CN1285913A - 反射计 - Google Patents

反射计 Download PDF

Info

Publication number
CN1285913A
CN1285913A CN98812848A CN98812848A CN1285913A CN 1285913 A CN1285913 A CN 1285913A CN 98812848 A CN98812848 A CN 98812848A CN 98812848 A CN98812848 A CN 98812848A CN 1285913 A CN1285913 A CN 1285913A
Authority
CN
China
Prior art keywords
reflectometer
light
target surface
output
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN98812848A
Other languages
English (en)
Other versions
CN1131425C (zh
Inventor
I·魏特曼
J·韦斯
Original Assignee
Technical Chemicals & Products Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technical Chemicals & Products Inc filed Critical Technical Chemicals & Products Inc
Publication of CN1285913A publication Critical patent/CN1285913A/zh
Application granted granted Critical
Publication of CN1131425C publication Critical patent/CN1131425C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/8483Investigating reagent band
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/255Details, e.g. use of specially adapted sources, lighting or optical systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • G01N21/274Calibration, base line adjustment, drift correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4738Diffuse reflection, e.g. also for testing fluids, fibrous materials

Abstract

经调制光源照射具有某种颜色和色彩浓淡的目标表面。光探测器探测目标表面反射的光。对输出补偿因环境光、温度或其它外界因素产生的漂移,并且对输出解调,产生表示目标表面之颜色或色彩浓淡的基本上稳定的直流电压。用查询表或数学公式将稳定的直流电压转换成对应的量或质的测量结果,诸如分析物浓度,并对经调制光源强度因温度变化而发生的任何变化进行补偿。

