文库构建在质粒载体中,则调节转染条件使0到20个质粒进入每个宿主细胞。通过增加或减少允许进入每个被感染细胞的第二文库多核苷酸的平均数目,来控制选择对抗原有较高或较低的亲合反应。
更优选,当第一文库构建在病毒载体中,用MOI在大约1-9,大约1-8,大约1-7,大约1-6,大约1-5,大约1-4,或大约1-2的第一文库感染宿主细胞。换句话说,宿主细胞以MOI大约10,大约9,大约8,大约7,大约6,大约5,大约4,大约3,大约2或大约1被第一文库感染。最优选,用MOI为大约1的第一文库感染宿主细胞。
当第二文库构建在质粒载体中时,优选在允许每个被感染宿主细胞能摄取多达大约19个,大约18个,大约17个,大约16个,大约15个,大约14个,大约13个,大约12个,大约10个,大约9个,大约8个,大约7个,大约6个,大约5个,大约4个,大约3个,大约2个或大约1个第二文库多核苷酸的条件下,将质粒载体导入宿主细胞。最优选,当第二文库构建在质粒载体中时,在允许每个被感染宿主细胞能摄取多达大约10个第二文库多核苷酸的条件下,将质粒载体导入宿主细胞。
类似的,当第二文库构建在灭活的病毒载体中时,更优选以MOI大约1-19,大约2-18,大约3-17,大约4-16,大约5-15,大约6-14,大约7-13,大约8-12或大约9-11将第二文库导入宿主细胞。换句话说,宿主细胞被MOI为大约20,大约19,大约18,大约17,大约16,大约15,大约14,大约13,大约12,大约11,大约10,大约9,大约8,大约7,大约6,大约5,大约4,大约3,大约2,或大约1的第二文库感染。在一个最优选的方面,以MOI为大约10用第二文库感染宿主细胞。本领域普通技术人员能够理解,灭活病毒的滴度以及“MOI”无法直接测量,但是可以从开始的感染性病毒储液(它们随后被灭活)的滴度推测出该滴度。
在本发明一个最优选的方面,第一文库构建在病毒载体中,第二文库构建在已经灭活的病毒载体中,用MOI为大约1的第一文库感染宿主细胞,MOI为大约10的第二文库感染宿主细胞。
本发明中,优选的病毒载体衍生自痘病毒,例如痘苗病毒。如果编码第一免疫球蛋白亚基多肽的第一文库构建在痘病毒载体中,由构建在质粒载体或灭活病毒载体中的第二文库编码的第二免疫球蛋白亚基多肽的表达受到痘病毒启动子的调控,则第二免疫球蛋白亚基多肽在痘病毒感染的细胞的细胞质中得到高水平表达,无需核整合。
在如上所述的选择免疫球蛋白的第二步中,优选将第二文库构建在感染性真核病毒载体中,用MOI为大约1到10的第二文库感染宿主细胞。更优选,当第二文库构建在病毒载体中,用MOI为大约1-9,大约1-8,大约1-7,大约1-6,大约1-5,大约1-4或大约1-2的第二文库感染宿主细胞。换句话说,宿主细胞被MOI为大约10,大约9,大约8,大约7,大约6,大约5,大约4,大约3,大约2或大约1的第二文库感染。最优选,用MOI为大约1的第二文库感染宿主细胞。
在选择免疫球蛋白的第二步,来自第一文库的多核苷酸已被分离。在某些实施方案中,将单个第一文库多核苷酸,即克隆,导入用于分离第二文库多核苷酸的宿主细胞。在这种情况中,将分离自第一文库的多核苷酸在允许每个宿主细胞有至少大约1个多核苷酸的条件下导入宿主细胞。但是因为被导入的来自第一文库的所有多核苷酸都是相同的,即被克隆多核苷酸的拷贝,所以导入任何给定宿主细胞中的多核苷酸的数量不太重要。例如,如果克隆的分离自第一文库的多核苷酸包含在灭活病毒载体中,该载体将以MOI为大约1被导入,但是MOI大于1也是可行的。类似地,如果克隆的分离自第一文库的多核苷酸被导入质粒载体,则导入任何给定宿主细胞的质粒的数目不重要,而是应当调节转染条件以确保每个宿主细胞中导入了至少1个多核苷酸。如果例如从第一文库中分离到几种不同多核苷酸,可以采用或者实施方案。在该实施方案中,可以将分离自第一文库的两个或更多个不同多核苷酸的池有利地导入感染了第二多核苷酸文库的宿主细胞。这种情况中,如果分离自第一文库的多核苷酸包含在灭活病毒载体中,优选灭活病毒颗粒的MOI大于大约1,例如大约2,大约3,大约4,大约5或更高;或者如果分离自第一文库的多核苷酸包含在质粒载体中,优选允许至少大约2,3,4,5或更多个多核苷酸进入每个细胞的条件。
痘病毒载体。正如上面提到的,优选用于本发明的病毒载体是痘病毒载体。“痘病毒”包括痘病毒科的所有成员,包括亚科Chordopoxviridae(脊椎动物痘病毒)和Entomopoxviridae(昆虫痘病毒)。参见,例如B.Moss(Virology,2dEdition,B.N.Fields,D.M.Knipe等,Eds.,Raven Press,2080(1990))。脊椎动物痘病毒(Chordopoxviruses)包括以下属等:正痘病毒(例如痘苗病毒,天花病毒,浣熊痘病毒);禽痘病毒(例如禽痘病毒);山羊痘病毒(例如绵羊痘病毒),野兔痘病毒(例如兔子(Shope)纤维瘤和黏液瘤);以及猪痘病毒(例如猪痘病毒)。昆虫痘病毒包括三个属:A,B和C。本发明中,优选正痘病毒。痘苗病毒是原型正痘病毒,已经被建立为表达异源蛋白质的载体,并对它有了很好地特性研究。本发明中,优选痘苗病毒载体,尤其是那些被建立来进行三分子重组的痘苗病毒载体。但是,其他正痘病毒,尤其是浣熊痘病毒也被开发为载体,在某些应用中有更好的特性。
痘病毒的特点在于体积大,很复杂,并且含有类似的大而复杂的基因组。值得一提的是,痘病毒复制完全在宿主细胞的胞质中进行。痘病毒基因组的中央部分都类似,而末端更多变。因此,痘病毒基因组的中央部分被认为携带着负责所有痘病毒共有的重要功能的基因,比如复制。相反,痘病毒基因组的末端部分似乎负责那些在不同痘病毒之间变化的比如致病性和宿主范围等特征,并且更可能是病毒在组织培养物中进行复制所不必需的。因此推测,如果欲通过DNA片段的重排或去除或者导入外源DNA片段而修饰痘病毒基因组,则天然DNA中通常位于远端的那些被重排、去除或者被导入的外源DNA打断的部分优选处于更远端区,因为预计它们对病毒复制以及在组织培养物中感染性毒粒的产生并非必需。
天然痘苗病毒基因组是交联的双链线性DNA分子,有大约186000个碱基对,特征在于末端反向重复序列。痘苗病毒的基因组已被全部测序,但多数基因产物的功能还是未知的。Goebel,S.J.等,Virology179:247-266,517-563(1990);Johnson,G.P.等,Virology196:381-401。在痘苗病毒基因组中鉴定到大量非必需区。参见例如,Perkus,M.E.等,Virology152:285-97(1986);以及Kotwal,G.J.和Moss B.,Virology167:524-37。
在痘病毒载体、尤其是痘苗病毒载体被用来表达免疫球蛋白亚基多肽的那些实施方案中,可以使用任何合适的痘病毒载体。优选免疫球蛋白亚基多肽文库携带在载体中对于载体的生长和复制并非必需的区域内,因此可以产生感染性病毒。虽然许多痘苗病毒基因组的非必需区已被表征过,最常用于插入外来基因的位点是位于基因组中HindIIIJ片段的胸苷激酶位点。在某些优选的痘苗病毒载体中,tk位点已被加工成含有1或2个独特的限制酶位点,使得能方便地使用制备文库的三分子重组法。参见前文以及Zauderer,PCT公开号WO00/028016。
将编码免疫球蛋白亚基多肽的多核苷酸文库插入痘病毒载体,尤其是痘苗病毒载体中,使之与能在痘病毒感染的细胞的胞质中发挥作用的转录调控区可操纵地连接在一起。
痘病毒转录调控区包含启动子和转录终止信号。痘病毒中的基因表达受到时间调控,早期、中期和晚期基因的启动子具有不同的结构。某些痘病毒基因是组成性表达的,这些“早-晚期”基因的启动子具备杂合的结构。还建立了合成的早-晚期启动子。参见HammondJ.M.等,J.Virol.Methods66:135-8(1997);Chakrabarti S.等,Biotechniques23:1094-7(1997)。本发明中,可以使用任何痘病毒启动子,但是根据所选的宿主细胞和/或选择方案,可能优选早期、晚期或组成型启动子。通常,优选使用组成型启动子。
早期启动子的例子包括7.5kD启动子(也是一个晚期启动子),DNA pol启动子,tk启动子,RNA pol启动子,19-kD启动子,22-kD启动子,42-kD启动子,37-kD启动子,87-kD启动子,H3’启动子,H6启动子,D1启动子,D4启动子,D5启动子,D9启动子,D12启动子,I3启动子,M1启动子和N2启动子。参见Moss,B.“痘病毒及其复制”(Virology,2d Edition,B.N.Fields,D.M.Knipe等编,Raven Press,2088页(1990))。在痘苗病毒和其他痘病毒中转录的早期基因识别转录终止信号TTTTTNT,其中N可以是任何核苷酸。转录通常在这个信号上游大约50bp处终止。因此,如果要从痘病毒早期启动子开始表达异源基因,必须注意该信号不能存在于这些基因的编码区中。参见例如,Earl,P.L.等,J.Virol.64:2448-51(1990)。
晚期启动子的例子包括7.5kD启动子,MIL启动子,37-kD启动子,11-kD启动子,11L启动子,12L启动子,13L启动子,15L启动子,17L启动子,28-kD启动子,H1L启动子,H3L启动子,H5L启动子,H6L启动子,H8L启动子,D11L启动子,D12L启动子,D13L启动子,A1L启动子,A2L启动子,A3L启动子和P4b启动子。参见Moss,B.“痘病毒及其复制”(Virology,2dEdition,B.N.Fields,D.M.Knipe等编,Raven Press,2090页(1990))。晚期启动子显然不识别早期启动子所识别的转录终止信号。
优选用于本发明的组成型启动子包括Hammond和Chakrabarti描述的合成早-晚期启动子,MH-5早-晚期启动子,以及7.5kD或“p7.5”启动子。文中公开了利用这些启动子的实施例。
以下还将详细讨论,基于宿主细胞死亡的某些选择和筛选方法要求导致细胞死亡的机制在病毒感染所造成的任何致细胞病变效应(CPE)之前发生。在感染病毒的细胞中CPE开始的动力学取决于所用的病毒,感染复数以及宿主细胞的类型。例如,在许多感染了MOI为大约1的痘苗病毒的组织培养物中,CPE直到大大超过感染后48到72小时才明显。这使得有2到3天的时间,不受载体导致的CPE影响来高水平表达免疫球蛋白分子,以及基于抗原的选择。但是,对某些选择方法这个时段可能不够,特别是使用较高MOI时,此外,在目的细胞系内CPE开始前的时间可能短些。因此,需要有致细胞病变效应减弱的病毒载体,尤其是痘病毒载体(比如痘苗病毒载体),这样在需要时可以延长进行选择的时间段。
例如,某些减毒是通过基因突变实现的。它们可以是完全缺陷的突变体,即需要辅助病毒来产生感染性病毒颗粒,或者它们是条件突变体,例如温度敏感型突变体。尤其优选条件突变体,因为在需要表达宿主基因时,可以将感染病毒的宿主细胞保持在一个非许可环境,例如非许可温度,然后转换成许可环境,例如许可温度,使之产生病毒颗粒。或者,可以利用在感染循环中特定时间可逆阻断病毒复制的化学抑制剂来对完全感染性病毒进行“减毒”。这类化学抑制剂包括,但不限于羟脲和5-氟脱氧尿苷。在需要表达宿主基因时,将感染病毒的宿主细胞维持在化学抑制剂中,然后去掉化学抑制剂使之产生病毒颗粒。
已经建立了大量的减毒痘病毒,特别是痘苗病毒。例如修饰的痘苗Ankara(MVA)是一株高度减毒的痘苗病毒,它来源于在初级鸡胚胎成纤维细胞中经过570次传代得到(Mayr,A.等,Infection3:6-14(1975))。回收到的病毒缺失了将近15%的野生型痘苗DNA,这极大地影响了该病毒的宿主范围。MVA在多数哺乳动物细胞系中不能复制或复制效率非常低。宿主范围限制效应的一个独特性质是在非允许细胞中的阻断发生在复制循环的较晚阶段。病毒晚期基因的表达基本没有受到损害,但毒粒的形态发生被打断了(Suter,G.和Moss,B.Proc Natl Acad Sci USA89:10847-51(1992);Carroll,M.W.和Moss,B.Virology238:198-211(1997))。即使在非允许宿主细胞内也能高水平合成病毒蛋白质,这使MVA成为一个特别安全和高效的表达载体。但是,因为MVA在多数哺乳动物细胞内不能完成感染循环,为了回收到用于多选择循环的感染性病毒,需要通过共感染或超感染辅助病毒来补偿MVA的缺陷,该辅助病毒本身是缺陷的,随后可以通过在MVA的允许宿主细胞内以低MOI进行差异扩展来将它与感染性MVA重组体分开。
痘病毒感染对宿主细胞的蛋白质和RNA合成有明显的抑制效应。这些对宿主基因表达的影响在某些情况下可能干扰对那些对宿主细胞有特定生理作用的具体痘病毒重组体的选择。某些关键早期基因缺陷的痘苗病毒株显示出对宿主细胞蛋白质合成的抑制作用大大降低。缺少特定关键早期基因的减毒痘病毒也有描述。参见例如Falkner等的美国专利5766882和5770212。可以被造成缺陷的关键早期基因的例子包括,但不限于痘苗病毒17L,F18R,D13L,D6R,A8L,J1R,E7L,Fi1L,E4L,I1L,J3R,J4R,H7R和A6R基因。优选进行缺陷处理的关键早期基因是编码尿嘧啶DNA糖基化酶的D4R基因。特定关键基因发生缺陷的痘苗病毒很容易在能提供该关键基因产物的补偿细胞系内进行增殖。
用在文中,术语“补偿作用”是指由另外的来源,比如宿主细胞,转基因动物或辅助病毒来反式恢复丧失的功能。所述功能的丧失是由缺陷病毒丢失负责该功能的基因产物造成的。因此,缺陷痘病毒是亲代痘病毒的无活力形式,能在补偿作用存在的情况下变成有活力。所述宿主细胞、转基因动物或辅助病毒含有编码丢失的基因产物的序列,或“补偿元件”。该补偿元件应当是可表达的,能稳定地整合到宿主细胞、转基因动物或辅助病毒内,并且优选不与或只有很小的危险与缺陷痘病毒的基因组进行重组。
补偿细胞系内产生的病毒能够感染非补偿细胞,还能高水平表达早期基因产物。但是,在没有该关键基因产物的情况下,宿主关闭、DNA复制、感染性病毒颗粒的包装和产生不会发生。
在文中描述的特别优选的实施方案中,通过将补偿元件的诱导表达与目标基因产物的表达耦联在一起来对构建在痘苗病毒中的复杂文库所表达的目标基因产物进行选择。因为补偿元件仅在表达所需基因产物的那些宿主细胞内表达,只有这些宿主细胞能产生可以被容易地回收的感染性病毒。
与痘苗病毒有关的优选实施方案可以以对本领域普通技术人员显而易见的方式进行改变来使用任何痘病毒载体。在直接选择法中,可以使用痘病毒或痘苗病毒之外的载体。
三分子重组法。传统上,没有人用痘病毒载体比如痘苗病毒从复杂文库中鉴定先前未知的目标基因,因为并没有用于痘苗的高效、高滴度文库构建和筛选方法。在痘苗病毒中进行异源蛋白质表达的常规方法包括体内同源重组和体外直接连接。利用同源重组,重组体病毒产率在大约0.1%或更低。尽管利用直接连接法的重组体病毒产率更高,得到的滴度却比较低。因此,痘苗病毒载体的使用局限在对以前分离的DNA进行克隆以进行蛋白质表达和开发疫苗。
三分子重组,正如在PCT公开文本WO00/028016(Zauderer)中公开的,是一种用于在痘苗病毒中进行克隆的新的高效、高滴度生产方法。利用三分子重组法,本发明人达到了至少90%的重组体病毒产率,滴度比直接连接法得到的至少高2个数量级。
因此,在一个优选的实施方案中,通过三分子重组,在痘病毒、优选痘苗病毒载体中构建能表达免疫球蛋白亚基多肽的多核苷酸文库。
“三分子重组”或“三分子重组法”是指这样一种方法,该方法通过将病毒基因组的两个非同源片段和含有插入DNA的转移载体或者转移DNA导入受体细胞,允许三个DNA分子在体内进行重组,由此制备包含异源插入DNA的病毒基因组,优选痘病毒基因组,更优选痘苗病毒基因组。重组的结果是产生了包含该两个基因组片段和插入DNA的有活力的病毒基因组分子。因此,应用于本发明的三分子重组法包括:(a)切割分离的病毒基因组,优选DNA病毒基因组,更优选线性DNA病毒基因组,更优选痘病毒或痘苗病毒基因组,从而产生第一病毒片段和第二病毒片段,其中所述第一病毒片段与第二病毒片段没有同源性;(b)提供转移质粒群,这些质粒包含编码免疫球蛋白亚基多肽(例如免疫球蛋白轻链、免疫球蛋白重链或它们的抗原特异性片段)的多核苷酸,它与转录调控区可操纵地连接在一起,侧接5’旁侧区和3’旁侧区,其中所述5’旁侧区与(a)中描述的第一病毒片段同源,3’旁侧区与(a)中描述的第二病毒片段同源;并且所述转移质粒能够与第一和第二病毒片段进行同源重组,从而形成活的病毒基因组;(c)将(b)中描述的转移质粒以及(a)中描述的第一和第二病毒片段,在该转移质粒与病毒片段能进行体内同源重组(即,三分子重组)的条件下导入宿主细胞,从而产生含有编码免疫球蛋白亚基多肽之多核苷酸的被修饰的活病毒基因组;以及(d)回收由该技术制备的被修饰的病毒基因组。优选,回收到的被修饰的病毒基因组包装在感染性病毒颗粒中。
“重组效率”或“重组体病毒的产率”是指在制备本发明的病毒文库过程中,重组体病毒与产生的病毒总量的比率。如实施例5所示,可以通过用重组体病毒的滴度除以总病毒滴度并乘以100%来计算这个效率。例如,滴度是通过检测原病毒储液在合适的细胞上,有选择情况下(例如重组体病毒)和没有选择情况下(例如重组体病毒加上野生型病毒)的噬斑来确定的。选择的方法,尤其是如果异源多核苷酸被插在病毒胸苷激酶(tk)位点内时,是本领域熟知的,包括利用由于tk基因被打断造成的对溴脱氧尿苷(BDUR)或其他核苷酸类似物的抗性。文中描述了选择方法的例子。
“高效重组”是指重组效率至少为1%,更优选重组效率至少大约2%,2.5%,3%,3.5%,4%,5%,10%,20%,30%,40%,50%,60%,70%,75%,80%,85%,90%,95%或者99%。
许多选择系统都可以使用,包括但不限于胸苷激酶,比如单纯疱疹病毒胸苷激酶(Wigler等,1977,Cell 11:223),次黄嘌呤鸟嘌呤磷酸核糖转移酶(Szybalska & Szybalski,1962,Proc.Natl.Acad.Sci.USA48:2026)和腺嘌呤磷酸核糖转移酶(Lowy等,1980,Cell22:817)基因,可以分别在tk-,hgprt-,aprt-细胞中应用这些基因。同样,可以以抗代谢物抗性为基础对下列基因进行选择:赋予对氨甲蝶呤抗性的dhfr(Wigler等,1980,Proc.Natl.Acad.Sci.USA77:3567;O’Hare等,1981,Proc.Natl.Acad.Sci.USA78:1527);赋予对霉酚酸抗性的gpt(Mulligan & Berg,1981,1981,Proc.Natl.Acad.Sci.USA78:2072);赋予对氨基糖苷抗性的neo(Colberre-Garapin等,1981,J.Mol.Biol.150:1);以及赋予对潮霉素抗性的hygro(Santerre等,1984,Gene30:147)。
总之,如上所述第一和第二病毒片段或病毒基因组“臂”优选含有所有病毒复制和产生感染性病毒颗粒所必需的基因。文中公开了合适的臂的例子以及利用痘苗病毒载体产生它们的方法。关于痘苗复制必需区域的指导可参考Falkner等的美国专利5770212。
但是,裸露的痘病毒基因组DNA,比如痘苗病毒基因组,在没有与进来的病毒颗粒相关的病毒所编码蛋白质/功能时就不能产生感染性后代。所需的病毒编码的功能,包括RNA聚合酶,它能识别所转染的痘苗DNA作为模板,起始转录以及最后所转染DNA的复制。参见Dorner等的美国专利5445953。
因此,为了利用痘病毒(比如痘苗病毒)通过三分子重组产生感染性后代病毒,受体细胞优选含有包装功能。该包装功能可以由辅助病毒提供,即与所转染的裸露基因组DNA一起,可以提供后代病毒的复制和装配所必需的适当蛋白质和因子的病毒。
辅助病毒可以是密切相关的病毒,例如与痘苗属于相同亚科的痘病毒,可以来自相同或不同属。这种情况中,选择能提供RNA聚合酶的辅助病毒是有益的,所述RNA聚合酶能识别所转染的DNA作为模板,起始转录以及最后所转染DNA的复制。如果用非常相关的病毒作为辅助病毒,对它进行减毒从而损害感染性病毒的形成是有益的。例如,可以在非允许温度使用温度敏感型辅助病毒。优选,使用异源辅助病毒。这类例子包括,但不限于禽痘病毒(avipox)比如禽痘病毒(fowlpox),或者缺肢病毒(鼠痘)病毒。特别优选禽痘病毒,因为它们能提供必需的辅助功能,但不会在哺乳动物细胞内复制或者产生感染性毒粒(Scheiflinger等,Proc.Natl.Acad.Sci.USA89:9977-9981(1992))。使用异源病毒可以减少辅助病毒基因组和所感染基因组之间的重组,这种重组在一个细胞内存在非常相近的病毒的同源序列时是会发生的。参见Fenner &Comben,Virology5:530(1958);Fenner,Virology8:499(1959)。
或者,可以由遗传元件而非辅助病毒来提供受体细胞的必需辅助功能。例如,可以转化宿主细胞来组成性地产生辅助功能,或者用表达辅助功能的质粒暂时转染宿主细胞,用表达辅助功能的逆转录病毒感染宿主细胞,或者由任何其他适合表达所需辅助病毒功能的表达载体来提供。参见Corner等的美国专利5445953。
根据三分子重组法,第一和第二病毒基因组片段不能相互连接或重组,即它们不含相容的粘末端或同源区域,或者,粘末端已经被去磷酸化酶处理过。在优选实施方案中,病毒基因组包含第一限制性内切酶的第一识别位点和第二限制性内切酶的第二识别位点,所述第一和第二病毒片段是通过用合适的产生病毒“臂”的限制性内切酶消化病毒基因组产生的,并且通过常规方法分离该第一和第二病毒片段。理想的情况是,第一和第二限制性内切酶识别位点在病毒基因组中是唯一的,或者,用两种限制性内切酶进行切割产生包含所有关键功能的基因的病毒“臂”,即第一和第二识别位点在病毒基因组中物理安排成延伸在第一和第二病毒片段之间的区域对病毒的感染性不是必需的。
在一个将痘苗病毒载体用于三分子重组法的优选实施方案中,使用了含有在tk基因中有两个独特限制位点的病毒基因组的痘苗病毒载体。在某些优选的痘苗病毒基因组中,所述第一限制酶是NotI,它的识别位点是tk基因中的GCGGCCGC,第二限制酶是ApaI,它的识别位点是tk基因中的GGGCCC。更优选的是包含v7.5/tk病毒基因组或vEL/tk病毒基因组的痘苗病毒载体。
根据该实施方案,使用了这样一个转移质粒,它具有能与痘苗病毒基因组中含有胸苷激酶基因的区域进行同源重组的侧翼区。可很方便地使用痘苗病毒基因组中含有HindIII-J片段的一个片段,所述HindIII-J片段含有tk基因。
当所述病毒载体是痘病毒时,优选插入的多核苷酸可操纵地连接了痘病毒表达调控序列,更优选连接了强组成型痘病毒启动子,比如p7.5或合成早期/晚期启动子。
相应地,本发明的转移质粒包含编码免疫球蛋白亚基多肽(例如重链和免疫球蛋白轻链,或者重链或轻链的抗原特异性片段)的多核苷酸,其可操纵地连接了痘病毒p7.5启动子,或者合成早期/晚期启动子。
本发明一个优选的转移质粒是pVHE,其含有可操纵地连接了痘病毒p7.5启动子的编码免疫球蛋白重链多肽的多核苷酸,它包含序列:
GGCCAAAAATTGAAAAACTAGATCTATTTATTGCACGCGGCCGCAAACCATGGGATGGAGCTG
TATCATCCTCTTCTTGGTAGCAACAGCTACAGGCGCGCATATGGTCACCGTCTCCTCAGGGAG
TGCATCCGCCCCAACCCTTTTCCCCCTCGTCTCCTGTGAGAATTCCCCGTCGGATACGAGCAG
CGTGGCCGTTGGCTGCCTCGCACAGGACTTCCTTCCCGACTCCATCACTTTCTCCTGGAAATA
CAAGAACAACTCTGACATCAGCAGCACCCGGGGCTTCCCATCAGTCCTGAGAGGGGGCAAGTA
CGCAGCCACCTCACAGGTGCTGCTGCCTTCCAAGGACGTCATGCAGGGCACAGACGAACACGT
GGTGTGCAAAGTCCAGCACCCCAACGGCAACAAAGAAAAGAACGTGCCTCTTCCAGTGATTGC
TGAGCTGCCTCCCAAAGTGAGCGTCTTCGTCCCACCCCGCGACGGCTTCTTCGGCAACCCCCG
CAGCAAGTCCAAGCTCATCTGCCAGGCCACGGGTTTCAGTCCCCGGCAGATTCAGGTGTCCTG
GCTGCGCGAGGGGAAGCAGGTGGGGTCTGGCGTCACCACGGACCAGGTGCAGGCTGAGGCCAA
AGAGTCTGGGCCCACGACCTACAAGGTGACTAGCACACTGACCATCAAAGAGAGCGACTGGCT
CAGCCAGAGCATGTTCACCTGCCGCGTGGATCACAGGGGCCTGACCTTCCAGCAGAATGCGTC
CTCCATGTGTGTCCCCGATCAAGACACAGCCATCCGGGTCTTCGCCATCCCCCCATCCTTTGC
CAGCATCTTCCTCACCAAGTCCACCAAGTTGACCTGCCTGGTCACAGACCTGACCACCTATGA
CAGCGTGACCATCTCCTGGACCCGCCAGAATGGCGAAGCTGTGAAAACCCACACCAACATCTC
CGAGAGCCACCCCAATGCCACTTTCAGCGCCGTGGGTGAGGCCAGCATCTGCGAGGATGACTG
GAATTCCGGGGAGAGGTTCACGTGCACCGTGACCCACACAGACCTGCCCTCGCCACTGAAGCA
GACCATCTCCCGGCCCAAGGGGGTGGCCCTGCACAGGCCCGATGTCTACTTGCTGCCACCAGC
CCGGGAGCAGCTGAACCTGCGGGAGTCGGCCACCATCACGTGCCTGGTGACGGGCTTCTCTCC
CGCGGACGTCTTCGTGCAGTGGATGCAGAGGGGGCAGCCCTTGTCCCCGGAGAAGTATGTGAC
CAGCGCCCCAATGCCTGAGCCCCAGGCCCCAGGCCGGTACTTCGCCCACAGCATCCTGACCGT
GTCCGAAGAGGAATGGAACACGGGGGAGACCTACACCTGCGTGGTGGCCCATGAGGCCCTGCC
CAACAGGGTCACTGAGAGGACCGTGGACAAGTCCACCGAGGGGGAGGTGAGCGCCGACGAGGA
GGGCTTTGAGAACCTGTGGGCCACCGCCTCCACCTTCATCGTCCTCTTCCTCCTGAGCCTCTT
CTACAGTACCACCGTCACCTTGTTCAAGGTGAAATGAGTCGAC
文中命名为SEQ ID NO:14。可以将PCR扩增的重链可变区符合读框地插入序列中以粗体字显示的BssHII(SEQ ID NO:15的核苷酸96-100)和BstEII(SEQ ID NO:16的核苷酸106-112)单酶切位点。
此外,pVHE可以用于这样一些实施方案,即如上所述需要将分离自第一文库的多核苷酸转移到质粒载体中以便随后选择第二文库的多核苷酸。
本发明另一个优选转移质粒是pVKE,它包含可操纵地连接了痘病毒p7.5启动子的编码免疫球蛋白kappa轻链多肽的多核苷酸,其含有序列:
GGCCAAAAATTGAAAAACTAGATCTATTTATTGCACGCGGCCGCCCATGGGATGGAGCTGTAT
CATCCTCTTCTTGGTAGCAACAGCTACAGGCGTGCACTTGACTCGAQATCAAACGAACTGTGG
CTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACTGCCTCTG
TTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGATAACG
CCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGCACCTACA
GCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTACGCCTGCG
AAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGTGTTAGG
TCGAC
文中命名为SEQ ID NO:17。可以将PCR扩增的kappa轻链可变区符合读框地插入序列中以粗体字显示的ApaLI(SEQ ID NO:18的核苷酸95-100)和XhoI(SEQ ID NO:19的核苷酸105-110)单酶切位点。
此外,pVKE可以用于这样一些实施方案,即如上所述需要在选择第一文库的多核苷酸的过程中有存在于质粒载体中的第二文库的多核苷酸。
本发明另一个优选的转移质粒是pVLE,它包含可操纵地连接了痘病毒p7.5启动子的编码免疫球蛋白λ轻链多肽的多核苷酸,其含有序列:
GGCCAAAAATTGAAAAACTAGATCTATTTATTGCACGCGGCCGCCCATGGGATGGAGCTGTAT
CATCCTCTTCTTGGTAGCAACAGCTACAGGCGTGCACTTGACTCGAGAAGCTTACCGTCCTAC
GAACTGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAA
CTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGG
TGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACA
GCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCT
ACGCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAG
AGTGTTAGGTCGAC
文中命名为SEQ ID NO:20。可以将PCR扩增的λ轻链可变区符合读框地插入序列中以粗体字显示的ApaLI(SEQ ID NO:21的核苷酸95-100)和HindIII(SEQ ID NO:22的核苷酸111-116)单酶切位点。
此外,pV1E可以用于这样一些实施方案,即如上所述需要在选择第一文库的多核苷酸的过程中有存在于质粒载体中的第二文库的多核苷酸。
“插入DNA”是指要在重组体病毒载体中进行表达的一或多个异源DNA片段。根据本发明,“插入DNA”是编码免疫球蛋白亚基多肽的多核苷酸。所述DNA区段可以是天然的,非天然的,合成的或者它们的组合。文中公开了制备本发明的插入DNA的方法。
“转移质粒”是指如上所述含有位于5’旁侧区和3’旁侧区之间的插入DNA的质粒载体。该5’旁侧区与第一病毒片段有同源性,3’旁侧区与第二病毒片段有同源性。优选,所述转移质粒含有合适的启动子,比如病毒载体是痘病毒时,在插入DNA上游含有强的组成型痘苗启动子。术语“载体”是指含有异源多核苷酸区段的多核苷酸构建体,它能将所述多核苷酸区段转移到合适的宿主细胞。优选包含在载体中的多核苷酸可操纵地连接了能引起多核苷酸在合适的宿主中进行表达的合适的调控序列。这类调控序列包括引起转录的启动子,调控转录的可选操纵子序列,编码合适的mRNA核糖体结合位点的序列,以及调控转录和翻译终止的序列。用在本发明中,载体可以是质粒,噬菌体颗粒,病毒,信使RNA,或者只是一个潜在的基因组插入片段。一旦转化到合适的宿主中,所述载体可以复制并且独立于宿主基因组发挥作用,或者在某些情况中,整合到基因组本身内。用于哺乳动物细胞培养表达的典型质粒表达载体,例如有建立在pRK5(EP307247),pSV16B(WO91/08291)和pVL1392(Pharmingen)的基础上。
但是,文中使用的“转移质粒”并不限于特定的质粒或载体。任何环形或线性或者其他合适形式的DNA区段都可以作为三分子重组法中将所述DNA插入片段与第一和第二病毒“臂”一起转移到宿主细胞内的载体。其他合适的载体包括文中描述的或者本领域已知的λ噬菌体,mRNA,DNA片段等。多质粒可以是比如文中描述的λ噬菌体的“初级文库”。
三分子重组的改进。三分子重组可以用于在痘苗病毒中构建滴度大约为107pfu数量级的cDNA文库。有几个因素限制了这类cDNA文库或其他文库的多样性。它们包括:初级cDNA文库或其他文库的大小,比如可以构建在质粒载体中的编码免疫球蛋白亚基多肽的多核苷酸文库,以及纯化大量(几百微克)病毒“臂”(优选痘苗病毒“臂”或其他痘病毒“臂”)付出的劳动。改进三分子重组以使得痘苗或其他病毒DNA能与初级cDNA文库或其他文库(比如构建在λ噬菌体或由它衍生的DNA或噬菌粒中的编码免疫球蛋白亚基多肽的多核苷酸)进行重组,或者使得能在感染了修饰过的病毒载体后于体内制备单独的病毒DNA臂,这样就能大大提高用该方法构建的真核病毒cDNA文库或其他文库的质量和滴度。
将cDNA插入片段从λ噬菌体文库转移到痘苗病毒。λ噬菌体载体在构建cDNA文库或诸如编码免疫球蛋白亚基多肽的多核苷酸等其他文库方面比质粒载体有一些优点。质粒cDNA(或其他DNA插入片段)文库或线性DNA文库可以通过化学/热震惊转化或者电穿孔导入细菌细胞。细菌细胞优选转化比较小的质粒,这样就导致可能丢失文库中的较长cDNA或其他插入DNA,比如编码免疫球蛋白亚基多肽的多核苷酸。另外,转化是将外来DNA或其他DNA导入细胞的效率比较低的过程,为了构建cDNA文库或其他文库(比如编码免疫球蛋白亚基多肽的多核苷酸)需要使用昂贵的商品化感受态细菌。相反,λ噬菌体载体可以容忍12kb或更长的cDNA插入片段,而且没有任何大小偏向性。利用高效的商品化包装提取物可以在体外将λ载体包装成毒粒,然后可以通过感染将重组体λ基因组导入细菌细胞。这个过程产生与通常在质粒文库中得到的相比,具有更高滴度和更好反映较大cDNA或其他插入DNA(比如编码免疫球蛋白亚基多肽的多核苷酸)的初级文库。
为了能将来自构建在λ载体中的cDNA插入片段或其他DNA插入片段,比如编码免疫球蛋白亚基多肽的多核苷酸,转移到真核病毒载体比如痘苗病毒中,必须将λ载体修饰,使之包含痘苗病毒DNA序列从而能与痘苗病毒DNA进行同源重组。下面的实施例使用了痘苗病毒同源序列,但可以类似地使用其他病毒。例如,可以用HindIII和SnaBI切割质粒p7.5/ATG0/tk(如以下实施例5所述)所包含的痘苗病毒HindIII J片段(含有痘苗tk基因)(3kb的痘苗DNA序列),亚克隆到pT7Blue3(Novagen货号70025-3)中的HindIII/SnaBI位点形成pT7B3.Vtk。可以用SacI和SnaBI从该载体中切下痘苗tk基因并插入LambdaZap Express(Stratagene)中的SacI/SmaI位点,从而产生Lambda.Vtk。该Lambda.Vtk载体含有NotI,BamHI,SmaI和SalI单酶切位点,可用于在痘苗7.5k启动子下游插入cDNA。可以采用本领域公知的方法在Lambda.Vtk中构建cDNA文库。
可以采用来自构建在Lambda.Vtk或任何类似噬菌体中的cDNA文库或其他文库的DNA(比如编码免疫球蛋白亚基多肽的多核苷酸)来制备cDNA或其他插入DNA重组体痘苗病毒,所述DNA包括带有用来促进同源重组的侧翼痘苗DNA序列的cDNA插入片段或其他插入DNA。通过共感染辅助噬菌体(ExAssist phage,Stratagene货号211203)从λ基因组中切下质粒的方法是本领域公知的。从基于λ的文库中进行大规模切割产生了存在于质粒载体中的等同cDNA文库或其他文库。从例如Lambda.Vtk cDNA文库中切下来的质粒含有痘苗tk序列,旁侧是cDNA插入片段或其他插入DNA,比如编码免疫球蛋白亚基多肽的多核苷酸。然后这个质粒DNA可以用于通过三分子重组来构建痘苗重组体。该方法的另一个实施方案是直接从原始的Lambda.Vtk文库中纯化DNA,并将该重组体病毒(λ)DNA或其片段与两个大的痘苗病毒DNA片段一起转染来进行三分子重组。
体内产生痘苗臂。痘苗DNA或其他病毒DNA“臂”的纯化和转染是通过三分子重组构建多核苷酸文库的一个限制因素。对该方法进行改进使得能在体内产生病毒臂,尤其是痘苗病毒臂,就能更有效地在真核病毒中构建文库。
可以修饰宿主细胞使它表达能识别导入到病毒载体基因组的某个独特位点的限制性内切酶。例如,痘苗病毒感染这些宿主细胞时,所述限制性内切酶将消化痘苗DNA,产生只能通过三分子重组来修复(即重新连接)的“臂”。限制性内切酶的例子包括细菌酶NotI和ApaI,酵母内切酶VDE(R.Hirata,Y.Ohsumi,A.Nakano,H.Kawasaki,K.Suzuki,Y.Anraku.1990 J.Biological Chemistry265:6726-6733),Chlamydomonas eugametos内切酶I-CeuI和其他本领域公知的内切酶。例如,已经构建了其tk基因内含有NotI和ApaI单酶切位点的痘苗株,通过本领域公知的方法可以很容易地构建tk基因中含有VDE和/或I-CeuI单酶切位点的病毒株。
组成型表达限制性内切酶对细胞是致死的,因为该酶会将染色体DNA片段化。为了避免这个棘手的问题,在一个实施方案中将宿主细胞修饰使它在诱导型启动子调控下表达限制性内切酶基因。
一个优选的诱导型表达方法利用了Tet-On Gene ExpressionSystem(Clontech)。在该系统中,编码内切酶的基因的表达在缺少诱导物(四环素)的情况下是沉默的。这就使得能分离到能被诱导表达毒性基因(即内切酶)的稳定的转染细胞系(Gossen,M.等,Science268:1766-1769(1995))。加入四环素衍生物强力霉素能诱导内切酶的表达。在一个优选实施方案中,用调控NotI基因表达的Tet-On载体稳定地转染BSC1宿主细胞。用强力霉素诱导铺满的单细胞层,然后感染v7.5/tk(tk基因中有NotI单酶切位点),并用cDNA或插入DNA重组体转移质粒或转移DNA或λ噬菌体或噬菌粒DNA进行转染。宿主细胞编码的NotI内切酶消化暴露的痘苗DNA中例如tk基因或其他序列中的NotI单酶切位点,从而产生两个大的痘苗DNA片段,这两个片段只有与转移质粒或噬菌体DNA进行三分子重组才能形成全长病毒DNA。用NotI消化宿主细胞染色体DNA预计不能阻止被修饰的感染性病毒的产生,因为在病毒复制和毒粒装配的过程中不需要宿主细胞进行增殖。
在用该方法体内制备病毒臂(比如痘苗臂)的另一个实施方案中,构建了一个修饰的痘苗株,它的tk基因或其他非必需基因中含有唯一的内切酶位点,并且在痘苗基因组中另一个非必需位点含有处于T7噬菌体启动子调控下的编码内切酶的异源多核苷酸。对表达T7RNA聚合酶的细胞的感染将导致内切酶的表达,以及随后该酶消化痘苗DNA。在一个优选实施方案中,通过在HindIII C或F区(Coupar,E.H.B.等,Gene68:1-10(1988);Flexner,C.等,Nature330:259-262(1987))中插入其表达受到T7启动子调控的含有编码NotI的cDNA的盒子,对痘苗v7.5/tk株进行修饰,从而形成v7.5/tk/T7NotI。用处于哺乳动物启动子调控下的编码T7 RNA聚合酶的cDNA稳定地转染细胞系(O.Elroy-Stein,B.Moss.1990Proc.Natl.Acad.Sci.USA87:6743-6747)。该包装细胞系感染v7.5/tk/T7NotI后会造成NotI的T7 RNA聚合酶依赖性表达,以及随后将痘苗DNA消化成臂。被消化的痘苗DNA臂只能在与转移质粒或噬菌体DNA进行三分子重组后重新组成和包装为感染性全长病毒DNA。在该方法的再一个实施方案中,可以通过共感染T7 RNA聚合酶重组体辅助病毒,比如禽痘病毒来提供T7 RNA聚合酶(P.Britton,P.Green,S.Kottier,K.L.Mawditt,Z.Penzes,D.Cavanagh,M.A.Skinner.1996 J.General Virology77:963-967)。
运用这些不同策略体内产生大的病毒DNA片段(优选痘苗DNA片段)的三分子重组的一个特点是痘苗DNA的消化可以在重组之前进行,但并非必须如此。它保证了只有重组体病毒能逃脱消化所造成的破坏。这与采用转染体外消化的痘苗DNA的三分子重组形成对比,在后者中必须在重组前制备痘苗DNA片段。在消化前进行两分子重组得到重组体的频率比在消化后通过三分子重组得到重组体的频率更高是有可能的。
利用病毒载体,尤其是痘病毒分离重组体免疫球蛋白分子的选择和筛选策略。在本发明的某些实施方案中,利用了三分子重组法来产生表达免疫球蛋白亚基多肽的多核苷酸文库。在该实施方案中,包含全长免疫球蛋白亚基多肽或其片段的文库是通过首先在含有与痘苗病毒同源的5’和3’区的转移质粒中插入编码免疫球蛋白恒定区和信号肽的盒子制备的。重排的免疫球蛋白可变区通过PCR从未免疫动物的前B细胞或者免疫动物的B细胞或浆细胞中分离。将这些PCR片段克隆到免疫球蛋白信号肽和恒定区之间,并与它们读框相符,从而产生所述免疫球蛋白亚基多肽的编码区。将这些转移质粒导入有痘病毒“臂”的宿主细胞,利用三分子重组方法来产生文库。
本发明提供了多种鉴定(即选择或筛选)具有所需特异性的免疫球蛋白分子的方法,其中所述免疫球蛋白分子是在真核细胞内体外产生的。这些方法包括选择宿主细胞效应,比如抗原诱导的细胞死亡和抗原诱导的信号传递;筛选宿主细胞群中的抗原特异性结合情况以及对宿主细胞群所生长的培养基进行筛选看是否存在具有所需抗原特异性或功能特点的可溶性免疫球蛋白分子。
正如文中详细描述的,本发明提供了根据抗原诱导的细胞死亡,抗原诱导的信号传递,抗原特异性结合或其他抗原特异性功能来鉴定真核细胞中表达的免疫球蛋白分子或其抗原特异性片段的方法。本发明的选择和筛选技术消除了在啮齿类动物中选择抗体带来的偏向性或者在细菌中合成和装配的局限性。
文中描述的许多鉴定方法依赖于宿主细胞基因或宿主细胞转录调控区的表达,它们响应于抗原与表达在宿主细胞表面上的免疫球蛋白分子或其抗原特异性片段的结合而直接或间接地诱导细胞死亡或产生可以检测到的信号。应当提到的是本发明最优选的实施方案需要用真核病毒载体,优选痘病毒载体,更优选痘苗病毒载体来感染宿主细胞。本领域普通技术人员很容易理解,在某些细胞系中,一旦感染痘病毒,即使没有病毒基因的表达,宿主细胞的一些蛋白质合成也会被迅速关闭。如果为了诱导抗原诱导的细胞死亡或细胞信号传递而需要上调宿主细胞基因或者宿主细胞转录调控区,这就会产生问题。但这个问题不是无法解决的,因为在某些细胞系中,在病毒DNA复制之前,对宿主蛋白质合成的抑制是不完全的。参见Moss,B.“痘病毒科及其复制”(Virology,2nd Edition,B.N.Fields,D.M.Knipe等编,Raven Press,2096页(1990))。但是这需要迅速地筛选大量宿主细胞看它们在感染真核病毒载体(优选痘病毒载体,更优选痘苗病毒载体)时,表达那些在与表面表达的免疫球蛋白分子发生交联时被上调的基因产物的能力;还要对目标宿主细胞进行筛选看它们在感染各种突变体和减毒病毒时能否差异表达细胞基因。