Description

反射计
对相关申请的交叉参考
本专利申请要求1997年10月31日提交的美国临时专利申请第60/063,935号的优先权,该申请的发明名称为“反射型葡萄糖计”。
发明背景
发明技术领域
本发明涉及反射计技术,尤其涉及一种以相对较高的精度检测和测量色彩浓淡的方法和设备。当色彩浓淡表示某种可测量的量或质时,本发明还涉及这样一种方法和设备,它可以将检测到的色彩浓淡转换成相应量或质的测量结果。
相关领域的技术
目前,唯一被认可的血液化学家庭监测法需要用矛状器具采血,通常要刺破手指,然后将血滴放在化学条上。所引发的化学反应使条的颜色发生变化,用桌面反射计读取该变化,由此提供对血糖浓度的表示。另一种方法也要求采血,将血滴放在一次性的印刷电路板上,然后测量血液的电响应,从而检测出血糖浓度。有些方法尝试用红外技术来检查皮肤,确定血糖浓度,但这些方法对商业应用来说,可靠性差,而且太昂贵。
糖尿病患者需要通过饮食或注射胰岛素来控制他们的胰岛素水平,根据美国糖尿病患者协会的建议,他们每天要自我测量五六次。为了避免因采血带来不愉快,有些人的测量次数可能经常少于建议次数。因此,有相当大的兴趣要开发那些可以避免伤害病人的血糖浓度确定过程。
有一种技术已被证实具有精密和可重复的结果,该技术用透皮贴片检测和测量血糖浓度。该项透皮贴片技术利用传输机制从皮肤中提取有关葡萄糖的分析物(诸如那些可以在间充液中找到的),以便传输给敏感薄膜。在敏感薄膜上,与被提取的分析物发生化学或生物反应,以便使颜色指示剂显色,而颜色指示剂的颜色和浓淡可以与葡萄糖浓度相关。Aronowitz等人的发明申请揭示了这样一种贴片装置,其内容通过引用包括在此。所述发明申请是美国专利申请,于1997年9月11日提交,申请号为08/929,262,目前已被普通转让,并处于共同待批状态。Peck在美国专利第4,821,733号中教导了另一种贴片型葡萄糖测量技术,其内容通过引用包括在此。
不幸的是,至少对于Aronowitz等人揭示的透皮检测机制,被提取分析物可表示的血糖浓度变化很大,但显色后色彩浓淡的变化却很小。在许多情况下,用肉眼不能精确地和反复地检测出合格血糖浓度之显色浓淡与不合格血糖浓度之显色浓淡之间的差别。因此,在生命临危测试过程中,为了获得透皮葡萄糖测量技术的非侵入优点,并且保证测量精度,必须使测试和测量过程避免人为进行色彩浓淡评估和比较时易错的缺点。
因此,需要一种极敏感的测量计,它能正确地解决下述问题,即对某些感兴趣的分析物进行透皮贴片提取和处理,会使显色浓淡度发生敏感的大范围的变化。该测量计最好体积小,重量轻,且是便携式(手持式)的。除了明确要求提高对色彩浓淡之细微差别的灵敏度之外,该测量计应该考虑携带性对读数精度的不利影响,例如由于装置发生压力改变、旋转和移动,会导致背景光变化、温度变化,以及不稳定的手持操作,而被广泛用来在测试条上测量血糖浓度的桌面测量计通常没有这些不利的影响。
发明内容
本发明包括一种用于检测和测量颜色及色彩浓淡细微变化的反射计。一般地说,用脉动光源照射有一定颜色和色彩浓淡的目标表面。用一光学检测电路同步检测由目标表面反射的光,并且产生一输出信号,而输出信号的电压表示目标表面的颜色和色彩浓淡。然后处理该电压,以便评估和识别由检测得到的颜色或色彩浓淡所代表的任何可测量的量或质。
具体地说,经调制的光源发出光,照射在带颜色的目标表面上,这里特定的颜色和色彩浓淡表示某种可测量的量或质(诸如,分析物的浓度等)。用一光探测器探测目标表面所反射的调制光。对来自光探测器的输出信号进行差动放大,产生一种表示目标表面之颜色和色彩浓淡的交流输出信号。进一步处理光探测器的输出信号,并将其反馈给光探测器,以补偿因环境光探测或其它外界因素的影响而使AC输出信号的DC电平发生的任何偏移。然后用同步探测器对差动放大器的输出信号进行解调,产生基本上稳定的DC电压,该电压表示目标表面上的颜色和色彩浓淡。将DC电压转换成对应的数字值,并且用查找表或其它数学公式将该数字值转换成对应的量或质的测量结果。
附图概述
结合附图阅读以下详细描述,将更全面地了解本发明的方法和设备,附图有:
图1A和图1B分别是一透皮贴片和一测试条的透视图,它都能显现颜色的浓淡,以表示在病人体内检测出存在的有关分析物;
图2A和图2B分别是手持式反射计的顶视图和侧视图,该反射计适于读取在图1A所示透皮贴片上的显色浓淡;
图3是一截面图,示出了图2A和2B所示手持式反射计的传感器头;
图4是一透视图,示出了适于从图1B的测试条上读取显色浓淡的桌面反射计;
图5是一截面图,示出了图4所示桌面反射计的读取位置;
图6A和6B是方框图,示出了依照本发明的两个反射计实施例的电子线路;
图7A和7B分别是图6A和图6B所示的本发明反射计中模拟部分的电路图;
图8A和8B是波形图,示出了本发明同步探测器的工作情况;
图9A和9B是电路图,示出了向反射计提供温度指示数据的其它实施方法;
图10例示了在处理表示被探测光的信号时使用的峰值保持探测算法的工作情况;
图11是一查询表,它使得表示被探测目标表面之颜色和浓淡的某个电压与所关心的分析物的某个浓度相关;
图12A是一截面图,示出了因过度压力造成反射计传感器头和透皮贴片发生不适当的接合;
图12B是一截面图,示出了在反射计传感器头的头部使用一个窗口,以便保证反射计相对目标表面精确定位;
图12C是一截面图,示出了反射计传感器头使用锥形的头部;
图13是一流程图,示出了在处理表示被探测光的信号时使用的峰值保持探测算法;
图14是一流程图,示出了对反射计进行第一级校准的过程;
图15是一流程图,示出了对反射计进行第二和第三级校准的过程;
图16例示了经补偿的电压一分析物浓度曲线,以及图14和15中第一、第二和第三级校准过程对曲线的影响;和
图17是流程图,示出了将表示所读色彩浓淡的输入电压转换成浓度值输出的过程。
附图的详细描述
现在参考图1A,该图是透皮贴片10的透视图,其中透皮贴片10可以显现颜色的浓淡,以表示体内存在所关心的分析物(并且还可能表示分析物的浓度)。如图所示,贴片10是带圆角的矩形,但也可以按需要具有其它的形状,诸如圆形或椭圆形等。贴片10的上表面12包括一个一般为圆形的开口14,开口14露出薄膜16,以便观察。一般来说,贴片10的下表面(未图示)包括一粘贴层,可以粘贴在病人的皮肤上。然后从皮肤中提取某种关心的分析物,并通过胶状传输媒体传输到薄膜16。在薄膜16上,与被提取的分析物发生生物和化学反应,以便使颜色指示剂显色,表示体内存在分析物。显色指示的浓淡还可以表示体内分析物的浓度大小。例如,所关心的分析物可以与血糖有关,因此薄膜上的显色浓淡可以表示葡萄糖的浓度。可以用贴片10提取其它所关心的分析物,用这些分析物在薄膜16上显现与下列例举的物质有关的颜色指示:胆固醇、甘油三酸酯、胆红素、肌氨酸酐、尿素、α-淀粉酶、L-乳酸、丙胺酸氨基转氨酶(ALT/GPT)、天门冬氨酸转氨酶(AST/GOT)、白蛋白、尿酸、果糖胺、钾、钠、氯化物、丙酮酸脱氢酶、苯基丙氨酸羟化酶、嘌呤核苷酸酶和苯基丙氨酸羟化酶,或者诸如苯基丙氨酸、苯基丙酮酸或苯基乳酸等酶作用物。参考已被普通转让且共同待批的美国专利申请第08/929,262号,可以获得对透皮贴片结构和工作情况的更详细说明,该申请于1997年11月11日提交,其内容通过引用包括在此。
现在参考图1B,该图是一测试条20的透视图,其中测试条可以显现颜色的浓淡,以表示体内存在所关心的分析物(并且还可能表示分析物的浓度)。测试条20一般呈矩形。测试条20的上表面22包括一个测试区24。一般,在测试区24上放一滴体液(诸如血液、尿液、唾液、汗液等)。与所放体液内的所关心分析物发生生物和化学反应,使测试条20上的颜色指示剂显色,指示体内存在分析物。显色指示的浓淡还可以表示体内分析物浓度的大小。例如,所关心的分析物可以与血糖有关,因此测试条20上的显色浓淡可以表示葡萄糖的浓度。可以在测试区24中处理其它所关心的分析物(诸如上述对透皮贴片10讨论的分析物),并用这些分析物显现与分析物浓度有关的颜色指示。
现在参照图2A和2B,这两幅图分别是手持式反射计30的顶视图和侧视图,其中反射计30适于读取图1A中透皮贴片10上被显现的颜色和色彩浓淡。反射计30包括一个传感器头32,它位于半圆柱形的外壳34的一端,而外壳34可以舒适地用手握住。“读取”按钮36激励反射计30,在传感器头32处对颜色和浓淡进行测量。液晶显示器(LCD)38为反射计30的用户提供数值输出,该数值输出可以表示色彩浓淡(例如,输出电压的大小),或者表示一些与所读色彩浓淡有关的可测量的量或质(例如,输出浓度的大小)。显示器38还可以为用户提供诸如日期和时间等其它重要的信息。如果显示器38能够产生字母字符和/或图像字符以及数字符号,那么显示器38还可用来为用户提供各种消息(消息可能与使用指令、错误指示、图标、提示等有关)。在反射计30的正面有两个按键开关,“滚动”按钮40和“选择”按钮42。利用这些按钮40和42,用户可以设定日期和时间信息。这些按钮40和42还可用来安排警报,警告用户何时必须读取了。用户还可以用按钮40和42向反射计30输入数据,这对于保证精确测量和信息输出是必要的。例如,用户可以选择透皮贴片10的生产批号,或者输入用于校准反射计30的颜色/浓淡数据,或者选择要进行的测试类型(例如,葡萄糖对胆固醇)。电池室44位于反射计的顶端。还可以提供外部端口连接器(未图示),允许用户将反射计30连接到个人计算机、电话线或红外通信链路上,以便传输读数。反射计30还包括一个扬声器(未图示)的开口46,它可以产生诸如报警声和数据输入确认声等声音。
通过叙述反射计30与图1A所示透皮贴片10一起使用的例子,可以更好地了解反射计30的工作情况。在把透皮贴片10放至皮肤上后,大约需要三至五分钟的孵化期(孵化期取决于包括温度等因素的数量)。例如,最好将透皮贴片10贴在病人前臂内侧的皮肤上。一旦将透皮贴片10放至皮肤上,用户便可以按下选择按钮42,启动一个由用户选择的、反射计计算得到的、或者预先编程的倒计时时期,该时期可用来测量孵化和色彩浓淡显现所需要的时间,其中被显示的色彩浓淡表示被提取的分析物。在时间届满后,可听的报警声警告用户现在可以读数了。然后,将传感器头32的圆柱形突出头部48(一般在大小和形状上与开口14的圆形相匹配)插入透皮贴片10的开口14中,并且将其放在薄膜16的附近。然后,用户按下“读取”按钮36,给装置上电,并启动反射计39工作,以探测和测量任何显现在薄膜16上的颜色和浓淡。然后,将诸如信号电压大小或分析物浓度等数据输出到显示器38上,供用户考虑,其中信号电压大小和分析物浓度都与被探测的色彩浓淡相关。另外,可以通过外部端口连接器输出该数据作远距离处理和分析,将分析物的浓度信息通知用户。
现在参考图3,该图是一截面图,示出了图2A和2B所示的手持式反射计30的传感器头32。传感器头32包含一个双光源,用于增加反射信号的强度,以及更均匀地照射薄膜16的目标表面,而目标表面将对表示分析物存在以及浓度大小的颜色和浓淡进行显色。两个发光二极管(LED)50相对薄膜16的法线倾斜θ角度安装在外罩52中。LED 50可以具有与被探测色彩浓淡相关的任何合适的颜色。例如,已经发现在葡萄糖分析物测试期间,当用合适的发色团或荧光基团指示剂(诸如,O-联甲苯胺、四甲基benzine等)探测在薄膜16上显现的色彩浓淡时,波长约为637纳米的红色LED 50可以产生极佳的探测结果。根据所选择的发色团或荧光基团指示剂,可以使用其它颜色(诸如绿色)或红外线的LED(也许与红色LED一起使用)。外罩52用诸如Ryton等膨胀性较低的塑料制成,最好用不反射的表面构成,并且外罩52对于光源波长应该是不透明的,以便基本上避免LED 50发出的光经漫反射产生任何背景信号。角度θ可以是使镜面反射的检测最小的任何角度,最好大约为40度至45度。每个LED 50都有与其发射光输出成一个相对较窄的投射角(例如,15度)。LED 50输出的光线沿光管(或准直器)56并通过开口58射到传感器头32的突出头部48上,照亮目标表面。在制造反射计期间,可以沿光管56的长度方向调节LED 50的位置,以便改变目标表面的照射强度以及光管内侧反射的影响和情况。光电晶体管60安装在外罩52内,沿透皮贴片10中薄膜16之目标表面的法向54取向。光电晶体管60同样具有相对较窄的视角(例如,15度)。由薄膜16之目标表面反射的光通过开口58,进入传感器头32的突出头部48,并沿光管(或准直器)62射入光电晶体管60。在制造反射计期间,可以沿光管62的长度方向调节光电晶体管60的位置,以便改变反射计在读取目标表面照射和色彩浓淡时的灵敏度和容差。将LED 50和光电晶体管60布置成偏离所示的角度θ,并且成对称取向,这可以使远离薄膜16之目标表面的镜面反射检测最小,并且减小绕法向54的旋转误差的影响,而旋转误差是由目标表面的少许不均匀照射引起的。
现在参照图4,该图是一桌面反射计30'的透视图,该桌面反射计30'适于读取图1B中测试条20上的显色浓淡。反射计30'包括一读取位置32'。“读取”按钮36激励反射计30',以便在读取位置32'处测量色彩浓淡。液晶显示器(LCD)38为反射计30'的用户提供数值输出,该数值输出表示被探测的色彩浓淡,或者与所读取的色彩浓淡相关的一些可测量的量或质。显示器38还为用户提供诸如日期和时间等其它重要信息。如果显示器38能够生成字母符号和/或图像符号以及数字符号,那么该显示器还可用来为用户提供消息(消息可能是与使用指令、错误指示、图标、提醒等相关)。在反射计30'的正面有两个按键开关,“滚动”按钮40和“选择”按钮42。利用这些按钮40和42,用户可以设定日期和时间信息。这些按钮40和42还可用来安排警报,警告用户何时必须读取了。用户还可以用按钮40和42向反射计30'输入数据,这对于保证精确测量和信息输出是必要的。例如,用户可以选择测试条20的生产批号,或者输入用于校准反射计30'的颜色/浓淡数据,或者选择要进行的测试类型(例如,葡萄糖对胆固醇)。还可以提供一外部端口连接器(未图示),允许用户将反射计30'连接到个人计算机、电话线或红外通信链路上,以便传输读数。反射计30'还包括一个扬声器(未图示)的开口46,扬声器可以产生诸如报警声和数据输入确认声等声音。