相应地,本发明提供了一种利用特定宿主细胞在有序的cDNA文库微阵上的表达谱,对大量宿主细胞进行筛选看它们在感染病毒载体时,宿主细胞基因的表达和/或宿主细胞转录调控区的操纵性,这些影响到抗原诱导的细胞死亡或细胞信号传递。Duggan,D.J.等(Nature Genet.21(1 Suppl):10-14(1999))描述了在微阵中的表达谱,该文全文引作参考。
根据这个方法,利用表达谱比较未感染宿主细胞和感染了真核病毒表达载体(优选痘病毒载体,更优选痘苗病毒载体)的宿主细胞的基因表达模式,其中该具体真核病毒载体就是用于构建本发明的第一和第二多核苷酸文库的载体。这样,就能鉴定到在其表面表达免疫球蛋白分子或其抗原特异性片段、并进一步在感染给定病毒时表达所需诱导性蛋白质的合适的宿主细胞。
表达谱还可用于比较给定宿主细胞中的宿主细胞基因表达模式,例如比较感染了完全感染性病毒载体的宿主细胞,和感染了其相应的减毒病毒载体时的宿主细胞的表达模式。在微阵列中的表达谱使得能对感染了多种减毒病毒的宿主细胞进行大规模筛选,其中减毒是通过各种不同方式实现的。例如,某些减毒是通过基因突变实现的。许多痘苗病毒突变体已经得到研究。这些可以是完全缺陷的突变体,即产生感染性病毒颗粒需要辅助病毒,或者他们可能是条件突变体,例如温度敏感型突变体。尤其优选条件突变体,因为在需要表达宿主基因时,可以将病毒感染的宿主细胞保持在非允许环境(例如保持在非允许温度),然后换成允许环境(例如允许温度)以便产生病毒颗粒。或者,可以利用在感染循环的确定点可逆地阻断病毒复制的化学抑制剂来对完全感染性病毒“减毒”。所述化学抑制剂包括,但不限于羟脲和5-氟脱氧尿苷。在需要表达宿主基因时,将感染病毒的宿主细胞维持在化学抑制剂中,然后去掉化学抑制剂使之产生病毒颗粒。
利用这种方法,微阵中的表达谱可以用来在文中描述的任何选择方法中鉴定合适的宿主细胞,合适的转录调控区,和/或合适的减毒病毒。
在一个实施方案中,提供了一种选择编码免疫球蛋白分子或其抗原特异性片段的方法,该方法基于直接的抗原诱导的细胞凋亡。根据该方法,选择用于感染和/或转染的宿主细胞是早期B细胞淋巴瘤。合适的早期B细胞淋巴瘤细胞系包括,但不限于CH33细胞,CH31细胞(Pennell,C.A.等,Proc.Natl.Acad.Sci.USA82:3799-3803(1985)),或WEHI-231细胞(Boyd,A.W.和Schrader,J.W.J.Immunol.126:2466-2469(1981))。早期B细胞淋巴瘤细胞系通过诱导自发的生长抑制和细胞程序化死亡而对抗原特异性免疫球蛋白的交联产生应答(Pennell,C.A.和Scott,D.W.Eur.J.Immunol.16:1577-1581(1986);Tisch,R.等,Proc.Natl.Acad.Sci.USA85:69114-6918(1988);Ales-Martinez,J.E.等,Proc.Natl.Acad.Sci.USA85:69119-6923(1988);Warner,G.L.和Scott,D.W.Cell.Immunol.115:195-203(1988))。在如上所述地感染和/或转染第一和第二多核苷酸文库后,使抗体分子的合成和装配进行大约5到48小时,优选大约6小时,大约10小时,大约12小时,大约16到20小时,大约24到30小时,大约36小时,大约40小时,或者大约48小时,更优选大约12小时或大约24小时;在这段时间内将宿主与特异抗原进行接触,以便交联任何特异性的免疫球蛋白受体(即膜结合的免疫球蛋白分子,或其抗原特异性片段),并在那些表达免疫球蛋白的宿主细胞内诱导细胞凋亡,所述宿主细胞通过诱导生长抑制和细胞程序化死亡而直接对抗原特异性免疫球蛋白的交联产生应答。回收发生细胞凋亡的宿主细胞,或者它们的内容物,包括其中包含的编码免疫球蛋白亚基多肽的多核苷酸,从而富集编码第一免疫球蛋白亚基多肽的第一文库多核苷酸,所述第一免疫球蛋白亚基多肽作为免疫球蛋白分子,或其抗原特异性片段的一部分,能够特异地结合目的抗原。
在进一步选择和富集第一文库的多核苷酸,并分离这些多核苷酸后,实施类似的过程来回收第二文库的多核苷酸,它们作为免疫球蛋白分子,或其抗原特异性片段的一部分,能够结合特定的目的抗原。
图1显示了这种方法的一个例子。在痘病毒载体,优选痘苗病毒载体中构建“第一文库”,其中的多核苷酸编码来自未被免疫或免疫供体的抗体产生细胞的多种重链;在质粒载体中构建编码免疫球蛋白轻链的多核苷酸的类似多样化“第二文库”,其中多核苷酸的表达受到痘苗启动子,优选合成的早期/晚期启动子,例如p11启动子,或p7.5启动子的调控。对于该实施方案,优选将痘病毒构建体所编码的免疫球蛋白重链恒定区设计成保留跨膜区,从而使免疫球蛋白受体表达在表面膜上。用感染复数为大约1(MOI=1)的痘病毒重链文库感染真核细胞,优选早期B细胞淋巴瘤细胞。2小时后,用轻链质粒文库在允许每个细胞平均摄取10个或更多个单独的轻链重组体质粒并使之表达的条件下转染被感染的细胞。因为该质粒中重组体基因的表达受到痘苗病毒启动子的调控,不需要发生核整合,就能在感染了痘苗病毒的细胞的胞质内高水平表达重组体基因产物。此外,环形DNA在感染了痘苗病毒的细胞的胞质中不依赖于序列进行扩增的机制将产生更高浓度的转染轻链重组体质粒(Merchlinsky,M.和Moss,B.Cancer Cell 6:87-93(1988))。这两个因素导致高水平表达,引起过量的轻链合成。
另一个优选实施方案利用了在表达T7 RNA聚合酶的细胞内有活性的T7噬菌体启动子来调控多核苷酸的表达,所述多核苷酸编码构建在痘病毒载体,优选痘苗病毒载体中的“第一文库”,其中的多核苷酸编码来自未免疫或免疫供体的抗体产生细胞的多种重链;并构建在质粒载体中编码免疫球蛋白轻链的多核苷酸的类似多样化“第二文库”(Eckert D.和Merchlinsky M.J Gen Virol.80(Pt6):1463-9(1999);Elroy-Stein O.,Fuerst T.R.和MossB.Proc.Natl.Acad.Sci.USA86(16):6126-30(1989);FuerstT.R.,Earl P.L.和Moss B.Mol Cell Biol.7(7):2538-44(1987);Elroy-Stein O.和Moss B.Proc.Natl.Acad.Sci.USA87(17):6743-7(1990);Cottet S.和Corthesy B.Eur J Biochem246(1):23-31)。
本领域普通技术人员很容易理解,在设计本实验时很重要的是动力学方面的考虑,因为衍生自痘病毒的表达载体在大约1到10天的时间段内自身是致细胞病变的,这个时间段更经常是大约2到8天,2到6天,或者2到4天,取决于所用的病毒载体、具体的宿主细胞和感染复数。在一个优选实施方案中,选择B细胞淋巴瘤,其中对表面免疫球蛋白交联产生的细胞凋亡反应比在该细胞中痘病毒感染的自然致细胞病变效应更迅速。因此,优选宿主细胞表面的免疫球蛋白分子由于抗原诱导性交联而引起的细胞凋亡发生在宿主细胞与抗原进行接触后的大约1小时到4天,以便在CPE的诱导之前发生。更优选,细胞凋亡发生在宿主细胞与抗原进行接触后的大约1小时、2小时,大约3小时、4小时,大约5小时,大约6小时,大约7小时,大约8小时,大约9小时,大约10小时,大约11小时,大约12小时,大约14小时,大约16小时,大约18小时,大约20小时,大约22小时,大约24小时,大约28小时,大约32小时,大约36小时,大约40小时,大约44小时,大约48小时。更优选在宿主细胞与抗原接触后大约12小时内细胞凋亡被诱导。或者,可以采用致细胞病变效应的诱导动力学更慢的减毒痘病毒。文中公开了减毒的痘病毒载体。
根据这种方法,在发生细胞凋亡时,选择其表面表达抗原特异性免疫球蛋白的宿主细胞。例如,如果宿主细胞附着在固体基质上,那些发生细胞凋亡的细胞就会从基质上释放下来,通过收获培养宿主细胞的液体培养基来回收它们。或者,宿主细胞附着在固体基质上,那些发生细胞凋亡的细胞会出现水解现象,从而将其胞质内容物释放到培养宿主细胞的液体培养基中。然后可以从液体培养基中收获这些细胞释放的病毒颗粒。
含有编码免疫球蛋白亚基多肽的多核苷酸的宿主细胞可能由于某种机制变成“不贴壁”或“无活力”的,这类机制包括水解,不能贴壁,失去生活力,失去膜的完整性,失去结构稳定性.,细胞骨架成分被破坏,不能维持膜电势,细胞周期停滞,不能产生能量等。因此可以通过任何物理手段,比如吸出,洗涤,过滤,离心,细胞分选,荧光激活细胞分选(FACS)等来回收含有目的多核苷酸的宿主细胞,即与其余细胞分离开。
例如,含有编码免疫球蛋白亚基多肽的多核苷酸的宿主细胞可能发生裂解,因此将重组体病毒颗粒(优选痘病毒颗粒,更优选痘苗病毒颗粒)释放到培养基中,或者变得不贴壁,因此脱离固体支持物。所以,一个优选实施方案中,通过吸出或洗涤将释放的重组体病毒和/或不贴壁的细胞与贴壁细胞分离开。
宿主细胞是早期B细胞淋巴瘤细胞系的情况中,可以使这些细胞通过与结合在基质上的B细胞特异性抗体的相互作用而附着到固体基质上。合适的B细胞特异性抗体包括,但不限于抗CD19抗体和抗CD20抗体。
在另一些优选实施方案中,利用转染了构建体的宿主细胞来直接或间接地引起抗原诱导的细胞死亡,所述构建体中的外来多核苷酸(其表达间接地导致细胞死亡)可操纵地连接了转录调控区,后者在表面免疫球蛋白分子交联时被诱导。
“在表面免疫球蛋白分子交联时被诱导的转录调控区”是指这样一种区,例如宿主细胞启动子,其通常调控那些在表面表达的免疫球蛋白分子交联时被上调的基因。这类转录调控区的一个优选的例子是BAX启动子,它在早期B细胞淋巴瘤细胞发生表面免疫球蛋白分子交联时被上调。
在一个实施方案中(如图2A和2B所示),提供了一种在编码细胞毒性T细胞(CTL)表位的外来多核苷酸被表达时诱导细胞死亡的方法。所述编码CTL表位的外来多核苷酸被置于与转录调控区可操纵地连接在一起,该调控区在表面免疫球蛋白分子交联时被诱导。当宿主细胞表面的免疫球蛋白分子发生抗原诱导的交联时,CTL表位表达在宿主细胞表面上,处于也表达在宿主细胞表面的确定的MHC分子范围内。将细胞与能识别处于确定MHC分子范围内的CTL表位的表位特异性CTL进行接触,表达CTL表位的细胞迅速发生裂解现象。在Zauderer的PCT公开文本WO00/028016中进一步公开了选择和回收表达特异CTL表位的宿主细胞的方法。
选择宿主细胞是通过回收那些发生细胞死亡和/或出现裂解现象的细胞或其内容物来完成的。例如,如果选定了附着生长在固体支持物上的宿主细胞,则那些发生细胞死亡和/或出现裂解现象的宿主细胞就会从支持物上释放下来,在细胞上清液中回收到。或者,可以从细胞上清液中回收到那些发生细胞死亡和/或出现裂解现象的宿主细胞所释放的病毒颗粒。
根据这个实施方案,宿主细胞表面所表达的MHC分子可以是I类MHC分子或II类MHC分子。在特别优选的实施方案中,宿主细胞上表达的MHC分子是H-2Kd分子,在发生抗原诱导的交联时被表达的CTL表位是肽GYKAGMIHI,文中命名为SEQ ID NO:23。
利用这个方法时,可以使用能在其表面表达免疫球蛋白分子或其抗原特异性片段的任何宿主细胞。合适的宿主细胞包括免疫球蛋白阴性的浆细胞瘤细胞系。这类细胞系的例子包括,但不限于NS1细胞系,Sp2/0细胞系和P3细胞系。其他合适的细胞系对本领域普通技术人员是显而易见的。
在另一个优选的实施方案中(如图2A和2B所示)提供了一种方法,其中利用转染了构建体的宿主细胞来间接诱导细胞死亡,所述构建体中包含“自杀”基因的异源多核苷酸与转录调控区可操纵地连接在一起,后者在发生表面免疫球蛋白分子交联时被诱导。“自杀基因”是指表达时导致细胞死亡的核酸分子。可以作为自杀基因的多核苷酸包括本领域已知的许多细胞死亡诱导序列。优选的自杀基因是编码毒素,比如假单胞菌外毒素A链,白喉毒素A链,蓖麻毒蛋白A链,相思豆毒蛋白A链,modeccin A链和α八叠球菌(α-sarcin)的那些基因。一个优选的自杀基因编码白喉毒素A亚基。一旦宿主细胞表面的免疫球蛋白分子发生抗原诱导的交联,细胞凋亡诱导基因的启动子就被诱导,从而表达自杀基因,促进细胞死亡。
采用这种方法时,可以使用能在其表面表达免疫球蛋白分子或其抗原特异性片段,并能通过表达谱鉴定转录调控区的任何宿主细胞,其中所述转录调控区在发生表面免疫球蛋白分子交联时被诱导。合适的宿主细胞包括早期B细胞淋巴瘤细胞系和免疫球蛋白阴性的浆细胞瘤细胞系。这类细胞系的例子包括,但不限于CH33细胞系,CH31细胞系,WEHI-231细胞系,NS1细胞系,Sp2/0细胞系和P3细胞系。其他合适的细胞系对本领域普通技术人员是显而易见的。
在宿主细胞是Ig-阴性浆细胞瘤细胞系的情况中,可以使这些细胞通过与结合在基质上的浆细胞瘤特异性抗体的相互作用而附着到固体基质上。合适的浆细胞瘤特异性抗体包括,但不限于抗CD38抗体(Yi,Q.等,Blood90:1960-1967(1997)),抗CD31抗体(Medina,F.等,Cytometry39:231-234(2000)),抗CD20抗体(Haghighi,B.等,Am.J.Hematol.59:302-308(1998))和抗CD10抗体(Dunphy,C.H.,Acta.Cytol.40:358-362(1996))。
可以将文中描述的直接和间接抗原诱导细胞死亡方法结合使用。例如,在宿主细胞是早期B细胞淋巴瘤、并且抗原交联直接诱导细胞凋亡的那些实施方案中,可以通过用这样一种构建体转染早期B细胞淋巴瘤宿主细胞来加速抗原诱导的细胞死亡,所述构建体中编码外来细胞毒性T细胞表位的多核苷酸与转录调控区可操纵地连接在一起,后者在发生表面免疫球蛋白分子交联时被诱导。抗原交联细胞与特异细胞毒性T细胞进行接触时,细胞死亡将得到加快。类似的,在宿主细胞是早期B细胞淋巴瘤,并且抗原交联直接影响细胞凋亡的那些实施方案中,可以通过用这样一种构建体转染早期B细胞淋巴瘤宿主细胞来加速抗原诱导的细胞死亡,所述构建体中自杀基因与转录调控区可操纵地连接在一起,后者在发生表面免疫球蛋白分子交联时被诱导。
可以将免疫球蛋白重链进行修饰,使得特异抗原能在其中受体经特异抗原发生交联的细胞中诱导出容易检测的信号。一个优选的实施方案是利用细胞凋亡诱导系统来选择因表达抗原特异性受体所导致的细胞杀伤。细胞凋亡诱导系统的一个例子包括人FAS(CD95,APO-1)受体,它是肿瘤坏死一神经生长因子受体超家族的一个成员,该超家族通过募集和装配死亡诱导信号复合体(该复合体激活一系列蛋白水解性caspases)而在调节细胞凋亡中发挥作用。有几份报导描述了基于FAS的诱导性细胞死亡系统,其中可通过嵌合蛋白来诱导细胞凋亡,该嵌合蛋白含有FAS的胞质“死亡结构域”,并与不同受体偶联在一起,从而可通过多种细胞调节子来诱导细胞凋亡。Ishiwatari-Hayasaka等成功地利用小鼠CD44的胞外结构域和人FAS在与多价抗CD44抗体发生交联时诱导细胞凋亡(Ishiwatari-Hayasaka H.等,J Immunol 163:1258-64(1999))。此外,Takahashi等证明嵌合人G-CSFR/FAS(胞外/胞质)蛋白能够在与抗G-CSFR抗体发生交联时诱导细胞凋亡(Takahashi T等,J BiolChem271:17555-60(1996))。这些作者已经证明,嵌合蛋白二聚体不能诱导细胞凋亡。复合体必须至少是三聚体形式。
在一个优选实施方案中,构建了一个嵌合基因,其中FAS的跨膜结构域和胞质死亡结构域与人IgM重链的CH1结构域的羧基端融合在一起(CH1-Fas,图13(a))。如文中所述将各种VH基因插入该构建体,从而制备出VH-CH1-Fas重组体痘苗病毒文库。在感染了VH-CH1-Fas构建体、并且转染了编码不同免疫球蛋白轻链或者感染了经补骨脂素处理过的编码不同免疫球蛋白轻链的重组体痘苗病毒的宿主细胞内,装配带有VH-CH1-Fas的膜受体。那些表达具有所需特异性的重链和轻链可变区基因组合的细胞将有某些膜受体在有目的的特异性的固定化抗原存在的情况下发生交联。VHCH1/FAS寡聚物功能性复合体的形成将诱导细胞凋亡。可以通过与多价抗原交联或者通过将1个以上的抗原固定在组织培养板或珠子上来形成三聚体。
在一个变通的实施方案中,在融合蛋白中表达VH文库,所述融合蛋白中包含FAS的跨膜结构域和胞质死亡结构域的多肽与IgM重链CH4结构域的羧基端融合在一起(图13(b))。在另一个实施方案中,FAS的胞质死亡结构域融合到IgM重链CH4结构域后面的跨膜结构域的羧基端(图13(c))。
后两个实施方案(图13(b)和(c))导致合成二聚体Fas死亡结构域,它可促进形成诱导细胞凋亡信号所需要的三聚体复合物,从而提高所选的抗原特异性受体的数量。但是利用单体构建体(图13(a)),可选择到数量少但亲合力更高的抗原受体,同时减少非抗原特异性细胞死亡的背景。这两种带有二聚体Fas结构域的受体不同之处在于融合蛋白中编码的跨膜区是Fas衍生的还是IgM衍生的。衍生自IgM的跨膜区可能对于表达在B淋巴细胞谱系的细胞中的膜受体更有效。这个实施方案的一个优点是它不限于B细胞。具体来说,单体的Fas构建体可以在包括表皮细胞系,Hela细胞和BSC-1细胞等能产生高滴度痘苗病毒的广泛的细胞类型中合成和表达为膜受体。
在另一个实施方案中,提供了一种基于抗原诱导的细胞信号传导的筛选方法,用于回收编码免疫球蛋白分子或其抗原特异性片段的多核苷酸。根据这种方法,用容易检测的报道分子构建体(例如萤光素酶)转染宿主细胞,该构建体与转录调控区可操纵地连接在一起,后者在发生表面免疫球蛋白交联时被上调。将在其表面表达免疫球蛋白或其片段的宿主细胞池与抗原进行接触,发生交联时,可在该细胞集中检测信号。参照以上描述的免疫球蛋白鉴定方法的第一个步骤,可以如下实施信号传导方法。将编码免疫球蛋白亚基多肽的第一多核苷酸文库分成多个池,例如大约2,5,10,25,15,75,100或更多个池,每个池含有大约10,100,103,104,105,106,107,108或109个编码带有不同可变区的免疫球蛋白亚基多肽的不同多核苷酸。优选每个池开始含有大约103个多核苷酸。将每个池扩展,留一份复制试样用于后面的回收。在多核苷酸群构建在病毒载体(优选痘病毒,更优选痘苗病毒)的情况中,可以通过例如将高滴度病毒文库原液稀释,用其中的部分以低MOI(例如MOI<0.1)感染组织培养细胞的微量培养物来制备所述池。通常经过48小时的感染后,病毒滴度获得1000倍以上的扩增。在多个单独集中扩增病毒滴度减少了由于更有竞争力的亚群相对迅速的生长造成重组体亚群丢失的危险。
然后用病毒池感染与所制备的病毒池数量相等的宿主细胞池。这些宿主细胞已经被工程化以便在发生表面免疫球蛋白交联时表达报道分子。每个池感染的宿主细胞的数量取决于该集中含有的多核苷酸的数量和所需的MOI。将第二多核苷酸文库也导入宿主细胞池,并允许在宿主细胞的表面表达免疫球蛋白分子或其片段。
然后将宿主细胞池与目的抗原在一定条件下进行接触,在该条件下其表面表达抗原特异性免疫球蛋白分子的宿主细胞在所述免疫球蛋白分子发生交联时能表达可检测的报道分子,然后筛选各个宿主细胞池的报道分子表达情况。收获那些能检测到报道分子表达的宿主细胞池,从开始扩增该多核苷酸池时留下的试样中回收第一文库的多核苷酸。
为了进一步富集第一文库中编码抗原特异性免疫球蛋白亚基多肽的多核苷酸,将上面回收到的多核苷酸分成多个亚池。建立亚池使之比上面使用的池含有更少的不同成员。例如,如果每个第一池含有103个不同的多核苷酸,建立的亚池每个应平均含有大约10或100个不同多核苷酸。将亚池与第二文库导入宿主细胞,允许在宿主细胞的膜表面表达免疫球蛋白分子或其片段。然后象上面那样将宿主细胞与抗原进行接触,鉴定出能检测到报道分子表达的那些宿主细胞亚池,如上所述从先前留下的复制集中回收第一文库的多核苷酸。本领域普通技术人员明白,可以将该过程再重复一或多次以便充分富集编码抗原特异性免疫球蛋白亚基多肽的多核苷酸。
一旦完成进一步选择和富集第一文库的多核苷酸的步骤,并分离这些多核苷酸后,进行类似的过程来回收第二文库的多核苷酸,它们作为免疫球蛋白分子或其抗原特异性片段的一部分,能结合目的特异抗原。
任何合适的报道分子都可以用于这种方法,其选择取决于所用的宿主细胞,可供利用的检测仪器以及检测的容易程度。合适的报道分子包括,但不限于萤光素酶,绿色荧光蛋白和β-半乳糖苷酶。
任何能在其表面表达免疫球蛋白分子的宿主细胞都可以用于这种方法。优选的宿主细胞包括免疫球蛋白阴性的浆细胞瘤细胞,例如NS1细胞,Sp2/0细胞或P3细胞,以及早期B细胞淋巴瘤细胞。
与上面描述的细胞死亡法类似,动力学考虑要求报道分子构建体的表达发生在CPE的诱导之前。尽管如此,优选由于宿主细胞表面上的免疫球蛋白分子抗原诱导的交联而引起的可检测报道分子的表达发生在宿主细胞与抗原进行接触后的大约1小时到4天,以便先于CPE的诱导而发生。更优选,报道分子的表达发生在宿主细胞与抗原进行接触后的大约1小时、2小时,大约3小时、4小时,大约5小时,大约6小时,大约7小时,大约8小时,大约9小时,大约10小时,大约11小时,大约12小时,大约14小时,大约16小时,大约18小时,大约20小时,大约22小时,大约24小时,大约28小时,大约32小时,大约36小时,大约40小时,大约44小时,大约48小时。更优选报道分子的表达发生在宿主细胞与抗原接触后大约12小时内。
“在表面免疫球蛋白分子交联时被诱导的转录调控区”是指这样一种区域,例如宿主细胞启动子,其通常调控那些在表面表达的免疫球蛋白分子交联时被上调的基因。这类转录调控区的一个优选的例子是BAX启动子,它在早期B细胞淋巴瘤细胞发生表面免疫球蛋白分子交联时被上调。
在另一个实施方案中,提供了一种选择编码免疫球蛋白分子或其抗原特异性片段的选择或筛选方法,该方法基于抗原特异性结合。图5显示了该实施方案。根据这种方法,仅靠检测抗原结合来回收在其表面表达抗原特异性免疫球蛋白分子或其片段的宿主细胞。抗原结合可以作为一种选择方法,即利用结合抗原的特点,通过与上面描述的基于细胞死亡类似的方法来直接选择表达抗原特异性免疫球蛋白分子的宿主细胞。例如,如果抗原结合在固体基质上,可以通过借助抗原结合到固体基质上来回收悬浮的可与抗原结合的宿主细胞。或者,抗原结合可以作为筛选过程,即通过与上述用于抗原诱导的细胞信号传导类似的方法对宿主细胞池进行可检测抗原结合的筛选。例如,将在表面表达免疫球蛋白或其片段的宿主细胞池与抗原进行接触,通过免疫测定法检测给定集中的抗原结合情况,例如通过检测与抗原结合的酶-抗体偶联物进行测定。
参照以上描述的免疫球蛋白鉴定方法的第一个步骤,可以如下实施经由抗原特异性结合方法进行的选择。选择能在表面高水平表达免疫球蛋白分子的宿主细胞进行感染和/或转染。优选,宿主细胞悬浮生长。用第一和第二多核苷酸文库如上所述进行感染后,允许抗体分子的合成和装配。然后将宿主细胞转移到表面上结合有抗原的微量滴定板的孔中。能结合抗原的宿主细胞从而附着到孔的表面,通过轻柔的洗涤除去未结合的细胞。或者,可以通过例如荧光激活细胞分选(FACS)回收结合抗原的宿主细胞。FACS又称为流式细胞分拣,可用来根据包括荧光等光学特性来选择单个细胞。能在较短的时间内筛选大群细胞是有用的。最后回收那些结合了抗原的宿主细胞,从而富集第一文库中编码第一免疫球蛋白亚基多肽的多核苷酸,所述第一免疫球蛋白亚基多肽作为免疫球蛋白分子或其抗原特异性片段的一部分,能够特异结合目的抗原。
在进一步选择和富集第一文库的多核苷酸,并分离这些多核苷酸后,实施类似的过程来回收第二文库的多核苷酸,它们作为免疫球蛋白分子或其抗原特异性片段的一部分,能够结合特定的目的抗原。
任何能在其表面表达免疫球蛋白分子的宿主细胞都可以用于这种选择方法。优选的宿主细胞包括免疫球蛋白阴性的浆细胞瘤细胞,例如NS1细胞,Sp2/0细胞或P3细胞,以及早期B细胞淋巴瘤细胞。优选这些细胞能悬浮生长。
参照以上描述的免疫球蛋白鉴定方法的第一个步骤,可以如下通过抗原特异性结合方法来进行筛选。将构建在病毒载体中的编码免疫球蛋白亚基多肽的第一多核苷酸文库通过上述方法分成多个池。然后用病毒池感染与所制备的病毒池数量相等的宿主细胞池。在这种筛选方法中,优选宿主细胞粘着在固体基质上。将第二多核苷酸文库同样导入宿主细胞池,允许在宿主表面表达免疫球蛋白分子或其片段。
然后将宿主细胞池与目的抗原进行接触。与抗原一起温育后,洗去过量的未结合抗原。最后筛选细胞池的抗原结合情况。可以通过多种方法来检测抗原结合。例如,可以将抗原缀合上一种酶。除去未结合的抗原后,加入底物,并检测酶反应产物。利用第二抗体缀合物或链霉亲和素/生物素系统可以强化该方法。这类筛选方法是本领域普通技术人员所熟知的,并且可以从正规商家那里以试剂盒形式得到。同样,如果抗原结合在显微颗粒(例如金珠)上,则可以显微检测抗原与宿主细胞的结合。与上述细胞信号传导方法一样,收获那些检测到与抗原发生结合的宿主细胞池,并回收其中包含的第一文库的多核苷酸。或者,鉴定出能检测到抗原结合的宿主细胞池,从开始扩增该多核苷酸池时留下的该多核苷酸池的复制试样中回收其中包含的第一文库多核苷酸。
为了进一步富集编码抗原特异性免疫球蛋白亚基多肽的第一文库多核苷酸,将上面回收到的多核苷酸分成多个亚池。建立亚池使之比上面使用的池含有更少的不同成员。例如,如果每个第一池含有103个不同的多核苷酸,建立的亚池每个应平均含有大约10或100个不同多核苷酸。将亚池与上述第二文库一起导入宿主细胞,使在宿主细胞的膜表面表达免疫球蛋白分子或其片段。然后象上面那样将宿主细胞与抗原进行接触,收获或者简单地鉴定出其中能检测到抗原结合的那些宿主细胞亚池,回收其中包含的、或者复制试样中包含的第一文库多核苷酸。本领域普通技术人员明白,可以将该过程再重复一或多次以便充分富集编码抗原特异性免疫球蛋白亚基多肽的多核苷酸。
在进一步选择和富集第一文库的多核苷酸并分离这些多核苷酸后,实施类似的过程来回收第二文库的多核苷酸,它们作为免疫球蛋白分子或其抗原特异性片段的一部分,能够结合特定的目的抗原。
任何能在其表面表达免疫球蛋白分子的宿主细胞都可以用于这种方法。优选的宿主细胞包括免疫球蛋白阴性的浆细胞瘤细胞,例如NS1细胞,Sp2/0细胞或P3细胞,以及早期B细胞淋巴瘤细胞。
实施文中描述的直接和间接抗原诱导的细胞死亡方法时,可以通过任何方便的方法将目的抗原与宿主细胞进行接触。例如,在某些实施方案中,抗原(例如肽或多肽)被附着在固体基质上。用在文中,“固体支持物”或“固体基质”是本领域已知的能够结合细胞或抗原的任何形式的支持物。熟知的支持物包括用于组织培养的塑料,玻璃,聚苯乙烯,聚丙烯,聚乙烯,葡聚糖,尼龙,淀粉酶,天然和修饰的纤维素,聚丙烯酰胺,辉长岩和磁铁矿。针对发明目的,载体的性质可以是一定程度上可溶的或者不溶的。支持物材料实际上可以具有任何可能的结构构型,只要偶联的分子能够与细胞结合即可。因此,支持物构型可以是球形,比如珠子;或者是圆柱形,比如在试管的内表面,或者杆的外表面。或者,表面可以是平的比如片状,试纸条等。优选的支持物包括聚苯乙烯珠子。所述支持物构型包括试管,珠子,微珠,孔,板,组织培养板,平板,微量培养板,微量滴定板,瓶子,棒,条带,小瓶,搅拌器等。固体支持物可以是磁性或非磁性的。本领域技术人员知道许多其他的适用于结合细胞或抗原的载体,或者很容易确定这些物质。
或者,可以在表达抗原的递呈细胞表面表达所述抗原。用在文中,“表达抗原的递呈细胞”是指在其表面表达目的抗原的细胞,其表达方式使得该抗原能够与附着在宿主细胞表面的免疫球蛋白分子相互作用。优选的表达抗原的递呈细胞被工程化成将目的抗原表达为重组体蛋白质的形式,但抗原也可以是该细胞的天然抗原。可以利用本领域普通技术人员熟知的分子生物学和蛋白质表达技术,通过任何合适的方法来构建所述表达抗原的重组递呈细胞。通常用编码目的抗原的质粒载体转染合适的细胞,并筛选表达目的多肽抗原的细胞。优选表达抗原的重组递呈细胞能稳定地表达目的抗原。与表达抗原的递呈细胞相同类型,但没有被工程化而用于表达目的抗原的细胞在文中称为“无抗原递呈细胞”。任何合适的细胞系都可以用于制备表达抗原的递呈细胞。这类细胞系的例子包括,但不限于转化了SV40的猴肾CVI系(COS-7,ATCC CRL1651);人胚肾系(293,Graham等,J.Gen Virol.36:59(1977));幼仓鼠肾细胞(BHK,ATCC CCL10);中国仓鼠卵巢细胞DHFR(CHO,Urlaub和Chasin,Proc.Natl.Acad.Sci.USA77:4216(1980));小鼠足细胞(TM3,Mather,Biol.Reprod.23:243-251(1980));猴肾细胞(CVIATCC CCL70);非洲绿猴肾细胞(VERO-76,ATCC CRL-1587);人颈癌细胞(HELA,ATCC CCL2);犬肾细胞(MDCK,ATCC CCL34);buffalo rat肝细胞(BRL 3A,ATCC CRL1442);人肺细胞(W138,ATCC CCL75);人肝细胞(hep G2,HB8065);小鼠乳腺癌(MMT060562,ATCC CCL51);TRI细胞(Mather等,AnnalsN.Y.Acad.Sci383:44-68(1982));NIH/3T3细胞(ATCC CRL-1658)以及小鼠L细胞(ATCC CCL-1)。其他细胞系对本领域普通技术人员是显而易见的。从美国典型培养物保藏中心(10801 UniversityBoulevard,Manassas,VA20110-2209)可以得到多种细胞系。
本领域普通技术人员明白,表达抗原的递呈细胞在其表面除了目的抗原外还含有许多天然的抗原决定簇。预计本发明中那些在表面上表达广泛的不同免疫球蛋白分子或其抗原特异性片段的宿主细胞会与这些额外的抗原决定簇结合。因此,使用带有目的抗原的抗原表达递呈细胞与本发明的宿主细胞进行接触时,有必要首先去掉宿主细胞群中表达对所述其他抗原决定簇有活性的免疫球蛋白的那些宿主细胞群。本发明提供了用于从宿主细胞群中去掉能表达对无抗原递呈细胞的天然表面抗原有特异性的免疫球蛋白分子的宿主细胞。图5显示了这种方法。大体上说,这些方法包括在将宿主细胞群与表达抗原的递呈细胞进行接触前,将宿主细胞群与无抗原递呈细胞接触。
在一个实施方案中,该方法包括将宿主细胞群吸附到结合在固体基质上的无抗原递呈细胞上。回收不结合的细胞和/或其中包含的多核苷酸,然后将回收到的宿主细胞或者导入了回收到的多核苷酸的新宿主细胞与抗原表达递呈细胞进行接触。在那些将宿主细胞池与抗原进行接触的选择方法中,宿主细胞池就吸附到结合在固体基质上的无抗原递呈细胞上。回收获合中不结合的细胞和/或其中含有的多核苷酸,然后将回收到的宿主细胞或者导入了回收到的多核苷酸的宿主细胞与抗原表达递呈细胞进行接触。
在另一个实施方案中,所述方法包括将宿主细胞群与无抗原递呈细胞在这样的条件下进行接触,其中表达与无抗原递呈细胞上的抗原决定簇的表面抗原反应的表面免疫球蛋白分子的那些宿主细胞,在宿主细胞表面上的免疫球蛋白分子发生交联时,发生前面描述过的细胞程序化死亡(例如细胞凋亡),直接或间接细胞死亡或者细胞信号传导(即表达报道分子)。然后回收那些没有发生细胞死亡或者不表达报道分子的宿主细胞,或者更具体地说,回收来自那些宿主细胞的第一或第二文库的多核苷酸。例如,如果表达免疫球蛋白分子的宿主细胞群仍然附着在固体基质上,并且发生细胞死亡的那些细胞从基质上释放下来,则吸出并弃去培养液的内容物,回收保持附着的细胞以及其中所包含的多核苷酸。
本领域普通技术人员明白,要去掉宿主细胞群中那些表达与无抗原递呈细胞携带的抗原决定簇反应的免疫球蛋白的宿主细胞,可能需要多轮淘汰。我们进一步设想可以用逐轮富集这样一些宿主细胞来代替逐轮淘汰,这些细胞表达可与抗原表达递呈细胞上所表达的目的抗原特异结合的免疫球蛋白分子。
在另一个实施方案中,提供了一种基于免疫球蛋白分子的抗原特异功能的筛选方法来回收编码免疫球蛋白分子或其抗原特异性功能片段的多核苷酸。根据这种方法,制备表达完全可溶的免疫球蛋白分子的宿主细胞池。允许进行表达,通过需要某种特定抗原特异性的不同功能测定法来检测得到的细胞培养基。根据该方法,被检测的“功能”可以是免疫球蛋白分子执行的常规效应子功能,例如病毒中和,调理作用,ADCC,拮抗剂/激动剂活性,组胺释放,血细胞凝集或者血细胞凝集抑制。或者,所述“功能”仅指结合抗原。
在一个相关的实施方案中,提供了一种选择具有已知抗原特异性、但效应子功能发生改变的免疫球蛋白分子的筛选方法。根据这些实施方案,构建具有已知抗原特异性、但在已知参与给定效应子功能的恒定结构域中发生改变的免疫球蛋白亚基多肽文库。根据该方法,制备表达完全可溶的免疫球蛋白分子的宿主细胞池。允许表达,通过不同功能性测定法检测得到的细胞培养基中提高或被抑制的活性。根据该方法,被检测的“功能”可以是免疫球蛋白分子所执行的常规效应子功能,例如病毒中和,调理作用,补体结合,ADCC,拮抗剂/激动剂活性,组胺释放,血细胞凝集或者血细胞凝集抑制。
参照以上描述的免疫球蛋白鉴定方法的第一个步骤,可以如下实施对效应子功能的筛选。如上所述,将编码完全分泌的免疫球蛋白亚基多肽的第一多核苷酸文库分成多个池,每个池含有大约10,100,103,104,105,106,107,108或109个编码带有不同可变区之完全分泌的免疫球蛋白亚基多肽的不同多核苷酸。优选每个池开始含有大约103个多核苷酸。将每个池扩增,留一份复制试样用于后面的回收。在多核苷酸池构建在病毒载体(优选痘病毒,更优选痘苗病毒)的情况中,可以通过例如将高滴度病毒文库原液稀释,用其中的一部分以低MOI(例如MOI<0.1)感染组织培养细胞的微量培养物来制备所述池。通常经过48小时的感染后,病毒滴度获得1000倍以上的扩增。在多个单独集中扩增病毒滴度减少了由于竞争性亚群相对迅速的生长造成重组体亚群丢失的危险。
然后用病毒池感染与所制备的病毒池数量相等的宿主细胞池。每个池感染的宿主细胞的数量取决于该集中含有的多核苷酸的数量和所需的MOI。基本上,在本方法中可以使用能被所用病毒载体感染,并能表达完全分泌的免疫球蛋白分子的任何宿主细胞。优选的宿主细胞包括免疫球蛋白阴性的浆细胞瘤细胞,例如NS1细胞,Sp2/0细胞,或P3细胞,以及早期B细胞淋巴瘤细胞。这些细胞可以悬浮培养或者附着在固体表面。将第二多核苷酸文库也导入宿主细胞池,并允许表达完全分泌的免疫球蛋白分子或其片段。
然后回收其中培养着宿主细胞池的条件培养基,通过标准化的功能测试来检测应答特异目的抗原的效应子功能。
任何合适的功能测试均可用于该方法。例如,可以在病毒中和测试中检测收获到的细胞上清液中能够中和目标病毒(例如HIV)的免疫球蛋白分子。或者,可以检测收获到的细胞上清液阻断或促进(即作为拮抗剂或激动剂)目标细胞功能(例如细胞凋亡)的能力。下面的实施例中描述了示范性的合适的功能测试。用在文中,“功能性测试”也包括例如利用本领域普通技术人员熟知的常规ELISA测定法简单地检测抗原结合。
当生长着给定宿主细胞池的条件培养基具有所需功能时,从开始扩增该多核苷酸池时留下的试样中回收该池的宿主细胞中包含的第一文库的多核苷酸。
为了进一步富集第一文库中编码抗原特异性免疫球蛋白亚基多肽的多核苷酸,将上面回收到的多核苷酸分成多个亚池。建立亚池使之比上面使用的池含有更少的不同成员。例如,如果每个第一池含有103个不同的多核苷酸,建立的亚池每个应平均含有大约10或100个不同多核苷酸。将亚池与第二文库如上所述导入宿主细胞,允许表达完全分泌的免疫球蛋白分子或其片段。如上所述回收其中培养着宿主细胞池的条件培养基,通过标准化的功能测试来检测应答特异目的抗原的效应子功能,鉴定具有所需功能特性的条件培养基样品,从先前留下的复制集中回收该亚池宿主细胞所含有的第一文库的多核苷酸。本领域普通技术人员明白,可以将该过程再重复一或多次以便充分富集编码抗原特异性免疫球蛋白亚基多肽的多核苷酸。
一旦完成进一步选择和富集第一文库的多核苷酸的步骤,并分离这些多核苷酸后,进行类似的过程来回收第二文库的多核苷酸,它们作为免疫球蛋白分子或其片段的一部分,显示出所需的抗原特异性功能。
试剂盒。本发明进一步提供了用于选择真核宿主细胞内表达的抗原特异性重组体免疫球蛋白的试剂盒。该试剂盒包含一或多个容器,其中盛有完成文中描述的方法所需的一或多种成分。在一个实施方案中,该试剂盒包含:(a)通过可操纵地连接转录调控区,编码多个第一免疫球蛋白亚基多肽的第一多核苷酸文库,其中每个第一免疫球蛋白亚基多肽包含:(i)选自重链恒定区和轻链恒定区的第一免疫球蛋白恒定区,(ii)与所述第一恒定区对应的免疫球蛋白可变区,以及(iii)能够指导所述第一免疫球蛋白亚基多肽的细胞表面上表达或分泌的信号肽,其中所述第一文库构建在真核病毒载体中;(b)通过可操纵地连接转录调控区,编码多个第二免疫球蛋白亚基多肽的第二多核苷酸文库,其中每个第二免疫球蛋白亚基多肽包含:(i)选自重链恒定区和轻链恒定区的第二免疫球蛋白恒定区,其中该第二免疫球蛋白恒定区与第一免疫球蛋白恒定区不同,(ii)与所述第二恒定区对应的免疫球蛋白可变区,以及(iii)能够指导所述第二免疫球蛋白亚基多肽在细胞表面上表达或分泌的信号肽,其中所述第二免疫球蛋白亚基多肽能够与第一免疫球蛋白亚基多肽组合,从而形成表面免疫球蛋白分子,或其抗原特异性片段,附着到宿主细胞膜上,并且该第二文库构建在真核病毒载体中;和(c)能够表达所述免疫球蛋白分子的宿主细胞群。在该试剂盒中,所述第一和第二文库都是以感染性病毒颗粒和灭活的病毒颗粒的形式提供的,其中所述灭活的病毒颗粒能感染宿主细胞,使它表达其中所包含的多肽,但不进行病毒复制。此外,试剂盒中提供的宿主细胞能表达可通过与抗原的相互作用来进行选择的抗原特异性免疫球蛋白分子。该试剂盒的用途与文中描述的方法相符。在某些实施方案中,试剂盒包括对照抗原和试剂以便使特定目的抗原的选择标准化。
分离的免疫球蛋白。本发明进一步提供了通过文中描述的任何一种方法制备的分离的抗原特异性免疫球蛋白或其片段。这些分离的免疫球蛋白可以用作诊断或治疗试剂。此外本发明提供了包含本发明所述分离的免疫球蛋白和药学可接受载体的组合物。
除非另外指出,实施本发明将采用细胞生物学,细胞培养,分子生物学,转基因生物学,微生物学,重组DNA和免疫学的常规技术,这些都是本领域的普通技术。这些技术在文献中有充分的解释。参见例如,Molecular Cloning A Laboratory Mannual,2nd Ed.,Sambrook等,Cold Spring Harbor Laboratory Press(1989);Molecular Cloning:A Laboratory Mannual,Sambrook等,ColdSpring Harbor Laboratory,New York(1992),DNA Cloning,卷I和II(D.N.Glover ed.,1985);Oligonucleotide Synthesis(M.J.Gait ed.1984);Mullis等,美国专利4683195;Nucleic AcidHybridization(B.D.Hames & S.J.Higgins ed.1984);Transcription and Translation (B.D.Hames & S.J.Higginsed.1984);Culture of Animal Cells(R.I.Freshney,Alan R.Liss,Inc.1987);Immobilized Cells And Enzymes(IRL Press,1986);B.Perbal,A Practical Guide To Molecular Cloning(1984);thetreatise,Methods In Enzymology(Academic Press,Inc.,N.Y.);Gene Transfer Vectors For Mammalian Cells(J.H.Miller和M.P.Calos eds.1987,Cold Spring Harbor Laboratory);MethodsIn Enzymology,Vol.154和155(Wu等编辑),ImmunochemicalMethods In Cell And Molecular Biology(Mayer和Walker编辑,Academic Press,London,1987);Handbook of ExperimentalImmunology,VolI-IV(D.M.Weir和C.C.Blackwell编辑,1986);Manipulating the Mouse Embryo(CoId Spring Harbor LabortoryPress,Cold Spring Harbor,N.Y.1986);和Ausubel等,CurrentProtocols in Molecular Biology,John Wiley和Sons,Baltimore,Maryland(1989)。
Antibody Engineering,2nd edition,C.A.K.Borrebaeck,ed.,Oxford Univ.Press(1995)中描述了抗体工程的一般原理。ProteinEngineering,A Practical Approach,Richwood,D.等,Eds.,IRLPress at Oxford Univ.Press,Oxford,Eng.(1995)中提出了蛋白质工程的一般原理。Nisonoff,A.,Molecular Immunology,2nd ed,Sinauer Associates,Sunderland,MA(1984);以及Steward,M.W.,Antibodies,Their Structure and Function,Chapman and Hall,New York,NY(1984)中分别提出了抗体和半抗体结合的基本原理。此外,没有具体描绘的本领域已知的免疫学常规方法通常参照CurrentProtocols in Immunology,John Wiley & Sons,New York;Stites等(编辑),Basic and Clinical-Immunology(8th ed),Appleton &Lange,Norwalk,CT(1994)以及Mishell和Shiigi(eds),SelectedMethods in Cellular Immunology,W.H.Freeman and Co.,NewYork(1980)进行。