通过叙述反射计30'与图1B所示测试条20一起使用的例子,可以更好地了解反射计30'的工作情况。激励反射计30',它根据检测到的电压大小识别测试条是否处于狭槽70内。如果没有,反射计30'提醒病人插入测试条。测试条插入狭槽70后,反射计30'对此作出响应,提醒病人存积足够量的体液(诸如,血液、尿、唾液、汗液等),然后将体液放在测试条20的测试区24上。与所放体液内所关心的分析物发生生物和化学反应,使测试条20上的颜色指示剂进行显色,其中色彩的浓淡与分析物的浓度大小有关。然后,启动一定时器,以便(根据所检测到的电压大小)测量在预定的第一时间段(该时间可以是用户选择的、反射计计算得到的,或者预先编程的)内化学反应的进展是否足够快。如果不够快,那么提醒病人用新的测试条重新进行测试。如果在第一时间段内进展足够快,那么定时器开始对第二时间段计时(该时间段可以是用户选择的、反射计计算得到的,或者预先编程的),以便检测测试过程是否结束。在一例得到支持的测试过程中,第二时间段结束后,起动反射计30'开始工作,探测和测量测试条20上的色彩浓淡。然后,将诸如信号电压大小或分析物浓度等数据输出到显示器38上,供用户考虑,其中信号电压大小和分析物的浓度都与被显现的色彩浓淡相关。在另一个得到支持的测试过程中,反射计30'测量电压大小,该电压大小表示测试条20上被探测的色彩浓淡。如果在第二时间段结束之前所测得的电压大小是稳定的,那么将诸如信号电压大小或分析物浓度等数据输出到显示器38上,供用户考虑,其中信号电压大小和分析物的浓度都与被显现的色彩浓淡相关。另外,可以通过外部端口连接器输出该数据供远距离处理和分析用,将分析物的浓度信息通知用户。当测量得到的电压大小不稳定,或者所测得的电压大小低于可接受的阈值时,显示一错误消息,提醒病人用新的测试条进行测试。
现在参照图5,该图是一截面图,示出了图4所示的桌面反射计30'的读取位置32'。读取位置32'包含一个双光源,用于增加反射信号的强度,以及更均匀地照射测试条20的目标表面。两个发光二极管(LED)50相对测试条20的法线54倾斜θ角度安装在外罩52中。LED 50可以具有与被探测色彩浓淡相关的任何合适的颜色。例如,已经发现在胆固醇分析物测试期间,当用合适的发色团或荧光基团指示剂探测在测试条20上显现的色彩浓淡时,波长约为637纳米的红色LED 50可以产生极佳的探测结果。根据所选择的发色团或荧光基团指示剂,可以使用其它颜色(诸如绿色)或红外线的LED(也许将红外线的LED与红色LED一起使用)。外罩52用诸如Ryton等膨胀性较低的塑料制成,最好用不反射的表面构成,并且外罩52对于光源波长应该是不透明的,以便基本上避免LED 50发出的光经漫反射产生任何背景信号。角度θ可以是使镜面反射的检测最小的任何角度,最好大约为40度至45度。每个LED50都与其发射光输出成一个相对较窄的投射角(例如,15度)。LED 50输出的光线沿光管(或准直器)56并通过反射计外壳上表面72上的开口58射到狭槽70上。在制造反射计期间,可以沿光管56的长度方向调节LED 50的位置,以便改变目标表面的照射强度以及光管内侧反射的影响和情况。光电晶体管60安装在外罩52内,沿测试条20之目标表面的法向54取向。光电晶体管60同样具有相对较窄的视角(例如,15度)。由测试条20之目标表面反射的光通过开口58,沿光管(或准直器)62射入光电晶体管60。在制造反射计期间,可以沿光管62的长度方向调节光电晶体管60的位置,以便改变反射计在读取目标表面照射和色彩浓淡时的灵敏度和容差。将LED 50和光电晶体管60布置成偏离所示的角度θ,并且成对称取向,这可以使远离测试条20之目标表面的镜面反射最小,并且减小因目标表面照射少许不均而引起的不利影响。
现在参照图6A和6B,图6A和图6B是方框图,示出了依照本发明的两个反射计30/30'的电路实施例。方波电流驱动光源100发出光脉冲104,光脉冲104照射目标表面106。在图6A所示的一个实施例中,方波由振荡器102产生。在图6B所示的另一实施例中,方波由微处理器142产生。如图3和5所示,光源可以包括一对具有相同或不同颜色的LED 50。当使用不同颜色时,可以同时或交替地对LED加脉冲。光脉冲104以75赫兹的频率和50%的占空比从光源100输出。可以选择任何频率,只要它不包含AC线电压(即,50或60赫兹)的谐波或分频谐波,并且频率高得足以读目标表面,并且允许在较短的可接受的测量期间内取得在统计意义上为大量的反射采样。被光源100照射的目标表面106可以包括,例如如图1A所示的透皮贴片10的薄膜16,或者如图1B所示的测试条20的表面。另外,光源100可以照射任何其它的基片。
被照射的目标表面106反射接收光104,并由此对应于目标表面106上的显色浓淡辐射出光108。光探测器110对光108进行探测。如图3和5所示,光探测器110可以包括一光电晶体管60。差动放大器结构的光探测器110产生一对差动输出112和116(它们的相位相差180°),这些输出的峰至峰电压表示目标表面106上被探测的颜色和浓淡。将成对的差动输出112和116加到差动(非平衡转换)放大器114上,产生单个输出信号122,该信号的峰至峰电压表示目标表面106上被探测的颜色和浓淡。光探测器110的第二输出116在加到差动放大器114上之前,先提供给缓冲器118。缓冲器118的输出还提供给积分器120,积分器120将该信号与一参考电压比较,并且对比较结果积分,产生DC信号162,以便对光探测器110加偏压,使其回到为其设计的静态工作点,从而补偿任何被探测到的环境(DC)背景光。这样,差动放大器114的输出122提供了一个(当光源照射时)其峰至峰电压大小表示目标表面之颜色和浓淡的信号,用来比照(光源关断时)目标表面上与环境DC光的作用相关的任何颜色或浓淡。
然后,将差动放大器114的输出122加到同步探测器124上。同步探测器124还接收由振荡器102输出的光源100驱动信号,并获得关于光源100何时照射(和不照射)目标表面的信息。当光探测器110正在探测此照射时,由于被探测到的照射会影响差动放大器114的信号输出122,所以同步探测器124会处理输出122,以便对来自差动放大器114的信号输出122进行全波整流,并且产生一个基本上稳定的DC电压,表示目标表面的颜色或色彩浓淡。然后,对来自同步探测器124的输出126进行低通滤波,以便在发生后续处理之前消除因同步探测过程导致的任何内含的高频分量。
位于光源100附近的是温度传感器128(它可能具有一些内含的热机耦合)。温度传感器128产生一输出130,表示光源处或光源附近的温度。当光源100发出的光104的亮度和强度随温度变化时,该信息是值得考虑的。发射光104经历的任何亮度或强度的变化使输出信号126发生相应的变化。己知温度信息,在对同步探测器124输出的信号126进行后续处理期间,便可采取适当的行动,从而考虑发射光因温度而发生的变化,以及输出信号126中相应的变化。
现在具体参考图6A。依照本发明的第一实施例,反射计30/30'中的上述部件容纳在一外壳(诸如上述手持式装置或桌面装置)内。反射计30/30'通过外部端口连接器132输出信号126和信号130,并通过通信链路134提供给个人计算机136(个人计算机与反射计30/30'的外壳分开),由个人计算机处理这些信号。例如,如果反射计30/30'靠近个人计算机136,那么通信链路134可以包括多线电缆,或者如果反射计远离个人计算机136,那么通信链路134可以包括电话线或红外线收发信机。可以用PC/MCIA卡(未图示)连接反射计30/30'和个人计算机136。当然,应该理解,还必须包括适当的设备(这些设备未示出,但它们是本领域技术人员公知的),用以连接反射计30和电话线。在个人计算机136中,内部的数字-模拟转换器138将接收信号126和130转换成数字值。然后,由内部处理器140处理这些数字值,产生与分析物浓度大小相关的信息。然后,个人计算机136将探测到的浓度信息显示在其显示屏上,并将其存储在计算机存储器中,供以后检索、考虑、分析和传输。在本实施例中,还通过外部端口连接器132发送由反射计30/30'之“读取”按钮36、“滚动”按钮40和“选择”按钮42(参见图2A)输出的信号,并且通过通信链路134传送给个人计算机136。
现在具体参照图6B。依照本发明的第二实施例,反射计30/30'读取和处理所需要的所有部件都有利地容纳在一外壳(诸如上述手持式装置或桌面装置)内。这提供了一个独立的便携装置。信号126和信号130提供给位于反射计30/30'外壳内的微处理器142。微处理器142包括一模拟-数字转换功能块144,用于将模拟信号126和130转换成数字值。然后,由微处理器142处理这些数字值,产生与被探测分析物的浓度大小相关的信息。然后,反射计30/30'将探测到的浓度信息显示在液晶显示器38上,并将其存储在微处理器142的存储器146中,供以后检索、考虑和传输。通过微处理器140提供一外部端口连接器148,以便通过通信链路134将探测到的浓度信息传递给个人计算机136。例如,如果反射计30/30'靠近个人计算机136,那么通信链路134可以包括多线电缆,或者如果反射计远离个人计算机136,那么通信链路134可以包括电话线。最好,微处理器142包括适当的、用于连接反射计30/30'和电话线的电路。另一种选择是,微处理器142可以使用光源100,以便允许通过光通信链路(诸如红外线连接线)传递探测到的浓度信息。在本实施例中,处理器用探测到的浓度信息对光源进行适当的调制,以便完成数据通信。
将“读取”按钮36、“滚动”按钮40和“选择”按钮42(参见图2A)连接成微处理器142的输入。利用“读取”按钮36,用户可以激励反射计30/30',以测量色彩浓淡。然后,液晶显示器38为用户提供数值输出,表示色彩浓淡,或者与所读色彩浓淡相关的一些可测量的量或质。利用“滚动”按钮40和“选择”按钮42,用户可以设定日期和时间信息;请求目前日期和时间信息;编排用于警告用户何时必须读数的报警;输入反射计数据(诸如透皮贴片10的生产批号,或者用于校准反射计的颜色/浓淡数据),以及选择要进行的测试类型(例如,葡萄糖对胆固醇)。将扬声器150与微处理器142相连,以便为用户提供可听得见的信号(诸如,报警)。
现在参照图7A和7B,它们分别是图6A和图6B所示的本发明反射计中模拟部分的电路图。图6A实施例中的方波振荡器102包括传统的LM555定时器集成电路151,该电路151由适当连接的电阻和电容构成,并在线路152上以选定的频率(例如,75赫兹)和选定的占空比(例如,50%)产生方波输出。另一种方法是,在图6B的实施例中,用微处理器142产生方波,并由缓冲器102'提供,在线路152上输出。将线路152上输出的方波加到一对串联的LED 50以及光强调节电路154上,其中LED 50用于发射光脉冲,而光强调节电路154包括光源100内的电位器156。
通过使用电位器而提供的调节包括出厂进行的调节,该调节为反射计30/30'设定LED 50输出的光脉冲的大小或强度。具体地说,所述调节包括对反射计30/30'的一级校准。如何进行该校准过程将在下文中作更全面的说明。
目标表面反射出调制光,然后光探测器110用镜面反射最小的部件探测调制光。光探测器110包括一光电晶体管60,它与另一个晶体管158差动连接,并且差动连接的光电晶体管和另一晶体管具有基本上相同的工作特性。进行差动连接,这意味着光电晶体管60的发射极和晶体管158的发射极彼此相连。晶体管158的基极由分压电路160输出的信号驱动,以便设置探测器110的静态工作点。光电晶体管60的基极由线路162上的反馈信号(以下对该信号作更详细的描述)驱动,以便对光电晶体管加偏压,使其回到最佳静态工作点(并由此计及对环境DC光的探测)。电流反射镜电路164将固定的恒定电流提供给按差动连接的光电晶体管60的发射极和晶体管158的发射极。
光电晶体管60在其集电极产生第一差动输出信号112。晶体管158在其集电极产生第二差动输出信号116。第一和第二差动输出信号112和116彼此相差180度,并且每个信号的峰至峰电压都表示从目标表面发射出来的被探测光(包括其颜色和浓淡)。将第二差动输出信号116施加到缓冲器118上,其中缓冲器118包括一个连接到运算放大器166的电压跟随器。将缓冲器118输出的信号116施加到积分器120上,而积分器120包括一个连接到运算放大器168的积分器。积分器120将经缓冲的信号116与DC参考电压相比较,并且对该比较结果进行积分,以便在线路162上产生反馈信号。反馈信号的电压正比于光探测器110所需的静态工作点与一平均电压偏移之间的探测误差,这里所述平均电压偏移是由光电晶体管60探测到的环境(DC)光、差动对的温度变化以及其它外界因素(象部件老化)所引起的。然后,将线路162上产生的反馈信号施加到光电晶体管60的基级上,以便对部件加偏压,使其回到较佳静态工作点,并由此计及这些外界因素(在所产生的第一和第二差动输出信号112和116的峰至峰电压中计及)。不然,在对光源110发射的反射脉冲光进行颜色和浓淡探测时,所述外界因素会造成测量误差。