提出免疫学基本原理的标准参考文献包括Current Protocols inImmunology,John Wiley & Sons,New York;Klein,J.,Immunology:The Science of Self-Nonself Discrimination,John Wiley &Sons,New York(1982);Kennett,R.等,Monoclonal Antibodies,Hybridoma:A New Dimension in Biological Analyses,PlenumPress,New York(1980);Campbell,A.,“Monoclonal AntibodyTechnology”in Burden,R.等编辑,Laboratory Techniques inBiochemistry and Molecular Biology,Vol 13,Elsevere,Amsterdam(1984)。
                      实施例
实施例1  构建特异性多样化的人免疫球蛋白文库
如下生成编码多种免疫球蛋白亚基多肽的多核苷酸文库。通过PCR扩增编码VH(重链可变区)、VK(K轻链可变区)和VL(入轻链可变区)的基因。对于三种可变区基因家族的每一种,构建重组质粒文库和痘苗病毒文库。将可变区基因插入基于p7.5/tk的转移/表达质粒中,处于相应重链或轻链的免疫球蛋白前导序列和恒定区序列之间。应用该质粒,通过三分子重组来生成相应的痘苗病毒重组件,也可在转染进入经痘苗病毒感染的细胞后直接利用该质粒高水平表达免疫球蛋白链。首先用痘苗重链文库感染淋巴瘤细胞,然后用质粒轻链文库瞬时转染。IgM与轻链的共表达将导致抗体分子的装配和表面表达。
1.1按pVHE。按如下所述构建包含人μ膜免疫球蛋白恒定区的表达载体,在本文中被命名为PVHE。该策略如图3所示。利用可从Clontech,Palo Alto,CA获得的SMARTTM RACE cDNA扩增试剂盒,从骨髓RNA分离编码膜结合型人IgM重链的cDNA。利用下述引用进行PCR:5’引物(huCμ5B)/5’-ATTAGGATCCGGTCACCGTCTCCTCAGGG-3’(SEQ ID NO:24) 和3’引物(huCμ3S)5’-ATTAGTCGACTCATTTCACCTTGAACAAGGTGAC-3’(SEQ ID NO:25)。然后将PCR产物插入pBluescript II/KS的BamHI和SalI位点处,以便进行定点诱变,消除位于CH2和CH4结构域之间的2个BstEII位点。选择不改变这些位点处所编码的氨基酸的核苷酸取代。
通过下述方法,将如Zauderer,PCT公开号WO 00/028016以及下文实施例5中所述生成的质粒p7.5/tk转化成pVHE。用包含下述限制性位点:NotI-NcoI-BssHII-BstEII-SalI的盒子替换P7.5/tk中的多克隆位点(MCS),生成p7.5/tk2。具有序列5’-GCGGCCGCAAACCATGGAAAGCGCGCATATGGTCACCAAAAGTCGAC-3’的所述盒子在本文中被称作SEQ ID NO:26。将编码对应于IgM重链第-19--3位氨基酸的信号肽序列的盒子克隆到p7.5/tk2内的NcoI和BssHII位点间,生成p7.5/tk2L。然后将如上述生成的、经BstEII诱变的IgM重链克隆入p7.51tk2L中的BstEII中的和SalI位点间,生成pVHE。接着,将如下所述经PCR生成的、包含编码氨基酸-4至110的核苷酸的重链可变区(VH)盒克隆到pVHE的BssHII和BstEII位点间,生成编码膜结合型重链的多核苷酸文库。由于μ重链序列和所选的限制酶位点之间的重叠,这将引起毗邻的膜结合型重链免疫球蛋白亚基多肽以正确的翻译阅读框架进行表达。
1.2 pVHE.如下构建文中称为pVHE的包含人μ分泌型免疫球蛋白恒定区的表达载体。图8显示了该策略。利用SMART RACE cDNAAmplification Kit从骨髓RNA中分离编码分泌型人IgM重链的cDNA。上游引物huCμ5B在5’端含有添加的BamHI位点和BstEII位点,其后是VH的氨基酸111-113以及CμH1的第一个氨基酸。下游引物shuCμ3S含有分泌型Cμ的最后6个氨基酸,随后是一个终止密码子和SalI位点。这些引物具有以下序列:
huC μ5B:5’-ATTAGGATCCGGTCACCGTCTCCTCAGGG-3’(SEQ IDNO:27);和
shuC μ3S:5’-ATTAGTCGACTCAGTAGCAGGTGCCAGCTGT-3’(SEQ IDNO:28).
然后将PCR产物插pBluescriptII/KS的BamHI和SalI位点进行定点突变,以便去掉位于CH2和CH4结构域的两个BstEII位点。选择这些位点编码的氨基酸没有发生变化的核苷酸取代。
通过以下方法将1.1部分制备的质粒p7.5/tk2L转化为pVHEs。然后将如上所述制备的BstEII突变的分泌型IgM重链克隆到p7.5/tk2L中的BstEII和SalI位点,从而产生pVHEs。然后将通过以下描述的PCR制备的包含编码氨基酸-4到110之核苷酸的重链可变区(VH)盒克隆到pVHEs中的BssHII和BstEII位点之间,产生编码分泌型重链的多核苷酸文库。由于μ重链序列和所选的限制酶位点之间的重叠,导致以正确的翻译读框表达毗邻的分泌型重链免疫球蛋白亚基多肽。
1.3 pVKE和pVLE.如下构建文中命名为pVKE和pVLE的包含人κ和λ免疫球蛋白轻链恒定区的表达载体。图4显示了这个策略。
(a)通过以下方法将质粒p7.5/tk转化为pVKE。通过填平连接去掉p7.5/tk的两个XhoI和两个HindIII位点,经标准方法将3个ApaLI位点(一个在主链中,一个位于ColEl ori,另一个在Amp)去掉,用含有下列限制位点的盒替代p7.5/tk的多克隆位点(MCS):NotI-NcoI-ApaLI-XhoI-HindIII-SalI,从而产生p7.5/tk3。这个盒在文中称为SEQ ID NO:29,其序列为5’-GCGGCCGCCC ATGGATACGTGCACTTGACT CGAGAAGCTT AGTAGTCGAC-3’。
将编码κ轻链中氨基酸-19到-2所对应的信号肽序列的盒克隆到p7.5/tk3中NcoI和ApaLI位点之间,产生p7.5/tk3L。利用SMARTTM RACE cDNA Amplification Kit如上所述从骨髓RNA中分离编码Cκ区的cDNA,所用引物包含在编码氨基酸104-107+Ck的区域的5’末端的XhoI位点,终止密码子和3’末端的SalI。这些引物具有以下序列:huCκ5:5’-CAGGACTCGA GATCAAACGA ACTGTGGCTG-3’(SEQ ID NO:30);huCκ3:5’AATATGTCGA CCTAACACTCTCCCCTGTTG AAGCTCTTT-3’(SEQ ID NO:31);以及huCk3:5’-AATATGTCGA CCTAACACTC TCCCCTGTTG AAGCTCTT-3’(SEQ ID NO:32).然后将Cκ盒克隆到p7.5/tk3L的XhoI和SalI位点之间,产生pVKE。然后将通过如下所述的PCR制备的包含编码氨基酸-3到105的核苷酸的κ轻链可变区盒(VK)克隆到pVKE中ApaLI和XhoI位点之间。由于κ轻链序列和所选的限制酶位点存在重叠,导致以正确翻译读框表达毗邻的κ轻链免疫球蛋白亚基多肽。
(b)通过以下方法将质粒p7.5/tk3L转化为pVLE。利用SMARTTMRACE cDNA Amplification Kit如上所述从骨髓RNA中分离编码Cκ区的cDNA,所用引物在5’末端有HindHIII位点和编码Vλ的氨基酸105到107的区域,在3’末端包含终止密码子和SalI位点。这些引物具有以下序列:huCλ5:5’-ATTTAAGCTT ACCGTCCTACGAACTGTGGC TGCACCATCT-3’(SEQ ID NO:33);和huCλ3(SEQ IDNO:31).然后将Cκ盒插入p7.5/tk3L中HindIII和SalI位点,产生pVLE。然后将通过如下所述PCR制备的包含编码氨基酸-3到140的核苷酸的λ轻链可变区盒(VL)克隆到pVLE中ApaLI和HindIII位点之间。由于λ轻链序列和所选的限制酶位点存在重叠,导致以正确翻译读框表达毗邻λ轻链免疫球蛋白亚基多肽。
1.4 可变区。通过以下方法,经PCR分离重链,κ轻链和λ轻链可变区,用于克隆到如上所述制备的表达载体中。分离自从多个供体收获到的正常人骨髓RNA(Clontech有售)用于合成cDNA。cDNA制备物的小份试样用于PCR扩增,引物对选自以下几套引物:VH/JH,VK/JK或VL/JL。表1和2列出了用于扩增可变区的引物。
(a)重链可变区。由于质粒表达载体的设计方式,VH引物(即用于扩增重链V区的引物对中的正向引物)具有以下一般构型,其中BssHII限制位点用下划线显示:
VH引物: GCGCGCACTCC-VH FR1引物的开端。
设计引物之包含编码前导序列最后4个氨基酸的密码子,其中BssHII位点编码氨基酸-4到-3,随后是VH家族特异的FR1序列。表1和2列出了不同家族特异性VH引物的序列。因为重链可变区最后5个氨基酸(即氨基酸109-113,在6种人重链J区中是相同的)包含在质粒pVHE中,JH引物(即用于扩增重链可变区的反向引物)具有以下构型从而包括编码氨基酸109到110的BstEII位点(下划线显示):
JH引物:-VH的氨基酸103-108的编码核苷酸序列(以G结束)- GTCACC
利用这些引物,VH PCR产物以编码氨基酸-4到110的密码子开始,其中BssHII是氨基酸-4和-3,以位于氨基酸109和110的密码子的BstEII位点结束。用合适的限制酶消化后,将这些PCR产物克隆到用BssHII和BstEII消化过的pVHE内。
为了扩增多数可能的重排重链可变区,使用表1和2所示的VH和JH引物族。VH1,3,和4家族占人基因组中存在的51种V区中的44种。表达载体中包含编码氨基酸109-113的密码子就排除了使用单个通用JH引物。但是,对每个VH引物可以合并表1和2所示的5个JH引物来减少所需PCR反应的次数。
(b)κ轻链可变区。VK引物,即用于扩增κ轻链可变区的正向引物具有以下一般构型,其中下划线显示了ApaLI限制位点:
VK引物: GTGCACTCC-VκFR1引物的开始
VK引物含有编码κ轻链前导序列最后3个氨基酸的密码子,其中ApaLI位点编码氨基酸-3和-2,随后是VK家族特异性FR1序列。因为编码κ轻链可变区最后4个氨基酸(氨基酸104-107)的密码子包括在表达载体pVKE中,故JK引物,即用于扩增κ轻链可变区的反向引物,展现以下构型:
JK引物:
-编码VK的氨基酸98-103的核苷酸序列- CTCGAG
XhoI位点(以下划线显示)包含编码κ轻链可变区的氨基酸104-105的密码子。编码κ轻链可变区的PCR产物以氨基酸-3的密码子开始,以氨基酸105的密码子结束,其中具有包含氨基酸-3和-2的密码子的ApaLI位点,和包含氨基酸104和105的密码子的XhoI位点。VK1/4和VK3/6引物各有两个简并核苷酸位点。利用这些JK引物(参见表1和2),JK1、3和4在氨基酸104处将发生Val到Leu的突变,JK3在氨基酸105处发生Asp到Glu的突变。
(c)λ轻链可变区。VL引物,即用于扩增λ轻链可变区的引物对中的正向引物具有以下一般构型,其中ApaLI限制位点以下划线显示:
VL引物: GTGCACTCC-VL的开端
所述ApaLI位点包含编码氨基酸-3和-2的密码子,随后是VL家族特异性FR1序列。因为编码VL最后5个氨基酸(氨基酸103-107)的密码子包含在表达载体pVLE中,故JL引物显示出以下构型,从而包括含有编码氨基酸103-104的密码子的HindIII位点(以下划线显示):
JL引物:-VL中氨基酸97-102的核苷酸序列- AAGCTT
编码λ轻链可变区的PCR产物以氨基酸-3的密码子开始,以氨基酸104的密码子结束,其中的ApaLI位点包含氨基酸-3和-2的密码子,HindIII位点包含氨基酸103和104的密码子。
表1.用于PCR扩增人免疫球蛋白可变区的寡核苷酸引物。克隆使用的限制酶的识别位点以粗体字显示。引物序列从5’到3’。
 VH1(SEQ ID NO:34) TTT TGC GCG CAC TCC CAG GTG CAGCTG GTG CAG TCT GG
 VH2(SEQ ID NO:144) AATA TGC GCG CAC TCC CAG GTC ACCTTG AAG GAG TCT GG
 VH3(SEQ ID NO:35) TTT TGC GCG CAC TCC GAG GTG CAGCTG GTG GAG TCT GG
 VH4(SEQ ID NO:36) TTT TGC GCG CAC TCC CAG GTG CAGCTG CAG GAG TCG GG
 VH5(SEQ ID NO:145) AATA TGC GCG CAC TCC GAG GTG CAGCTG GTG CAG TCT G
JH1(SEQ ID NO:37) GAC GGT GAC CAG GGT GCC CTG GCCCCA
JH2(SEQ ID NO:38) GAC GGT GAC CAG GGT GCC ACG GCCCCA
JH3(SEQ ID NO:39) GAC GGT GAC CAT TGT CCC TTG GCCCCA
JH4/5(SEQ ID NO:40) GAC GGT GAC CAG GGT TCC CTG GCCCCA
JH6(SEQ ID NO:41) GAC GGT GAC CGT GGT CCC TTG GCCCCA
VK1(SEQ ID NO:42) TTT GTG CAC TCC GAC ATC CAG ATGACC CAG TCT CC
VK2(SEQ ID NO:43) TTT GTG CAC TCC GAT GTT GTG ATGACT CAG TCT CC
VK3(SEQ ID NO:44) TTT GTG CAC TCC GAA ATT GTG TTGACG CAG TCT CC
VK4(SEQ ID NO:45) TTT GTG CAC TCC GAC ATC GTG ATGACC CAG TCT CC
VK5(SEQ ID NO:46) TTT GTG CAC TCC GAA ACG ACA CTCACG CAG TCT CC
VK6(SEQ ID NO:47) TTT GTG CAC TCC GAA ATT GTG CTGACT CAG TCT CC
JK1(SEQ ID NO:48) GAT CTC GAG CTT GGT CCC TTG GCCGAA
JK2(SEQ ID NO:49) GAT CTC GAG CTT GGT CCC CTG GCCAAA
JK3(SEQ ID NO:50) GAT CTC GAG TTT GGT CCC AGG GCCGAA
 JK4(SEQ ID NO:51) GAT CTC GAG CTT GGT CCC TCC GCCGAA
 JK5(SEQ ID NO:52) AAT CTC GAG TCG TGT CCC TTG GCCGAA
 VL1(SEQ ID NO:53) TTT GTG CAC TCC CAG TCT GTG TTGACG CAG CCG CC
 VL2(SEQ ID NO:54) TTT GTG CAC TCC CAG TCT GCC CTGACT CAG CCT GC
 VL3A(SEQ ID NO:55) TTT GTG CAC TCC TCC TAT GTG CTGACT CAG CCA CC
 VL3B(SEQ ID NO:56) TTT GTG CAC TCC TCT TCT GAG CTGACT CAG GAC CC
 VL4(SEQ ID NO:57) TTT GTG CAC TCC CAC GTT ATA CTGACT CAA CCG CC
 VL5(SEQ ID NO:58) TTT GTG CAC TCC CAG GCT GTG CTCACT CAG CCG TC
 VL6(SEQ ID NO:59) TTT GTG CAC TCC AAT TTT ATG CTGACT CAG CCC CA
 VL7(SEQ ID NO:60) TTT GTG CAC TCC CAG GCT GTG GTGACT CAG GAG CC
 JL1(SEQ ID NO:61) GGT AAG CTT GGT CCC AGT TCC GAAGAC
 JL2/3(SEQ ID NO:62) GGT AAG CTT GGT CCC TCC GCC GAA T
表2.用于PCR扩增人免疫球蛋白可变区的寡核苷酸引物。克隆使用的限制酶的识别位点以粗体字显示。引物序列以从5’到3’的方向表示。
 VH1a(SEQ ID NO:63) AATA TGC GCG CAC TCC CAG GTG CAGCTG GTG CAG TCT GG
 VH2a(SEQ ID NO:64) AATA TGC GCG CAC TCC CAG GTC ACCTTG AAG GAG TCT GG
 VH3a(SEQ ID NO:65) AATA TGC GCG CAC TCC GAG GTGCAG CTG GTG GAG TCT GG
 VH4a(SEQ ID NO:66) AATA TGC GCG CAC TCC CAG GTG CAGCTG CAG GAG TCG GG
 VH5a(SEQ ID NO:67) AATA TGC GCG CAC TCC GAG GTGCAG CTG GTG CAG TCT G
 JH1a(SEQ ID NO:68) GA GAC GGT GAC CAG GGT GCC CTGGCC CCA
 JH2a(SEQ ID NO:69) GA GAC GGT GAC CAG GGT GCC ACGGCC CCA
 JH3a(SEQ ID NO:70) GA GAC GGT GAC CAT TGT CCC TTGGCC CCA
 JH4/5a(SEQ ID NO:71) GA GAC GGT GAC CAG GGT TCC CTGGCC CCA
 JH6a(SEQ ID NO:72) GA GAC GGT GAC CGT GGT CCC TTGGCC CCA
 VK1a(SEQ ID NO:73) CAGGA GTG CAC TCC GAC ATC CAGATG ACC CAG TCT CC
 VK2a(SEQ ID NO:74) CAGGA GTG CAC TCC GAT GTT GTGATG ACT CAG TCT CC
 VK3a(SEQ ID NO:75) CAGGA GTG CAC TCC GAA ATT GTGTTG ACG CAG TCT CC
 VK4a(SEQ ID NO:76) CAGGA GTG CAC TCC GAC ATC GTGATG ACC CAG TCT CC
 VK5a(SEQ ID NO:77) CAGGA GTG CAC TCC GAA ACG ACACTC ACG CAG TCT CC
 VK6a(SEQ ID NO:78) CAGGA GTG CAC TCC GAA ATT GTGCTG ACT CAG TCT CC
 JK1a(SEQ ID NO:79) TT GAT CTC GAG CTT GGT CCC TTGGCC GAA
 JK2a(SEQ ID NO:80) TT GAT CTC GAG CTT GGT CCC CTGGCC AAA
 JK3a(SEQ ID NO:81) TT GAT CTC GAG TTT GGT CCC AGGGCC GAA
 JK4a(SEQ ID NO:82) TT GAT CTC GAG CTT GGT CCC TCCGCC GAA
 JK5a(SEQ ID NO:83) TT AAT CTC GAG TCG TGT CCC TTGGCC GAA
 VL1a(SEQ ID NO:84) CAGAT GTG CAC TCC CAG TCT GTGTTG ACG CAG CCG CC
 VL2a(SEQ ID NO:85) CAGAT GTG CAC TCC CAG TCT GCCCTG ACT CAG CCT GC
 VL3Aa(SEQ ID NO:86) CAGAT GTG CAC TCC TCC TAT GTGCTG ACT CAG CCA CC
 VL3Ba(SEQ ID NO:87) CAGAT GTG CAC TCC TCT TCT GAGCTG ACT CAG GAC CC
 VL4a(SEQ ID NO:88) CAGAT GTG CAC TCC CAC GTT ATACTG ACT CAA CCG CC
 VL5a(SEQ ID NO:89) CAGAT GTG CAC TCC CAG GCT GTGCTC ACT CAG CCG TC
 VL6a(SEQ ID NO:90) CAGAT GTG CAC TCC AAT TTT ATGCTG ACT CAG CCC CA
 VL7a(SEQ ID NO:91) CAGAT GTG CAC TCC CAG GCT GTGGTG ACT CAG GAG CC
 JL1a(SEQ ID NO:92) AC GGT AAG CTT GGT CCC AGT TCCGAA GAC
 JL2/3a(SEQ ID NO:93) AC GGT AAG CTT GGT CCC TCC GCCGAA TAC
实施例2
结合特异抗原的人免疫球蛋白的选择策略
如下选择包含编码重组体重链免疫球蛋白亚基多肽的多核苷酸的痘苗病毒表达载体,所述免疫球蛋白亚基多肽与某些未鉴定的轻链组合时能给特定抗原赋予特异性,如图1所示。特异免疫球蛋白重链和轻链的选择分两个阶段完成。首先,利用如实施例1所述构建的pVHE为转移质粒,通过三分子重组(见实施例5),在基于痘病毒的载体中构建来自未免疫或免疫供体的抗体产生细胞的多样化重链文库;在如实施例1所述构建的比如pVKE和pVLE等质粒载体中构建免疫球蛋白轻链的类似文库,其中重组体基因的表达由p7.5痘苗启动子调控。痘病毒构建体中的免疫球蛋白重链恒定区设计成保留跨膜结构域,导致在表面膜上表达免疫球蛋白受体。用感染复数为1(MOI=1)的痘病毒重链文库感染宿主细胞,例如早期B细胞淋巴瘤细胞。2小时后,用轻链质粒文库在允许每个细胞能摄取并表达平均10个或更多单独轻链质粒的条件下转染已被感染的细胞。因为该质粒中重组体基因的表达受到痘苗病毒启动子的调控,故重组体基因产物在感染了痘苗病毒的细胞的胞质内高水平表达,而无需核整合。在这些条件下,单个细胞能表达多种抗体,其中不同轻链与相同重链相组合,在每个被感染细胞中形成特征性的H2L2结构。
2.1直接的抗原诱导性细胞凋亡。用编码重组体重链免疫球蛋白亚基多肽的重组体痘苗病毒感染早期B细胞淋巴瘤宿主细胞,并用所述的编码重组体轻链免疫球蛋白亚基多肽的质粒进行转染。宿主细胞通过诱导自发的生长抑制和细胞程序化死亡而对抗原特异性免疫球蛋白受体的交联产生应答。如图1的概述,允许抗体分子的合成和装配进行12小时或更长,这个过程中特异性抗原呈递在合成颗粒或聚合物上,或者在抗原表达细胞的表面,以便与任何特异性免疫球蛋白受体发生交联,并诱导所选的抗原表达指示细胞的细胞凋亡。对提取自被诱导发生细胞凋亡的细胞的重组体痘苗病毒基因组中富集编码赋予所需特异性的免疫球蛋白重链基因的多核苷酸。
2.2间接的抗原诱导性细胞死亡。如图2A(下栏)和2B(上栏)所示,用构建体转染早期B细胞淋巴瘤宿主细胞,该构建体中细胞凋亡诱导基因的启动子(BAX启动子)驱动外来细胞毒性T细胞表位的表达。宿主细胞在应答抗原特异性免疫球蛋白受体的交联时表达CTL表位,这些交联的细胞在加入特异CTL时将发生水解现象。然后这些稳定转染的宿主细胞被编码重组体重链免疫球蛋白亚基多肽的重组体痘苗病毒感染,并转染编码重组体轻链免疫球蛋白亚基多肽的质粒。如图1所概括的,允许抗体分子的合成和装配进行12小时或更长,这个过程中特异性抗原呈递在合成颗粒或聚合物上,或者在抗原表达细胞的表面,以便使任何特异性免疫球蛋白受体发生交联。加入表位特异性CTL时,那些表面免疫球蛋白分子发生交联的细胞发生水解现象,从而间接诱导细胞死亡。
2.3直接的抗原诱导性细胞死亡。如图2A(上栏)和2B(下栏)所示,用构建体转染早期B细胞淋巴瘤宿主细胞,该构建体中细胞凋亡诱导基因的启动子(BAX启动子)驱动着白喉毒素的细胞毒性A亚基的表达。宿主细胞在应答抗原特异性免疫球蛋白受体的交联时表达毒素亚基,这些交联的细胞将经历细胞死亡。然后这些稳定转染的宿主细胞被编码重组体重链免疫球蛋白亚基多肽的重组体痘苗病毒感染,并转染编码重组体轻链免疫球蛋白亚基多肽的质粒。如图1所概括的,使抗体分子的合成和装配进行12小时或更长,这个过程中特异性抗原呈递在合成颗粒或聚合物上,或者在抗原表达细胞的表面上,以便使任何特异性免疫球蛋白受体发生交联。那些表面免疫球蛋白分子发生交联的细胞迅速并直接经历细胞死亡。
2.4讨论。这些重组体基因的表达被交联的表面Ig受体上调的原因是,两个构建体每个的表达都由这样一种基因的启动子调控,该基因在早期B细胞淋巴瘤细胞中的表达在Ig交联后被自然上调。这可以通过BAX启动子来说明。BAX是前细胞凋亡性基因(proapoptotic gene)的例子,它们通常在这些条件下在早期B细胞淋巴瘤细胞中被上调。其他基因的调控区(启动子)可能表现一样好或更好。通过例如比较早期B细胞淋巴瘤细胞在微阵列上交联膜Ig前后的基因表达谱可以鉴定这类基因。
用构建体转染细胞,使之表达白喉A链(dipA),比只通过Ig交联发生更迅速的细胞凋亡。通过加入某些靶肽的特异细胞毒性T细胞可以诱导更迅速的细胞死亡,所述靶肽与该细胞上表达的天然MHC分子有关,是由其表达受到BAX或类BAX启动子调控的微小基因编码的。此外,将早期B细胞淋巴瘤细胞之外的其他宿主细胞同样地工程化使之表达在表面免疫球蛋白分子发生抗原交联时能直接或间接诱导细胞死亡的基因,所述细胞死亡独立于程序化细胞凋亡,后者发生在抗原交联时的早期B细胞淋巴瘤细胞系内。
在以上选择过程中,可以采用多种基质来呈递抗原和交联特异的膜免疫球蛋白受体。它们包括,但不限于磁珠,包被蛋白质的组织培养板,以及转染了编码目的抗原的基因的细胞。可以转染用于高效表达目的抗原的细胞的例子包括,但不限于L细胞和NIH 3T3细胞。但是,如果运用转染的细胞来表达和呈递重组体抗原,则有必要首先除去表达免疫球蛋白的宿主细胞群中的任何能表达与未转染细胞的膜抗原有反应的抗体的宿主细胞。这种去除可以通过一或多轮吸附到固定在固体基质上的未转染细胞上来实现。然后就有可能利用表达抗原的转染子来正选择表达特异重组体抗体的细胞。在一个优选实施方案中,重复进行交替循环的负和正选择,直到达到预期的富集效果。
在正选择步骤的一个实施例中,使表达抗体的B淋巴细胞瘤细胞粘着在固体基质上,该基质上已经结合了B细胞特异性的抗CD19和/或抗CD20抗体。诱导发生水解现象的粘着指示细胞,以将它们的胞质内容物,包括所有病毒免疫球蛋白重链重组体释放到培养液中。将收获自从培养液中回收的细胞和细胞碎片的重组体病毒进行富集,富集那些编码在与某些还未被鉴定的轻链组合时能赋予对选择抗原的特异性的免疫球蛋白重链的重组体病毒。在新感染了该富集重组体病毒群并随后用同样的编码各种轻链的未经选择的起始质粒群转染的细胞中进行另外几轮抗原驱动的选择,导致进一步富集目的重链。将该选择过程重复几次后,分离到少量重链,这些重链在与某些未鉴定的轻链结合时对特定抗原具备最佳特异性。
为了选择到与先前选择的重链结合时能赋予所需特异性的轻链,通过以MOI=1、用构建在基于痘苗的载体中的轻链重组体文库来感染宿主细胞,随后用先前选择的重链之一的质粒重组体进行转染来重复如上所述的整个选择过程。进行几个循环的上述抗原驱动的选择过程可以分离到该重链的最佳轻链搭档。
在另一个优选实施方案中,利用在膜表面表达特异抗体的细胞的结合特性进行了类似的策略。该策略如图5所阐述的,没有运用对受体交联产生细胞凋亡应答的早期B细胞淋巴瘤作为指示细胞,而是通过结合到偶联了抗原的合成颗粒或聚合物,或者结合到表达特异抗原的转染细胞的表面来选择表达目的免疫球蛋白特异性的宿主细胞。这种情况中,指示细胞是由于其高水平表达膜免疫球蛋白受体的能力,而非对膜免疫球蛋白受体交联产生细胞凋亡应答而被选用的。优选的细胞系包括免疫球蛋白阴性浆细胞瘤。与选择过程的特异性,背景和效率有关的其他问题按照以上的描述处理。
实施例3
从109种免疫球蛋白重链和轻链组合的文库中选择具有特定特异性的抗体。
可选自一个文库的特异抗体的亲和力是该文库大小的函数。通常,文库所代表的重链和轻链组合的数目越大,存在并选择到高亲和力抗体的可能性就越大。采用噬菌体展示法进行的先前工作提示,对于许多抗原来说,一个包含109种免疫球蛋白重链和轻链组合的文库大小足够选择到比较高亲合力的特异性抗体。理论上,有可能构建一个有109个重组体的文库,其中每个重组体表达一种独特的重链和一种独特的轻链,或者具有包含了重链和轻链可变区的组合位点的单链构建体。但是最优选的方法是通过构建105个免疫球蛋白重链和104个免疫球蛋白轻链的两个文库,它们可以共表达出所有109种可能的组合,从而产生这个数目的抗体组合。本实施例中,重链池有更大的多样性,因为经常发现重链比相关的轻链对特异抗原结合位点起到更大的作用。
3.1重链基因。由最小105个免疫球蛋白重链cDNA转移质粒重组体构建滴度约为106的痘苗重组体文库,其中的质粒重组体是通过前面描述的方法(实施例1)由来源于100个骨髓供体池的RNA合成的。如下文所述,必须将该文库扩增至滴度至少为109个重链重组体。一个优选的扩增文库的方法是用有103个痘苗重链重组体的单个池感染大约5×104个BSC1细胞的微培养物。通常经过48小时的感染后,病毒滴度可以扩增1000倍以上。在多个单独集中扩增病毒滴度可以减少由于竞争性亚群生长相对迅速而丢失重组体亚群的危险。
3.2轻链基因。由最小104个免疫球蛋白轻链cDNA转移质粒重组体构建滴度约为105的痘苗重组体文库,其中的质粒重组体是如实施例1所述由来源于骨髓供体池的RNA合成的。为了用于下文描述的重链的多轮选择,必须将该文库扩增至滴度为1010到1011个轻链重组体。一个优选的扩增文库的方法是用有103个痘苗轻链重组体的单个池感染大约5×104个BSC1细胞的100份微培养物。将从这100个被感染培养物中的每一个回收的病毒重组体进一步扩增为滴度大约在108到109个病毒重组体的单独池。为方便起见,将这些轻链池标记为L1到L100。
3.3选择免疫球蛋白重链重组体。对100份107个非产生性骨髓瘤细胞的培养物,优选Sp2/0,或早期B细胞淋巴瘤,优选CH33,以MOI=1用活的痘苗重链重组体进行感染,同时感染MOI=1到10的经补骨脂素(4’-氨甲基三甲沙林)灭活的痘苗轻链重组体(见下文)。为了进行补骨脂素灭活,用10μg/ml的补骨脂素将108到109pfu/ml的无细胞病毒在25℃处理10分钟,然后暴露于长波UV线(365-nm)2分钟(Tsung,K.,J.H.Yim,W.Marti,R.M.L.Buller,和J.A.Norton.J.Virol.70:165-171(1996))。经补骨脂素处理的病毒不能复制,但能表达早期病毒基因,包括处于早期但不是晚期病毒启动子调控下的重组基因。在这些条件下,由经补骨脂素处理的重组体合成的轻链可以与每个感染细胞中表达的单种重链装配成免疫球蛋白分子。
选择以MOI=1还是MOI=10用经补骨脂素灭活的轻链重组体进行感染会影响特定H+L链组合在一个阳性细胞内的相对浓度,即在MOI=1时高,在MOI=10时比较低(因为被多个轻链稀释)。细胞表面上特异免疫球蛋白浓度低,相应地密度下降,会选择出对目的配体亲和力高的抗体。另一方面,预计高浓度的特异受体能促进经免疫球蛋白受体介导的结合或信号传导。
通过实施例2描述的结合或信号传导进行第一轮抗原特异性选择后,从每个培养物中回收重组体病毒的富集群,其滴度在这个初选过程中可能是加入病毒的滴度的1%到10%,取决于非特异性结合或病毒的自发释放的背景水平。为方便起见,将第一轮选择中回收的重链重组体池标记为Hla到Hl00a,所述池获得了分别来自起始轻链重组体池L1到L100的经补骨脂素处理的病毒。
为了在与第一轮相同的条件下进行第二轮选择,还是有必要将回收到的重链重组体的滴度扩增10到100倍。对于第二轮选择,再用活的病毒重链重组体和经补骨脂素处理过的轻链重组体感染非产生性骨髓瘤或早期B细胞淋巴瘤,从而,例如用从池H37a中回收的重链重组体和来自用于选择H37a的起始L37池的经补骨脂素处理的轻链重组体感染107个细胞的相同培养物。为方便起见,将第二轮选择中回收自H37a池的重链重组体标记为H37b等。
第二轮选择后,特异病毒重组体与开始的病毒群体相比通常可能被富集了10倍或以上。这种情况下,不需要在和第一轮或第二轮相同的条件下进行第三轮选择,因为即使是在低10倍的滴度下,特异克隆也可以得到很好体现。因此对于第三轮选择,再用活的病毒重链重组体和来自相同池的经补骨脂素处理过的轻链重组体感染106个非产生性骨髓瘤或早期B细胞淋巴瘤细胞的100份培养物。第5轮选择后,感染细胞的数量可以再减少10倍。
3.4鉴定抗原特异性重链重组体。
(a)每轮选择后,都可以确定特定池(例如H37f)中抗原特异性重链是否富集到10%或以上,这可以通过从该重链集中挑出10个单个病毒pfu检测与原始L37池的轻链相连时的抗原特异性。因为轻链群体包含分布在100个单独集中的104个不同cDNA,每个池平均有大约102个不同轻链。即使所选的重链仅在与可供利用的轻链集中的某一类轻链结合时才能赋予所需抗原特异性,仍有1%感染了所选重链重组体和MOI=1的随机轻链池的细胞能表达所需特异性。如果细胞是用MOI=10的轻链感染的,这个频率可以提高到平均10%。优选的证实特异性的方法是用免疫球蛋白重链和轻链池感染CH33早期B细胞淋巴瘤细胞系,该细胞系已经转染了容易检测的报道分子构建体,例如由BAX或另一个可被膜受体交联激活的CH33基因的启动子所驱动的萤光素。如果选择出来的重链在与该集中的100种或更多轻链中的任何一种相连时能赋予所需的抗原特异性,则用噬斑纯化的重链重组体和相关轻链池感染该转染子后会产生容易检测到的信号。注意这一相同的方法可以用于分析重链,无论它们是通过被感染细胞的免疫球蛋白受体介导的特异结合还是特异信号传导选择的。
(b)鉴定最有前景的抗原特异性重链的替代方法是筛选在所选群体中最有代表性的那些。可以利用插入位点旁侧的载体特异引物通过PCR扩增分离插入片段,并且可以将这些插入片段测序来确定所观察到的序列的频率。但是,这种情况中,仍然需要象下文描述的那样鉴定相关的轻链。
3.5选择免疫球蛋白轻链重组体。一旦分离到抗原特异性重链,可以如3.4(a)所述从用于选择重链的集中分离与该重链结合时能赋予抗原特异性的轻链。或者,也可以从更大的文库中选择在与同一重链结合时能增强亲和力的另一个轻链。为了这个目的,由最少105个免疫球蛋白轻链cDNA转移质粒重组体构建滴度大约为106的痘苗重组体文库,其中转移质粒重组体是通过前面描述的方法(实施例1)合成的。将3.3中描述的程序颠倒,现在用MOI=1的活病毒轻链重组体和选择出来的补骨脂素处理过的单个特异性重链重组体来感染非产生性骨髓瘤或早期B细胞淋巴瘤。为了促进选择到更高亲和力的免疫球蛋白,优选通过用MOI=10的轻链进行感染来稀释每个特异H+L链对的浓度。
3.6在有单个免疫球蛋白轻链存在的情况下选择免疫球蛋白重链重组体。如果已经鉴定到一个侯选轻链,则可以简化对特定抗体特异性有贡献的免疫球蛋白重链的选择过程。在例如先前选择到一个鼠单克隆抗体时就可能如此。可以将鼠轻链可变区移植到人轻链恒定区上来优化与人重链的配对,这个过程以前被其他采用噬菌体展示法的研究人员称为“指导性选择”(Jespers,L.S.,A.Roberts,S.M.Mahler,G.Winter,H.R.和Hoogenboom.Bio/Technology 12:899-903,1994;Figini,M.,L.Obici,D.Mezzanzanica,A.Griffiths,M.I.Colnaghi,G.Winters,和S.Canevari.Cancer Res.58:991-996,1998)。理论上,如果人可变区基因框架区也被移植到鼠轻链可变区序列上,则可以进一步进行这种分子匹配(Rader,C.,D.A.Cheresh,和C.F.Barbas,Proc.Natl.Acad.Sci.USA 95:8910-8915)。选择出来与这个被修饰的抗原特异性轻链配对的任何人重链自身都可以作为从更多样化的集中如3.5所述选择最佳人轻链的基础。
实施例4
从构建在腺病毒,疱疹病毒或逆转录病毒载体中的cDNA文库选择特异性人抗体
4.1疱疹病毒。产生重组感染性单纯疱疹病毒扩增子(HerpesSimplex Virus Amplicons)的无辅助病毒原液的方法已有描述(T.A.Stavropoulos,C.A.Strathdee.1998 J.Virology 72:7137-7143)。利用这种方法,构建在质粒扩增子载体中的人免疫球蛋白重链和/或轻链基因或其片段(包括单链片段)的cDNA文库有可能被包装成感染性扩增子颗粒文库。利用免疫球蛋白重链基因构建的扩增子文库,和利用免疫球蛋白轻链基因构建的另一个扩增子文库可以共感染非产生性骨髓瘤细胞系。通过选择与目的抗原的结合,可以富集能表达具有所需特异性的免疫球蛋白基因组合的骨髓瘤细胞。疱疹病毒扩增子能够在感染细胞内稳定地表达转基因。在第一轮中针对结合性选择到的细胞将保留它们的免疫球蛋白基因组合,并能稳定地表达具有这种特异性的抗体。这使得能重复选择循环直到分离到具有所需特异性的免疫球蛋白基因。还可以尝试导致细胞死亡的选择策略。从那些死亡的被选细胞中回收的扩增子载体不能用于感染新鲜的靶细胞,因为在没有辅助病毒的情况下,这些扩增子是复制缺陷的,不能包装成感染性形式。扩增子载体含有质粒的复制原点和抗生素抗性基因。这使得能通过将从所选细胞中纯化得到的DNA转化到细菌中来回收所选的扩增子载体。用合适的抗生素进行选择就能够分离到已经转化了该扩增子载体的细菌细胞。若对重链和轻链扩增子载体使用不同的抗生素(例如氨苄和卡那霉素)抗性基因,则可以从相同的被选细胞群中分别选择到重链和轻链基因。可以从细菌中提取扩增子质粒DNA,并通过用扩增子DNA和包装缺陷的HSV基因组DNA共转染包装细胞来将其包装成感染性病毒颗粒。然后可以收获感染性扩增子颗粒,用它感染新鲜的靶细胞群进行另一轮选择。
4.2腺病毒。制备重组体腺病毒的方法已有描述(S.Miyake,M.Makimura,Y.Kanegae,S.Harada,Y.Sato,K.Takamori,C.Tokuda,I.Saito.1996 Proc.Natl.Acad.Sci.USA 93:1320-1324;T.C.He,S.Zhou,L.T.Da Costa,J.Yu,K.W.Kinzler,B.Volgelstein.1998 Proc.Natl.Acad.Sci.USA 95:2509-2514)。利用这些方法之一,可以在腺病毒载体中构建cDNA文库。cDNA插入腺病毒的E3或E4区将产生能复制的重组体病毒。该文库可以用于类似的应用,比如通过三分子重组构建痘苗cDNA文库。例如可以将重链cDNA文库插入腺病毒的E3或E4区。这将产生能复制的重链文库。可将轻链cDNA文库插入腺病毒的E1基因,产生复制缺陷文库。通过感染能反式提供腺病毒E1的细胞,比如293细胞,可以扩增该复制缺陷型轻链文库。这两个文库可以用于与已经描述过的使用能复制的痘苗重链文库和经补骨脂素灭活的痘苗轻链文库的类似的选择策略中。
4.3痘苗病毒的优点。痘苗病毒比疱疹病毒或者腺病毒在构建cDNA文库方面有一些优点。首先,痘苗病毒在宿主细胞的胞质内复制,而HSV和腺病毒在核中复制。对于痘苗病毒,cDNA重组转移质粒在胞质内进行重组的频率比HSV或腺病毒转运到核中进行包装/重组的效率高。第二,痘苗病毒能以不依赖序列的方式复制质粒,而腺病毒或疱疹病毒不能(M.Merchlinsky,B.Moss.1988 CancerCells 6:87-93)。cDNA重组体转移质粒在痘苗中复制可能导致产生重组体病毒的频率更高。虽然我们描述了在疱疹病毒或腺病毒载体中构建cDNA文库的可能性,但应当强调还没有报道过利用这些方法在这些病毒载体中构建cDNA文库。
4.4逆转录病毒。在复制缺陷的逆转录病毒载体中构建cDNA文库已有描述(T.Kitamura,M.Onishi,S.Kinoshita,A.Shibuya,A.Miyajima,和G.P.Nolan.1995 PNAS 92:9146-9150;I.Whitehead,H.Kirk,和R.Kay.1995 Molecular and CellularBiology 15:704-710.)。逆转录病毒载体感染靶细胞后发生整合,由于它们能有效地转导靶细胞、并且能够诱导稳定的转基因表达,逆转录病毒载体已被广泛地应用。利用免疫球蛋白重链基因构建的逆转录病毒cDNA文库,和用免疫球蛋白轻链基因构建的另一个逆转录病毒文库可以用于共感染非产生性骨髓瘤细胞系。通过选择与目的抗原的结合,可以对表达具有所需特异性的免疫球蛋白基因组合的骨髓瘤细胞进行富集。第一轮中通过结合选择到的细胞将保留其免疫球蛋白基因组合,并稳定地表达具有该特异性的免疫球蛋白。这使得能重复该选择循环直至分离到具有所需特异性的免疫球蛋白基因。
实施例5
三分子重组
5.1表达文库的制备。本实施例描述了一种三分子重组法,该方法利用修饰过的痘苗病毒载体和相关的转移质粒,产生接近100%的重组体痘苗病毒,并且首次在痘苗病毒中有效地构建了代表性DNA文库。图6阐明了该三分子重组法。
5.2载体的构建。先前描述的痘苗病毒转移质粒pJ/K(衍生自pUC13的质粒)携带含有框内NotI位点的痘苗病毒胸苷激酶基因(Merchlinsky,M.et al.,Virology 190:522-526),将其进一步修饰以带上一个强痘苗病毒启动子,随后是NotI和ApaI限制位点。两个不同载体p7.5/tk和pELJtk分别包括7.5K痘苗病毒启动子或强合成早期/晚期(E/L)启动子(图7)。ApaI位点前面是一个包括ATG密码子的强翻译起始序列。在痘苗病毒胸苷激酶(tk)基因中导入该修饰,使它旁侧为病毒tk基因的调控和编码序列。这两个新质粒载体中tk基因内的修饰通过旁侧tk序列的同源重组被转移到痘苗病毒WR株的基因组衍生的vNotI-载体中,产生新病毒载体v7.5/tk和vEL/tk。重要的是,将这些病毒载体进行NotI和ApaI限制性内切酶消化后,分离两个大的病毒DNA片段,它们各含有痘苗tk基因的单独的非同源区段,而一起则包含装配感染性病毒颗粒所需要的所有基因。实施例1描述了关于这些载体的构建和鉴定的其他细节,以及它们在痘苗病毒中直接连接DNA片段的其它应用。
5.3提高痘苗病毒重组体的频率。在痘苗病毒中制备重组体的常规方法利用了重组体痘苗转移质粒和病毒基因组之间的同源重组。表3显示了一个模型实验的结果,该实验在标准条件下测定重组体转移质粒转染到感染了痘苗病毒的细胞后发生同源重组的频率。为了促进功能检测,在转移质粒tk基因的NotI位点插入编码与H-2Kb连在一起的卵清蛋白免疫显性257-264肽表位的小基因。同源重组的结果是,所有重组体病毒中被打断的tk基因都被野生型tk+基因取代。这可以作为重组的标记,因为感染了tk-病毒的tk-人143B细胞对BrdU的毒性有抗性,与感染了野生型tk+病毒的细胞不同。可以通过在有125mM BrdU的情况下培养的143B细胞上的病毒pfu来给重组体病毒打分。
以这种方式得到的重组体的频率是0.1%数量级(表3)。
表3:通过常规同源重组产生重组体痘苗病毒
病毒* DNA 滴度w/o BrdU 滴度w/BrdU %重组体**
痘苗 ---  4.6×107 3.0×103 0.006
痘苗 30ng pE/Lova  3.7×107 3.2×104 0.086
痘苗 300ng pE/Lova  2.7×107 1.5×104 0.056
*痘苗病毒株vNotI
**%重组体=(有BrdU时的滴度/没有BrdU时的滴度)×100
这样的重组频率太低了,不能有效地在痘苗载体中构建cDNA文库。利用下列两个步骤来产生更高频率的痘苗病毒重组体。
(1)质粒转移载体转染到感染了痘苗病毒的细胞后,通过同源重组产生病毒重组体的频率的一个限制因素是,病毒感染效率很高,而质粒DNA转染相对效率低。结果许多感染细胞没有摄取重组体质粒,因此只能产生野生型病毒。为了减少对重组效率的稀释,将裸病毒DNA和重组体质粒DNA的混合物转染到感染了禽痘病毒(FPV)的哺乳动物细胞中。正如其他研究人员以前描述过的(Scheiflinger,F.等,1992,Proc.Natl.Acad.Sci.USA 89:9977-9981),FPV在哺乳动物细胞内不复制,但能为转染了非感染性裸露痘苗DNA的细胞提供包装成熟痘苗病毒颗粒所必需的辅助功能。仅对同源重组技术的这个修饰就能将病毒重组体的频率提高大约35倍,达到3.5%(表4)。
表4:通过修饰的同源重组产生重组体痘苗病毒。
病毒 DNA 滴度w/o BrdU 滴度w/BrdU %重组体
PFV 0 0 0
痘苗WR 0 0 0
PFV 痘苗WR 8.9×106 2.0×102 0.002
PFV 痘苗WR+pE/Lova(1∶1) 5.3×106 1.2×105 2.264
PFV 痘苗WR+pE/Lova(1∶10) 8.4×105 3.0×104 3.571
*%重组体=(有BrdU时的滴度/没有BrdU时的滴度)×100
表4.用MOI=1.0的禽痘病毒株HP1感染单层铺满BSC1细胞(5×105细胞/孔)。两小时后,吸去上清,用Opti-Mem I培养基将细胞洗两次,经lipofectamine用600ng痘苗株WR基因组DNA单独或者与1∶1或1∶10(痘苗:质粒)摩尔比率的质粒pE/Lova转染。该质粒含有卵清蛋白cDNA的一个编码SIINFEKL表位的片段,已知该表位与小鼠I类MHC分子Kb高亲和力结合。这个小基因的表达受到一个强的合成性早/晚期痘苗启动子调控。该插入片段旁侧是痘苗tk DNA。三天后收获细胞,在干冰异戊醇/37℃水浴中冻/融三轮来提取病毒。通过在人TK-143B细胞上有和没有BrdU时进行噬菌斑检测来测定粗病毒原液的滴度。
(2)通过用重组体质粒和两个大的接近80kb和100kb的痘苗病毒v7.5/tk DNA片段的混合物转染感染了FPV的细胞,使病毒重组体的频率有了另一个明显的提高,其中所述的两个片段是用NotI和ApaI限制性内切酶消化产生的。因为tk基因中已经导入了NotI和ApaI位点,这些大痘苗DNA臂每个都包括tk基因的一个片段。由于这两个tk基因片段之间没有同源性,可以将这两个痘苗臂连接起来的唯一方法是通过重组体转移质粒中插入片段旁侧的同源tk序列来桥接。表5的结果显示,通过被感染的tk-细胞的BrdU抗性确定,三重转染细胞中产生的感染性痘苗病毒99%以上重组了DNA插入片段。
表5:利用三分子重组产生100%重组体痘苗病毒。
病毒 DNA 滴度w/oBrdU 滴度w/BrdU %重组体*
PFV 没有切割的 v7.5/tk 2.5×106 6.0×103 0.24
PFV NotI/Apal v7.5/tk臂 2.0×102 0 0
PFV NotI/Apal v7.5/tk臂+pE/Lova(1∶1) 6.8×104 7.4×104 100
*%重组体=(有BrdU时的滴度/没有BrdU时的滴度)×100
表5.用ApaI和Not I限制性内切酶消化痘苗株V7.5/tk的基因组DNA(1.2微克)。将消化好的DNA分成两份。一份以1∶1(痘苗∶质粒)摩尔比率与pE/Lova混合。该质粒含有卵清蛋白cDNA的一个编码SIINFEKL表位的片段,已知该表位与小鼠I类MHC分子Kb高亲和力结合。这个小基因的表达受到一个强的合成早/晚期痘苗启动子调控。该插入片段旁侧是痘苗tk DNA。用lipofectamine将DNA转染到铺满的单层BSC1细胞中(5×105细胞/孔),该细胞已经先用MOI=1.0的FPV感染了两个小时。一份样品用600ng未处理的基因组V7.5/tk DNA转染。三天后收获细胞,在干冰异戊醇/37℃水浴中冻/融三轮来提取病毒。通过在TK-143B细胞上有和没有BrdU选择时进行噬菌斑检测来测定粗病毒原液的滴度。
5.4在痘苗病毒中构建代表性cDNA文库。在痘苗载体中构建cDNA文库来显示已知细胞mRNA序列被代表性地表达。在p7.5/tk转移质粒和v7.5/tk病毒载体中导入另外的修饰,以便提高感染细胞内重组体表达的效率。所述修饰包括在三个不同读框中导入翻译起始位点,导入翻译和转录终止信号以及用于DNA插入的其他限制位点。
首先,将p7.5/tk的HindIII J片段(痘苗tk基因)从该质粒亚克隆到pBS噬菌粒(Stratagene)的HindIII位点,产生pBS.Vtk。
其次,用SmaI和PstI消化pBS.Vtk,去掉该质粒原来的多克隆位点的一部分,用绿豆核酸酶处理,重新连接,产生pBS.Vtk.MCS-。这个处理过程去掉了pBS.Vtk中的SmaI,BamHI,SalI和PstI单酶切位点。
再次,这里的目的是在pBS.Vtk.MCS-的7.5k启动子的下游导入新的多克隆位点。这个新的多克隆位点是通过利用4个不同上游引物和一个共用下游引物经PCR产生的。这4个PCR产物将不含ATG起始密码子或含有处于三个可能读框中的每一种的ATG起始密码子。此外,每个PCR产物在3’末端含有三种读框的翻译终止密码子,以及痘苗病毒转录双重终止信号。将这4个PCR产物分别连接到pBS.Vtk.MCS-的NotI/ApaI位点,产生4个载体,p7.5/ATGO/tk,p7.5/ATG1/tk,p7.5/ATG2/tk,和p7.5/ATG3/tk,图12显示了它们相对于p7.5/tk的序列修饰。每个载体均包括BamHI,SmaI,PstI和SalI单酶切位点,用于克隆DNA插入片段,它们或者利用自身的内源翻译起始位点(p7.5/ATGO/tk载体中),或者利用处于三种可能读框之一的载体翻译起始位点(p7.5/ATG1/tk,p7.5/ATG3/tk和p7.5/ATG4/tk)。
在一个模型实验中,由鼠肿瘤细胞系(BCA39)的poly-A+mRNA合成cDNA,并连接到四个被修饰的p7.5/tk转移质粒中的每一个内。通过在原核宿主细胞比如大肠杆菌中如文中所述或者本领域已知的其他方法进行传代来扩增转移质粒。将20微克经NotI和ApaI消化的v/tk痘苗病毒DNA臂和四种重组体质粒cDNA文库的等摩尔混合物转染到已感染FPV辅助病毒的BSC-1细胞中进行三分子重组。收获到的病毒总滴度为6×106pfu,其中90%以上是BrdU抗性的。
为了确定重组体痘苗文库中cDNA插入片段的大小分布,用无菌巴斯德移液管挑出单个的分离噬菌斑,转移到含有100ul磷酸盐缓冲液(PBS)的1.5ml试管中。通过在干冰/异戊醇中于37℃冻/融三轮使病毒从细胞中释放出来。大约每个病毒噬菌斑的三分之一用来感染12孔板的一个孔,其中含有在250ul终体积中的tk-人143B细胞。两小时感染期的最后,用1ml含有2.5%胎牛血清的DEME(DEME-2.5)和BudR覆盖每个孔,Brdll的用量足以使终浓度达到125ug/ml。将细胞于37℃在CO2培养箱中保温3天。第3天收获细胞,离心沉淀,重悬于500μl PBS中。如上所述经三轮冻/融循环从细胞中释放病毒。用每份病毒储液的20%感染50mm组织培养皿中铺满的BSC-1单层细胞,终体积为3ml DEME-2.5。2小时感染期的最后,用3ml DMEM-2.5覆盖细胞。将细胞在CO2培养箱中于37C保温3天。第3天收获细胞,离心沉淀,重悬于300μl PBS。如上所述经三轮冻/融循环释放细胞中的病毒。将100μl粗病毒储液转移到1.5ml试管中,加入等体积融化好的2%低熔点琼脂糖,将病毒/琼脂糖混合物转移到脉冲场凝胶样品槽中。琼脂凝固后将它们从样品槽上取下来,切成相等的三份。将全部三份都转移到同一个1.5ml试管中,加入250μl 0.5M EDTA,1% Sarkosyl和0.5mg/ml蛋白酶K。将胶条在溶液中于37℃保温24小时。在500μl 0.5X TBE缓冲液中洗几次,将每个胶块的一部分转移到1%低熔点琼脂糖凝胶的一个孔中。加入胶条后,通过另外添加融化好的1%低熔点琼脂糖将孔密封。然后将凝胶在Bio-Rad脉冲场凝胶电泳装置中于200伏,8秒脉冲时间,在0.5XTBE中电泳16小时。将胶在EB中染色,从胶上切下含有痘苗基因组DNA的琼脂糖部分,转移到1.5ml试管中。用β-琼脂糖酶(Gibco)按照制造商的建议从琼脂糖中纯化痘苗DNA。将纯化好的痘苗DNA重悬于50ul ddH2O。DNA储液各1μl用作聚合酶链式反应(PCR)的模板,PCR使用痘苗TK特异引物MM428和MM430(在插入位点的旁侧)和Klentaq聚合酶(Clontech)按照制造商的推荐在20μl终体积中进行。反应条件包括95℃5分钟的起始变性步骤,然后是30个循环的94℃30秒,55℃30秒,68℃3分钟。PCR反应体系各2.5μl在1%琼脂糖凝胶上进行分离,用EB染色。观察到不同大小的扩增片段。针对PCR中扩增的旁侧载体序列进行校正后,插入片段的大小在300到2500bp之间。
该文库中基因产物的代表性表达是通过显示痘苗文库中特异cDNA重组体的频率与同样的cDNA重组体在标准质粒文库中出现的频率没有区别来建立的。在表6中以IAP序列为例说明了这一点,该序列先前显示在鼠肿瘤中被上调。通过在有BDUR存在的情况下感染143Btk-细胞的微培养物来扩增20个来自痘苗文库的单独的池,其中各平均有800或200个病毒pfu。3天后从每个被感染培养物中提取DNA,用序列特异性引物经PCR检测是否存在以前鉴定的内源逆转录病毒(IAP,intracisternal A particle)序列。对阳性池频率进行的泊松分析表明频率为大约每500个病毒pfu有一个IAP重组体(表6)。类似地,通过转化DH5α细菌将来自质粒文库的20个单独的池扩增,所述池有平均1400或275个细菌cfu。检测来自每个池的质粒DNA看是否存在相同的IAP序列。对阳性池进行的泊松分析显示频率为每450个质粒有一个IAP重组体(表6)。
表6 重组体痘苗文库和常规质粒cDNA文库中的IAP序列的有限稀释分析
  PCR#阳性孔 F0  μ  频率
#PFU/孔 痘苗文库
800  18/20 0.05  2.3  1/350
200  6/20 0.7  0.36  1/560
#PFU/孔 质粒文库
1400  20/20 0  -  -
275  9/20 0.55  0.6  1/450
F0=阴性孔的比例;μ=DNA前体/孔=-lnF0
对α微管蛋白序列在痘苗文库中的展示进行了类似的分析,得到了类似的结果。随机选择的序列在由相同的肿瘤cDNA构建的两个文库中的频率相当,这说明虽然构建痘苗文库比构建质粒文库更复杂,并且当然不象后者那么常规,但同样可代表肿瘤cDNA序列。
讨论
上面描述的三分子重组策略可以产生将近100%的病毒重组体。这比目前通过用质粒转移载体转染感染了痘苗病毒的细胞来制备病毒重组体的方法有了明显提高。后一种方法产生病毒重组体的频率仅有0.1%数量级。三分子重组中病毒重组体的高产率使得第一次能高效地在痘苗病毒衍生载体中构建基因组或cDNA文库。在首批实验中,在用20微克NotI和ApaI消化过的痘苗载体臂的混合物和等摩尔浓度肿瘤细胞cDNA一起转染后,得到滴度为6×106的重组体病毒。这项技术进步创造了分离特异基因组和cDNA克隆的新的、有效的筛选和选择策略。
文中描述的三分子重组法可以用于其他病毒,比如哺乳动物病毒,包括痘苗和疱疹病毒。通常产生两个没有同源性的病毒臂。这两个病毒臂能够连起来的唯一途径是通过转移载体(比如质粒)中插入片段的旁侧同源序列来桥接。当两个病毒臂和转移载体存在于相同细胞时,产生的唯一感染性病毒是转移载体中的DNA插入片段的重组体。
通过本发明的三分子重组法在痘苗和其他哺乳动物病毒中构建的文库具有与文中针对痘苗病毒及其在本发明所述CTL筛选系统中鉴定目的抗原中的用途所述有类似的优点。预计构建在痘苗或其他哺乳动物病毒中的DNA文库在真核细胞内进行更复杂的分析时有类似的优点。这类分析包括,但不限于筛选编码真核细胞受体和配体的DNA。
实施例6
转移质粒的制备
可以通过已知的方法制备用于克隆的转移载体。优选的方法包括用合适的限制性内切酶(例如SmaI,SalI或者BamHI和SalI)在适当的缓冲液中,于适当的温度将1-5微克载体切割至少2小时。经0.8%琼脂糖凝胶通过电泳已消化好的载体来分离线性消化的载体。将线性质粒从胶上切下来,利用公知的方法从琼脂糖上纯化。
连接。利用公知方法将cDNA和消化好的转移载体连接在一起。在一个优选方法中,用T4 DNA连接酶将50-100ng转移载体与不同浓度的cDNA进行连接,使用合适的缓冲液在14℃连接18到24小时。
转化。利用公知的方法将连接反应的样液通过电穿孔转化到大肠杆菌比如DH10B或DH5α中。将转化反应体系铺到含有选择抗生素(氨苄青霉素)的LB琼脂板上,在37℃生长14-18小时。将所有的转化细菌合并到一起,用公知方法分离质粒DNA。
制备根据上面对本发明优选方法的描述中提及的缓冲液对本领域技术人员是显而易见的。
实施例7
将痘苗病毒DNA片段和转移质粒导入组织培养细胞进行三分子重组
如实施例5所述或者通过其他本领域已知的技术在4个转移质粒中构建cDNA或其他文库。采用三分子重组将该cDNA文库导入痘苗病毒。用禽痘病毒HP1于MOI=1-1.5感染铺满的BSC1单层细胞。感染在补充有0.1%牛血清白蛋白的无血清培养基中进行。BSC1细胞可以放在12孔或6孔板,60mm或100mm组织培养板,或25cm2,75cm2,或者150cm2瓶子中。用限制性内切酶ApaI和NotI消化来自v7.5/tk或vEL/tk的纯化DNA。消化完成后,将酶热灭活,用centricon 100柱子将消化好的痘苗臂纯化。然后在消化好的痘苗DNA和转移质粒cDNA文库之间形成转染复合物。优选使用Lipofectamine或Lipofectamine Plus(Life Technologies,Inc.)来形成这些转染复合物。在12孔板中进行的转染通常需要0.5微克消化好的痘苗DNA和10ng到200ng来自文库的质粒DNA。在更大的培养管中进行的转染需要痘苗DNA和转移质粒的量按比例增加。在37℃感染2小时后,除去禽痘病毒,加入痘苗DNA、转移质粒转染复合物。将细胞与转染复合物温育3到5小时,之后去掉转染复合物,换入1ml补充有2.5%胎牛血清的DMEM。将细胞在CO2培养箱中于37℃培养3天。3天后收获细胞,通过三轮干冰/异戊醇/37℃水浴的冻/融释放病毒。
实施例8
感染哺乳动物细胞
本实施例描述了用痘苗DNA和转移质粒转染细胞的其它方法。可以利用例如如下方法,通过将消化好的痘苗DNA和转移质粒转染到宿主细胞中来进行三分子重组:磷酸钙沉淀法(F.L.Graham,A.J.Van derEb(1973)Virology 52:456-467,C.Chen,H.Okayama(1987)Mol.Cell.Biol.7:2745-2752),DEAE-Dextran(D.J.Sussman,G.Milman(1984)Mol.Cell.Biol.4:1641-1643),或电穿孔(T.K.Wong,E.Neumann(1982)Biochem.Biophys.Res.Commun.107:584-587,E.Neumann,M.SchaferRidder,Y.Wang,P.H.Hofschneider(1982)EMBO J.1:841-845).
实施例9
MVA三分子重组载体的构建
为了构建适用于三分子重组的经修饰的痘苗Ankara(MVA)载体,必须在MVA tk基因中插入两个单酶切限制性内切酶位点。完整的MVA基因组序列是已知的(GenBank U94848)。对该序列进行的检索显示限制性内切酶AscI,RsrII,SfiI,和XmaI不切割MVA基因组。我们选择了限制性内切酶AscI和XmaI,因为这两种酶容易买到,并且AscI和XmaI的识别序列大小分别为8bp和6bp。为了将这些位点导入MVA tk基因,要制备一个含有两侧是XmaI和AscI位点的报道基因(大肠杆菌gusA)的构建体。Gus基因可以从pCRII.Gus(M.Merchlinsky,D.Eckert,E.Smith,M.Zauderer.1997Virology 238:444-451)中得到。将该报道基因构建体克隆到转移质粒中,后者含有痘苗tk DNA旁侧序列和控制报道基因的表达的早/晚期7.5k启动子。用Gus特异引物由该构建体PCR扩增Gus基因。Gus有义链5’
ATGTTACGTCCTGTAGAAACC 3’(SEQ ID NO:94),和Gus反义链5’TCATTGTTTGCCTCCCTGCTG 3’(SEQ ID NO:95)。然后用Gus特异引物将该Gus PCR产物做PCR扩增,其中所述引物已被修饰,从而有义引物中包含NotI和XmaI位点,反义引物包含AscI和ApaI位点。这些引物的序列是:
NX-Gus有义5,AAAGCGGCCGCCCCGGGATGTTACGTCC3,(SEQ IDNO:96);和
AA-Gus反义5’AAAGGGCCCGGCGCGCCTCATTGTTTGCC3’(SEQ IDNO:97)。
这个PCR产物用NotI和ApaI消化,克隆到p7.5/tk(M.Merchlinsky,D.Eckert,E.Smith,M.Zauderer.1997 Virology238:444-451)的NotI和ApaI位点。通过常规的同源重组,在许可性QT35或BHK细胞中将7.5k-XmaI-gusA-AscI构建体导入MVA。经Gus底物X-Glu(5-溴-3吲哚-ss-D-葡糖醛酸;Clontech)(M.W.Carroll,B.Moss.1995 Biotechniques 19:352-355)染色来选择重组体噬菌斑。将MVA-Gus克隆(它也含有XmaI和AscI单酶切位点)噬菌斑纯化至均质。在BHK细胞上扩增MVA-Gus的大规模培养物,从纯化的病毒中分离裸DNA。用XmaI和AscI消化后,将MVA-Gus DNA用于三分子重组以便在MVA中构建cDNA表达文库。
MVA在多数哺乳动物细胞内不能完成其生命周期。这种减毒将导致更长时间地高水平表达重组体cDNAs,但不能从被感染细胞中回收到活的MVA。无法从选择的细胞中回收到活的MVA将防碍分离目的功能性cDNA重组体所必须进行的反复选择循环。这个问题的一个解决方法是用能补偿MVA的宿主范围缺陷的辅助病毒去感染已经感染了MVA的细胞。该辅助病毒能提供MVA缺少的完成其生命周期所必需的基因产物。不太可能另外一种宿主范围受限的辅助病毒(比如禽痘病毒)也可补偿MVA的缺陷,因为这些病毒同样在哺乳动物细胞内受到限制。痘苗病毒的野生型株应能补偿MVA。但是这种情况中,产生能复制的痘苗病毒将使得选择和分离重组体MVA克隆的周期复杂化。可以使用条件缺陷的痘苗病毒,该病毒能提供在非许可条件下从哺乳动物细胞中回收活的MVA所需要的辅助功能,但不会产生能复制的病毒。痘苗D4R开放读框(orf)编码尿嘧啶DNA糖基化酶。该酶是痘苗病毒复制所必需的,在感染后早期表达(在DNA复制前),破坏该基因对痘苗是致死的。已经证实,表达痘苗D4R基因的稳定转染的哺乳动物细胞系能够补偿D4R缺陷型痘苗病毒(G.W.Holzer,F.G.Falkner.1997 J.Virology 71:4997-5002)。D4R缺陷型痘苗病毒是一个极佳的能够在哺乳动物细胞内补偿MVA的侯选辅助病毒。
为了构建D4R补偿细胞系,利用引物D4R有义链5’AAAGGATCCATAATGAATTC AGTGACTGTA TCACACG 3’(SEQ ID NO:98)和D4R反义链5’CTTGCGGCCG CTTAATAAATAAACCCTTGA GCCC 3’(SEQ ID NO:99),从痘苗株v7.5/tk中经PCR扩增克隆D4R orf。其中的有义引物已被修饰而包含BamHI位点,反义引物被修饰而包含NotI位点。PCR扩增并用BamHI和NotI消化后,将D4R orf克隆到pIRESHyg(Clontech)的BamHI和NotI位点。这个哺乳动物表达载体含有强CMV立即早期启动子/增强子和ECMV内部核糖体进入位点(IRES)。将D4RIRESHyg构建体转染到BSC1细胞中,用潮霉素选择被转染的克隆。IRES使得能高效地翻译其5’端含有D4R orf、3’段含有潮霉素磷酸转移酶基因的多顺反子mRNA。这将使得高频率的潮霉素抗性克隆具有所需功能(这些克隆表达D4R)。表达D4R的BSC1细胞(BSC1.D4R)能够补偿D4R缺陷型痘苗,使得能产生和繁殖该缺陷株。
为了构建D4R缺陷型痘苗,从痘苗基因组中经PCR扩增D4R orf(痘苗基因组的100732到101388位)以及983bp(5’末端)和610bp(3’末端)的旁侧序列。引物D4R旁侧有义5’ATTGAGCTCTTAATACTTTT GTCGGGTAAC AGAG 3’(SEQ ID NO:100),和D4R旁侧反义5’TTACTCGAGA GTGTCGCAAT TTGGATTTT 3’(SEQ ID NO:101)含有用于克隆的SacI(有义链)和XhoI(反义)位点,会扩增痘苗基因组的99749到101998位。将该PCR产物克隆到pBluescript II KS(Stratagene)的SacI和XhoI位点,产生pBS.D4R.Flank。D4R基因含有起始于657bp orf的核苷酸3的EcoRI单酶切位点,起始于该orf的核苷酸433的PstI单酶切位点。在D4R的EcoRI和PstI位点插入Gus表达盒将去除大部分D4R编码序列。已有人构建了7.5k启动子-Gus表达载体(M.Merchlinsky,D.Eckert,E.Smith,M.Zauderer.1997 Virology 238:444-451)。利用引物7.5 Gus有义5’AAAGAATTCC TTTATTGTCATCGGCCAAA 3’(SEQ ID NO:102)和7.5 Gus反义5’AATCTGCAGTCATTGTTTGC CTCCCTGCTG 3’(SEQ IDNO:103)从这个载体中经PCR分离7.5-Gus表达盒。所述7.5Gus有义引物含有EcoRI位点,7.5Gus反义引物含有PstI位点。PCR扩增后,用EcoRI和PstI消化7.5Gus分子,并插入到pBS.D4R.Flank的EcoRI和PstI位点中,产生pBS.D4R-/7.5Gus+。通过将pBS.D4R-/7.5Gus+构建体转染到感染了v7.5/tk的BSC1.D4R细胞中,经过常规的同源重组可以产生D4R-/Gus+痘苗。通过在BSC1.D4R细胞上进行噬菌斑纯化和用X-Glu染色来分离D4R-/Gus+病毒。这种D4R-病毒可以用于在哺乳动物细胞中补偿和拯救MVA基因组。
在一个相关的实施方案中,可以用其他缺陷型痘病毒,也可以用补骨脂素/UV灭活的野生型痘病毒在哺乳动物细胞中拯救MVA基因组。文中讨论了补骨脂素/UV灭活。
实施例10
D4R三分子重组载体的构建和使用
痘病毒感染对宿主细胞蛋白质和RNA合成有明显的抑制效应。这些对宿主基因表达的影响在某些情况下会干扰对那些对宿主细胞有特定生理效应的特异痘病毒重组体的选择。痘苗病毒的关键早期基因缺陷的某些株显示出对宿主细胞蛋白质合成的抑制效果大大下降。因此在某个早期基因功能缺陷的痘病毒载体中构建重组体cDNA文库有利于依赖某些宿主基因的连续活跃表达来实现其生理效应的某些重组体的选择。破坏关键病毒基因能阻止突变株的繁殖。但是可以通过宿主细胞的反式补偿或能被诱导表达该基因的辅助病毒提供丢失的功能来拯救复制缺陷型痘苗株。
用构建在复制缺陷株中的痘病毒文库感染细胞群能大大减弱感染对宿主细胞信号传导机制、分化途径和转录调控造成的影响。这种策略的另一个重要益处是,在靶转录调控区控制下表达关键基因本身就是一个选择直接或间接导致该转录调控区被激活的重组体病毒的手段。这类例子包括因早期B细胞前体上的表面免疫球蛋白受体交联而激活的基因的启动子;或者编码干细胞分化后被诱导的标记物的基因的启动子。如果这样的启动子驱动关键病毒基因的表达,那么只有那些直接或间接激活该转录调控子的表达的病毒重组体能复制,并被包装成感染性颗粒。该方法有可能产生比基于dipA或CTL靶表位的表达的选择方法低得多的背景,因为未被诱导的细胞不含能复制的痘苗病毒,而能复制的痘苗病毒可能通过非特异性侧效应释放出来。选择出的重组体可以进一步在补偿细胞系中或在有补偿辅助病毒或转染质粒存在的情况下进行扩展。
许多关键早期痘苗基因已有描述。优选采用D4R基因缺陷的痘苗株。痘苗D4R开放读框(orf)编码尿嘧啶DNA糖基化酶。该酶是病毒DNA复制所必需的,破坏该基因对痘苗是致死的(A.K.Millns,M.S.Carpenter,和A.M.Delange.1994 Virology 198:504-513)。有人已经证实,表达痘苗D4R基因的稳定转染哺乳动物细胞系能够补偿D4R缺陷型痘苗病毒(G.W.Holzer,F.G.Falkner.1997 J.Virology 71:4997-5002)。没有D4R补偿的情况下,用D4R缺陷型痘苗进行感染导致对宿主细胞蛋白质合成的抑制大大减少(Holzer和Falkner)。还已显示,插入D4R缺陷型痘苗的tk基因内的外来基因能继续被高水平表达,即使不存在D4R补偿时也如此(M.Himly,M.Pfleiderer,G.Holzer,U.Fischer,E.Hannak,F.G.Falkner,和F.Dorner.1998 Protein Expression andPurification 14:317-326)。因此,复制缺陷的D4R株非常适合用于选择那些依赖某些宿主基因的连续活跃表达来实现其生理作用的病毒重组体。
为了利用该策略从构建于D4R缺陷型痘苗株中的代表性cDNA文库中选择特异重组体,需要以下细胞系和载体:
1.需要表达D4R的补偿细胞系来扩展D4R缺陷型病毒储液。
2.适用于三分子重组的病毒株的D4R基因必须被删除或灭活。
3.必须制备在不同诱导性启动子调控下表达D4R的质粒或病毒构建体,所述启动子包括比如调控BAX或者在CH33 B淋巴瘤细胞上的膜免疫球蛋白受体交联后被诱导的其他基因的表达的启动子;或者在诱导C3H10T1/2祖细胞分化为软骨细胞后表达X型胶原蛋白的启动子。需要这些构建体在相关细胞系内的稳定转染子来拯救特异重组体。或者,可以采用表达相关构建体的辅助病毒在细胞系或初级培养物中进行诱导表达。
10.1 D4R补偿细胞系的构建。如下构建D4R补偿细胞系。首先,利用以下引物经PCR扩增从痘苗株v7.5/tk中克隆D4R orf(痘苗基因组100732到101388位)。
D4R-有义,5’AAAGAATTCA TAATGAATTC AGTGACTGTA TCACACG3’,文中称为SEQ ID NO:104;
和D4R-反义,5’CTTGGATCCT TAATAAATAA ACCCTTGAGC CC 3’,文中称为SEQ ID NO:105。
有义引物被修饰成包含EcoRI位点,反义引物被修饰成包含BamHI位点(均加了下划线表示)。进行标准PCR扩增并用EcoRI和BamHI消化后,将得到的D4R orf克隆到pIRESneo(购自Clontech,Palo Alto,CA)中的EcoRI和BamHI位点中。这个哺乳动物表达载体含有强CMV立即早期启动子/增强子和ECMV内部核糖体进入位点(IRES)。将D4R/IRESneo构建体转染到BSC1细胞中,用G418选择转染克隆。IRES能使5’端含有D4R orf、3’端含有新霉素磷酸转移酶的多顺反子mRNA被高效地翻译。这使得高频率的G418抗性克隆都是有功能的(这些克隆表达D4R)。用D4R基因作为探针经Northern印迹检测转染克隆,以便鉴定高水平表达D4R mRNA的克隆。表达D4R的BSC1细胞(BSC1.D4R)能补偿D4R缺陷型痘苗,使得能产生和繁殖D4R缺陷型病毒。
10.2.D4R缺陷型痘苗载体的构建。按下述构建适于如前面实施例5所述进行三分子重组的D4R缺陷型痘苗病毒:将大肠杆菌GusA表达盒插入300bp缺失片段从而打断D4R orf(痘苗基因组的100732到101388位)。
为了插入GusA基因,如下从痘苗病毒扩增插入位点的旁侧区域。左边的旁侧区用以下引物扩增:
D4R左侧有义:5’AATAAGCTTT ACTCCAGATA ATATGGA 3’;文中称为SEQ ID NO:106;
D4R左侧反义:5’AATCTGCAGC CCAGTTCCATTTT 3’,文中称为SEQ ID NO:107。
这些引物扩增了从痘苗基因组100167位延伸到100960位的一个区域,它们已被修饰从而包括用于克隆的HindIII(有义)和PstI(反义)位点(均加下划线表示)。用HindIII和PstI消化得到的PCR产物,克隆到pBS(购自Stratagene)的HindIII和PstI位点,产生pBS.D4R.LF。用以下引物扩增右边的旁侧区域:D4R右侧有义:5’AATGGATCCT CATCCAGCGG CTA 3’,文中称为SEQ ID NO:108;D4R右侧反义:5’AATGAGCTCT AGTACCTACA ACCCGAA 3’,文中称为SEQ IDNO:109。
这些引物扩增到一个从痘苗基因组101271延伸到101975位的区域,它们已被修饰从而包括用于克隆的BamHI(有义)和SacI(反义)位点(均有下划线表示)。用BamHI和SacI消化得到的PCR产物,克隆到pBS.D4R.LF的BamHI和Sac I位点,得到pBS.D4R.LF/RF。
通过以下方法,将包含与痘病毒合成早/晚期(E/L)启动子可操纵地连在一起的GusA编码区的表达盒插pBS.D4R.LF/RF。所述E/L启动子-Gus盒来源于pEL/tk-Gus购建体,在Merchlinsky,M.等,Virology 238:444-451(1997)中有描述。用NotI消化pEL/tk-Gus,然后用Klenow片段进行填平,以去掉Gus ATG起始密码子上游紧邻的NotI位点,重新自身连接产生pEL/tk Gus(NotI-)。用以下引物从pEL/tk-Gus(NotI-)中经标准PCR分离E/L-Gus表达盒:
EL-Gus有义:5’AAAGTCGACG GCCAAAAATT GAAATTTT 3’,文中称为SEQ ID NO:110,和
EL-Gus反义:5’AATGGATCCT CATTGTTTGC CTCCC 3’,文中称为SEQ ID NO:111。
EL-Gus有义引物含有一个SalI位点,EL-Gus反义引物含有一个BamHI位点(均加有下划线)。PCR扩增后,EL-Gus盒用SalI和BamHI消化,插入pBS.D4R.LF/RF的SalI和BamHI位点,产生pBS.D4R-/ELGus。这个转移质粒含有两侧是D4R序列的EL-Gus表达盒。还在D4R orf中产生了一个300bp的缺失。
将pBS.D4R-/EL Gus构建体转染到感染了v7.5/tk-的BSC1.D4R细胞中后,经常规同源重组制备适用于三分子重组的D4R-/Gus+痘苗病毒。通过在BSC1.D4R细胞上进行噬斑纯化并用X-Glu染色来分离D4R-/Gus+病毒(M.W.Carroll,B.Moss.1995.Biotechniques19:352-355)。这个新病毒株命名为v7.5/tk/Gus/D4R。
用纯化自v7.5/tk/Gus/D4R的DNA按照实施例5描述的方法通过三分子重组来构建代表性痘苗cDNA文库,但反应是在BSC1.D4R补偿细胞系中进行。
10.3.制备表达受诱导型启动子调控的D4R的宿主细胞。如下制备诱导型启动子被诱导时表达D4R基因的宿主细胞。制备能表达在诱导型启动子调控下痘苗D4R基因的质粒构建体。诱导型启动子的例子包括,但不限于CH33细胞上的膜免疫球蛋白发生交联时被上调的启动子(用于抗体选择),例如实施例2和3中描述的BAX启动子。用上面10.1部分描述的引物D4R有义和D4R反义经PCR扩增痘苗D4Rorf。根据需要将这些PCR引物修饰,使它们包含所需的限制性内切酶位点。然后采用本领域普通技术人员已知的方法将D4R orf克隆到合适的真核表达载体(使得能选择稳定转化细胞)中,与所需的任何启动子可操纵地连接在-起。
然后将该构建体转染到合适的宿主细胞中,例如实施例2和3描述的用于选择抗体的那些细胞。可操纵地连接了BAX启动子的D4R基因被稳定地转染到合适的细胞系中,例如CH33细胞系,CH31细胞系或者WEHI-231细胞系。得到的宿主细胞基本上按照实施例3描述的那样利用构建在v7.5/tk/Gus/D4R中的文库用于生产抗体。宿主细胞表面上膜表达免疫球蛋白分子的抗原诱导的交联导致交联细胞中D4R基因产物的表达受到诱导。D4R的表达补偿了v7.5/tk/Gus/D4R基因组(用于在其中制备文库)的缺陷,从而产生感染性病毒颗粒。
实施例11
DNA合成的可逆抑制剂对痘病毒介导的宿主抑制的减毒
如前文讨论的,有时需要减毒或缺陷型病毒来减少致细胞病变效应。病毒感染过程中的致细胞病变效应可能干扰利用宿主细胞死亡(例如交联诱导的细胞凋亡)来对免疫球蛋白分子进行的选择和鉴定。这类效应可以用DNA合成的可逆抑制剂比如羟脲(HU)(Pogo,B.G.和S.Dales Virology,1971.43(1):144-51)来削弱。HU通过夺取复制复合体中的脱氧核苷酸前体来抑制细胞和病毒的DNA合成(Hendricks,S.P.和C.K.Mathews J Biol Chem,1998.273(45):29519-23)。病毒DNA复制被抑制将阻断晚期病毒RNA转录,但允许早期痘苗启动子调控下的转录和翻译(Nagaya,A.,B.G.Pogo,和S.Dales Virology,1970.40(4):1039-51)。因此用DNA合成的可逆抑制剂(比如HU)进行处理可以检测交联的效应。适当地温育后,通过洗涤宿主细胞可以解除HU抑制,从而病毒复制循环得以继续,进而回收到感染性重组体(Pogo,B.G.和S.DalesVirology,1971.43(1):144-51)。
图9中的结果显示,用BMP-2(骨骼形态发生蛋白-2)处理过的C3H10T 1/2祖先细胞中X型胶原蛋白(它是软骨细胞分化的标志)合成的诱导被痘苗感染所阻断,但HU介导的对病毒DNA合成的抑制能拯救该蛋白的合成。当用新鲜培养基清洗培养物来除去HU时,病毒DNA合成和感染颗粒的装配进行得非常迅速,洗涤后2小时即可分离感染性病毒颗粒。
用MOI=1的WR痘苗病毒感染C3H10T 1/2细胞,1小时后在有或没有2mM HU的情况下加入培养基或400ng/ml的BMP-2。在37℃再培养21小时后,用新鲜培养基清洗来除去HU。令感染周期继续2小时,以便起始病毒DNA复制和感染颗粒的装配。第24小时,从保持在4种不同培养条件下的细胞中提取RNA。用X型胶原蛋白特异探针进行Northern分析。未被诱导的C3H10T1/2细胞具有间充质祖先细胞表型,并且不表达X型胶原蛋白(左起第一栏)。向正常的未被感染的C3H10T 1/2细胞加入BMP-2能诱导其分化为成熟的软骨细胞,并表达X型胶原蛋白(比较左起第一和第二栏),而给感染痘苗的C3H10T 1/2细胞加入BMP-2不能诱导合成X型胶原蛋白(左边第三栏)。在有2mM HU存在的情况下,BMP-2甚至在感染了痘苗病毒的C3H10T 1/2细胞中也能诱导合成X型胶原蛋白(左边第四栏)。
这个削弱病毒致细胞病变效应的策略可以用于其他病毒,其他细胞类型,并且可以用于选择例如交联时诱导细胞凋亡的免疫球蛋白分子。
实施例12
多种特异性的人Fab片段文库的构建
如下制备编码完全人的多样化免疫球蛋白Fab片段的多核苷酸文库。这些Fab片段包含与第一恒定区结构域(VH-CH1)连在一起的重链可变区,并与免疫球蛋白轻链配对。经PCR扩增人VH(重链可变区),VK(κ轻链可变区)和VL(λ轻链可变区)的基因。对于这三个可变区基因家族的每一个,构建重组体质粒文库和痘苗病毒文库二者。将可变区基因插入基于p7.5/tk的转移/表达质粒中紧接恒定区序列的上游,所述恒定区序列对应重链的CH1结构域或κ轻链恒定区CK。应用这些质粒通过三分子重组来产生相应的痘苗病毒重组体,也可以将1个免疫球蛋白链或其片段转染到感染了第二免疫球蛋白链或其片段的痘苗病毒重组体的细胞之后,用这些质粒直接高水平表达Fab片段。这两个链被合成并装配形成Fab片段。正如本领域普通技术人员能够理解的,通过接上信号序列、跨膜结构域和/或胞内结构域的编码序列,这些Fab片段可以是膜结合或者分泌型的。
12.1 pVHEc。如下构建编码包含Cμ的VH和CH1结构域的人重链片段的表达载体,称为pVHEc。按照前面实施例1.1的描述制备质粒p7.5/tk2。由按照实施例1所述分离的IgM重链基因扩增编码VH的氨基酸109-113和CH1结构域(即Cμ的氨基酸109-223B)的DNA构建体,经PCR修饰使其在编码氨基酸109-113+CμCH1结构域的区域5’端包含一个BstEII位点,在3’端包含一个终止密码子和一个SalI位点。将该DNA插入p7.5/tk2中BstEII和SalI之间,产生pVHEc。将利用表1和2所列的引物,按照实施例1.4(a)所述制备的重链可变区(VH)PCR产物(氨基酸(-4)到(110))克隆到BssHII和BstEII位点。因为CH1结构域序列和所选的限制酶位点存在重叠,这将导致构建了缺乏功能性信号肽、但处于正确翻译读框的连续重链片段。
12.2 pVKEc和pVLEc。如下构建编码人κ和λ免疫球蛋白轻链恒定区的表达载体,命名为pVKEc和pVLEc。如前面实施例1.3所述制备质粒p7.5/tk3.1。
(a)通过以下方法将质粒p7.5/tk3.1转化为pVKEc。用引物按照实施例1的描述分离编码Cκ区域的cDNA,使其在编码氨基酸104-107+Cκ的区域的5’端包含一个XhoI位点,3’端包含一个终止密码子和一个SalI位点,然后克隆到p7.5/tk3.1的XhoI和SalI位点,产生pVKEc。然后将利用表1和2所列的引物、按照实施例1.4(b)所述制备的κ轻链可变区(VK)PCR产物(氨基酸(-3)到(105))克隆到pVKEc的ApaLI和XhoI位点。由于κ轻链序列和所选的限制酶位点之间存在重叠,这导致构建了一个缺少功能性信号肽、但处于正确的翻译读框的连续κ轻链。
(b)通过以下方法将质粒p7.5/tk3.1转化为pVLEc。用引物按照实施例1的描述分离编码Cκ区域的cDNA,使其在编码Vλ的氨基酸105-107区域的5’端包含一个HindIII位点,在3’端包含一个终止密码子和一个SalI位点,然后克隆到p7.5/tk3的HindIII和SalI位点,产生pVLEc。然后将利用表1和2所列的引物、按照实施例1.4(c)所述制备的λ轻链可变区(VL)PCR产物(氨基酸(-3)到(104))克隆到pVLEc的ApaLI和HindIII位点。由于λ轻链序列和所选的限制酶位点之间存在重叠,这导致构建了一个缺少功能性信号肽、但处于正确的翻译读框的连续λ轻链。
12.3分泌或膜结合形式的Fab。表达载体(pVHEc,pVKEc和pVLEc)可以作为原型载体,其中克隆上分泌信号、跨膜结构域、胞质结构域或者它们的组合就可以将Fab定位到细胞表面或胞外空间。这些信号和结构域(表7列出了它们的例子)可以插入Fab的N末端处于pVHEc的NcoI和BssHE之间(或者pVKEc和pVLEc的NcoI和ApaLI之间)和/或C末端的SalI位点。为了将Fab靶向分泌到胞外区室,在Fab链,VH-CH1或轻链之一或两者的N末端插上一个信号肽。为了将Fab锚定在质膜上进行胞外递呈,给VH-CH1链和/或轻链的羧基端添加一个跨膜结构域。还可以加上胞质结构域。
                         表7.定位信号
  信号序列     末端     位置     蛋白质
  MGWSCIILFLVATATGAHS(SEQ ID NO:146)     N     ES     IgG1
  NLWTTASTFIVLFLLSLFYSTTVTLF(SEQ ID NO:147)     C/N     PM     IgM
位置下的项目的缩写:ES,胞外周质;PM,质膜。
实施例13
人单链-Fv(ScFv)抗体文库的构建
13.1如图10所示,通过以下方法构建人scFv表达载体p7.5/tk3.2和p7.5/tk3.3。按照前面实施例1.3的描述制备质粒p7.5/tk3。通过将NcoI和ApaLI之间的4个核苷酸ATAC换成ATAGC,将质粒p7.5/tk3转化为p7.5/tk3.1,这样NcoI中的起始密码子ATG在没有插入的信号肽时与ApaLI读框相符。通过用具有序列5’-GCGGCCGCCC ATGGATAGCG TGCACTTGAC TCGAGAAGCT TAGTAGTCGAC-3’(文中称为SEQ ID NO:112)的盒代替实施例1.3中描述的NotI-to-SaII盒(SEQ ID NO:29)可以很方便地实现转化。