将第一和第二差动输出信号112和116施加到差动放大器114上,而差动放大器114包括一个差动连接的运算放大器170。差动放大器114从第二差动输出信号中减去第一差动输出信号,以便在线路172上提供单个输出信号122,该输出信号122的峰至峰电压表示由目标表面反射的被探测光(包括其颜色和浓淡)。用隔直流电容器174去除该输出信号122内的任何直流分量。然后,将剩下的交流分量(一般地说,交流分量包括一方波,方波的峰至峰电压正比于由光电晶体管60探测到的反射光,并且表示该反射光的颜色和浓淡特性)施加到同步探测器124上。
同步探测器124接收由方波振荡器102输出的方波信号,并且用它对输出信号122进行同步全波整流(解调),以便产生一个基本上稳定的直流电压,该电压表示目标表面上的颜色或浓淡。此同步探测过程还可以消除输出信号122中由光电晶体管60探测到的环境(AC)光(例如,荧光)所引起的任何漂移。具体地说,同步探测器124能够产生基本上稳定的直流电压,精密地测量了光探测器之输出信号122的峰至峰交流电压,不受任何直流的影响。
同步探测器124包括运算放大器192。根据接收到的方波信号,对运算放大器192进行有选择的配置,从而为输出信号122提供倒相或非倒相的单位增益处理。此功能由多个CMOS开关的动作来提供。第一CMOS开关180对方波信号进行缓冲和倒相,并且驱动第二CMOS开关182和第三CMOS开关184。第二CMOS开关182起倒相器的作用,因此第一和第二CMOS开关在线路186和188上产生彼此相差180度的方波输出信号。将这些信号中的一个(线路188)施加到第三CMOS开关184上,而将信号中的另一个(线路186)施加到第四CMOS开关196上。当受线路188信号的激励时,第三CMOS开关184将运算放大器192的非倒相输入端与二极管238提供的参考地相连。当受线路186信号激励时,第四CMOS开关196连接运算放大器192的非倒相输入端,以便接收隔直流的输出信号122。进一步将输出信号122提供给运算放大器192的倒相输入端。
当激励第三CMOS开关184时,第四CMOS开关196不激励。由于非倒相端接地,所以运算放大器192被配置成为输出信号122提供单位增益倒相处理。相反地,当激励第三CMOS开关184时,第四CMOS开关196不激励。由于地电位的提高以及输出信号122与非倒相和倒相端的连接,运算放大器192被配置成为输出信号122提供单位增益非倒相处理。通过对方波信号应用适当定相以控制CMOS开关激励,为输出信号122提供了同步全波整流。
参考图8A和8B可以更好地理解本发明同步探测器124提供同步全波整流的工作情况。图8A示出了同步探测器124接收到的输出信号122的波形210。波形210包括正部分212和负部分214,峰至峰电压表示目标表面处的颜色和色彩浓淡。响应于(经正确定相的)方波信号,激励第三CMOS开关,将非倒相端接地,并且因此将运算放大器192配置成在正部分212期间为输出信号122提供非倒相单位增益处理。接下来,再次响应(经正确定相的)方波信号,激励第四CMOS开关,将输出信号122连接到非倒相端,并且因此将运算放大器192配置成在负部分214期间为输出信号122提供单位增益倒相处理。当受方波信号驱动时,继续切换第三和第四CMOS开关。该选择处理的结果是在线路208上产生如图8B所示的输出信号126。输出信号126具有基本上稳定的直流电压,它表示目标表面处的颜色或色彩浓淡。波形220包括对应于输出信号122之非倒相(正)部分212的第一部分222,以及对应于输出信号122之倒相(负)部分214的第二部分224。注意,在方波振荡器102之输出信号因CMOS开关作用而进行高低切换的每一点处,波形220还包括微负的峰值216。
现在再次参照图7,用R-C一阶低通滤波器对线路208上的输出信号126进行滤波,除去波形220内微负的峰值216。然后,将滤波后得到的输出信号126作为来自反射计30/30'之模拟部分的第一模拟信号输出,提供给后续的数字处理用(参见图6A和6B)。
二极管238引起的DC电平偏移影响来自同步探测器的输出信号126的直流电压大小(并因此影响来自反射计30/30'的模拟部分的第一模拟信号输出)。因此,必须考虑直流电平偏移,以便保证能够合适地说明所输出的第一模拟信号,从而探测出目标表面处的颜色和浓淡。具体地说,必须从输出信号126中减去直流电平偏移。因此,将直流电平偏移电压作为来自反射计30/30'之模拟部分的第二模拟信号输出,输出到线路240上,供后续数字处理用。这可以在数字处理期间进行。另一种方法是,在反射计30/30'的模拟部分中,通过一差动放大器(未图示)在任何后续数字处理之前将第一模拟信号减去第二模拟信号。
如以上所讨论的,反射计30/30'还包括一温度传感器128。认为,LED 50相对其光输出是对温度灵敏的部件。为了能够精确地跟踪因温度变化而引起的操作变化,温度传感器128最好包括一二极管230,该二极管具有同LED 50互补的操作特性,它与LED 50热机耦合,并且通过电平调节电路232电气连接在地和来自振荡器102的线路152方波输出之间,其中电平调节电路232包括一电位器234。所述调节包括在出厂进行的调节,用以设置温度级别,表示来自节点/线路236的电压输出。因此,表示线路236上电压的温度包括来自反射计30/30'之模拟部分的第三模拟信号输出,供后续数字处理用。
现在再次参照图6A和6B。接下来,对反射计30/30'之模拟部分的第一模拟信号输出(减去第二模拟信号输出之后)和第三模拟信号输出进行数字处理。具体地说,将表示目标表面处被探测反射光(且表示颜色和浓淡)的第一模拟信号的直流电压模一数转换成第一数字值。同样,将表示温度的第三模拟信号的直流电压模-数转换成第二数字值。然后,处理第一和第二数字值,以便计算出一个补偿电压,该补偿电压直接与标准状态下目标表面作非镜面反射的颜色和浓淡相关。通过使用一存储的查询表,或者通过使用适当的数学公式,处理器识别分析物浓度大小输出值,其中所述查询表将某个经补偿的电压(它表示目标表面颜色和浓淡)与某个分析物浓度相关联。在求表示目标表面之颜色和浓淡的补偿电压以便确定相应分析物浓度大小输出值时,用户对反射计数据(诸如透皮贴片10或测试条20的生产批号)以及要进行的测试类型(例如,葡萄糖对胆固醇)的选择,可以确定处理器应该考虑哪一个存储查询表或公式。
如以上概括讨论的,环境温度影响LED 50的光输出强度。当温度上升时,光输出的强度下降。相反地,当温度降低时,光输出的强度增大。因此,必须考虑光源处的任何温度变化,以便保证所探测到的稳定的直流电压是颜色和浓淡的精确表示。
可以使用许多不同的温度传感机理。依照这些机理中的第一种,LED 50是二极管,并且可以将二极管230有利地用作温度传感器,模仿LED的温度灵敏操作。与温度影响LED 50之光强输出的方式一样,温度也影响二极管两端的电压降。通过测量该电压降,并将其与已知温度下的参考电压降比较,可以确定当前温度。
作为一个例子,测量小信号二极管(诸如1N4148)的电压降(VoC)对温度的依赖关系,它大致为0.0021伏/摄氏度。在对反射计30/30'进行出厂校正时,在25摄氏度的情况下,将电位器234调节到例如0.609伏,从而设置二极管230两端的正向电压降。一旦建立了基线电压降,很容易将实际电压降和基线电压降之间测得的差别转换成温度变化,并且在评价LED 50的工作以及第一模拟输出信号时,考虑了此被确定的温度变化。
在这方面要注意,在关于反射计30/30'的感兴趣的有限温度范围内,温度对LED 50之光强输出的影响几乎随探测信号线性变化。因此,温度误差(以伏为单位)对反射的曲线(即,表示目标表面处被探测反射光且指示颜色和浓淡的第一模拟信号)展现了一种基本上是直的直线,该直线与原点相交,并且具有大致为0.0035伏/摄氏度(以下用k1表示)的正斜率。为考虑温度相对标准情况的变化而必须进行的电压调节(△V)可以计算如下:△V=k1×SV×△C其中SV是表示目标表面处被探测反射光且指示颜色和浓淡的信号;而△C是相对25摄氏度的参考标准而感测到的温度变化(即,探测到的偏离),它等于: ΔC = V dt - V dr V dC 其中,Vdt是目前测得的二极管两端的电压降;而Vdr是在25摄氏度的参考标准条件下二极管两端的电压降。
通过使用标准数学处理,可以计算出经补偿的电压CV(它考虑了温度的影响),该补偿电压可以计算如下:CV=SV×(1-k2×(Vdt-Vdc))其中,k2是一常数,等于k1/Vdc
在上述具体的信号二极管例子中,k2等于0.0035/0.0021=1.667。
现在参考图9A,该图示出了一电路图,用于说明进行温度补偿时有用的第二温度传感机理。在该实施中,为光强因温度而发生的变化提供了直接的第一级补偿。将一个或二个二极管230'与LED 50串联连接,其中LED 50位于线路152上的方波输出以及包含电位器156的光强调节电路154之间。与二极管230一样,二极管230'以热机方式与LED 50耦合。串联连接的二极管230'两端随温度增大的电压降致使将增大的电流施加到LED 50上。施加增大的电流为LED 50输出的光强因温度升高而变弱提供了第一级补偿。对于该串联二极管230'补偿方案,最好使用锗或Schottky二极管,因为这些类型的正向电压降较低,这有利于控制光调节电位器156的灵敏度。此串联二极管230'补偿方案还可以用来与图7所示的二极管230的传感器结构相结合,以提供经改进的温度检测和补偿。
现在参照图9B,该图示出了一电路图,用于说明进行温度补偿时有用的第三温度传感机理。在该实施中,在一个LED 50的两端、每个LED的两端或者所有LED的两端测量电压降。利用此测得的瞬时LED电压降,可以进行动态温度补偿,以便不仅考虑当前经受的温度变化,还考虑LED 50的长期恶化。关于图6A所示的反射计30/30',提供一电压降检测器252,用于测量一个、每个或所有LED 50的电压降。然后,通过外界端口连接器输出测得的电压降,以便个人计算机根据上述CV等式进行处理。另一方面,关于图6B所示的反射计30/30',从一个、每个或所有LED 50的阳极/阴极引线获取一对模拟抽头254,并将其输入微处理器。然后,微处理器的模拟-数字转换器将测量得到的电压转换成数字信号,相互减值,并确定电压降结果,以便根据上述CV等式进行后续处理。
现在再次参照图7A和图7B,用于进行温度补偿的第四温度传感机理有利地利用同步探测器的直流电平位移二极管238,以便通过感测二极管两端的电压降来测量温度。在一种结构中,可以用热机方式将二极管238耦合至LED 50,提供与光源相关的温度信息,从而根据上述CV等式进行后续处理。在另一结构中,可以使二极管238远离反射计30/30'中的任何热源,以便提供环境温度信息,用于与评估有关的后续处理,而评估取决于已知的环境温度(与光源温度比照)。作为一个例子,透皮贴片和/或测试条上的生物和化学反应是依赖环境温度的。为了计算出精确的孵化时间,可以处理二极管238的环境温度数据,从而识别出何时是进行读操作的合适时间。
现在再次参照图2A、2B和3。如以上所讨论的,光、感应噪声和温度的外界影响最低程度地影响反射计30/30'。因此,传感器头32的圆柱形突出头部48不必与透皮贴片10中的开口14实现紧密的光配合,因为同步探测特征会补偿环境光的泄漏,就好象皮肤的颜色一样。在内部,光源和探测器电路的交替特性不受DC漂移的影响。另外,温度补偿问题还可以通过应用温度检测和补偿电路按如上所述进行处理来解决。
但是,还有其它影响颜色和浓淡读取精度的因素。例如,摇动或其它运动会导致反射计30工作不稳定,这会改变传感器头32和透皮贴片10之间界面处的照明几何形状。另一问题是,在反射计30和透皮贴片10之间施加大小变化的接触压力。具体对于手持式装置,极为重要的是,对表示被探测颜色和浓淡的输出信号进行可重复峰值保持测量的程序必须能容忍振动和不稳定操作。为了达到这一目的,以足够高的速率对数据取样,以致于将实际的许多数据点输入求平均的程序。对这些取样求平均的技术应该能够在几秒内确定正确的读数,并且不受读数时间的影响。
将峰值检测电压的稳定性用作确保可重复结果的测试。例如,如果检测电压范围在0.5和0.8伏之间,那么峰值检测电压的稳定性0.002伏将提供优于一个百分数的分辨率。信号增益5将导致2.5至4伏的范围,该范围与具有模拟一数字转换器的微处理器更加兼容,其中模拟一数字转换器具有5伏电源。
现在参照图10和13,该图例示了在处理第一模拟信号的直流电压时所用的峰值保持算法的工作情况,其中第一模拟信号的直流电压表示目标表面处被探测的反射光(且指示颜色和浓淡)。
以某个采样速率收集与未补偿电压相关的原始数据(步骤500)。然后,对最后n个取样计算移动块平均(moving block average)(Av(i))(步骤502)。然后,在步骤504,将移动块平均Av(i)与最近的前一个移动块平均(Av(i-1))进行比较。如果当前移动块平均Av(i)与最近前一移动块平均Av(i-1)之间的偏离小于某个偏离电压阈值,那么满足稳定状态条件,并且在步骤506,将当前移动块平均Av(i)保持为峰值,以便作为表示目标表面颜色和浓淡的稳定直流电压进行后续处理。如果步骤504测得的偏离超过某个偏离电压阈值,那么过程返回步骤502,计算新的当前移动块平均。过程继续采样(步骤500),计算移动块平均(502),以及比较(步骤504),直到当前移动块平均Av(i)和最近前一个移动块平均Av(i-1)之间确定的偏离小于某个偏离电压阈值。