通过用以下序列盒:XhoI-(编码Vκ的氨基酸106-107的核苷酸)-(编码10氨基酸接头的核苷酸)-G-BssHII-ATGC-BstEII-(编码VH的氨基酸111-113的核苷酸)-终止密码子-SalI来替代XhoI和SalI之间的区域(即SEQ ID NO:12的核苷酸30到51,文中称为SEQ ID NO:113),将质粒p7.5/tk3.1转化为p7.5/tk3.2。这是通过用XhoI和SalI消化p7.5/tk3.1,并插入一个序列为5’CTCGAGAT CAAAGAGGGT AAATCTTCCG GATCTGGTTC CGAAGGCGCGCATGCGGTCA CCGTCTCCTC ATGAGTCGAC 3’的盒(文中称为SEQ ID NO:114)实现的。Vκ和VH之间的接头最终大小为14个氨基酸,其中最后的4个氨基酸来自如下插入的VH PCR产物。接头的序列是5’GAGGGT AAA TCT TCC GGA TCT GGT TCC GAA GGC GCG CAC TCC 3’(SEQID NO:115),其编码氨基酸EGKSSGSGSEGAHS(SEQ ID NO:116)。
通过用以下序列盒:HindIII-(编码Vλ的氨基酸105-107的核苷酸)-(编码10氨基酸接头的核苷酸)-G-BssHII-ATGC-BstEII-(编码VH的氨基酸111-113的核苷酸)-终止密码子-SalI来替代HindIII和SalI之间的区域(即SEQ ID NO:112的核苷酸36到51)(文中称为SEQ ID NO:117),将质粒p7.5/tk3.1转化为p7.5/tk3.3。这是通过用HindIII和SalI消化p7.5/tk3.1,并插入一个序列为5’AAGCTTACCG TCCTAGAGGG TAAATCTTCC GGATCTGGTTCCGAAGGCGCG CATGCGGTCA CCGTCTCCTC ATGAGTCGAC 3’的盒(文中称为SEQ ID NO:118)实现的。Vλ和VH之间的接头最终大小为14个氨基酸,其中最后的4个氨基酸来自如下插入的VH PCR产物。接头的序列是5’GAG GGT AAA TCT TCC GGA TCT GGT TCC GAA GGC GCGCAC TCC 3’(SEQ ID NO:119),其编码氨基酸EGKSSGSGSEGAHS(SEQ ID NO:120)。
13.2 scFv的胞质形式。如下构建编码包含人κ或λ免疫球蛋白轻链可变区、并与人重链可变区融合在一起的scFv多肽的表达载体。
(a)如下构建胞质VκVH scFv表达产物。将利用表1和2列出的引物,按照实施例1.4(b)的描述制备的κ轻链可变区(Vκ)PCR产物(氨基酸(-3)到(105))克隆到p7.5/tk3.2中的ApaLI和XhoI位点之间。因为κ轻链序列和所选的限制酶位点存在重叠,这导致构建出与下游接头翻译读框相同的连续κ轻链。将利用表1和2列出的引物,按照实施例1.4(a)的描述制备的重链可变区(VH)PCR产物(氨基酸(-4)到(110))克隆到p7.5/tk3.2的BssHII和BstEII位点之间,形成一个完整的scFv开放读框。得到的产物是通过14氨基酸接头连接的胞质形式的Vκ-VH融合蛋白。ScFv前面还有位于氨基端的由限制位点编码的6个附加的氨基酸和部分Vκ信号肽。
(b)如下构建胞质VλVH scFv表达产物。将利用表1和2列出的引物,按照实施例1.4(c)的描述制备的λ轻链可变区(VL)PCR产物(氨基酸(-3)到(104))克隆到p7.5/tk3.3中的ApaLI和HindIII位点之间。因为λ轻链序列和所选的限制酶位点存在重叠,这导致构建出与下游接头翻译读框相同的连续λ轻链。将利用表1和2列出的引物,按照实施例1.4(a)的描述制备的重链可变区(VH)PCR产物(氨基酸(-4)到(110))克隆到p7.5/tk3.3的BssHII和BstEII位点之间,形成一个完整的scFv开放读框。得到的产物是通过14氨基酸接头连接的胞质形式的Vλ-VH融合蛋白。ScFv前面还有位于氨基端的由限制位点编码的6个附加的氨基酸和部分Vλ信号肽。
13.3分泌或膜结合形式的scFv。13.2部分描述的胞质scFv表达载体可以作为原型载体,其中克隆入分泌信号、跨膜结构域、胞质结构域或者它们的组合后就可以将scFv定位到细胞表面或胞外空间。表7列出了信号肽和膜锚定结构域的例子。为了将scFv多肽分泌到胞外空间,将一个编码符合读框的分泌信号肽的盒子插入p7.5/tk3.2或p7.5/tk3.3的NcoI和ApaLI位点之间,使它表达在scFv多肽的N末端。为了产生用于基于Ig-交联或Ig-结合的选择的膜结合型scFv,除了信号肽,还将编码膜结合形式的Cμ的盒子克隆到scFv的C末端BstEII和SalI位点之间,处于编码VH氨基酸111-113的核苷酸下游并与之读框相符。还可以加上一个胞质结构域。
实施例14
骆驼化的人单链抗体文库的构建
Camelid物种只用重链形成被称为重链抗体的抗体。痘病毒表达系统可以用于产生分泌型或膜结合的人单结构域文库,其中的人VH结构域被“骆驼化”了,即被改变成与camelid抗体的VHH结构域相同,然后可以根据功能检测或Ig-交联/结合进行选择。通过常规突变方法可以将人VH基因骆驼化,使它更接近camelidVHH基因。例如,通过用E取代G44,R取代L45,以及G或I取代W47,可以将利用选自表1和2的合适引物对、按照实施例1.4的描述制备的人VH3基因骆驼化。参见例如Riechmann,L.,和Muyldermans,S.J.Immunol.Meth.231:25-38。为了产生分泌型单结构域抗体文库,将编码骆驼化的人VH基因的盒子克隆到实施例1.2中制备的pVHEs的BssHII和BstEII位点,并读框相符地表达。为了产生膜结合的单结构域抗体文库,将编码骆驼化的人VH基因的盒子克隆到如实施例1.1所述制备的pVHE的BssHII和BstEIl位点,并读框相符地表达。载体pVHE和pVHEs已有克隆在NcoI和BssHII位点间的信号肽。对骆驼化的人VH基因中三个CDR区的氨基酸残基进行广泛的随机化,然后在痘病毒中如文中所述对所得文库进行选择。
实施例15
选择免疫效应子功能增强的Fc被修饰的抗体
人单克隆抗体正被用于医疗应用来治疗越来越多的人类疾病。人抗体可能通过特异细胞受体诱导或阻断信号传导。在某些应用中,人抗体可能通过抗体分子的Fc部分与这些效应细胞上的匹配Fc受体(FcR)之间的相互作用,激活许多辅助效应细胞。因此鉴定那些能增强或抑制FcR介导的结合和信号传导或者免疫效应子功能的其他介质(比如补体系统的成分)的结合和激活的免疫球蛋白重链恒定区序列的修饰很有趣。参见例如美国专利5,624,821;Xu,D.等,CellImmunol 200:16-26(2000);和美国专利6,194,551,这些文献全文引入此处作为参考。
一个这样的特异效应子功能是抗体依赖性细胞细胞毒性(ADCC),该过程中包被抗体的靶细胞被NK细胞或其他单核细胞破坏。ADCC是由这样的抗体分子介导的,该分子具有编码针对靶细胞表面分子有特异性的可变区,和编码针对NK细胞上的FcγRIII有特异性的恒定区。通过晶体结构分析和定点突变,已经确定了人IgG1上的FcγRIII结合位点主要位于下铰链,即IgG1的大约氨基酸247-252,以及邻近的CH2区域。参见例如Sarmay G.等,Mol Immunol 29:633-639(1992);和Michaelsen,T.E.等,Mol Immunol 29:319-26(1992)。通过在可选择的哺乳动物表达载体中构建编码具有随机突变的下铰链区的抗体分子的基因文库,就有可能选择到具有增强的ADCC功能的特异恒定区变体。为了简化这种策略的实施,构建一个具有赋予目的特异性的确定免疫球蛋白可变区序列的文库。
15.1.pVHE-X和pVKE-X或pVLE-X的构建。如下构建质粒pVHE-X(具有确定可变区的  VH表达载体,文中称为X)。图11阐述了构建过程。通过常规方法分离,或者利用痘病毒载体通过文中描述的方法在真核细胞内制备并选择具有特定特异性X的抗体。如果有必要,将抗体的VH基因亚克隆到如实施例1.1所述制备的pVHE中的BssHa/BstEII位点之间,产生质粒pVHE-X。同样如果需要,可以将抗体的VK或VL基因分别亚克隆到如实施例1.3所述制备的pVKE的ApaLI/XhoI位点,产生pVKE-X,或者亚克隆到如实施例1.3所述制备的pVLE的ApaLI/HindIII位点,产生pVLE-X。
15.2人Cγ1盒子的分离。使用以下引物,用SMARTTM RACEcDNA扩增试剂盒从骨髓RNA中分离编码人Cγ1重链的cDNA:
huCγ1-5B:5’ATTAGGATCC GGTCACCGTC TCCTCAGCC3’(SEQ IDNO:121)
huCγ1-3S:5’ATTAGTCGACTCATTTACCC GGAGACAGGG AGAG3’(SEQID NO:122).
PCR产物包含以下元件:BamHI-BstEII-(编码VH的氨基酸111-113的核苷酸)-(编码Cγ1的氨基酸114-478的核苷酸)-TGA-SalI。将这个产物亚克隆到pBluescriptII/KS的BamHI和SalI位点,通过定点突变去掉对应着Cγ1的CH1结构域中氨基酸191和192的第二个BstEII位点,不改变氨基酸序列。
15.3 Fcγ1文库的构建。通过以下方法经重叠PCR制备Cγ1变体。将如15.2部分所述制备的BstEII-突变的Cγ1盒子作为第一轮PCR的模板,扩增用Cγ1-有义/Cγ1-内部-R和Cγ1-内部-S/Cγ1-反向引物组在两个单独的反应中进行。
Cγ1-有义:5’AATATGGTCACCGTCTCCTCAGCC3’(SEQ ID NO:123)
Cγ1-内部-R:5’(MNN)6TTCAGGTGCTGGGCACGG3’(SEQ ID NO:124)
Cγ1-内部-S:5’(NNK)6GTCTTCCTCTTCCCCCCA3’(SEQ ID NO:125)
Cγ1-反向:5’AATATGTCGACTCATTTACCCGG3’(SEQ ID NO:126)
(M=A+C,K=G+T,N=A+T+G+C)
Cγ1-内部-R和Cγ1-内部-S引物具有编码6氨基酸的变体的简并序列尾部,所述6氨基酸包含下铰链的残基247-252。在第二轮PCR中,用Cγ1有义和Cγ1反向引物经重叠PCR将第一轮的纯化产物融合在一起。
得到的产物体积约为1000bp,在氨基酸247-252的每个位置随机编码所有的20种氨基酸。用BstEII和SalI消化PCR产物,并克隆到BstEII/SaII消化好的pVHE-X(如15.1部分所述制备)中,产生pVHE-X-γ1变体文库。然后如实施例5的描述利用三分子重组将这些变体导入痘苗病毒。联合携带轻链的重组体痘苗病毒,该Fcγ1文库将可用于选择那些赋予VHE-X-γ1表达抗体以增强的ADCC活性的Fc变体。
15.4其他应用。除了产生氨基酸247-252的变体,其他残基比如IgG1的氨基酸278-282和氨基酸346-351也参与和FcγRIII的结合。鉴定到显示出增强的ADCC活性的发生在氨基酸247-252的Fcγ1变体后,可以采用同样的策略来鉴定其他两个区域内的那些显示出协同增强ADCC功能的其他突变。
同样的原理/技术可以用于鉴定这样一些变体,它们赋予结合不同Fc受体的其他免疫球蛋白重链恒定区同种型以增强的效应子功能。优选实施方案中,目标受体包括FcγRI(CD64),FcγRII-A(CD32),FcγRII-B1,FcγRII-B2,FcγRIII(CD16),和FcεRI。在其他优选实施方案中,可以选择能增强补体成分与Fc区域的结合或者Fc介导的与胎盘膜的结合以便经胎盘转运的变体。
实施例16
构建重链融合蛋白来协助选择感染了特异免疫球蛋白基因重组体痘苗病毒的细胞
16.1 CH1-Fas的构建。通过以下方法构建编码融合蛋白的表达载体,该融合蛋白包含Cμ的人重链CH1结构域,以及与之融合的Fas的跨膜和死亡结构域,文中命名为CH1-Fas。图13(a)图示了该融合蛋白。
用BstEII和SalI消化如实施例1.1所述制备的质粒pVHE,凝胶纯化大约1.4kb的小DNA片段。然后将这个小片段作为PCR反应的模板,所用引物为正向引物CH1(F)-5’ACACGGTCAC CGTCTCCTCAGGGAGTGC 3’(SEQ ID NO:127)和反向引物CH1(R)5’AGTTAGATCTGGATCCTGGA AGAGGCACGT T 3’(SEQ ID NO:128)。对得到的大约320碱基对的PCR产物进行凝胶纯化。
用正向引物FAS(F)5’AACGTGCCTC TTCCAGGATC CAGATCTAAC 3’(SEQ ID NO:129)和反向引物FAS(R)5’ACGCGTCGAC CTAGACCAAGCTTTGGATTT CAT 3’(SEQ ID NO:130)从质粒pBS-AP014.2扩增包含Fas的跨膜和死亡结构域的DNA片段。得到的大约504碱基对的PCR产物经凝胶纯化。
然后将得到的320和504碱基对的片段合并在一个PCR反应中,利用正向引物CH1(F)和反向引物FAS(R)制备大约824个碱基对的融合片段。用BstEII和SalI消化该片段,得到的810个碱基对的片段经凝胶纯化。质粒pVHE也用BstEII和SalI消化,得到的大约5.7kb的大片段经凝胶纯化。然后将这两个BstEII/SalI片段连接产生CH1-Fas。
16.2 CH4-Fas的构建。通过以下方法构建编码融合蛋白的表达载体,该融合蛋白包含Cμ的人重链CH1-CH4结构域,以及与之融合的Fas的跨膜和死亡结构域,文中命名为CH4-Fas。图13(b)图示了该融合蛋白。
用BstEII和SalI消化如实施例1.1所述制备的质粒pVHE,凝胶纯化大约1.4kb的小DNA片段。然后将这个小片段作为PCR反应的模板,所用引物为正向引物CH4(F)5’CTCTCCCGCG GACGTCTTCG T 3’(SEQ ID NO:131)和反向引物CH4(R)5’AGTTAGATCT GGATCCCTCAAAGCCCTCCT C 3’(SEQ ID NO:132)。得到的大约268碱基对的PCR产物经凝胶纯化。
用正向引物FAS(F2)5’GAGGAGGGCT TTGAGGGATC CAGATCTAAC3’(SEQ ID NO:133)和16.1部分中的反向引物FAS(R),从质粒pBS-AP014.2扩增包含Fas的跨膜和死亡结构域的DNA片段。得到的大约504碱基对的PCR产物经凝胶纯化。
然后将得到的268和504碱基对的片段合并在一个PCR反应中,利用正向引物CH4(F)和反向引物FAS(R)制备大约765个碱基对的融合片段。用SacII和SalI消化该片段,得到的750个碱基对的片段经凝胶纯化。质粒pVHE也用SacII和SalI消化,得到的大约6.8kb的大片段经凝胶纯化。然后将这两个SacII/SalI片段连接产生CH4-Fas。
16.3 CH4(TM)-Fas的构建。通过以下方法构建编码融合蛋白的表达载体,该融合蛋白包含Cμ的人重链CH1-CH4结构域和跨膜结构域,以及与之融合的Fas的死亡结构域,文中命名为CH4(TM)-Fas。图13(c)图示了该融合蛋白。
用BstEII和SalI消化如实施例1.1所述制备的质粒pVHE,凝胶纯化大约1.4kb的小DNA片段。然后将这个小片段作为PCR反应的模板,所用引物为16.2部分的正向引物CH4(F)和反向引物CH4(R2)5’AATAGTGGTG ATATATTTCA CCTTGAACAA 3’(SEQ ID NO:134)。得到的大约356碱基对的PCR产物经凝胶纯化。
用正向引物FAS(F3)5’TTGTTCAAGG TGAAAGTGAA GAGAAAGGAA3’(SEQ ID NO:135)和16.1部分中的反向引物FAS(R)从质粒pBS-AP014.2扩增包含Fas的死亡结构域的DNA片段。得到的大约440碱基对的PCR产物经凝胶纯化。
然后将得到的356和440碱基对的片段合并在一个PCR反应中,利用正向引物CH4(F)和反向引物FAS(R)制备大约795个碱基对的融合片段。用SacII和SalI消化该片段,得到的780个碱基对的片段经凝胶纯化。质粒pVHE也用SacII和SalI消化,得到的大约6.8kb的大片段经凝胶纯化。然后将这两个SacII/SalI片段连接,产生CH4(TM)-Fas。
16.4 将各种VH基因克隆和插入Ig-Fas融合蛋白。将利用表1和2所列的引物,如实施例1.4(a)所述制备的重链可变区(VH)PCR产物(氨基酸(-4)到(110))克隆到CH1-Fas,CH4-Fas和CH4(TM)-Fas的BssHII和BstEII位点。因为CH1结构域序列和所选限制酶位点存在重叠,这将构建成缺少功能性信号肽但处于正确翻译读框的连续重链片段。
实施例17
表达Igα和Igβ的HeLaS3和COS7细胞系的制备
为了在细胞表面表达特异性人单克隆抗体,重链和轻链免疫球蛋白必须与B细胞受体复合体的其他蛋白物理连接。因此,为使宿主细胞能表达人抗体文库,它们必须能表达将抗体有效地合成和装配成膜结合受体所需要的分子和结构。小鼠淋巴瘤细胞能表达在细胞表面表达特异性人抗体所需要的分子和结构。但是将淋巴瘤细胞用于人抗体文库表达的一个缺点是,内源表达的免疫球蛋白重链和/或轻链能够与转基因免疫球蛋白链共装配,导致形成非特异性的异源分子,它将稀释抗原特异性受体。用小鼠淋巴瘤细胞来表达人抗体文库的另一个缺点是痘苗病毒在淋巴细胞系中复制很弱。因此,优选用于表达特异性人抗体的细胞类型是那些允许产生高滴度痘苗病毒和那些不是衍生自B细胞系的细胞。优选的细胞类型包括HeLa细胞,COS7细胞和BSC-1细胞。
B细胞受体的免疫球蛋白重链和轻链与Igα和Igβ跨膜蛋白的异二聚体物理连接在一起(Reth,M.1992.Annu.Rev.Immunol.10:97)。这种物理连接是膜结合免疫球蛋白有效地转运到细胞表面和经过B细胞受体进行信号传导所必需的(Venkitaraman,A.R等,1991.Nature 352:777)。但是还不清楚Igα/Igβ异二聚体对于在异源细胞系内表达膜结合型免疫球蛋白是否是必要而充分的。因此,用人Igα和Igβ cDNA转染HeLaS3和COS7细胞后,对人抗体在这些细胞表面上的表达进行了评估。
17.1 通过PCR克隆人Igα和Igβ cDNA。将从经EBV转化的人B细胞制备的cDNA作为PCR反应的模板来扩增人Igα和Igβ cDNA。用以下引物扩增人Igα cDNA:
igα 5’-5’ATTAGAATTCATGCCTGGGGGTCCAGGA3’(SEQ ID NO:136);和
igα 3’-5’ATTAGGATCCTCACGGCTTCTCCAGCTG3’(SEQ ID NO:137).用以下引物扩增人Igβ cDNA:
igβ 5’-5’ATTAGGATCCATGGCCAGGCTGGCGTTG3’(SEQ ID NO:138);
igβ 3’-5’ATTACCAGCACACTGGTCACTCCTGGCCTGGGTG3’(SEQ IDNO:139).
将Igα PCR产物克隆到pIRESneo表达载体(Clontech)的EcoRI和BamHI位点,而将来自IgβPCR反应的产物克隆到pIREShyg载体(Clontech)的BamHI和BstXI位点。通过DNA测序证实克隆到的Igα和Igβ。
17.2建立表达Igα和Igβ的HeLaS3和COS7稳定转染子。利用LIPOFECTAMINE PLUS Reagent(Life technologies),将0.5到1μg的纯化pIRESneo-Igα和pIREShygIgβ质粒DNA转染HeLaS3和COS7细胞(6孔板中1×106/孔)。开始2天后,用G418(于0.4mg/ml)和潮霉素B(于0.2mg/ml)选择大约2周。直接分离抗药性HeLaS3菌落,通过有限稀释克隆COS7转染子。然后通过RT-PCR分析这些克隆的Igα和Igβ表达情况,代表性克隆的结果示于图14。
实施例18
构建高亲和力人抗体的多样化文库
本发明是现有的唯一可用于在痘苗或其他痘病毒中构建免疫球蛋白基因多样化文库的方法。可以设计痘苗载体使它高水平表达膜受体,从而能有效地结合到包被抗原的基质上。或者,可以将重组体免疫球蛋白重链基因工程化,以便在受体被抗原交联时诱导细胞凋亡。因为痘苗病毒可以很容易地从即使是发生程序化死亡的细胞内高效回收,该系统的独特特点使它能快速地选择特异人抗体基因。
顺序选择最佳免疫球蛋白重链和轻链,通过筛选所有可供利用的重链和轻链组合而使多样性最大化。顺序筛选策略首先在含104个不同轻链的小文库存在的情况下,从含105个H链重组体的小文库中选择最佳重链。然后用这个优化的H链从一个较大的含106到107个重组体L链的文库中选择其最佳搭档。一旦选择到最佳L链,就可以从较大的含106到107个重组体H链文库中选择更佳的H链。这种反复是一种鞋带策略,它能从多达1014种H2L2组合中选择到特异性的高亲和力抗体。相反,在噬菌体文库中选择单链Fv或者选择在单个质粒上编码的由单独的VH-CH1和VL-CL基因构成的Fab是一步过程,它受到单噬菌体文库实际大小(也许是1011个噬菌体颗粒)的限制。
因为筛选107种H链和107种L链的1014种组合是不可行的,故为选择最佳H链,开始时在有非感染性载体中的104种L链存在的情况下,从105H链痘苗重组体的文库中进行选择。这些组合很可能产生许多表位的低亲和力抗体,导致选择到例如1到100个不同H链。如果对于一个基本抗体选择到100个H链,然后可以将它们用于在106或107痘苗重组体L链的更大文库中进行第二轮选择,挑取100个最佳L链搭档。然后搁置原来的H链,用这100个L链从106或107H链的更大文库中选择新的更高亲和力的H链。这个策略象一种体外亲和力增大化。正如在正常免疫应答中一样,首先选择出低亲和力抗体然后在反复的免疫循环中作为选择更高亲和力后代的基础。高亲和力克隆可能来源于体内的体细胞突变,而这种体外策略通过免疫球蛋白链的重新结合可以达到同样的目的。这两种情况中,改良的免疫球蛋白链的搭档和开始的低亲和力抗体的搭档是一样的。
该策略的基础是控制起始时对低亲和力抗体的选择。选择到低亲和力抗体很关键。用于顺序选择H和L链的基于痘苗的方法可适当地优化,以确保开始的低亲和力选择是成功的,因为它具备表达二价抗体带来的亲和力优势。此外,通过在痘苗系统中采用不同启动子可以调控抗体表达的水平。例如,适应痘苗的T7聚合酶系统比天然的痘苗启动子产生更高水平的表达。开始几轮选择可基于高水平T7表达系统来保证选择到低亲和力的“基本抗体”,后面几轮选择可基于低水平表达来引导选择高亲和力的衍生物。
以下是本发明用于在痘苗中构建免疫球蛋白基因多样化文库的方法的概括:
1.根据文中描述的方法,在痘苗病毒载体中构建来自人淋巴细胞的免疫球蛋白膜相关性重链cDNA文库。用稀释的病毒文库(平均每个细胞被一个病毒免疫球蛋白重链重组体感染)感染特别工程化的细胞,例如CH33细胞,小鼠骨髓瘤细胞和人EBV转化细胞系,或者优选HeLa细胞和其他不产生竞争性免疫球蛋白链并能有效支持痘苗复制的非淋巴细胞。
2.用补骨脂素灭活的来自构建在相同痘苗病毒载体中的免疫球蛋白轻链文库中的免疫球蛋白轻链重组体痘苗病毒感染同样这些细胞。或者,可以用质粒表达载体中的免疫球蛋白轻链重组体转染这些细胞。在整个细胞群中,每个重链可以与任何轻链相关联。
3.将细胞培养合适的时间,以便在细胞表面得到完全装配好的抗体的最优表达。宿主细胞不是淋巴性来源时,采用已经稳定转染了表达Igα和Igβ蛋白的基因或cDNA的宿主细胞,例如Hela或Cos 7细胞,可以提高膜抗体表达的效率。
4a.将目的抗原结合到惰性珠子上,然后将后者与抗体表达细胞文库混合。回收结合到包被抗原的珠子上的细胞,提取相关的免疫球蛋白重链重组体病毒。
4b.或者,给目的抗原直接或间接地连接上荧光标签。通过荧光激活细胞分选来回收与抗原结合的抗体表达细胞。
4c.或者,可以采用那些抗体受体与抗原的交联将诱导细胞死亡的宿主细胞。这可能是宿主细胞B细胞种系的不成熟细胞时自然发生,或者是在免疫球蛋白重链恒定区的羧基端引入Fas编码的死亡结构域的结果。将裂解细胞与活细胞分开,提取携带相应免疫球蛋白重链的重组体病毒。
5.将以上步骤1-4的循环重复几次,每次分离重组体病毒并进一步富集有利于最佳抗原结合的重链。
6.一旦选择到特异抗体重链,对构建在专有性痘苗病毒中的免疫球蛋白轻链cDNA文库重复整个过程,以便选择有利于最佳抗原结合的特异免疫球蛋白轻链。通过筛选所有可供利用的重链和轻链组合来顺序选择重链和轻链,可以达到最大限度的多样化。通过选择完全装配的二价抗体而非单链Fv或单体Fab来优化最后的Mab产物。
7.经标准实验技术确定Mab的序列并验证其特异结合。
通过选择完全装配的二价抗体而非单链Fv来优化最后的Mab产物。这就是说,选择是基于二价(H2L2)抗体而非scFv或Fab片段。在哺乳动物细胞内合成和装配完全人的完整抗体,可使得免疫球蛋白链能进行正常的翻译后修饰和装配。完整抗体的合成和装配可能在细菌细胞内效率非常低,并且会丢失许多特异性,因为许多抗体在细菌细胞的异常生理环境中不能正确折叠。
可以选择到比较宽范围的抗体表位特异性,包括根据功能活性选择特异性。具体地说,可以根据对靶细胞的特定生理效应来选择抗体(例如筛选对活化单核细胞的TNF分泌的抑制;诱导细胞凋亡等)。如下是基于功能检测筛选特异Mab的方法概括:
1.在根据文中描述的方法制备的痘苗病毒载体中构建未免疫人淋巴细胞的免疫球蛋白重链cDNA文库。将例如大约100到大约1000个重组体病毒的多个池分别扩增,用来感染生产者细胞,其稀释度使得平均每个细胞被一个免疫球蛋白重链重组体病毒感染。用补骨脂素灭活的来自构建在相同痘苗病毒载体中的免疫球蛋白轻链文库中的免疫球蛋白轻链重组体痘苗病毒感染同样这些细胞。或者,可以用质粒表达载体中的免疫球蛋白轻链重组体转染被感染细胞。在整个细胞群中,每个重链可以与任何轻链相关联。
2.将被感染细胞培养足够的时间,使得完全装配的抗体进行分泌。
3.建立检测孔,其中在有分泌抗体试样存在的情况下温育目的功能指示细胞。所述细胞可能例如包括分泌TNFα的活化单核细胞。然后可以采用简单的TNFα ELISA检测来筛选包含可抑制细胞因子分泌的活性的抗体池。
4.进一步分析所选池的单个成员来鉴定相关免疫球蛋白重链。
5.一旦选择到特异抗体重链,对构建在专有性痘苗病毒载体中的免疫球蛋白轻链cDNA文库重复整个过程,以便选择有利于最佳抗原结合的特异免疫球蛋白轻链。
6.通过标准实验技术来鉴定Mab序列并验证其特异结合。因为功能性选择不需要对目标膜受体先有了解,故选择到的Mab既是潜在的药物也是鉴定相关膜受体的发现工具。
免疫球蛋白重链和轻链随机结合后,在人细胞培养物中进行选择。正如上面提到的,这避免了细菌内合成方面的限制导致的抗体组的局限。它还能避免在小鼠中对同源基因产物的耐受性造成的对抗体组的限制。重要人蛋白质的小鼠同系物通常与人序列有80%到85%相同。因此,预计对人蛋白质的小鼠抗体反应主要集中在人和小鼠中不同的15%到20%表位。本发明使得能有效选择具有宽范围表位特异性的高亲和力、完全人的抗体。这项技术可以用于多种项目和目的,包括对具有特定生理意义的未鉴定膜受体的抗体进行功能性选择。
本发明的范围不受所述具体实施方案的限制,这些实施方案用于作为发明的个别方面的一个例证,所有功能等同的构建体,病毒和酶都在本发明的范围内。确实,除了文中显示和描述的,根据前面的说明书和附图,本发明的各种改变对本领域普通技术人员是显而易见的。这些改变都落在所附权利要求的范围内。
说明书中提到的所有出版物和专利申请均单独并具体地全文引入作为参考。1997年9月22日提交的美国专利申请08/935377和2000年3月28日提交的美国专利申请60/192586引入此处作为参考。
                     序列表
<110>University of Rochester
<120>在真核细胞中产生和鉴定免疫球蛋白分子的体外方法
<130>1821.007PC05
<150>60/271,424
<151>2001-02-27
<150>60/262,067
<151>2001-01-18
<150>60/298,087
<151>2001-06-15
<150>60/249,268
<151>2000-11-17
<160>147
<170>PatentIn version 3.1
<210>1
<211>57
<212>DNA
<213>人工序列
<220>
<223>p7.5/tk启动子
<400>1
ggccaaaaat tgaaaaacta gatctattta ttgcacgcgg ccgccatggg cccggcc    57
<210>2
<211>145
<212>DNA
<213>人工序列
<220>
<223>p7.5/ATG0/tk启动子
<400>2
ggccaaaaat tgaaaaacta gatctattta ttgcacgcgg ccgccgtgga tcccccgggc     60
tgcaggaatt cgatatcaag cttatcgata ccgtcgacct cgaggggggg cctaactaac    120
taattttgtt tttgtgggcc cggcc                                          145
<210>3
<211>148
<212>DNA
<213>人工序列
<220>
<223>p7.5/ATG1/tk启动子
<400>3
ggccaaaaat tgaaaaacta gatctattta ttgcacgcgg ccgccatggt ggatcccccg     60
ggctgcagga attcgatatc aagcttatcg ataccgtcga cctcgagggg gggcctaact    120
aactaatttt gtttttgtgg gcccggcc                                       148
<210>4
<211>149
<212>DNA
<213>人工序列
<220>
<223>p7.5/ATG2/tk载体
<400>4
ggccaaaaat tgaaaaacta gatctattta ttgcacgcgg ccgccatgag tggatccccc     60
gggctgcagg aattcgatat caagcttatc gataccgtcg acctcgaggg ggggcctaac    120
taactaattt tgtttttgtg ggcccggcc                                      149
<210>5
<211>150
<212>DNA
<213>人工序列
<220>
<223>p7.5/ATG3/tk载体
<400>5
ggccaaaaat tgaaaaacta gatctattta ttgcacgcgg ccgccatgac gtggatcccc     60
cgggctgcag gaattcgata tcaagcttat cgataccgtc gacctcgagg gggggcctaa    120
ctaactaatt ttgtttttgt gggcccggcc                                     150
<210>6
<211>15
<212>PRT
<213>人工序列
<220>
<223>接头肽
<400>6
Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser
1               5                   10                  15
<210>7
<211>15
<212>PRT
<213>人工序列
<220>
<223>接头肽
<400>7
Glu Ser Gly Arg Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser
1               5                   10                  15
<210>8
<211>14
<212>PRT
<213>人工序列
<220>
<223>接头肽
<400>8
Glu Gly Lys Ser Ser Gly Ser Gly Ser Glu Ser Lys Ser Thr
1               5                   10
<210>9
<211>15
<212>PRT
<213>人工序列
<220>
<223>接头肽
<400>9
Glu Gly Lys Ser Ser Gly Ser Gly Ser Glu Ser Lys Ser Thr Gln
1               5                   10                  15
<210>10
<211>14
<212>PRT
<213>人工序列
<220>
<223>接头肽
<400>10
Glu Gly Lys Ser Ser Gly Ser Gly Ser Glu Ser Lys Val Asp
1               5                   10
<210>11
<211>14
<212> PRT
<213>人工序列
<220>
<223>接头肽
<400>11
Gly Ser Thr Ser Gly Ser Gly Lys Ser Ser Glu Gly Lys Gly
1               5                   10
<210>12
<211>18
<212>PRT
<213>人工序列
<220>
<223>接头肽
<400>12
Lys Glu Ser Gly Ser Val Ser Ser Glu Gln Leu Ala Gln Phe Arg Ser
1               5                   10                  15
Leu Asp
<210>13
<211>16
<212>PRT
<213>人工序列
<220>
<223>接头肽
<400>13
Glu Ser Gly Ser Val Ser Ser Glu Glu Leu Ala Phe Arg Ser Leu Asp
1               5                   10                  15
<210>14
<211>1555
<212>DNA
<213>人工序列
<220>
<223>pVHE转移质粒
<400>14
ggccaaaaat tgaaaaacta gatctattta ttgcacgcgg ccgcaaacca tgggatggag      60
ctgtatcatc ctcttcttgg tagcaacagc tacaggcgcg catatggtca ccgtctcctc     120
agggagtgca tccgccccaa cccttttccc cctcgtctcc tgtgagaatt ccccgtcgga     180
tacgagcagc gtggccgttg gctgcctcgc acaggacttc cttcccgact ccatcacttt     240
ctcctggaaa tacaagaaca actctgacat cagcagcacc cggggcttcc catcagtcct     300
gagagggggc aagtacgcag ccacctcaca ggtgctgctg ccttccaagg acgtcatgca     360
gggcacagac gaacacgtgg tgtgcaaagt ccagcacccc aacggcaaca aagaaaagaa     420
cgtgcctctt ccagtgattg ctgagctgcc tcccaaagtg agcgtcttcg tcccaccccg     480
cgacggcttc ttcggcaacc cccgcagcaa gtccaagctc atctgccagg ccacgggttt     540
cagtccccgg cagattcagg tgtcctggct gcgcgagggg aagcaggtgg ggtctggcgt     600
caccacggac caggtgcagg ctgaggccaa agagtctggg cccacgacct acaaggtgac     660
tagcacactg accatcaaag agagcgactg gctcagccag agcatgttca cctgccgcgt     720
ggatcacagg ggcctgacct tccagcagaa tgcgtcctcc atgtgtgtcc ccgatcaaga     780
cacagccatc cgggtcttcg ccatcccccc atcctttgcc agcatcttcc tcaccaagtc     840
caccaagttg acctgcctgg tcacagacct gaccacctat gacagcgtga ccatctcctg     900
gacccgccag aatggcgaag ctgtgaaaac ccacaccaac atctccgaga gccaccccaa     960
tgccactttc agcgccgtgg gtgaggccag catctgcgag gatgactgga attccgggga    1020
gaggttcacg tgcaccgtga cccacacaga cctgccctcg ccactgaagc agaccatctc    1080
ccggcccaag ggggtggccc tgcacaggcc cgatgtctac ttgctgccac cagcccggga    1140
gcagctgaac ctgcgggagt cggccaccat cacgtgcctg gtgacgggct tctctcccgc    1200
ggacgtcttc gtgcagtgga tgcagagggg gcagcccttg tccccggaga agtatgtgac    1260
cagcgcccca atgcctgagc cccaggcccc aggccggtac ttcgcccaca gcatcctgac    1320
cgtgtccgaa gaggaatgga acacggggga gacctacacc tgcgtggtgg cccatgaggc    1380
cctgcccaac agggtcactg agaggaccgt ggacaagtcc accgaggggg aggtgagcgc    1440
cgacgaggag ggctttgaga acctgtgggc caccgcctcc accttcatcg tcctcttcct    1500
cctgagcctc ttctacagta ccaccgtcac cttgttcaag gtgaaatgag tcgac         1555
<210>15
<211>6
<212>DNA
<213>人工序列
<220>
<223>pVHE中的独特BssHII位点
<400>15
gcgcgc                                                               6
<210>16
<211>7
<212>DNA
<213>人工序列
<220>
<223>pVHE中的独特BstEII位点
<400>16
ggtcacc                                                              7
<210>17
<211>446
<212>DNA
<213>人工序列
<220>
<223>pVKE转移质粒
<400>17
ggccaaaaat tgaaaaacta gatctattta ttgcacgcgg ccgcccatgg gatggagctg     60
tatcatcctc ttcttggtag caacagctac aggcgtgcac ttgactcgag atcaaacgaa    120
ctgtggctgc accatctgtc ttcatcttcc cgccatctga tgagcagttg aaatctggaa    180
ctgcctctgt tgtgtgcctg ctgaataact tctatcccag agaggccaaa gtacagtgga    240
aggtggataa cgccctccaa tcgggtaact cccaggagag tgtcacagag caggacagca    300
aggacagcac ctacagcctc agcagcaccc tgacgctgag caaagcagac tacgagaaac    360
acaaagtcta cgcctgcgaa gtcacccatc agggcctgag ctcgcccgtc acaaagagct    420
tcaacagggg agagtgttag gtcgac                                         446
<210>18
<211>6
<212>DNA
<213>人工序列
<220>
<223>pVKE质粒中的独特ApaLI位点
<400>18
gtgcac                                                               6
<210>19
<211>6
<212>DNA
<213>人工序列
<220>
<223>pVKE质粒中的独特xhoI位点
<400>19
ctcgag                                                               6
<210>20
<211>455
<212>DNA
<213>人工序列
<220>
<223>pVLE转移质粒
<400>20
ggccaaaaat tgaaaaacta gatctattta ttgcacgcgg ccgcccatgg gatggagctg     60
tatcatcctc ttcttggtag caacagctac aggcgtgcac ttgactcgag aagcttaccg    120
tcctacgaac tgtggctgca ccatctgtct tcatcttccc gccatctgat gagcagttga    180
aatctggaac tgcctctgtt gtgtgcctgc tgaataactt ctatcccaga gaggccaaag    240
tacagtggaa ggtggataac gccctccaat cgggtaactc ccaggagagt gtcacagagc    300
aggacagcaa ggacagcacc tacagcctca gcagcaccct gacgctgagc aaagcagact    360
acgagaaaca caaagtctac gcctgcgaag tcacccatca gggcctgagc tcgcccgtca    420
caaagagctt caacagggga gagtgttagg tcgac                               455
<210>21
<211>6
<212>DNA
<213>人工序列
<220>
<223>pVLE质粒中的独特ApaLI位点
<400>21
gtgcac                                                               6
<210>22
<211>6
<212>DNA
<213>人工序列
<220>
<223>pVLE中的独特HindIII位点
<400>22
aagctt                                                               6
<210>23
<211>9
<212>pRT
<213>人工序列
<220>
<223>H-2Kd限制肽(restricted peptide)
<400>23
Gly Tyr Lys Ala Gly Met Ile His Ile
1               5
<210>24
<211>29
<212>DNA
<213>人工序列
<220>
<223>引物
<400>24
attaggatcc ggtcaccgtc tcctcaggg                                      29
<210>25
<211>34
<212>DNA
<213>人工序列
<220>
<223>引物
<400>25
attagtcgac tcatttcacc ttgaacaagg tgac                                34
<210>26
<211>47
<212>DNA
<213>人工序列
<220>
<223>用于制备p7.5/tk2的序列盒
<400>26
gcggccgcaa accatggaaa gcgcgcatat ggtcaccaaa agtcgac                  47
<210>27
<211>29
<212>DNA
<213>人工序列
<220>
<223>引物
<400>27
attaggatcc ggtcaccgtc tcctcaggg                           29
<210>28
<211>31
<212>DNA
<213>人工序列
<220>
<223>引物
<400>28
attagtcgac tcagtagcag gtgccagctg t                        31
<210>29
<211>50
<212>DNA
<213>人工序列
<220>
<223>用于制备p7.5/tk3的序列盒
<400>29
gcggccgccc atggatacgt gcacttgact cgagaagctt agtagtcgac    50
<210>30
<211>30
<212>DNA
<213>人工序列
<220>
<223>引物
<400>30
caggactcga gatcaaacga actgtggctg                                    30
<210>31
<211>39
<212>DNA
<213>人工序列
<220>
<223>引物
<400>31
aatatgtcga  cctaacactc tcccctgttg  aagctcttt                        39
<210>32
<211>38
<212>DNA
<213>人工序列
<220>
<223>引物
<400>32
aatatgtcga cctaacactc tcccctgttg aagctctt                           38
<210>33
<211>40
<212>DNA
<213>人工序列
<220>
<223>引物
<400>33
atttaagctt accgtcctac gaactgtggc tgcaccatct                         40
<210>34
<211>38
<212>DNA
<213>人工序列
<220>
<223>引物
<400>34
ttttgcgcgc actcccaggt gcagctggtg cagtctgg                            38
<210>35
<211>38
<212>DNA
<213>人工序列
<220>
<223>引物
<400>35
ttttgcgcgc actccgaggt gcagctggtg gagtctgg                            38
<210>36
<211>38
<212>DNA
<213>人工序列
<220>
<223>引物
<400>36
ttttgcgcgc actcccaggt gcagctgcag gagtcggg                            38
<210>37
<211>27
<212>DNA
<213>人工序列
<220>
<223>引物
<400>37
gacggtgacc agggtgccct ggcccca                                        27
<210>38
<211>27
<212>DNA
<213>人工序列
<220>
<223>引物
<400>38
gacggtgacc agggtgccac ggcccca                                        27
<210>39
<211>27
<212>DNA
<213>人工序列
<220>
<223>引物
<400>39
gacggtgacc attgtccctt ggcccca                                        27
<210>40
<211>27
<212>DNA
<213>人工序列
<220>
<223>引物
<400>40
gacggtgacc agggttccct ggcccca                                        27
<210>41
<211>27
<212>DNA
<213>人工序列
<220>
<223>引物
<400>41
gacggtgacc gtggtccctt ggcccca                                     27
<210>42
<211>35
<212>DNA
<213>人工序列
<220>
<223>引物
<400>42
tttgtgcact ccgacatcca gatgacccag tctcc                            35
<210>43
<211>35
<212>DNA
<213>人工序列
<220>
<223>引物
<400>43
tttgtgcact ccgatgttgt gatgactcag tctcc                            35
<210>44
<211>35
<212>DNA
<213>人工序列
<220>
<223>引物
<400>44
tttgtgcact ccgaaattgt gttgacgcag tctcc                                35
<210>45
<211>35
<212>DNA
<213>人工序列
<220>
<223>引物
<400>45
tttgtgcact ccgacatcgt gatgacccag tctcc                                35
<210>46
<211>35
<212>DNA
<213>人工序列
<220>
<223>引物
<400>46
tttgtgcact ccgaaacgac actcacgcag tctcc                                35
<210>47
<211>35
<212>DNA
<213>人工序列
<220>
<223>引物
<400>47
tttgtgcact ccgaaattgt gctgactcag tctcc                                35
<210>48
<211>27
<212>DNA
<213>人工序列
<220>
<223>引物
<400>48
gatctcgagc ttggtccctt ggccgaa                                        27
<210>49
<211>27
<212>DNA
<213>人工序列
<220>
<223>引物
<400>49
gatctcgagc ttggtcccct ggccaaa                                        27
<210>50
<211>27
<212>DNA
<213>人工序列
<220>
<223>引物
<400>50
gatctcgagt ttggtcccag ggccgaa                                        27
<210>51
<211>27
<212>DNA
<213>人工序列
<220>
<223>引物
<400>51
gatctcgagc ttggtccctc cgccgaa                                     27
<210>52
<211>27
<212>DNA
<213>人工序列
<220>
<223>引物
<400>52
aatctcgagt cgtgtccctt ggccgaa                                     27
<210>53
<211>35
<212>DNA
<213>人工序列
<220>
<223>引物
<400>53
tttgtgcact cccagtctgt gttgacgcag ccgcc                            35
<210>54
<211>35
<212>DNA
<213>人工序列
<220>
<223>引物
<400>54
tttgtgcact cccagtctgc cctgactcag cctgc                            35
<210>55
<211>35
<212>DNA
<213>人工序列
<220>
<223>引物
<400>55
tttgtgcact cctcctatgt gctgactcag ccacc                                35
<210>56
<211>35
<212>DNA
<213>人工序列
<220>
<223>引物
<400>56
tttgtgcact cctcttctga gctgactcag gaccc                                35
<210>57
<211>35
<212>DNA
<213>人工序列
<220>
<223>引物
<400>57
tttgtgcact cccacgttat actgactcaa ccgcc                                35
<210>58
<211>35
<212>DNA
<213>人工序列
<220>
<223>引物
<400>58
tttgtgcact cccaggctgt gctcactcag ccgtc                                35
<210>59
<211>35
<212>DNA
<213>人工序列
<220>
<223>引物
<400>59
tttgtgcact ccaattttat gctgactcag cccca                                35
<210>60
<211>35
<212>DNA
<213>人工序列
<220>
<223>引物
<400>60
tttgtgcact cccaggctgt ggtgactcag gagcc                                35
<210>61
<211>27
<212>DNA
<213>人工序列
<220>
<223>引物
<400>61
ggtaagcttg gtcccagttc cgaagac                                         27
<210>62
<211>25
<212>DNA
<213>人工序列
<220>
<223>引物
<400>62
ggtaagcttg gtccctccgc cgaat                                           25
<210>63
<211>39
<212>DNA
<213>人工序列
<220>
<223>引物
<400>63
aatatgcgcg cactcccagg tgcagctggt gcagtctgg                            39
<210>64
<211>39
<212>DNA
<213>人工序列
<220>
<223>引物
<400>64
aatatgcgcg cactcccagg tcaccttgaa ggagtctgg                            39
<210>65
<211>39
<212>DNA
<213>人工序列
<220>
<223>引物
<400>65
aatatgcgcg cactccgagg tgcagctggt ggagtctgg                            39
<210>66
<211>39
<212>DNA
<213>人工序列
<220>
<223>引物
<400>66
aatatgcgcg cactcccagg tgcagctgca ggagtcggg                            39
<210>67
<211>38
<212>DNA
<213>人工序列
<220>
<223>引物
<400>67
aatatgcgcg cactccgagg tgcagctggt gcagtctg                             38
<210>68
<211>29
<212>DNA
<213>人工序列
<220>
<223>引物
<400>68
gagacggtga ccagggtgcc ctggcccca                                       29
<210>69
<211>29
<212>DNA
<213>人工序列
<220>
<223>引物
<400>69
gagacggtga ccagggtgcc acggcccca                                        29
<210>70
<211>29
<212>DNA
<213>人工序列
<220>
<223>引物
<400>70
gagacggtga ccattgtccc ttggcccca                                        29
<210>71
<211>29
<212>DNA
<213>人工序列
<220>
<223>引物
<400>71
gagacggtga ccagggttcc ctggcccca                                        29
<210>72
<211>29
<212>DNA
<213>人工序列
<220>
<223>引物
<400>72
gagacggtga ccgtggtccc ttggcccca                                     29
<210>73
<211>37
<212>DNA
<213>人工序列
<220>
<223>引物
<400>73
caggagtgca ctccgacatc cagatgaccc agtctcc                            37
<210>74
<211>37
<212>DNA
<213>人工序列
<220>
<223>引物
<400>74
caggagtgca ctccgatgtt gtgatgactc agtctcc                            37
<210>75
<211>37
<212>DNA
<213>人工序列
<220>
<223>引物
<400>75
caggagtgca ctccgaaatt gtgttgacgc agtctcc                            37
<210>76
<211>37
<212>DNA
<213>人工序列
<220>
<223>引物
<400>76
caggagtgca ctccgacatc gtgatgaccc agtctcc                                37
<210>77
<211>37
<212>DNA
<213>人工序列
<220>
<223>引物
<400>77
caggagtgca ctccgaaacg acactcacgc agtctcc                                37
<210>78
<211>37
<212>DNA
<213>人工序列
<220>
<223>引物
<400>78
caggagtgca ctccgaaatt gtgctgactc agtctcc                                37
<210>79
<211>29
<212>DNA
<213>人工序列
<220>
<223>引物
<400>79
ttgatctcga gcttggtccc ttggccgaa                                    29
<210>80
<211>29
<212>DNA
<213>人工序列
<220>
<223>引物
<400>80
ttgatctcga gcttggtccc ctggccaaa                                    29
<210>81
<211>29
<212>DNA
<213>人工序列
<220>
<223>引物
<400>81
ttgatctcga gtttggtccc agggccgaa                                    29
<210>82
<211>29
<212>DNA
<213>人工序列
<220>
<223>引物
<400>82
ttgatctcga gcttggtccc tccgccgaa                                    29
<210>83
<211>29
<212>DNA
<213>人工序列
<220>
<223>引物
<400>83
ttaatctcga gtcgtgtccc ttggccgaa                                     29
<210>84
<211>37
<212>DNA
<213>人工序列
<220>
<223>引物
<400>84
cagatgtgca ctcccagtct gtgttgacgc agccgcc                            37
<210>85
<211>37
<212>DNA
<213>人工序列
<220>
<223>引物
<400>85
cagatgtgca ctcccagtct gccctgactc agcctgc                            37
<210>86
<211>37
<212>DNA
<213>人工序列
<220>
<223>引物
<400>86
cagatgtgca ctcctcctat gtgctgactc agccacc                                37
<210>87
<211>37
<212>DNA
<213>人工序列
<220>
<223>引物
<400>87
cagatgtgca ctcctcttct gagctgactc aggaccc                                37
<210>88
<211>37
<212>DNA
<213>人工序列
<220>
<223>引物
<400>88
cagatgtgca ctcccacgtt atactgactc aaccgcc                                37
<210>89
<211>37
<212>DNA
<213>人工序列
<220>
<223>引物
<400>89
cagatgtgca ctcccaggct gtgctcactc agccgtc                                37
<210>90
<211>37
<212>DNA
<213>人工序列
<220>
<223>引物
<400>90
cagatgtgca ctccaatttt atgctgactc agcccca                                37
<210>91
<211>37
<212>DNA
<213>人工序列
<220>
<223>引物
<400>91
cagatgtgca ctcccaggct gtggtgactc aggagcc                                37
<210>92
<211>29
<212>DNA
<213>人工序列
<220>
<223>引物
<400>92
acggtaagct tggtcccagt tccgaagac                                         29
<210>93
<211>29
<212>DNA
<213>人工序列
<220>
<223>引物
<400>93
acggtaagct tggtccctcc gccgaatac                                    29
<210>94
<211>21
<212>DNA
<213>人工序列
<220>
<223>引物
<400>94
atgttacgtc ctgtagaaac c                                            21
<210>95
<211>21
<212>DNA
<213>人工序列
<220>
<223>引物
<400>95
tcattgtttg cctccctgct g                                            21
<210>96
<211>28
<212>DNA
<213>人工序列
<220>
<223>引物
<400>96
aaagcggccg ccccgggatg ttacgtcc                                     28
<210>97
<211>29
<212>DNA
<213>人工序列
<220>
<223>引物
<400>97
aaagggcccg gcgcgcctca ttgtttgcc                                 29
<210>98
<211>37
<212>DNA
<213>人工序列
<220>
<223>引物
<400>98
aaaggatcca taatgaattc agtgactgta tcacacg                        37
<210>99
<211>34
<212>DNA
<213>人工序列
<220>
<223>引物
<400>99
cttgcggccg cttaataaat aaacccttga gccc                           34
<210>100
<211>34
<212>DNA
<213>人工序列
<220>
<223>引物
<400>100
attgagctct taatactttt gtcgggtaac agag                            34
<210>101
<211>29
<212>DNA
<213>人工序列
<220>
<223>引物
<400>101
ttactcgaga gtgtcgcaat ttggatttt                                  29
<210>102
<211>29
<212>DNA
<213>人工序列
<220>
<223>引物
<400>102
aaagaattcc tttattgtca tcggccaaa                                  29
<210>103
<211>30
<212>DNA
<213>人工序列
<220>
<223>引物
<400>103
aatctgcagt cattgtttgc ctccctgctg                                 30
<210>104
<211>37
<212>DNA
<213>人工序列
<220>
<223>引物
<400>104
aaagaattca taatgaattc agtgactgta tcacacg                        37
<210>105
<211>32
<212>DNA
<213>人工序列
<220>
<223>引物
<400>105
cttggatcct taataaataa acccttgagc cc                             32
<210>106
<211>27
<212>DNA
<213>人工序列
<220>
<223>引物
<400>106
aataagcttt actccagata atatgga                                   27
<210>107
<211>23
<212>DNA
<213>人工序列
<220>
<223>引物
<400>107
aatctgcagc ccagttccat ttt                                         23
<210>108
<211>23
<212>DNA
<213>人工序列
<220>
<223>引物
<400>108
aatggatcct catccagcgg cta                                         23
<210>109
<211>27
<212>DNA
<213>人工序列
<220>
<223>引物
<400>109
aatgagctct agtacctaca acccgaa                                     27
<210>110
<211>28
<212>DNA
<213>人工序列
<220>
<223>引物
<400>110
aaagtcgacg gccaaaaatt gaaatttt                                    28
<210>111
<211>25
<212>DNA
<213>人工序列
<220>
<223>引物
<400>111
aatggatcct cattgtttgc ctccc                                 25
<210>112
<211>51
<212>DNA
<213>人工序列
<220>
<223>将质粒p7.5/tk3转化为p7.5/tk3.1的序列盒
<400>112
gcggccgccc atggatagcg tgcacttgac tcgagaagct tagtagtcga c    51
<210>113
<211>22
<212>DNA
<213>人工序列
<220>
<223>将质粒p7.5/tk3.1转化为p7.5/tk3.2时被取代的区域
<400>113
ctcgagaagc ttagtagtcg ac                                    22
<210>114
<211>78
<212>DNA
<213>人工序列
<220>
<223>用于将质粒p7.5/tk3.1转化为p7.5/tk3.2的序列盒
<400>114
ctcgagatca aagagggtaa atcttccgga tctggttccg aaggcgcgca tgcggtcacc    60
gtctcctcat gagtcgac                                                  78
<210>115
<211>42
<212>DNA
<213>人工序列
<220>
<223>p7.5/tk3.2接头
<400>115
gagggtaaat cttccggatc tggttccgaa ggcgcgcact cc                       42
<210>116
<211>14
<212>PRT
<213>人工序列
<220>
<223>p7.5/tk3.2接头
<400>116
Glu Gly Lys Ser Ser Gly Ser Gly Ser Glu Gly Ala His Ser
1               5                   10
<210>117
<211>16
<212>DNA
<213>人工序列
<220>
<223>质粒p7.5/tk3.1转化为p7.5/tk3.3时被取代的区域
<400>117
aagcttagta gtcgac                                                    16
<210>118
<211>81
<212>DNA
<213>人工序列
<220>
<223>用于将质粒p7.5/tk3.1转化为p7.5/tk3.3的序列盒
<400>118
aagcttaccg tcctagaggg taaatcttcc ggatctggtt ccgaaggcgc gcatgcggtc    60
accgtctcct catgagtcga c                                              81
<210>119
<211>42
<212>DNA
<213>人工序列
<220>
<223>p7.5/tk3.3接头
<400>119
gagggtaaat cttccggatc tggttccgaa ggcgcgcact cc                       42
<210>120
<211>14
<212>PRT
<213>人工序列
<220>
<223>p7.5/tk3.3接头
<400>120
Glu Gly Lys Ser Ser Gly Ser Gly Ser Glu Gly Ala His Ser
1               5                   10
<210>121
<211>29
<212>DNA
<213>人工序列
<220>
<223>引物
<400>121
attaggatcc ggtcaccgtc tcctcagcc                                  29
<210>122
<211>34
<212>DNA
<213>人工序列
<220>
<223>引物
<400>122
attagtcgac tcatttaccc ggagacaggg agag                            34
<210>123
<211>24
<212>DNA
<213>人工序列
<220>
<223>引物
<400>123
aatatggtca ccgtctcctc agcc                                       24
<210>124
<211>36
<212>DNA
<213>人工序列
<220>
<223>引物
<220>
<221>其他特性
<222>(2)..(3)
<223>可以是任何核苷酸
<220>
<221>其他特性
<222>(5)..(6)
<223>可以是任何核苷酸
<220>
<221>其他特性
<222>(8)..(9)
<223>可以是任何核苷酸
<220>
<221>其他特性
<222>(11)..(12)
<223>可以是任何核苷酸
<220>
<221>其他特性
<222>(14)..(15)
<223>可以是任何核苷酸
<220>
<221>其他特性
<222>(17)..(18)
<223>可以是任何核苷酸
<400>124
mnnmnnmnnm nnmnnmnntt caggtgctgg gcacgg                                36
<210>125
<211>36
<212>DNA
<213>人工序列
<220>
<223>引物
<220>
<221>其他特性
<222>(1)..(2)
<223>可以是任何核苷酸
<220>
<221>其他特性
<222>(4)..(5)
<223>可以是任何核苷酸
<220>
<221>其他特性
<222>(7)..(8)
<223>可以是任何核苷酸
<220>
<221>其他特性
<222>(10)..(11)
<223>可以是任何核苷酸
<220>
<221>其他特性
<222>(13)..(14)
<223>可以是任何核苷酸
<220>
<221>其他特性
<222>(16)..(17)
<223>可以是任何核苷酸
<400>125
nnknnknnkn nknnknnkgt cttcctcttc ccccca                            36
<210>126
<211>23
<212>DNA
<213>人工序列
<220>
<223>引物
<400>126
aatatgtcga ctcatttacc cgg                                          23
<210>127
<211>28
<212>DNA
<213>人工序列
<220>
<223>引物
<400>127
acacggtcac cgtctcctca gggagtgc                                     28
<210>128
<211>31
<212>DNA
<213>人工序列
<220>
<223>引物
<400>128
agttagatct ggatcctgga agaggcacgt t                              31
<210>129
<211>30
<212>DNA
<213>人工序列
<220>
<223>引物
<400>129
aacgtgcctc ttccaggatc cagatctaac                                30
<210>130
<211>33
<212>DNA
<213>人工序列
<220>
<223>引物
<400>130
acgcgtcgac ctagaccaag ctttggattt cat                            33
<210>131
<211>21
<212>DNA
<213>人工序列
<220>
<223>引物
<400>131
ctctcccgcg gacgtcttcg t                                           21
<210>132
<211>31
<212>DNA
<213>人工序列
<220>
<223>引物
<400>132
agttagatct ggatccctca aagccctcct c                                31
<210>133
<211>30
<212>DNA
<213>人工序列
<220>
<223>引物
<400>133
gaggagggct ttgagggatc cagatctaac                                  30
<210>134
<211>30
<212>DNA
<213>人工序列
<220>
<223>引物
<400>134
aatagtggtg atatatttca ccttgaacaa                                  30
<210>135
<211>30
<212>DNA
<213>人工序列
<220>
<223>引物
<400>135
ttgttcaagg tgaaagtgaa gagaaaggaa                                    30
<210>136
<211>28
<212>DNA
<213>人工序列
<220>
<223>引物
<400>136
attagaattc atgcctgggg gtccagga                                      28
<210>137
<211>28
<212>DNA
<213>人工序列
<220>
<223>引物
<400>137
attaggatcc tcacggcttc tccagctg                                      28
<210>138
<211>28
<212>DNA
<213>人工序列
<220>
<223>引物
<400>138
attaggatcc atggccaggc tggcgttg                                   28
<210>139
<211>34
<212>DNA
<213>人工序列
<220>
<223>引物
<400>139
attaccagca cactggtcac tcctggcctg ggtg                            34
<210>140
<211>69
<212>DNA
<213>人工序列
<220>
<223>p7.5/tk启动子
<220>
<221>CDS
<222>(46)..(69)
<223>
<400>140
ggccaaaaat tgaaaaacta gatctattta ttgcacgcgg ccgcc atg ggc ccg gcc    57
                                                  Met Gly Pro Ala
                                                  1
gcc aac ggc gga                                                      69
Ala Asn Gly Gly
5
<210>141
<211>8
<212>PRT
<213>人工序列
<220>
<223>p7.5/tk的tk序列
<400>141
Met Gly Pro Ala Ala Asn Gly Gly
1               5
<210>142
<211>75
<212>DNA
<213>人工序列
<220>
<223>pE/Ltk启动子
<220>
<221>CDS
<222>(52)..(75)
<223>
<400>142
ggccaaaaat tgaaatttta tttttttttt ttggaatata aagcggccgc c atg ggc    57
                                                         Met Gly
                                                         1
ccg gcc gcc aac ggc gga                                             75
Pro Ala Ala Asn Gly Gly
        5
<210>143
<211>8
<212>PRT
<213>人工序列
<220>
<223>pE/Ltk的tk序列
<400>143
Met Gly Pro Ala Ala Asn Gly Gly
1               5
<210>144
<211>39
<212>DNA
<213>人工序列
<220>
<223>引物
<400>144
aatatgcgcg cactcccagg tcaccttgaa ggagtctgg                            39
<210>145
<211>38
<212>DNA
<213>人工序列
<220>
<223>引物
<400>145
aatatgcgcg cactgcgagg tgcagctggt gcagtctg                             38
<210>146
<211>19
<212>PRT
<213>人工序列
<220>
<223>信号序列
<400>146
Met Gly Trp Ser Cys Ile Ile Leu Phe Leu Val Ala Thr Ala Thr Gly
1                5              10            15
Ala His Ser
<210>147
<211>26
<212>PRT
<213>人工序列
<220>
<223>信号序列
<400>147
Asn Leu Trp Thr Thr Ala Ser Thr Phe Ile Val Leu Phe Leu Leu Ser
1               5                   10                  15
Leu Phe Tyr Ser Thr Thr Val Thr Leu Phe
            20                  25