然后,首先处理稳定直流电压的保持峰值,调节直流偏移,然后校正温度,然后调节颜色和/或批量校准(如果需要)。所得到的补偿电压与标准条件下目标表面反射的颜色和浓淡直接相关。处理器利用存储的查询表或数学公式(可能根据查询表相关的数据)确定分析物浓度大小输出值,其中查询表或数字公式将表示目标表面颜色和浓淡的某个补偿电压与某个分析物浓度相关联。如果补偿电压值落在查询表的两行之间,那么对分析物浓度大小的数据端点进行内插,产生一输出。在评价表示目标表面颜色和浓淡的补偿电压以便确定相应的分析物浓度大小输出值时,用户对反射计数据(诸如透皮贴片10或测试条20的生产批号)和要进行的测试类型(例如,葡萄糖对胆固醇)的选择,可以确定处理器应该考虑使用多个存储查询表中的哪一个查询表。选择查询表还会影响其它影响校准的因素。图11例示了一种用于在本发明反射计中使用的查询表。
在图11的查询表内容(或其等价数学公式)中,例示了用反射计30/30'监测葡萄糖浓度的情况。在上午10∶00点,预设的可听见的报警声提醒糖尿病患者进行葡萄糖读操作。将透皮贴片10贴在病人前臂的内侧,并且按下选择按钮,发出开始孵化倒计数时期信号。当时间届满时,具有不同音调序列的可闻报警声提醒患者可以对贴片10进行读操作了。将传感器头32的圆柱形突出头部48插入透皮贴片10的开口14中,并且按下读取按钮。在大约一秒钟的读取时间后,第一模拟输出信号还没有达到稳定状态(相对于某个偏离电压阈值)。在大约两秒钟后,达到稳定状态,并且调节DC偏移,但是获得未经温度补偿的电压,其值为0.664伏。然后,将该稳定的直流电压作为第一模拟输出信号提供给处理器进行分析。另外,温度传感器二极管230提供0.611伏的第三模拟输出信号。然后,根据上述温度校正算法,计算出表示目标表面颜色和浓淡的补偿电压CV为0.662伏。如果必要,还可以进行适当的颜色和/或批量校准调节。在图11的查询表(或其等价的数学公式)中,该补偿电压与140和180 mg/dL之间的葡萄糖浓度相关。对这两个端点进行内插,产生终值170.4 mg/dL。然后,对此葡萄糖浓度四合五入成最接近的整数,将将最终结果170 mg/dL显示给病人看。还将结果以及日期和时间存储在存储器中,供将来参考,或者作为病史下载到计算机上。
现在参照图12A,该图是一截面图,示出了反射计和透皮贴片的不适当接合。如前所述,影响颜色和浓淡读数精度的一个因素是在反射计30和透皮贴片10之间施加大小变化的接触压力。在这点上,要注意,精确测量取决于目标表面位于适当的位置。但是,不均匀或过大的压力会扭曲(即,弄弯或起波纹)薄膜16,并且将目标表面移出适当的位置。图12A用夸大的方式示出了该作用。可以看到,增加反射计对贴片施加的压力会产生一个增强的反射信号,这是因为目标表面偏向光电晶体管。另外,在一些情况下,薄膜是固有弯曲的,或者因生物或化学反应而弯曲。
现在参照图12B,该图是一截面图,示出了在反射计传感器头32之圆柱形突出头部48上使用窗口290的情况。窗口90可以弄平薄膜16上现有的任何变形(弯曲、波纹等),并且使测量过程对所加压力的变化相对不敏感。由此,将目标表面精确地定位,以便进行颜色和浓淡读数。窗口290是透明的,并且最好由塑料或玻璃制成,这类材料在所用光源光的波长处具有较高的透光率,在本例中,是LED 50发出的波长。其它要求包括耐用性以及对清洗剂和刮擦的抵抗力。作为一个附加的优点,透明窗口290可以防止泥土、灰尘和碎片(它们会降低反射计的灵敏性,还会影响校准)进入和累积在传感器头内。
现在参照图12C,该图是一截面图,示出了反射计传感器头32使用锥形圆柱形头部48'的情况。如上所述,反射计30/30'基本上不受外界光的影响。因此,传感器头32的头部48/48'没有必要在透皮贴片10的开口14内提供紧密的光配合。环境光的泄漏就跟肤色一样可以通过所包含的反馈信号和同步探测特性来补偿。但是,如图12A所示,将目标表面相对头部48/48'适当定位是很重要的。圆柱形传感器头48(如图3、12A和12B中所示的那样)的直径几乎与透皮贴片10中圆形开口的直径相等,当用户不仔细时,圆柱形传感器头48可能不合适地平放在开口内而抵着薄膜。另外,透皮贴片的上表面可以有一粘贴层,它可以粘住头部,使其更难将头部合适地放在贴片开口中。为了帮助用户合适地平放反射计30,反射计传感器头32中圆柱形头部48'的锥形可以在插入期间找到贴片10中的开口,并且便于将反射计相对薄膜适当放置。最好使窗口290利用其厚度凹入头部,以便密封传感器头中的开口,并且防止窗口边缘被卡住,以及在搬动期间可能被损坏或碰掉。
现在再次参照图6A和6B。如前所述,用户按下选择按钮,便启动了读过程。该按钮发出孵化倒计数时期开始的信号。大家知道,在贴片10或测试条20上完成生物和化学过程所需要的时间是依赖温度的。因此,反射计30/30'的处理器利用二极管238获得表示环境温度的信息。当激励选择按钮时,处理器用二极管238提供的当前环境温度信息确定具有足够长度的孵化倒计数时期,以便确保在向用户发出可闻报警表示可以读数之前,在贴片10或测试条20上完成生物或化学过程。
现在参照图7和图14,图14是一流程图,示出了对反射计30/30'进行第一级校准的过程。注意,此第一级校准必须在受控制的温度(诸如25摄氏度)下进行。在步骤350,选择补偿电压-分析物浓度曲线(诸如由图11中查询表表示的曲线)上的一点,最好反射计能够在该点最精确地读数。在大多数情况下,该点位于或接近于曲线的中间范围。然后,在步骤352,反射计30/30'暴露于与所选分析物浓度对应的标准色彩浓淡。然后,在步骤354,输出所得的补偿电压或分析物浓度值。然后,在步骤356调节光强调节电路154内的电位器156,并在步骤358输出经调节的补偿电压。然后,在步骤360,作一测试,以确定步骤356的调节是否在步骤358产生了与步骤350对补偿电压-分析物浓度曲线所选择的点相匹配的、经调节的补偿电压。如果没有,那么过程返回,再次执行步骤356、358和360。重复该过程,直到电位器156的调节产生了与补偿电压-分析物浓度曲线上所选点处的补偿电压相匹配的、经调节的补偿电压。如果对每个反射计30/30'进行第一级校准过程,那么每个反射计都将按完全相同的方式在中点读数,因此所有反射计的操作是一致的。
现在参照图6A和6B以及图15,图15是一流程图,示出了对反射计30/30'进行第二级校准的过程。注意,第二级校准必须在受控制的温度(诸如25摄氏度)下进行。在步骤370,在补偿电压-分析物浓度曲线(诸如图11中查询表所表示的曲线)的一端选择一点。然后,在步骤372将反射计30/30'暴露于与所选分析物浓度相对应的标准色彩浓淡。然后,在步骤374输出所得的补偿电压值。然后,在步骤376,确定被输出的补偿电压值与补偿电压-分析物浓度曲线上所选端点处补偿电压之间的第一端点偏移,并在步骤378中由处理器存储于非易失性存储器中。在这一点上,还包括对温度传感器128之二极管230两端的电压降进行测量,并且处理器在步骤362将测量结果存储在非易失性存储器中。然后,在步骤380,选择补偿电压-分析物浓度曲线另一端上的一点。然后,在步骤382,将反射计30/30'暴露于与所选分析物浓度相对应的标准色彩浓淡。接着在步骤384,输出得到的补偿电压值。然后,在步骤386,确定被输出的补偿电压值与补偿电压-分析物浓度曲线上所选端点处补偿电压之间的第二端点偏移,并在步骤388中由处理器存储于非易失性存储器中。然后,在步骤390,选择补偿电压一分析物浓度曲线的中间的某一点。然后,在步骤392,将反射计30/30'暴露于与所选分析物浓度相对应的标准色彩浓淡。然后在步骤394,输出所得到的补偿电压值。然后,在步骤396,确定被输出的补偿电压值与补偿电压-分析物浓度曲线上所选端点处补偿电压之间的中点偏移,并在步骤398中由处理器存储于非易失性存储器中。然后,在用所存储的查询表(或数学算法)来确定分析物浓度大小输出值时,处理器可以考虑所存储的第一和第二端点偏移以及中点偏移,其中查询表将某个补偿电压(它表示所读目标表面的颜色和浓淡)与某个分析物浓度相关联。尽管没有具体说明,但可以为第二级校准在曲线上选择不止两点或三点,以便提供更精确的操作。
注意,当反射计可以对不同类型的测试(例如,葡萄糖和胆固醇)进行读操作时,可以对单个反射计进行多次图15所示的第二级校准过程。在该情况下,用多个存储的查询表(数学算法)对反射计30/30'进行编程,其中每个查询表都将某个补偿电压(表示所读目标表面的颜色和浓淡)与某个分析物浓度相关联。为了确保合适的性能,必须就每个测试将反射计校准到可应用的数据。
大家知道,在透皮贴片或测试条上显现的颜色指示可以在各批产品之间变化。处理这一问题的一种方法是根据其颜色指示对每一批产品编码。然后,用批号代码以及第一、第二端点和中点处的适当偏移对每个反射计预先编程。当不可能用这种方式编程时,对于每一批所用的透皮贴片或测试条,病人可以进行图15所示的过程(与工厂中所做的不同)。为了支持这项病人批号(第三级)校准过程,每批透皮贴片或测试条将包括三种标准色彩浓淡,每种浓淡对应于该批测量的某个分析物浓度。在完成该过程后,处理器在使用所存储的查询表(或数学算法)来确定分析物浓度大小输出值时,会考虑所存储的、与批量变化相关的第一和第二端点偏移以及中点偏移,其中查询表将表示所读目标表面颜色和浓淡的某个补偿电压与某个分析物浓度相关联。
现在参照图11和图16,图16是一曲线图,例示了补偿电压-分析物浓度曲线400以及图14和图15中的第一和第二级校准过程分别对该曲线的影响。曲线400表示某个测量得到的补偿电压(y轴上)和相应分析物浓度(x轴上)之间的关系。准确地说,曲线400表示图11所示的具体的补偿电压-分析物浓度的关系。
首先回到图14的第一级校准过程,选择图16中曲线400上的中点402(在本例中,表示分析物浓度为300 mg/dL)。然后,将反射计暴露于与所选分析物浓度对应的标准色彩浓淡。反射计不产生对应的、所希望的补偿电压404的读数(在本例中,是550 mV),而是报告另一个补偿电压406。然后,进行适当的电位器156调节,以便使反射计报告的补偿电压406与所希望的补偿电压404匹配。还存储该点处温度传感器128的二极管230两端的电压降。
接下来,回到图15的第二级校准过程,选择图16中曲线400上的第一端点408(在本例中,表示分析物浓度为625 mg/dL)。然后,将反射计暴露于与所选分析物浓度对应的标准色彩浓淡。反射计不产生对应的、所希望的补偿电压410的读数(在本例中,是400 mV),而是报告另一个补偿电压412。确定并存储所希望的补偿电压410和反射计报告的补偿电压412之间的偏移d1。选择曲线400上第二端点414(在本例中,表示分析物浓度为55 mg/dL)。然后,将反射计暴露于与所选分析物浓度对应的标准色彩浓淡。反射计不产生对应的、所希望的补偿电压416的读数(在本例中,是850 mV),而是报告另一个补偿电压418。确定并存储所希望的补偿电压416和反射计报告的补偿电压418之间的偏移d2。选择曲线400上的中点420(在本例中,表示分析物浓度为300 mg/dL)。然后,将反射计暴露于与所选分析物浓度对应的标准色彩浓淡。由于以上提供的第一级校准,反射计应该产生所希望的补偿电压404的读数(在本例中,是550 mV)。如果不是,那么再次进行第一和第二级校准过程。当对反射计编程以便用于不同类型测试(例如,葡萄糖和胆固醇)时,反射计可能不会产生所希望的补偿电压404的读数。而是,反射计报告另一个补偿电压406。确定并存储所希望的补偿电压404和反射计所报告的补偿电压406之间的偏移d3。然后,当处理检测到的补偿电压(该电压表示所读目标表面的颜色和浓淡)时,处理器用所存储的查询表(参见图11)或数学公式,来确定分析物浓度大小输出值,而在使用查询表时,处理器会考虑所存储的第一和第二端点偏移d1和d2以及中点偏移d3。实际上,第二级校准的结果是为每种类型的测试产生一个经调节的补偿电压-分析物浓度曲线400'(用虚线表示),它考虑了讨论中的具体反射计30/30'的容差。在处理曲线400(图11的查询表)上、位于端点408和414之间各点处、由反射计30/30'检测到的补偿电压时,可以计算合适偏移d1、d2或d3的内插(以及在查询表或数学公式的各数据点之间计算必须的内插),最终确定分析物浓度大小输出值。然后,病人重复上述过程,以便计算出附加的d1、d2和d3,并由此为每一批贴片或测试条产生另一条经调节的补偿电压-分析物浓度曲线390'(用虚线表示)。
现在参照图17,该图是一流程图,示出了将表示所读色彩浓淡的输入电压转换成浓度值输出的过程。所示过程不仅说明了在产生补偿电压时的任何温度考虑,而且说明了第二级校准偏移(参见图15)以及查询表中各数据点之间计算(参见图11)所需要的任何内插。在步骤600,确定了表示颜色和浓淡的稳定的输出电压(参见图13)。如果存在任何影响稳定输出电压之精度的直流偏移(诸如同步探测器所提供的),那么在步骤602从稳定的输出电压中减去这些偏移。接下来,在步骤604,用上述公式处理已作偏移调节的稳定的输出电压,以便补偿光源强度因温度而产生的变化,并且产生补偿电压(CV)。然后,在步骤606,处理补偿电压,进行有关第二级颜色校准和第三级批号校准的任何所需的调节(参见图15和16)。然后,在步骤608,用查询表(或数学公式)将经颜色(批号)校准调节的补偿电压转换成浓度大小。然后,在步骤610对所确定的浓度大小进行任何必需的内插。然后,在步骤612确定(被内插的)所确定的浓度大小是否位于正在进行的特定测试的、可接受的、所期望的范围内。如果不是,那么在步骤614显示一错误消息,并且在步骤616存储关于该错误的任何记录以及日期和时间。如果是,那么在步骤618显示(经内插的)所确定的浓度大小,并且在步骤616存储关于该浓度大小的任何记录以及日期和时间。
尽管结合附图通过上述详细描述说明了本发明方法和设备的较佳实施例,但应该理解,本发明不限于所揭示的实施例,不脱离以下权利要求书所限定的本发明的精神,可以进行各种重新安排、修改和替换。