Claims (83)

1.一种选择编码抗原特异性免疫球蛋白分子或其抗原特异性片段的多核苷酸的方法,包括:
(a)将经过可操纵地连接了转录调控区、编码多种第一免疫球蛋白亚基多肽的第一多核苷酸文库导入到能表达所述免疫球蛋白分子的宿主细胞群;其中每个第一免疫球蛋白亚基多肽包含:
(i)选自重链恒定区和轻链恒定区的第一免疫球蛋白恒定区,
(ii)与所述第一恒定区对应的免疫球蛋白可变区,以及
(iii)能够指导所述第一免疫球蛋白亚基多肽在细胞表面上表达或分泌的信号肽;
(b)向所述宿主细胞内导入可操纵地连接了转录调控区的编码多种第二免疫球蛋白亚基多肽的第二多核苷酸文库;其中每个第二免疫球蛋白亚基多肽包含:
(i)选自重链恒定区和轻链恒定区的第二免疫球蛋白恒定区,其中该第二免疫球蛋白恒定区与第一免疫球蛋白恒定区不同,
(ii)与所述第二恒定区对应的免疫球蛋白可变区,以及
(iii)能够指导所述第二免疫球蛋白亚基多肽在细胞表面上表达或分泌的信号肽;
其中所述第二免疫球蛋白亚基多肽能与所述第一免疫球蛋白亚基多肽结合,从而形成附着在宿主细胞膜表面的免疫球蛋白分子或其抗原特异性片段;
(c)允许所述宿主细胞表达免疫球蛋白分子或其抗原特异性片段;
(d)将所述免疫球蛋白分子与抗原进行接触;以及
(e)回收第一文库中表达对所述抗原有特异性的免疫球蛋白分子或其抗原特异性片段的那些多核苷酸。
2.权利要求1的方法,另外包括:
(f)将所述回收到的多核苷酸导入能表达所述免疫球蛋白分子的宿主细胞群;
(g)向该宿主细胞导入所述第二多核苷酸文库;
(h)允许所述宿主细胞表达免疫球蛋白分子或其抗原特异性片段;
(i)将所述宿主细胞与抗原进行接触;以及
(j)回收第一文库中表达对所述抗原有特异性的免疫球蛋白分子或其抗原特异性片段的那些多核苷酸。
3.权利要求2的方法,另外包括将步骤(f)-(j)重复一或多次,从而富集所述第一文库中编码第一免疫球蛋白亚基多肽的多核苷酸,其中该第一免疫球蛋白亚基多肽作为免疫球蛋白分子或其抗原特异性片段的一部分,能特异地结合所述抗原。
4.权利要求1的方法,另外包括分离从所述第一文库中回收到的那些多核苷酸。
5.权利要求4的方法,另外包括:
(k)将所述第二多核苷酸文库导入能表达所述免疫球蛋白分子的真核宿主细胞群;
(l)向该宿主细胞导入分离自第一文库的那些多核苷酸;
(m)允许所述宿主细胞表达免疫球蛋白分子或其抗原特异性片段;
(n)将该宿主细胞与所述特异抗原进行接触;以及
(o)回收所述第二文库中表达对所述抗原有特异性的免疫球蛋白分子或其抗原特异性片段的那些多核苷酸。
6.权利要求5的方法,另外包括:
(p)将所述回收到的多核苷酸导入能够表达所述免疫球蛋白分子的宿主细胞群;
(q)向该宿主细胞导入分离自第一文库的那些多核苷酸;
(r)允许宿主细胞表达免疫球蛋白分子或其抗原特异性片段;
(s)将该宿主细胞与所述抗原进行接触,以及
(t)回收所述第二文库中表达对所述抗原有特异性的免疫球蛋白分子或其抗原特异性片段的那些多核苷酸。
7.权利要求6的方法,另外包括将步骤(p)-(t)重复一或多次,从而富集所述第二文库中编码第二免疫球蛋白亚基多肽的多核苷酸,其中该第二免疫球蛋白亚基多肽作为免疫球蛋白分子或其抗原特异性片段的一部分,能特异地结合所述抗原。
8.权利要求7的方法,另外包括分离从所述第二文库中回收到的那些多核苷酸。
9.权利要求1的方法,其中所述免疫球蛋白分子是人免疫球蛋白分子。
10.权利要求1的方法,其中所述第一免疫球蛋白亚基多肽是免疫球蛋白重链,或其抗原特异性片段。
11.权利要求10的方法,其中所述免疫球蛋白重链或其抗原特异性片段是膜结合形式的免疫球蛋白重链。
12.权利要求11的方法,其中所述免疫球蛋白重链或其抗原特异性片段包含天然的免疫球蛋白跨膜结构域。
13.权利要求11的方法,其中所述免疫球蛋白重链或其抗原特异性片段作为融合蛋白的一部分而附着在所述宿主细胞上。
14.权利要求13的方法,其中所述融合蛋白包含异源跨膜结构域。
15.权利要求13的方法,其中所述融合蛋白包含fas死亡结构域。
16.权利要求10的方法,其中所述免疫球蛋白重链或其抗原特异性片段选自IgM重链,IgD重链,IgG重链,IgA重链,IgE重链,以及任何所述重链的抗原特异性片段。
17.权利要求10的方法,其中所述免疫球蛋白重链恒定区序列包含能支持改变了的免疫效应子功能的修饰。
18.权利要求16的方法,其中所述免疫球蛋白重链或其抗原特异性片段包含IgM重链或其抗原特异性片段。
19.权利要求1的方法,其中所述第二免疫球蛋白亚基多肽是免疫球蛋白轻链,或其抗原特异性片段。
20.权利要求19的方法,其中所述免疫球蛋白轻链或其抗原特异性片段可与所述免疫球蛋白重链或其抗原特异性片段联合,从而产生免疫球蛋白分子或其抗原特异性片段。
21.权利要求19的方法,其中所述免疫球蛋白轻链选自κ轻链和λ轻链。
22.权利要求1的方法,其中所述第一多核苷酸文库构建在真核病毒载体中。
23.权利要求1的方法,其中所述第二多核苷酸文库构建在真核病毒载体中。
24.权利要求5的方法,其中所述分离自第一文库的多核苷酸是利用真核病毒载体导入的。
25.权利要求1的方法,其中所述第二多核苷酸文库构建在质粒载体中。
26.权利要求22的方法,其中所述宿主细胞用MOI在大约1到10的第一文库进行感染,所述第二文库在允许每个被感染宿主细胞能摄取所述第二文库的多达20个多核苷酸的条件下被导入。
27.权利要求5的方法,其中所述分离自第一文库的多核苷酸是在质粒载体中导入所述宿主细胞的。
28.权利要求22的方法,其中所述真核病毒载体是动物病毒载体。
29.权利要求23的方法,其中所述真核病毒载体是动物病毒载体。
30.权利要求28的方法,其中所述病毒载体能在哺乳动物细胞内产生感染性病毒颗粒。
31.权利要求30的方法,其中所述病毒载体的天然基因组是DNA。
32.权利要求30的方法,其中所述病毒载体的天然基因组是RNA。
33.权利要求31的方法,其中所述病毒载体的天然基因组是线性双链DNA。
34.权利要求33的方法,其中所述病毒载体选自腺病毒载体,疱疹病毒载体和痘病毒载体。
35.权利要求34的方法,其中所述病毒载体是痘病毒载体。
36.权利要求35的方法,其中所述痘病毒载体选自正痘病毒载体,禽痘病毒载体,山羊痘病毒载体,野兔痘病毒载体,昆虫痘病毒载体和猪痘病毒载体。
37.权利要求36的方法,其中所述痘病毒载体是选自痘苗病毒载体和浣熊痘病毒载体的正痘病毒载体。
38.权利要求37的方法,其中所述动物病毒载体是痘苗病毒载体。
39.权利要求38的方法,其中所述宿主细胞允许产生所述病毒的感染性病毒颗粒。
40.权利要求38的方法,其中所述痘苗病毒是减毒的。
41.权利要求40的方法,其中所述痘苗病毒载体是D4R合成缺陷型。
42.权利要求35的方法,其中所述第一多核苷酸文库的转录调控区能在痘病毒感染的细胞的胞质中发挥作用。
43.权利要求25的方法,其中所述质粒载体通过可操纵地连接转录调控区而指导所述第二免疫球蛋白亚基在痘病毒感染的细胞的胞质中合成。
44.权利要求42的方法,其中所述转录调控区包含启动子。
45.权利要求44的方法,其中所述启动子是组成型的。
46.权利要求45的方法,其中所述启动子是痘苗病毒p7.5启动子。
47.权利要求45的方法,其中所述启动子是合成的早/晚期启动子。
48.权利要求44的方法,其中所述启动子是在表达T7 RNA聚合酶的细胞中有活性的T7噬菌体启动子。
49.权利要求42的方法,其中所述转录调控区包含转录终止区。
50.权利要求22的方法,其中所述第一多核苷酸文库构建在真核病毒载体中,构建方法包括:
(a)切割分离的线性DNA病毒基因组,从而产生第一病毒片段和第二病毒片段,其中所述第一片段与第二片段没有同源性;
(b)提供转移质粒群,这些质粒包含与转录调控区可操纵地连接在一起、编码所述多个免疫球蛋白重链群的多核苷酸,侧接有5’旁侧区和3’旁侧区,其中所述5’旁侧区与所述第一病毒片段同源,3’旁侧区与第二病毒片段同源;并且其中所述转移质粒能够与所述第一和第二病毒片段同源重组,从而形成活的病毒基因组;
(c)将所述转移质粒以及第一和第二病毒片段,在该转移质粒与病毒片段能进行体内同源重组的条件下导入宿主细胞,从而产生含有编码免疫球蛋白重链之多核苷酸的被修饰的活病毒基因组;以及
(d)回收所述被修饰的病毒基因组。
51.权利要求23的方法,其中所述第二多核苷酸文库构建在真核病毒载体中,构建方法包括:
(a)切割分离的线性DNA病毒基因组从而产生第一病毒片段和第二病毒片段,其中所述第一片段与第二片段没有同源性;
(b)提供转移质粒群,这些质粒包含与转录调控区可操纵地连接在一起、编码所述免疫球蛋白轻链群的多核苷酸,侧接有5’旁侧区和3’旁侧区,其中所述5’旁侧区与所述第一病毒片段同源,3’旁侧区与第二病毒片段同源;并且其中所述转移质粒能够与所述第一和第二病毒片段同源重组,从而形成活的病毒基因组;
(c)将所述转移质粒以及第一和第二病毒片段,在该转移质粒与病毒片段能进行体内同源重组的条件下导入宿主细胞,从而产生含有编码免疫球蛋白轻链之多核苷酸的被修饰的活病毒基因组;以及
(d)回收所述被修饰的病毒基因组。
52.权利要求1的方法,其中所述编码抗原特异性免疫球蛋白分子的多核苷酸通过检测以下效果得以鉴定:
(a)抗原诱导的细胞死亡;
(b)抗原诱导的信号传递;或者
(c)抗原特异性结合。
53.权利要求5的方法,其中所述编码抗原特异性免疫球蛋白分子的多核苷酸通过检测以下效果得以鉴定:
(a)抗原诱导的细胞死亡;
(b)抗原诱导的信号传递;或者
(c)抗原特异性结合。
54.权利要求52的方法,其中所述效果是抗原诱导的细胞死亡。
55.权利要求53的方法,其中所述效果是抗原诱导的细胞死亡。
56.权利要求54的方法,其中所述宿主细胞在其表面表达免疫球蛋白分子,这些表达能与所述抗原结合的免疫球蛋白分子的宿主细胞通过诱导细胞凋亡而直接对抗原特异性免疫球蛋白受体的交联产生应答。
57.权利要求55的方法,其中所述宿主细胞在其表面表达免疫球蛋白分子,这些表达能与所述抗原结合的免疫球蛋白分子的宿主细胞通过诱导细胞凋亡而直接对抗原特异性免疫球蛋白受体的交联产生应答。
58.权利要求52的方法,其中所述效果是抗原诱导的信号传递。
59.权利要求53的方法,其中所述效果是抗原诱导的信号传递。
60.权利要求58的方法,其中所述宿主细胞在其表面表达免疫球蛋白分子,这些表达能与所述抗原结合的免疫球蛋白分子的宿主细胞通过表达可检测的受体分子而对抗原特异性免疫球蛋白受体的交联产生应答。
61.权利要求59的方法,其中所述宿主细胞在其表面表达免疫球蛋白分子,这些表达能与所述抗原结合的免疫球蛋白分子的宿主细胞通过表达可检测的受体分子而对抗原特异性免疫球蛋白受体的交联产生应答。
62.权利要求60的方法,其中所述受体分子选自萤光素酶,绿色荧光蛋白和β-半乳糖苷酶。
63.权利要求61的方法,其中所述受体分子选自萤光素酶,绿色荧光蛋白和β-半乳糖苷酶。
64.权利要求52的方法,其中所述效果是抗原特异性结合。
65.权利要求64的方法,包括:
(a)在所述宿主细胞所表达的抗原特异性免疫球蛋白分子能与所述抗原结合的条件下,将宿主细胞池与抗原进行接触;和
(b)从那些表达与所述抗原结合的免疫球蛋白分子的宿主细胞池或者先前留出的多核苷酸复制集中回收第一文库的多核苷酸。
66.权利要求65的方法,另外包括:
(c)将所述回收到的多核苷酸分成多个亚池,将这些亚池导入能表达所述免疫球蛋白分子的宿主细胞群;
(d)允许所述宿主细胞表达免疫球蛋白分子或其抗原特异性片段;
(e)在所述宿主细胞所表达的抗原特异性免疫球蛋白分子能与所述抗原结合的条件下,将所述池与抗原进行接触;以及
(f)从那些表达与所述抗原结合的免疫球蛋白分子的宿主细胞池或者先前留出的多核苷酸复制集中回收第一文库的多核苷酸。
67.权利要求66的方法,另外包括将步骤(c)-(f)重复一或多次,从而富集所述第一文库中编码第一免疫球蛋白亚基多肽的多核苷酸,其中该第一免疫球蛋白亚基多肽作为免疫球蛋白分子或其抗原特异性片段的一部分,能特异地结合所述抗原。
68.权利要求64的方法,其中所述抗原附着在基质上,该基质选自合成颗粒,聚合物,磁珠和蛋白质包被的组织培养板。
69.权利要求64的方法,其中所述抗原表达在表达抗原的递呈细胞的表面上,该表达抗原的递呈细胞是通过用可操纵地编码所述抗原的多核苷酸转染无抗原的递呈细胞构建的。
70.权利要求69的方法,其中所述表达抗原的递呈细胞构建在选自下组的无抗原的递呈细胞中:L细胞,Cos7细胞,293细胞,HeLa细胞和NIH 3T3细胞。
71.权利要求65的方法,其中所述抗原缀合了荧光标签,通过荧光激活细胞分选来鉴定表达可与抗原结合的免疫球蛋白分子的宿主细胞池。
72.权利要求53的方法,其中所述效果是抗原特异性结合。
73.权利要求72的方法,包括:
(a)在所述宿主细胞所表达的抗原特异性免疫球蛋白分子能与所述抗原结合的条件下,将宿主细胞池与抗原进行接触;和
(b)从那些表达与所述抗原结合的免疫球蛋白分子的宿主细胞池或者先前留出的多核苷酸复制集中回收第二文库的多核苷酸。
74.权利要求73的方法,另外包括:
(c)将所述回收到的多核苷酸分成多个亚池,将这些亚池导入能表达所述免疫球蛋白分子的宿主细胞群;
(d)允许所述宿主细胞表达免疫球蛋白分子,或其抗原特异性片段;
(e)在所述宿主细胞所表达的抗原特异性免疫球蛋白分子能与所述抗原结合的条件下,将所述池与抗原进行接触;以及
(f)从那些表达与所述抗原结合的免疫球蛋白分子的宿主细胞池或者先前留出的多核苷酸复制集中回收第二文库的多核苷酸。
75.权利要求74的方法,另外包括将步骤(c)-(f)重复一或多次,从而富集所述第一文库中编码第一免疫球蛋白亚基多肽的多核苷酸,其中该第一免疫球蛋白亚基多肽作为免疫球蛋白分子或其抗原特异性片段的一部分,能特异地结合所述抗原。
76.权利要求72的方法,其中所述抗原附着在基质上,该基质选自合成颗粒,聚合物,磁珠和蛋白质包被的组织培养板。
77.权利要求72的方法,其中所述抗原表达在表达抗原的递呈细胞的表面上,该表达抗原的递呈细胞是通过用可操纵地编码所述抗原的多核苷酸转染无抗原的递呈细胞构建的。
78.权利要求77的方法,其中所述表达抗原的递呈细胞构建在选自下组的无抗原的递呈细胞中:L细胞,Cos7细胞,293细胞,HeLa细胞和NIH 3T3细胞。
79.权利要求73的方法,其中所述抗原缀合了荧光标签,通过荧光激活细胞分选来鉴定表达可与抗原结合的免疫球蛋白分子的宿主细胞池。
80.一种用于选择在真核宿主细胞内表达的抗原特异性重组免疫球蛋白的试剂盒,包含:
(a)可操纵地连接转录调控区、编码第一免疫球蛋白亚基多肽群的第一多核苷酸文库,其中每个第一免疫球蛋白亚基多肽包含:
(i)选自重链恒定区和轻链恒定区的第一免疫球蛋白恒定区,
(ii)与所述第一恒定区对应的免疫球蛋白可变区,以及
(iii)能够引导所述第一免疫球蛋白亚基多肽在细胞表面上表达或分泌的信号肽,
其中所述第一文库构建在真核病毒载体中;
(b)可操纵地连接转录调控区、编码第二免疫球蛋白亚基多肽群的第二多核苷酸文库,其中每个第二免疫球蛋白亚基多肽包含:
(i)选自重链恒定区和轻链恒定区的第二免疫球蛋白恒定区,其中该第二免疫球蛋白恒定区与第一免疫球蛋白恒定区不同,
(ii)与所述第二恒定区对应的免疫球蛋白可变区,以及
(iii)能够引导所述第二免疫球蛋白亚基多肽在细胞表面上表达或分泌的信号肽,
其中所述第二免疫球蛋白亚基多肽能够与第一免疫球蛋白亚基多肽组合,从而形成表面免疫球蛋白分子,或其抗原特异性片段,并且该第二文库构建在真核病毒载体中;和
(c)能够表达所述免疫球蛋白分子的宿主细胞群;
其中所述第一和第二文库都以感染性病毒颗粒和灭活的病毒颗粒两种形式提供,并且所述灭活的病毒颗粒能感染宿主细胞,使它表达第一和第二免疫球蛋白亚基多肽,但不进行病毒复制;并且
所述宿主细胞表达的抗原特异性免疫球蛋白分子是通过与抗原的相互作用被选择的。
81.通过权利要求1的方法制备的抗体或其抗原特异性片段。
82.一种包含权利要求81所述抗体和药物可接受载体的组合物。
83.一种选择编码单结构域的抗原特异性免疫球蛋白分子或其抗原特异性片段的多核苷酸的方法,包括:
(a)将可操纵地连接转录调控区、编码单结构域免疫球蛋白多肽群的多核苷酸文库导入到能表达所述免疫球蛋白分子的真核宿主细胞群内;其中每个免疫球蛋白多肽包含:
(i)免疫球蛋白重链恒定区,
(ii)骆驼源化的免疫球蛋白重链可变区,以及
(iii)能够指导所述免疫球蛋白亚基多肽在细胞表面上表达或分泌的信号肽;
(b)允许所述宿主细胞表达免疫球蛋白分子或其抗原特异性片段;
(c)将所述免疫球蛋白分子与抗原进行接触;以及
(d)从表达可与所述抗原结合的免疫球蛋白分子的宿主细胞内回收文库多核苷酸。
CNB018209041A 2000-11-17 2001-11-14 筛选编码抗原特异性免疫球蛋白分子或其抗原特异性片段的方法 Expired - Fee Related CN1306272C (zh)

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
US24926800P 2000-11-17 2000-11-17
US60/249,268 2000-11-17
US26206701P 2001-01-18 2001-01-18
US60/262,067 2001-01-18
US27142401P 2001-02-27 2001-02-27
US60/271,424 2001-02-27
US29808701P 2001-06-15 2001-06-15
US60/298,087 2001-06-15
PCT/US2001/043076 WO2002102855A2 (en) 2000-11-17 2001-11-14 In vitro methods of producing and identifying immunoglobulin molecules in eukaryotic cells

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN 200710005118 Division CN101016543A (zh) 2000-11-17 2001-11-14 筛选编码抗原特异性免疫球蛋白分子或其抗原特异性片段的多核苷酸的方法

Publications (2)

Publication Number Publication Date
CN1527944A true CN1527944A (zh) 2004-09-08
CN1306272C CN1306272C (zh) 2007-03-21

Family

ID=27500312

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB018209041A Expired - Fee Related CN1306272C (zh) 2000-11-17 2001-11-14 筛选编码抗原特异性免疫球蛋白分子或其抗原特异性片段的方法

Country Status (9)

Country Link
US (2) US7858559B2 (zh)
EP (1) EP1340088B1 (zh)
JP (1) JP4368196B2 (zh)
CN (1) CN1306272C (zh)
AT (1) ATE352040T1 (zh)
AU (1) AU2001297872B2 (zh)
CA (1) CA2429544C (zh)
DE (1) DE60126130T2 (zh)
WO (1) WO2002102855A2 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106905415A (zh) * 2017-02-23 2017-06-30 新疆军区总医院 与耐药宫颈癌癌细胞系Hela细胞膜表面分子结合的多肽
CN107459577A (zh) * 2010-12-01 2017-12-12 默沙东公司 表面锚定的fc‑诱饵抗体展示系统
US11104721B2 (en) 2010-12-01 2021-08-31 Merck Sharp & Dohme Corp. Surface, anchored FC-bait antibody display system

Families Citing this family (81)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6696251B1 (en) 1996-05-31 2004-02-24 Board Of Trustees Of The University Of Illinois Yeast cell surface display of proteins and uses thereof
US6759243B2 (en) * 1998-01-20 2004-07-06 Board Of Trustees Of The University Of Illinois High affinity TCR proteins and methods
US7067251B2 (en) * 2000-03-28 2006-06-27 University Of Rochester Methods of directly selecting cells expressing inserts of interest
NZ522282A (en) * 2000-04-04 2005-03-24 Univ Rochester A gene differentially expressed in breast and bladder cancer and encoded polypeptides
CN1306272C (zh) * 2000-11-17 2007-03-21 罗切斯特大学 筛选编码抗原特异性免疫球蛋白分子或其抗原特异性片段的方法
US20050196755A1 (en) * 2000-11-17 2005-09-08 Maurice Zauderer In vitro methods of producing and identifying immunoglobulin molecules in eukaryotic cells
EP1830190A3 (en) * 2000-11-17 2008-07-09 University Of Rochester In vitro methods of producing and identifying immunoglobulin molecules in eukaryotic cells
EP1495055B1 (en) * 2002-04-18 2013-08-14 Genencor International, Inc. Production of functional antibodies in filamentous fungi
NZ537579A (en) 2002-06-10 2006-10-27 Vaccinex Inc C35 peptide epitopes and their analogs
GB0221940D0 (en) * 2002-09-20 2002-10-30 Athena Biodetection Aps Antibody and screening method
JP4477579B2 (ja) * 2003-01-21 2010-06-09 中外製薬株式会社 抗体の軽鎖スクリーニング方法
PT2248899E (pt) 2003-03-19 2015-09-23 Biogen Ma Inc Proteína de ligação do receptor nogo
CN1542132A (zh) * 2003-04-30 2004-11-03 上海新霁生物科技有限公司 高效表达治疗肿瘤并含有人恒定区全抗体基因的重组病毒及其用途
US20050158323A1 (en) * 2003-12-04 2005-07-21 Vaccinex, Inc. Methods of killing tumor cells by targeting internal antigens exposed on apoptotic tumor cells
US7884054B2 (en) * 2003-12-22 2011-02-08 Amgen Inc. Methods for identifying functional antibodies
US20050266425A1 (en) * 2003-12-31 2005-12-01 Vaccinex, Inc. Methods for producing and identifying multispecific antibodies
ES2395094T3 (es) 2004-06-24 2013-02-08 Biogen Idec Ma Inc. Tratamiento de afecciones que implican la desmielinización
US7846438B2 (en) 2004-08-03 2010-12-07 Biogen Idec Ma Inc. Methods of promoting neurite outgrowth with soluble TAJ polypeptides
WO2006130855A2 (en) * 2005-06-01 2006-12-07 California Institute Of Technology Method of targeted gene delivery using viral vectors
MX2008000253A (es) 2005-07-08 2008-04-02 Biogen Idec Inc Anticuerpos de sp35 y usos de los mismos.
KR20080073293A (ko) * 2005-10-14 2008-08-08 메디뮨 엘엘씨 항체 라이브러리의 세포 디스플레이
MX2008005764A (es) 2005-11-04 2008-11-18 Biogen Idec Inc Metodos para promover el crecimiento de neuritas y la supervivencia en neuronas dopaminergicas.
JP5312039B2 (ja) 2005-12-02 2013-10-09 バイオジェン・アイデック・エムエイ・インコーポレイテッド 脱髄の関与する状態の処置
CN103215293B (zh) 2006-01-27 2015-10-28 比奥根Ma公司 Nogo受体拮抗剂
KR20080113268A (ko) * 2006-03-28 2008-12-29 바이오겐 아이덱 엠에이 인코포레이티드 항 igf-1r 항체 및 그의 용도
CA2656918A1 (en) * 2006-06-22 2007-12-27 Vaccinex, Inc. Anti-c35 antibodies for treating cancer
JP2009545319A (ja) * 2006-08-03 2009-12-24 バクシネックス,インコーポレーテッド 抗il−6モノクローナル抗体およびその使用
US9382327B2 (en) 2006-10-10 2016-07-05 Vaccinex, Inc. Anti-CD20 antibodies and methods of use
EP1921142A1 (en) 2006-11-07 2008-05-14 Cytos Biotechnology AG Selection of human monoclonal antibodies by eukaryotic cell display
CN103408661B (zh) 2007-01-05 2016-04-06 苏黎世大学 提供疾患特异性结合分子和靶的方法
US8128926B2 (en) 2007-01-09 2012-03-06 Biogen Idec Ma Inc. Sp35 antibodies and uses thereof
DK2740744T3 (da) 2007-01-09 2018-04-23 Biogen Ma Inc Sp35-antistoffer og anvendelser deraf
JP5754135B2 (ja) 2007-03-26 2015-07-29 アジェナス インコーポレイテッド 関心対象のタンパク質の細胞表面ディスプレイ、スクリーニング、および産生
US7807168B2 (en) * 2007-04-10 2010-10-05 Vaccinex, Inc. Selection of human TNFα specific antibodies
KR20100052545A (ko) * 2007-08-28 2010-05-19 바이오겐 아이덱 엠에이 인코포레이티드 Igf―1r의 다중 에피토프에 결합하는 조성물
EP2190480A4 (en) * 2007-08-28 2013-01-23 Biogen Idec Inc ANTI-IGR-1R ANTIBODIES AND ITS USES
WO2009059235A2 (en) 2007-11-01 2009-05-07 Facet Biotech Corporation Immunoglobulin display vectors
US8236316B2 (en) 2007-11-21 2012-08-07 Oregon Health & Science University Anti-factor XI monoclonal antibodies and methods of use thereof
CA2710680C (en) 2007-12-26 2018-10-16 Vaccinex, Inc. Anti-c35 antibody combination therapies and methods
EP2098536A1 (en) * 2008-03-05 2009-09-09 4-Antibody AG Isolation and identification of antigen- or ligand-specific binding proteins
CN102065895A (zh) * 2008-04-11 2011-05-18 比奥根艾迪克Ma公司 抗-igf-1r抗体和其它化合物的治疗联合
DK2982695T3 (da) 2008-07-09 2019-05-13 Biogen Ma Inc Sammensætninger, der omfatter antistoffer mod lingo eller fragmenter deraf
SI2949666T1 (sl) 2008-12-19 2019-03-29 Biogen International Neuroscience Gmbh Človeška anti alfa-sinukleinska protitelesa
US20120003235A1 (en) 2008-12-31 2012-01-05 Biogen Idec Ma Inc. Anti-lymphotoxin antibodies
EP2411412B1 (en) 2009-03-24 2015-05-27 Teva Biopharmaceuticals USA, Inc. Humanized antibodies against light and uses thereof
CN108912228B (zh) 2009-05-08 2022-03-15 瓦西尼斯公司 抗-cd100抗体和其使用方法
KR20120117931A (ko) * 2010-02-12 2012-10-24 온코메드 파마슈티칼스, 인크. 폴리펩타이드를 발현하는 세포를 확인 및 분리하는 방법
WO2011130305A2 (en) * 2010-04-12 2011-10-20 Sorrento Therapeutics Inc. Method for displaying antibodies
WO2011146120A2 (en) * 2010-05-18 2011-11-24 Marshall Christopher P Assay for identifying antigens that activate b cell receptors comprising neutralizing antibodies
NZ608318A (en) 2010-09-02 2015-03-27 Vaccinex Inc Anti-cxcl13 antibodies and methods of using the same
JP2014503178A (ja) 2010-10-11 2014-02-13 バイオジェン アイデック インターナショナル ニューロサイエンス ゲーエムベーハー ヒト抗タウ抗体
US9283271B2 (en) 2010-12-17 2016-03-15 Neurimmune Holding Ag Human anti-SOD1 antibodies
WO2012092376A2 (en) * 2010-12-31 2012-07-05 Short Jay M Comprehensive monoclonal antibody generation
HUE038509T2 (hu) 2011-06-10 2018-10-29 Medimmune Ltd Pseudomonas PSL elleni kötõmolekula és alkalmazása
CA2839563C (en) 2011-06-23 2019-10-29 Biogen Idec International Neuroscience Gmbh Anti-alpha synuclein binding molecules
CA3161431A1 (en) 2011-11-07 2013-05-16 Medimmune Limited Combination therapies using anti-pseudomonas psl and pcrv binding molecules
KR20140107295A (ko) 2011-12-22 2014-09-04 에프. 호프만-라 로슈 아게 진핵 세포용 전장 항체 표시 시스템 및 그것의 용도
US9708601B2 (en) 2012-04-26 2017-07-18 Vaccinex, Inc. Fusion proteins to facilitate selection of cells infected with specific immunoglobulin gene recombinant vaccinia virus
WO2013173364A2 (en) 2012-05-14 2013-11-21 Biogen Idec Ma Inc. Lingo-2 antagonists for treatment of conditions involving motor neurons
EA035932B1 (ru) 2012-12-21 2020-09-02 Байоджен Ма Инк. Человеческие анти-тау антитела
US9771413B2 (en) 2012-12-31 2017-09-26 Neurimmune Holding Ag Recombinant human antibodies for therapy and prevention of polyomavirus-related diseases
AU2014210475B2 (en) 2013-01-24 2017-03-02 Abtlas Co., Ltd. Protein combination-based Fv library, and preparation method therefor
CN103214580B (zh) * 2013-03-07 2014-12-17 中国人民解放军军事医学科学院基础医学研究所 一种抗Her2免疫细胞因子及其应用
GB201407852D0 (en) 2014-05-02 2014-06-18 Iontas Ltd Preparation of libraries od protein variants expressed in eukaryotic cells and use for selecting binding molecules
WO2016050822A2 (en) 2014-09-30 2016-04-07 Neurimmune Holding Ag Human-derived anti-dipeptide repeats (dprs) antibody
MX2017009038A (es) 2015-01-08 2017-10-25 Biogen Ma Inc Antagonistas de proteina 1 de interacción con el receptor de nogo que contiene el dominio de inmunoglobulina y repeticiones ricas en leucina (lingo-1) y usos para el tratamiento de trastornos desmielinizantes.
EP3277717B1 (en) 2015-03-31 2020-11-18 Medimmune Limited A novel il33 form, mutated forms of il33, antibodies, assays and methods of using the same
CA2997673A1 (en) 2015-09-15 2017-03-23 Board Of Regents, The University Of Texas System T-cell receptor (tcr)-binding antibodies and uses thereof
SG11201807523PA (en) 2016-03-10 2018-09-27 Viela Bio Inc Ilt7 binding molecules and methods of using the same
RU2759846C2 (ru) 2016-04-22 2021-11-18 Вэксинекс, Инк. Дисплей интегрального мембранного белка на внеклеточных оболочечных вирионах поксвируса
JP2018035137A (ja) 2016-07-13 2018-03-08 マブイミューン ダイアグノスティックス エイジーMabimmune Diagnostics Ag 新規な抗線維芽細胞活性化タンパク質(fap)結合薬剤およびその使用
WO2018026715A1 (en) * 2016-08-02 2018-02-08 Vaccinex, Inc. Improved methods for producing polynucleotide libraries in vaccinia virus/eukaryotic cells
KR20200004324A (ko) 2017-05-05 2020-01-13 백시넥스 인코포레이티드 인간 항-세마포린 4d 항체
CN107418913B (zh) * 2017-06-14 2020-12-22 湖南省农业生物技术研究中心 一种转化污染土壤中重金属镉的微生物菌剂的应用
WO2020109627A1 (en) 2018-11-30 2020-06-04 Institut Gustave Roussy Anti-neuropilin-1 and anti-programmed cell death-1 combination therapy for treating cancer
SG11202108560RA (en) 2019-02-13 2021-09-29 Brigham & Womens Hospital Inc Anti-peripheral lymph node addressin antibodies and uses thereof
WO2020232165A1 (en) * 2019-05-14 2020-11-19 Qlb Biotherapeutics Bispecific anti-cd3 x cd20 antibodies and uses thereof
JP7470817B2 (ja) 2020-05-06 2024-04-18 バクシネックス インコーポレーティッド ポックスウイルス細胞外エンベロープビリオン上での膜内在性タンパク質の提示
TW202306982A (zh) 2021-04-19 2023-02-16 英商梅迪繆思有限公司 具有改善的穩定性的抗tslp fab
US20240093177A1 (en) 2022-06-10 2024-03-21 Vaccinex, Inc. Methods to select antibodies specific to complex membrane antigens
WO2024038187A1 (en) 2022-08-19 2024-02-22 Medimmune Limited Assay for detection of il-33

Family Cites Families (89)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4603112A (en) * 1981-12-24 1986-07-29 Health Research, Incorporated Modified vaccinia virus
US4769330A (en) * 1981-12-24 1988-09-06 Health Research, Incorporated Modified vaccinia virus and methods for making and using the same
US5110587A (en) * 1981-12-24 1992-05-05 Health Research, Incorporated Immunogenic composition comprising synthetically modified vaccinia virus
US4656134A (en) * 1982-01-11 1987-04-07 Board Of Trustees Of Leland Stanford Jr. University Gene amplification in eukaryotic cells
ATE64618T1 (de) * 1982-03-15 1991-07-15 Schering Corp Hybride dns, damit hergestellte bindungszusammensetzung und verfahren dafuer.
US7045313B1 (en) 1982-11-30 2006-05-16 The United States Of America As Represented By The Department Of Health And Human Services Recombinant vaccinia virus containing a chimeric gene having foreign DNA flanked by vaccinia regulatory DNA
GB8308235D0 (en) 1983-03-25 1983-05-05 Celltech Ltd Polypeptides
US4816567A (en) * 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
JPS6147500A (ja) 1984-08-15 1986-03-07 Res Dev Corp Of Japan キメラモノクロ−ナル抗体及びその製造法
US5807715A (en) * 1984-08-27 1998-09-15 The Board Of Trustees Of The Leland Stanford Junior University Methods and transformed mammalian lymphocyte cells for producing functional antigen-binding protein including chimeric immunoglobulin
GB8422238D0 (en) 1984-09-03 1984-10-10 Neuberger M S Chimeric proteins
US4683202A (en) 1985-03-28 1987-07-28 Cetus Corporation Process for amplifying nucleic acid sequences
US4965188A (en) * 1986-08-22 1990-10-23 Cetus Corporation Process for amplifying, detecting, and/or cloning nucleic acid sequences using a thermostable enzyme
ES8706823A1 (es) 1985-03-28 1987-06-16 Cetus Corp Un procedimiento para detectar la presencia o ausencia de al menos una secuencia especifica de acidos nucleicos en una muestra
AU606320B2 (en) 1985-11-01 1991-02-07 International Genetic Engineering, Inc. Modular assembly of antibody genes, antibodies prepared thereby and use
US5576195A (en) * 1985-11-01 1996-11-19 Xoma Corporation Vectors with pectate lyase signal sequence
US5618920A (en) * 1985-11-01 1997-04-08 Xoma Corporation Modular assembly of antibody genes, antibodies prepared thereby and use
US4800159A (en) * 1986-02-07 1989-01-24 Cetus Corporation Process for amplifying, detecting, and/or cloning nucleic acid sequences
US5225539A (en) * 1986-03-27 1993-07-06 Medical Research Council Recombinant altered antibodies and methods of making altered antibodies
GB8607679D0 (en) 1986-03-27 1986-04-30 Winter G P Recombinant dna product
JPS63152984A (ja) 1986-08-18 1988-06-25 Wakunaga Pharmaceut Co Ltd 抗緑膿菌ヒト型抗体のl鎖をコ−ドするdna
US4889818A (en) * 1986-08-22 1989-12-26 Cetus Corporation Purified thermostable enzyme
IL85035A0 (en) 1987-01-08 1988-06-30 Int Genetic Eng Polynucleotide molecule,a chimeric antibody with specificity for human b cell surface antigen,a process for the preparation and methods utilizing the same
US4946786A (en) * 1987-01-14 1990-08-07 President And Fellows Of Harvard College T7 DNA polymerase
DE3852304T3 (de) 1987-03-02 1999-07-01 Enzon Lab Inc Organismus als Träger für "Single Chain Antibody Domain (SCAD)".
CA1341235C (en) 1987-07-24 2001-05-22 Randy R. Robinson Modular assembly of antibody genes, antibodies prepared thereby and use
AU2318288A (en) 1987-08-07 1989-03-09 Genelabs Incorporated Coincidence cloning method and library
US5965405A (en) * 1988-04-16 1999-10-12 Celltech Limited Method for producing Fv fragments in eukaryotic cells
US5223409A (en) * 1988-09-02 1993-06-29 Protein Engineering Corp. Directed evolution of novel binding proteins
KR0184860B1 (ko) 1988-11-11 1999-04-01 메디칼 리써어치 카운실 단일영역 리간드와 이를 포함하는 수용체 및 이들의 제조방법과 이용(법)
WO1990014443A1 (en) 1989-05-16 1990-11-29 Huse William D Co-expression of heteromeric receptors
US6291160B1 (en) * 1989-05-16 2001-09-18 Scripps Research Institute Method for producing polymers having a preselected activity
US6291161B1 (en) * 1989-05-16 2001-09-18 Scripps Research Institute Method for tapping the immunological repertiore
CA2016841C (en) 1989-05-16 1999-09-21 William D. Huse A method for producing polymers having a preselected activity
US6291159B1 (en) * 1989-05-16 2001-09-18 Scripps Research Institute Method for producing polymers having a preselected activity
US6291158B1 (en) * 1989-05-16 2001-09-18 Scripps Research Institute Method for tapping the immunological repertoire
CA2016842A1 (en) 1989-05-16 1990-11-16 Richard A. Lerner Method for tapping the immunological repertoire
US5023171A (en) * 1989-08-10 1991-06-11 Mayo Foundation For Medical Education And Research Method for gene splicing by overlap extension using the polymerase chain reaction
US5959177A (en) * 1989-10-27 1999-09-28 The Scripps Research Institute Transgenic plants expressing assembled secretory antibodies
US5780225A (en) * 1990-01-12 1998-07-14 Stratagene Method for generating libaries of antibody genes comprising amplification of diverse antibody DNAs and methods for using these libraries for the production of diverse antigen combining molecules
AU7247191A (en) * 1990-01-11 1991-08-05 Molecular Affinities Corporation Production of antibodies using gene libraries
DK0585287T3 (da) 1990-07-10 2000-04-17 Cambridge Antibody Tech Fremgangsmåde til fremstilling af specifikke bindingsparelementer
US5650150A (en) * 1990-11-09 1997-07-22 Gillies; Stephen D. Recombinant antibody cytokine fusion proteins
DE69230142T2 (de) * 1991-05-15 2000-03-09 Cambridge Antibody Tech Verfahren zur herstellung von spezifischen bindungspaargliedern
US5962255A (en) * 1992-03-24 1999-10-05 Cambridge Antibody Technology Limited Methods for producing recombinant vectors
GB9114468D0 (en) * 1991-07-04 1991-08-21 Wellcome Found Antibody production
ES2130177T3 (es) * 1991-08-10 1999-07-01 Medical Res Council Tratamiento de poblaciones de celulas.
US5445953A (en) * 1991-08-26 1995-08-29 Immuno Aktiengesellschaft Direct molecular cloning of a modified poxvirus genome
ES2136092T3 (es) * 1991-09-23 1999-11-16 Medical Res Council Procedimientos para la produccion de anticuerpos humanizados.
US20030036092A1 (en) * 1991-11-15 2003-02-20 Board Of Regents, The University Of Texas System Directed evolution of enzymes and antibodies
DK1024191T3 (da) * 1991-12-02 2008-12-08 Medical Res Council Fremstilling af autoantistoffer fremvist på fag-overflader ud fra antistofsegmentbiblioteker
US5733743A (en) * 1992-03-24 1998-03-31 Cambridge Antibody Technology Limited Methods for producing members of specific binding pairs
ES2162823T5 (es) * 1992-08-21 2010-08-09 Vrije Universiteit Brussel Inmunoglobulinas desprovistas de cadenas ligeras.
US6005079A (en) * 1992-08-21 1999-12-21 Vrije Universiteit Brussels Immunoglobulins devoid of light chains
DE69333115D1 (de) * 1992-09-22 2003-08-28 Biofocus Discovery Ltd Rekombinante viren, die an ihrer äusseren oberfläche ein nichtvirales polypeptid präsentieren
AU6796094A (en) 1993-04-29 1994-11-21 Raymond Hamers Production of antibodies or (functionalized) fragments thereof derived from heavy chain immunoglobulins of (camelidae)
CN1045820C (zh) * 1993-11-18 1999-10-20 重庆市肿瘤研究所 一种用于测定人ⅲ型前胶原的试剂盒及其测定方法
DK0744958T3 (da) * 1994-01-31 2003-10-20 Univ Boston Polyklonale antistofbiblioteker
FR2715940B1 (fr) * 1994-02-10 1996-04-26 Pasteur Merieux Serums Vacc Procédé de préparation d'une banque multicombinatoire de vecteurs d'expression de gènes d'anticorps, banque et systèmes d'expression d'anticorps "coliclonaux" obtenus.
US5605793A (en) * 1994-02-17 1997-02-25 Affymax Technologies N.V. Methods for in vitro recombination
WO1995030018A2 (en) * 1994-04-29 1995-11-09 Immuno Aktiengesellschaft Recombinant poxviruses with foreign polynucleotides in essential regions
US6010861A (en) * 1994-08-03 2000-01-04 Dgi Biotechnologies, Llc Target specific screens and their use for discovering small organic molecular pharmacophores
US6130364A (en) * 1995-03-29 2000-10-10 Abgenix, Inc. Production of antibodies using Cre-mediated site-specific recombination
EP0739981A1 (en) 1995-04-25 1996-10-30 Vrije Universiteit Brussel Variable fragments of immunoglobulins - use for therapeutic or veterinary purposes
EP0859841B1 (en) 1995-08-18 2002-06-19 MorphoSys AG Protein/(poly)peptide libraries
US5916771A (en) * 1996-10-11 1999-06-29 Abgenix, Inc. Production of a multimeric protein by cell fusion method
US6057098A (en) * 1997-04-04 2000-05-02 Biosite Diagnostics, Inc. Polyvalent display libraries
WO1998047343A2 (en) * 1997-04-04 1998-10-29 Biosite Diagnostics, Inc. Antibodies or binding protein libraries displayed on phage, cells, or other replicatable genetic packages
US6872518B2 (en) * 1997-09-22 2005-03-29 University Of Rochester Methods for selecting polynucleotides encoding T cell epitopes
GB9722131D0 (en) * 1997-10-20 1997-12-17 Medical Res Council Method
JP2001526054A (ja) * 1997-12-05 2001-12-18 インターツェル・ビオメディツィーニシェ・フォルシュングス− ウント・エントヴィックルングス・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 組合せライブラリーをスクリーニングするための方法および細胞
EP1051493A2 (en) 1998-01-26 2000-11-15 Unilever Plc Method for producing antibody fragments
EP0954978B1 (en) 1998-03-12 2011-11-30 VHsquared Limited New products comprising inactivated yeasts or moulds provided with active antibodies
AU776865B2 (en) * 1998-11-10 2004-09-23 University Of Rochester T cells specific for target antigens and methods and vaccines based thereon
ATE276359T1 (de) 1999-01-19 2004-10-15 Unilever Nv Verfahren zur herstellung von antikörperfragmenten
AU4770300A (en) 1999-05-14 2000-12-05 Medical Research Council Protein scaffold and its use to multimerise monomeric polypeptides
EP1214352A2 (en) 1999-09-07 2002-06-19 Viventia Biotech Inc. Enhanced phage display libraries of human vh fragments and methods for producing same
CN1301772A (zh) * 1999-12-30 2001-07-04 中国科学院生物物理研究所 特异性识别发育调控蛋白qBrn-2的抗体及其制备方法和用途
US20030194696A1 (en) * 2000-03-28 2003-10-16 University Of Rochester Methods of producing a library and methods of selecting polynucleotides of interest
US7067251B2 (en) * 2000-03-28 2006-06-27 University Of Rochester Methods of directly selecting cells expressing inserts of interest
US6410246B1 (en) * 2000-06-23 2002-06-25 Genetastix Corporation Highly diverse library of yeast expression vectors
AU2001278872A1 (en) * 2000-07-06 2002-01-21 Genvec, Inc. Method of identifying a binding partner of a gene product
CN1306272C (zh) 2000-11-17 2007-03-21 罗切斯特大学 筛选编码抗原特异性免疫球蛋白分子或其抗原特异性片段的方法
US20050196755A1 (en) * 2000-11-17 2005-09-08 Maurice Zauderer In vitro methods of producing and identifying immunoglobulin molecules in eukaryotic cells
WO2002086096A2 (en) 2001-01-23 2002-10-31 University Of Rochester Medical Center Methods of producing or identifying intrabodies in eukaryotic cells
US20020192675A1 (en) 2001-02-02 2002-12-19 The University Of Rochester Methods of identifying regulator molecules
EP1438400B1 (en) * 2001-10-01 2009-06-17 Dyax Corp. Multi-chain eukaryotic display vectors and uses thereof
AU2003294234A1 (en) 2002-10-22 2004-05-13 University Of Rochester Methods of producing a library and methods of selecting polynucleotides of interest
US20050266425A1 (en) * 2003-12-31 2005-12-01 Vaccinex, Inc. Methods for producing and identifying multispecific antibodies

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107459577A (zh) * 2010-12-01 2017-12-12 默沙东公司 表面锚定的fc‑诱饵抗体展示系统
US11104721B2 (en) 2010-12-01 2021-08-31 Merck Sharp & Dohme Corp. Surface, anchored FC-bait antibody display system
CN106905415A (zh) * 2017-02-23 2017-06-30 新疆军区总医院 与耐药宫颈癌癌细胞系Hela细胞膜表面分子结合的多肽

Also Published As

Publication number Publication date
EP1340088B1 (en) 2007-01-17
US8741810B2 (en) 2014-06-03
US20080167193A1 (en) 2008-07-10
ATE352040T1 (de) 2007-02-15
JP2004532645A (ja) 2004-10-28
EP1340088A2 (en) 2003-09-03
CN1306272C (zh) 2007-03-21
JP4368196B2 (ja) 2009-11-18
DE60126130D1 (de) 2007-03-08
DE60126130T2 (de) 2007-10-18
WO2002102855A3 (en) 2003-06-26
CA2429544C (en) 2010-10-19
CA2429544A1 (en) 2002-12-27
US7858559B2 (en) 2010-12-28
AU2001297872B2 (en) 2006-11-09
WO2002102855A2 (en) 2002-12-27
US20020123057A1 (en) 2002-09-05

Similar Documents

Publication Publication Date Title
CN1306272C (zh) 筛选编码抗原特异性免疫球蛋白分子或其抗原特异性片段的方法
CN1237076C (zh) 具有改变的效应功能的多肽变体
JP6193913B2 (ja) 産生宿主における抗体/タンパク質パフォーマンス及び発現の同時で統合された選択及び進化
CN1308448C (zh) 低分子化的tpo激动剂抗体
US20030104402A1 (en) Methods of producing or identifying intrabodies in eukaryotic cells
JP5804521B2 (ja) コレクション及びその使用方法
AU2001297872A1 (en) In vitro methods of producing and identifying immunoglobulin molecules in eukaryotic cells
JP2021168662A (ja) 免疫グロブリンの産生増強
CN1890369A (zh) 替代功能蛋白质的双特异性抗体
CN1268743C (zh) 编码细胞靶向部分和异源前体药物活化酶的基因构建体及其应用
US20050196755A1 (en) In vitro methods of producing and identifying immunoglobulin molecules in eukaryotic cells
US20050266425A1 (en) Methods for producing and identifying multispecific antibodies
CN1558916A (zh) 产生嵌合异源多聚体的组合物和方法
CN1561394A (zh) 人嗜中性粒细胞明胶酶相关脂卡林及有关蛋白的突变蛋白
CN1531554A (zh) 血纤维蛋白d-二聚体片段特异性的、来源于dd-3b6/22的人源化抗体
CN1617926A (zh) 呈递所希望的肽序列的结构
CN101016543A (zh) 筛选编码抗原特异性免疫球蛋白分子或其抗原特异性片段的多核苷酸的方法
TW201124535A (en) SORF constructs and multiple gene expression
CN1902228A (zh) 猴免疫球蛋白序列
CN1444651A (zh) 在酵母中生产抗体文库以及抗体文库的应用
JP2022537202A (ja) 所定の構成の複数の発現カセットの標的指向性組込みによって多価二重特異性抗体発現細胞を作製するための方法
EP1830190A2 (en) In vitro methods of producing and identifying immunoglobulin molecules in eukaryotic cells
JP7410983B2 (ja) Cre mRNAを使用した標的指向性組込みによるタンパク質発現細胞の作製のための方法
CN1597950A (zh) Icam-4的材料和方法
AU2010206098B2 (en) In Vitro Methods of Producing and Identifying Immunoglobulin Molecules in Eukaryotic Cells

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20070321

Termination date: 20191114