Claims (67)

1.一种反射计,其特征在于,包括:
一经调制的光源,用于将光照射到具有某种颜色和色彩浓淡的目标表面上;
一光探测器,用于探测由目标表面反射的光,并且产生表示探测光的第一输出;
用于处理第一输出的装置,该装置产生一反馈信号施加到光探测器上,用以补偿因光探测器探测环境光而在第一输出中产生的任何偏移,并且差动放大第一输出,以产生第二输出;和
检测器,用于对第二输出同步解调,以产生表示目标表面之颜色或色彩浓淡的、基本上稳定的直流输出电压。
2.如权利要求1所述的反射计,其特征在于,经调制的光源所发出的光强随温度的变化而变化,反射计还包括:
温度传感器,它与调制光源热机耦合,并产生表示调制光源之温度的第三输出;和
根据第三输出用数学方式校正基本上稳定的直流输出电压,以便考虑调制光源温度中被探测到的变化的装置。
3.如权利要求2所述的反射计,其特征在于,经调制的光源至少包括一个发光二极管,并且温度传感器包括一二极管装置,所述二极管装置的工作特性基本上可以补充所述发光二极管的工作特性。
4.如权利要求1所述的反射计,其特征在于,经调制的光源所发出的光强随温度的变化而变化,反射计还包括:
温度传感器,它与调制光源热机耦合;和
对经调制光源进行温度补偿器控制操作,以便抵消因经调制光源温度变化致使光强发生任何变化的装置。
5.如权利要求4所述的反射计,其特征在于,经调制的光源至少包括一个发光二极管,并且温度补偿器包括一二极管,进行温度补偿器控制操作的装置使所述二极管与所述发光二极管串联连接。
6.如权利要求1所述的反射计,其特征在于,经调制的光源所发出的光强随经调制光源两端电压降的变化而变化,反射计还包括:
传感器,用于在照射目标表面期间测量经调制光源两端的电压降;和
根据测量得到的电压降,用数学方式校正基本上稳定的直流输出电压,以便考虑光强变化的装置。
7.如权利要求1所述的反射计,其特征在于,光探测器包括:
光电晶体管,用于接收和探测由目标表面反射的光,并且产生第一差动信号;
晶体管,用于设置静态工作点,并且产生第二差动信号;和
用于按差动结构,连接光电晶体管发射极和晶体管发射极的装置。
8.如权利要求7所述的反射计,其特征在于,还包括一电流反射镜,用于将固定的恒定电流提供到差动连接的光电晶体管和晶体管之间的公共发射级连接中。
9.如权利要求7所述的反射计,其特征在于,所述处理装置处理第二差动信号,产生所述反馈信号施加到光电晶体管上,以便对光电晶体管加偏压,使其回到静态工作点。
10.如权利要求9所述的反射计,其特征在于,所述处理装置包括一积分器,用于将第二差动信号与参考电压比较,并且对比较结果积分,产生所述反馈信号,其中所述反馈信号表示静态工作点与光电晶体管检测到的直流环境光所产生的偏移之间的误差。
11.如权利要求1所述的反射计,其特征在于,调制光源包括:
至少两个发光二极管;和
用于固定所述发光二极管的装置,其中每个发光二极管偏移光探测器之方位角一方位角,以便基本上均匀地照射目标表面,对光探测器的镜面反射最低。
12.如权利要求11所述的反射计,其特征在于,两个发光二极管具有不同的颜色。
13.如权利要求1所述的反射计,其特征在于,用于同步解调的检测器包括一个全波同步检测器,它产生与第二输出信号之峰至峰电压成正比的直流电压。
14.如权利要求1所述的反射计,其特征在于,还包括一个手持式外壳,用于容纳调制光源、差动光探测器、差动放大器和同步检测器。
15.如权利要求14所述的反射计,其特征在于,目标表面包括透皮贴片的显色薄膜,并且所述手持式外壳包括一阅读头,所述阅读头与透皮贴片的显色薄膜紧密配合。
16.如权利要求15所述的反射计,其特征在于,透皮贴片包括一开口,它露出显色薄膜以便观察,并且阅读头包括一头部,其结构适于插入透皮贴片的开口中。
17.如权利要求16所述的反射计,其特征在于,阅读头的头部包括一透明窗口,用于当阅读头插入透皮贴片开口时弄平显色薄膜。
18.如权利要求16所述的反射计,其特征在于,透皮贴片中的开口具有一定的大小和形状,并且阅读头的头部结构具有互补的大小和形状。
19.如权利要求16所述的反射计,其特征在于,开口是圆形的,并且头部结构为圆柱形,适于配合在圆形开口内。
20.如权利要求19所述的反射计,其特征在于,使头部结构的圆柱形成锥形,以允许阅读头找到圆形开口。
21.如权利要求1所述的反射计,其特征在于,还包括一桌面外壳,用于容纳经调制光源、差动光探测器、差动放大器和同步检测器。
22.如权利要求21所述的反射计,其特征在于,目标表面包括一显色测试条,所述桌面外壳包括一阅读位置,它适于容纳所述显色测试条。
23.如权利要求1所述的反射计,其特征在于,目标表面色彩浓淡表示某个可测量的量或质,反射计还包括一处理器,用于将表示目标表面之颜色或色彩浓淡的稳定直流电压转换成相应的量或质的测量结果。
24.如权利要求23所述的反射计,其特征在于,还包括一存储的查询表或数学公式,它将稳定的直流电压值与相应的量或质的测量结果相关联,并且处理器参考查询表或数学公式来进行转换。
25.如权利要求24所述的反射计,其特征在于,可测量的量或质包括分析物浓度。
26.如权利要求25所述的反射计,其特征在于,分析物浓度包括葡萄糖浓度或胆固醇浓度。
27.如权利要求1所述的反射计,其特征在于,经调制光源所发光的光强随温度的变化而变化,并且目标表面的色彩浓淡表示某个可测量的量或质,所述反射计还包括:
一传感器,用于产生表示光源温度的温度信号;和
一处理器,用于根据温度信号校正表示目标表面之颜色或色彩浓淡的稳定的直流电压,以便产生一补偿直流电压,并且将补偿直流电压转换成相应的量或质的测量结果。
28.一种反射计用的阅读头,其特征在于,包括:
至少两个发光二极管;
一光探测器;和
用于固定所述发光二极管的装置,其中每个发光二极管偏离光探测器之方位一方位角,以便基本上均匀地照射目标表面,对光探测器的镜面反射最低。
29.如权利要求28所述的阅读头,其特征在于,光探测器的方位垂直于目标表面。
30.如权利要求28所述的阅读头,其特征在于,所述偏离角在40度和45度之间。
31.如权利要求28所述的阅读头,其特征在于,目标表面包括透皮贴片的显色薄膜,并且阅读头适于与透皮贴片的显色薄膜紧密配合。
32.如权利要求31所述的阅读头,其特征在于,透皮贴片包括一开口,它露出显色薄膜以便观察,并且阅读头包括一头部,其结构适于插入透皮贴片的开口中。
33.如权利要求32所述的阅读头,其特征在于,阅读头的头部包括一透明窗口,用于当阅读头插入透皮贴片开口时弄平显色薄膜。
34.如权利要求32所述的阅读头,其特征在于,透皮贴片中的开口具有一定的大小和形状,并且阅读头的头部结构具有互补的大小和形状。
35.如权利要求32所述的阅读头,其特征在于,开口是圆形的,并且头部结构为圆柱形,适于配合在圆形开口内。
36.如权利要求35所述的阅读头,其特征在于,使头部结构的圆柱形成锥形,以允许阅读头找到圆形开口。
37.如权利要求28所述的阅读头,其特征在于,两个发光二极管具有不同的颜色。
38.一种设备,其特征在于,包括:
光源,用于发出光强随温度变化的光;
光探测器,用于探测光源发出的光,并且产生表示被探测光的第一输出;
温度传感器,它与光源热机耦合,并且产生表示光源温度的第二输出;和
根据第二输出,用数学方式校正第一输出之电压大小以便考虑光源温度中被探测变化的装置。
39.如权利要求38所述的设备,其特征在于,光源至少包括一个发光二极管,并且温度传感器包括一个二极管装置,所述二极管装置的工作特性基本上可以补充发光二极管的特性。
40.一种设备,其特征在于,包括:
光源,用于发出光强随温度变化的光;
光探测器,用于探测光源发出的光,并且产生表示被探测光的输出;
温度补偿器,它与经调制光源热机耦合;和
响应于温度补偿器,对光源进行控制,以便抵消光强因光源温度变化而发生的任何变化的装置。
41.如权利要求40所述的设备,其特征在于,光源至少包括一个发光二极管,并且温度补偿器包括一个二极管,所述控制装置包括将二极管与发光二极管串联连接。
42.一种设备,其特征在于,包括:
光源,用于发出光强随光源两端电压降变化的光;
光探测器,用于探测光源发出的光,并且产生表示被探测光的输出;
传感器,用于测量光源两端的电压降;和
根据测量得到的电压降,用数学方式校正输出的电压大小,以便考虑光强因电压降变化而变化的装置。
43.一种反射计,其特征在于,包括:
光源,用于发出光,照射具有某种颜色和色彩浓淡的目标表面;
光探测器电路,用于探测目标表面反射的光,并且产生表示目标表面之颜色或色彩浓淡的基本上稳定的直流输出电压;
处理器,用于将表示目标表面之颜色或色彩浓淡的稳定的直流电压转换成相应的量或质的测量结果;和
用第一模式控制对光源的调制以便照射目标表面,并且用第二模式通过光通信链路远距离传输用于识别相应量或质的测量结果的数据的装置。
44.如权利要求43所述的反射计,其特征在于,光探测器电路包括:
光探测器,用于探测目标表面反射的光,并且产生表示被探测光的第一输出;
用于处理第一输出的装置,所述装置产生一反馈信号施加于光探测器上,以便补偿因光探测器探测环境光而导致第一输出发生的直流电压漂移,并且差动地放大第一输出,产生第二输出;和
检测器,用于同步解调第二输出,产生表示目标表面之颜色或色彩浓淡的基本上稳定的直流输出电压。
45.如权利要求44所述的反射计,其特征在于,光探测器包括:
光电晶体管,用于接收和探测由目标表面反射的光,并且产生第一差动信号;
晶体管,用于设置静态工作点,并且产生第二差动信号;和
用于按差动结构,连接光电晶体管发射极和晶体管发射极的装置。
46.如权利要求45所述的反射计,其特征在于,还包括一电流反射镜,用于将固定的恒定电流提供到差动连接的光电晶体管和晶体管之间的公共发射级连接中。
47.如权利要求46所述的反射计,其特征在于,所述处理装置处理第二差动信号,产生所述反馈信号施加到光电晶体管上,以便对光电晶体管加偏压,使其回到静态工作点。
48.如权利要求47所述的反射计,其特征在于,所述处理装置包括一积分器,用于将第二差动信号与参考电压比较,并且对比较结果积分,产生所述反馈信号,其中所述反馈信号表示静态工作点与光电晶体管检测到的直流环境光所产生的位移之间的误差。
49.如权利要求44所述的反射计,其特征在于,光源包括:
至少两个发光二极管;和
用于固定所述发光二极管的装置,其中每个发光二极管偏移光探测器之方位角一方位角,以便基本上均匀地照射目标表面,对光探测器的镜面反射最低。
50.如权利要求49所述的反射计,其特征在于,两个发光二极管具有不同的颜色。
51.如权利要求50所述的反射计,其特征在于,还包括对具有不同颜色的发光二极管交替加脉冲的装置。
52.如权利要求44所述的反射计,其特征在于,用于同步解调的检测器包括一个全波同步检测器,它产生与第二输出信号之峰至峰电压成正比的直流电压。
53.一种反射计,其特征在于,包括:
光源,它发出光,照射具有某种颜色和色彩浓淡的目标表面;
光探测器电路,用于探测目标表面反射的光,并且产生表示目标表面之颜色或色彩浓淡的基本上稳定的直流输出电压;
存储的查询表或数学公式,对多个不同测试中的每种测量,它们将稳定的直流电压值与相应的量或质的测量结果相关联;和
处理器,用于为某个正在进行的测试参考所存储的查询表或数学公式,并且根据该测试将表示目标表面之颜色或色彩浓淡的稳定的直流电压转换成相应的量或质的测量结果。
54.如权利要求53所述的反射计,其特征在于,所述光源是经调制的光源,并且光探测器电路包括:
光探测器,用于探测目标表面反射的光,并且产生表示被探测光的第一输出;
用于处理第一输出的装置,所述装置产生一反馈信号施加于光探测器上,以便补偿因光探测器探测环境光而导致第一输出发生的任何漂移,并且差动地放大第一输出,产生第二输出;和
检测器,用于同步解调第二输出,产生表示目标表面之颜色或色彩浓淡的基本上稳定的直流输出电压。
55.如权利要求54所述的反射计,其特征在于,光探测器包括:
光电晶体管,用于接收和探测由目标表面反射的光,并且产生第一差动信号;
晶体管,用于设置静态工作点,并且产生第二差动信号;和
用于按差动结构,连接光电晶体管发射极和晶体管发射极的装置。
56.如权利要求55所述的反射计,其特征在于,所述处理装置处理第二差动信号,产生所述反馈信号施加到光电晶体管上,以便对光电晶体管加偏压,使其回到静态工作点。
57.如权利要求56所述的反射计,其特征在于,所述处理装置包括一积分器,用于将第二差动信号与参考电压比较,并且对比较结果积分,产生所述反馈信号,其中所述反馈信号表示静态工作点与光电晶体管检测到的直流环境光所产生的位移之间的误差。
58.如权利要求54所述的反射计,其特征在于,用于同步解调的检测器包括一个全波同步检测器,它产生与第二输出信号之峰至峰电压成正比的直流电压。
59.如权利要求53所述的反射计,其特征在于,还包括为每一种不同的测试将反射计校正至每个所存储的查询表或数学公式的装置。
60.如权利要求59所述的反射计,其特征在于,所述校正装置包括用于设置反射计以便在对应于某个颜色或色彩浓淡的中点处读取某个直流输出电压的装置。
61.如权利要求60所述的反射计,其特征在于,所述校正装置还包括用于确定应用偏移以便在对应于某个颜色或色彩浓淡的每个端点处读取直流输出电压的装置。
62.如权利要求60所述的反射计,其特征在于,所述校正装置还包括用于确定应用偏移以便在某个测试或对应于某个颜色或色彩浓淡的中点处读取直流输出电压的装置。
63.如权利要求60所述的反射计,其特征在于,所述校正装置还包括用于确定应用偏移以便在所给定的一批产品内,在对应某个颜色或色彩浓淡的每个端点处阅读直流输出电压的装置。
64.一种反射计,其特征在于,包括:
光源,它发出光,照射具有某种颜色和色彩浓淡的目标表面;
光探测器电路,用于探测目标表面反射的光,并且产生表示目标表面之颜色或色彩浓淡的基本上稳定的直流输出电压;
存储的查询表或数学公式,它将稳定的直流电压值与相应的量或质的测量结果相关联;
用于校正反射计,以便确定应用偏移,读取对应于某个颜色或色彩浓淡的直流输出电压的装置;和
处理器,用于所确定的偏移,调节表示目标表面之颜色或色彩浓淡的稳定的直流电压,并且参考所存储的查询表或数学公式,将经调节的稳定的直流电压转换成相应的量或质的测量结果。
65.如权利要求64所述的反射计,其特征在于,所述校正装置包括用于确定应用偏移以便在对应于某个颜色或色彩浓淡的每个端点处读取直流输出电压的装置。
66.如权利要求64所述的反射计,其特征在于,所述校正装置包括用于确定应用偏移以便在某个测试和对应于某个颜色或色彩浓淡的中点处读取直流输出电压的装置。
67.如权利要求64所述的反射计,其特征在于,处理器还对应用偏移进行内插,以便读取不对应于所述颜色或色彩浓淡的直流输出电压。
CN98812848A 1997-10-31 1998-10-30 反射计 Expired - Fee Related CN1131425C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US6393597P 1997-10-31 1997-10-31
US60/063,935 1997-10-31

Publications (2)

Publication Number Publication Date
CN1285913A true CN1285913A (zh) 2001-02-28
CN1131425C CN1131425C (zh) 2003-12-17

Family

ID=22052468

Family Applications (1)

Application Number Title Priority Date Filing Date
CN98812848A Expired - Fee Related CN1131425C (zh) 1997-10-31 1998-10-30 反射计

Country Status (12)

Country Link
US (2) US6574425B1 (zh)
EP (1) EP1034425A1 (zh)
JP (1) JP2001522043A (zh)
KR (1) KR100729585B1 (zh)
CN (1) CN1131425C (zh)
AU (1) AU1449699A (zh)
BR (1) BR9815205B1 (zh)
CA (1) CA2308063A1 (zh)
MX (1) MXPA00004120A (zh)
NO (1) NO20002135L (zh)
TW (1) TW533307B (zh)
WO (1) WO1999023479A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102325555A (zh) * 2009-02-11 2012-01-18 B·布莱恩·阿维图姆股份公司 体外血液处理的设备
CN102439428A (zh) * 2009-06-05 2012-05-02 泰尔茂株式会社 成分测定装置
CN104603602A (zh) * 2012-09-05 2015-05-06 霍夫曼-拉罗奇有限公司 用于确定样本施加的方法和设备
CN105492890A (zh) * 2013-02-22 2016-04-13 生命技术公司 用于生物分析的光学系统和方法
CN110530766A (zh) * 2019-07-19 2019-12-03 武汉四方光电科技有限公司 一种颗粒物浓度测量方法及装置

Families Citing this family (103)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8071384B2 (en) 1997-12-22 2011-12-06 Roche Diagnostics Operations, Inc. Control and calibration solutions and methods for their use
US6394952B1 (en) * 1998-02-03 2002-05-28 Adeza Biomedical Corporation Point of care diagnostic systems
ATE221665T1 (de) 1998-06-24 2002-08-15 Transderm Technologies Llc Nichtinvasiven transdermal detektion von analyten
DE19844500A1 (de) * 1998-09-29 2000-03-30 Roche Diagnostics Gmbh Verfahren zur photometrischen Auswertung von Testelementen
US7577469B1 (en) * 1999-03-11 2009-08-18 Jack L. Aronowitz Noninvasive transdermal systems for detecting an analyte in a biological fluid and methods
WO2000071971A1 (en) 1999-05-24 2000-11-30 Luxtron Corporation Optical techniques for measuring layer thicknesses
US6570662B1 (en) * 1999-05-24 2003-05-27 Luxtron Corporation Optical techniques for measuring layer thicknesses and other surface characteristics of objects such as semiconductor wafers
AU781034C (en) * 1999-08-06 2006-05-11 Imi International Medical Innovations Inc. Spectrophotometric measurement in color-based biochemical and immunological assays
US7228077B2 (en) 2000-05-12 2007-06-05 Forster Energy Llc Channel gain control for an optical communications system utilizing frequency division multiplexing
KR100513210B1 (ko) * 2000-09-25 2005-09-08 마츠시타 덴끼 산교 가부시키가이샤 크로마토그래피 정량 측정 장치
US6753187B2 (en) 2001-05-09 2004-06-22 Lifescan, Inc. Optical component based temperature measurement in analyte detection devices
DE10156809B4 (de) * 2001-11-20 2011-06-16 Lre Technology Partner Gmbh Verfahren und Vorrichtung zur Blutzuckermessung
DE10156804B4 (de) * 2001-11-20 2011-03-17 Quidel Corp., San Diego Optische Meßvorrichtung für Teststreifen
US7042570B2 (en) * 2002-01-25 2006-05-09 The Regents Of The University Of California Porous thin film time-varying reflectivity analysis of samples
US7803322B2 (en) * 2002-08-14 2010-09-28 Detekt Biomedical, L.L.C. Universal optical imaging and processing system
US7295186B2 (en) 2003-01-14 2007-11-13 Avago Technologies Ecbuip (Singapore) Pte Ltd Apparatus for controlling a screen pointer that distinguishes between ambient light and light from its light source
US20040136004A1 (en) * 2003-01-15 2004-07-15 Collins Michael Keith Portable color reader and display device
US7095392B2 (en) * 2003-02-07 2006-08-22 02Micro International Limited Inverter controller with automatic brightness adjustment circuitry
JP3566276B1 (ja) 2003-05-07 2004-09-15 株式会社日立製作所 血糖値測定装置
EP1626269B1 (en) * 2003-05-21 2012-03-07 Terumo Kabushiki Kaisha Component measuring device
US7488601B2 (en) 2003-06-20 2009-02-10 Roche Diagnostic Operations, Inc. System and method for determining an abused sensor during analyte measurement
US8058077B2 (en) 2003-06-20 2011-11-15 Roche Diagnostics Operations, Inc. Method for coding information on a biosensor test strip
US7645373B2 (en) 2003-06-20 2010-01-12 Roche Diagnostic Operations, Inc. System and method for coding information on a biosensor test strip
US8206565B2 (en) 2003-06-20 2012-06-26 Roche Diagnostics Operation, Inc. System and method for coding information on a biosensor test strip
US8148164B2 (en) 2003-06-20 2012-04-03 Roche Diagnostics Operations, Inc. System and method for determining the concentration of an analyte in a sample fluid
US7645421B2 (en) 2003-06-20 2010-01-12 Roche Diagnostics Operations, Inc. System and method for coding information on a biosensor test strip
US7452457B2 (en) 2003-06-20 2008-11-18 Roche Diagnostics Operations, Inc. System and method for analyte measurement using dose sufficiency electrodes
US7718439B2 (en) 2003-06-20 2010-05-18 Roche Diagnostics Operations, Inc. System and method for coding information on a biosensor test strip
US7502116B2 (en) * 2003-09-09 2009-03-10 Hewlett-Packard Development Company, L.P. Densitometers and methods for measuring optical density
US7262853B2 (en) * 2003-09-23 2007-08-28 X-Rite, Inc. Color measurement instrument
US7141815B2 (en) * 2004-01-30 2006-11-28 The United States Of America As Represented By The Secretary Of The Army Fiber optic-based probe for use in saltwater and similarly conductive media as found in unenclosed natural environments
WO2005078118A1 (en) 2004-02-06 2005-08-25 Bayer Healthcare Llc Oxidizable species as an internal reference for biosensors and method of use
JP3557424B1 (ja) 2004-02-17 2004-08-25 株式会社日立製作所 血糖値測定装置
US7388590B2 (en) * 2004-02-27 2008-06-17 Microsoft Corporation Method and system for using a color scheme to communicate information related to the integration of hardware and software in a computing device
WO2005088519A1 (en) * 2004-03-05 2005-09-22 Bayer Healthcare Llc Hadheld optical diagnostic device having image system array
US7375347B2 (en) * 2004-04-26 2008-05-20 Sensors For Medicine And Science, Inc. Systems and methods for extending the useful life of optical sensors
US7569126B2 (en) 2004-06-18 2009-08-04 Roche Diagnostics Operations, Inc. System and method for quality assurance of a biosensor test strip
US9198608B2 (en) 2005-04-28 2015-12-01 Proteus Digital Health, Inc. Communication system incorporated in a container
EP1736774B1 (de) * 2005-06-22 2008-02-06 F.Hoffmann-La Roche Ag Analysesystem zur Analyse einer Probe auf einem analytischen Testelement
WO2007013915A1 (en) 2005-07-20 2007-02-01 Bayer Healthcare Llc Gated amperometry
UY29721A1 (es) * 2005-08-05 2007-03-30 Bayer Healthcare Llc Medidor con alarma de tiempo postprandial para efectuar determinaciones
US7557923B2 (en) * 2005-09-12 2009-07-07 University Of Kentucky Research Foundation Method and system for in situ spectroscopic evaluation of an object
CN101273266B (zh) 2005-09-30 2012-08-22 拜尔健康护理有限责任公司 门控伏特安培法
US8717647B2 (en) * 2005-10-13 2014-05-06 Hewlett-Packard Development Company, L.P. Imaging methods, imaging device calibration methods, imaging devices, and hard imaging device sensor assemblies
US7602493B2 (en) * 2006-02-14 2009-10-13 John Ramirez Electronic color matching apparatus and method of display
EP2000801B1 (en) * 2006-03-28 2016-12-07 Terumo Kabushiki Kaisha Body fluid components measuring device and method
US20080174777A1 (en) * 2006-04-11 2008-07-24 University Of Wyoming Spectrometers using 2-dimensional microelectromechanical digital micromirror devices
CN105468895A (zh) 2006-05-02 2016-04-06 普罗透斯数字保健公司 患者定制的治疗方案
US7663757B2 (en) * 2006-09-27 2010-02-16 Alberta Research Council Inc. Apparatus and method for obtaining a reflectance property indication of a sample
EP1912058B1 (de) 2006-10-14 2010-12-15 Roche Diagnostics GmbH Anordnung und Verfahren zum Erfassen und Auswerten optischer Signale
KR101611240B1 (ko) 2006-10-25 2016-04-11 프로테우스 디지털 헬스, 인코포레이티드 복용 가능한 제어된 활성화 식별자
KR100781651B1 (ko) * 2006-11-06 2007-12-03 삼성전자주식회사 휴대용 단말기의 화면 표시 장치 및 방법
EP2069004A4 (en) * 2006-11-20 2014-07-09 Proteus Digital Health Inc PERSONAL HEALTH SIGNAL RECEIVERS WITH ACTIVE SIGNAL PROCESSING
CA2676407A1 (en) 2007-02-01 2008-08-07 Proteus Biomedical, Inc. Ingestible event marker systems
CA2676280C (en) 2007-02-14 2018-05-22 Proteus Biomedical, Inc. In-body power source having high surface area electrode
WO2008111055A1 (en) * 2007-03-12 2008-09-18 In-Dot Ltd. Color sensing for a reader device and the like
WO2008111054A2 (en) * 2007-03-12 2008-09-18 In-Dot Ltd. A reader device having various functionalities
US8540632B2 (en) 2007-05-24 2013-09-24 Proteus Digital Health, Inc. Low profile antenna for in body device
FI2192946T3 (fi) 2007-09-25 2022-11-30 Elimistön sisäinen laite, jossa on virtuaalinen dipolisignaalinvahvistus
US7768645B2 (en) * 2007-11-20 2010-08-03 Siemens Healthcare Diagnostics Inc. Miniature optical readhead and colorimeter for analysis media
WO2009076302A1 (en) 2007-12-10 2009-06-18 Bayer Healthcare Llc Control markers for auto-detection of control solution and methods of use
WO2009101610A2 (en) * 2008-02-13 2009-08-20 In-Dot Ltd. A method and an apparatus for managing games and a learning plaything
WO2009104123A1 (en) * 2008-02-22 2009-08-27 Koninklijke Philips Electronics N.V. Light source for ftir biosensor
CA2717862C (en) 2008-03-05 2016-11-22 Proteus Biomedical, Inc. Multi-mode communication ingestible event markers and systems, and methods of using the same
US8591302B2 (en) 2008-03-11 2013-11-26 In-Dot Ltd. Systems and methods for communication
WO2009125393A1 (en) * 2008-04-09 2009-10-15 In-Dot Ltd. Reader devices and related housings and accessories and methods of using same
WO2009143488A1 (en) * 2008-05-22 2009-11-26 Mattel Inc. Play sets
ES2696984T3 (es) 2008-07-08 2019-01-21 Proteus Digital Health Inc Infraestructura de datos de marcadores de eventos de ingestión
WO2010080843A2 (en) 2009-01-06 2010-07-15 Proteus Biomedical, Inc. Ingestion-related biofeedback and personalized medical therapy method and system
FI20095063A0 (fi) * 2009-01-26 2009-01-26 Wallac Oy Optinen mittauslaite
TWI517050B (zh) 2009-11-04 2016-01-11 普羅托斯數位健康公司 供應鏈管理之系統
JP2011237304A (ja) * 2010-05-11 2011-11-24 Nippon Soken Inc 燃料性状測定装置、燃料性状測定装置の製造方法、車両
TWI557672B (zh) 2010-05-19 2016-11-11 波提亞斯數位康健公司 用於從製造商跟蹤藥物直到患者之電腦系統及電腦實施之方法、用於確認將藥物給予患者的設備及方法、患者介面裝置
US8427648B2 (en) * 2010-09-02 2013-04-23 Eastman Kodak Company Apparatus for discriminating between objects
JP5481402B2 (ja) * 2011-01-17 2014-04-23 株式会社日立ハイテクノロジーズ 自動分析装置
FR2977315B1 (fr) * 2011-06-29 2013-06-28 Schneider Electric Ind Sas Systeme de detection a faible consommation d'energie
US9756874B2 (en) 2011-07-11 2017-09-12 Proteus Digital Health, Inc. Masticable ingestible product and communication system therefor
WO2015112603A1 (en) 2014-01-21 2015-07-30 Proteus Digital Health, Inc. Masticable ingestible product and communication system therefor
CN103827914A (zh) 2011-07-21 2014-05-28 普罗秋斯数字健康公司 移动通信设备、系统和方法
US8889424B2 (en) * 2011-09-13 2014-11-18 Joel R. L. Ehrenkranz Device and method for performing a diagnostic test
US10105065B2 (en) 2011-10-31 2018-10-23 Sentec Ag Device for application of a sensor to a measurement site, a sensor head, a kit of an application device and sensor and use of an application device for optical measurement of physiological parameters
US20130235380A1 (en) * 2012-03-08 2013-09-12 Niv Shemtov Calculating the concentration of solids in a fluid
ITUD20120114A1 (it) 2012-06-15 2013-12-16 Healthcare Global Initiative Fzc H Gi Dispositivo transdermico per la rilevazione fluorimetrica di un analita in un fluido biologico e apparecchiatura di analisi associata a detto dispositivo transdermico
US9404794B2 (en) 2013-02-28 2016-08-02 Lifescan Scotland Limited Ambient light compensation circuit for analyte measurement systems
JP5693639B2 (ja) * 2013-04-15 2015-04-01 テルモ株式会社 血糖値測定装置
JP6511439B2 (ja) 2013-06-04 2019-05-15 プロテウス デジタル ヘルス, インコーポレイテッド データ収集および転帰の査定のためのシステム、装置、および方法
US10084880B2 (en) 2013-11-04 2018-09-25 Proteus Digital Health, Inc. Social media networking based on physiologic information
KR102245011B1 (ko) * 2013-11-28 2021-04-27 에프. 호프만-라 로슈 아게 체액에서의 분석물의 농도를 결정하기 위한 방법 및 디바이스
ES2555161B1 (es) * 2014-06-24 2016-10-07 Universidad De Burgos Procedimiento de medida de la concentración de epecies químicas
US9568432B2 (en) * 2014-09-26 2017-02-14 Intel Corporation Sensor apparatus to determine a value of a chemical parameter based on a color shade and methods thereof
WO2016054079A1 (en) 2014-09-29 2016-04-07 Zyomed Corp. Systems and methods for blood glucose and other analyte detection and measurement using collision computing
US10436773B2 (en) 2016-01-18 2019-10-08 Jana Care, Inc. Mobile device based multi-analyte testing analyzer for use in medical diagnostic monitoring and screening
US9554738B1 (en) 2016-03-30 2017-01-31 Zyomed Corp. Spectroscopic tomography systems and methods for noninvasive detection and measurement of analytes using collision computing
CN109843149B (zh) 2016-07-22 2020-07-07 普罗秋斯数字健康公司 可摄入事件标记的电磁感测和检测
US10390701B2 (en) 2016-11-17 2019-08-27 Samsung Electronics Co., Ltd. Apparatus and method for estimating biometric information
KR102655737B1 (ko) 2016-11-30 2024-04-05 삼성전자주식회사 생체 성분 추정 장치 및 방법
CN108968112B (zh) * 2017-06-01 2021-05-18 志勇无限创意股份有限公司 烘豆装置
CN108801942B (zh) * 2018-03-01 2020-07-24 上海交通大学 水稻分蘖计数的线阵激光成像方法
WO2019210240A1 (en) * 2018-04-27 2019-10-31 Eccrine Systems, Inc. Flexible sweat sample collection and sensing devices
EP3591385A1 (en) 2018-07-06 2020-01-08 Roche Diabetes Care GmbH A detection method for detecting an analyte in a sample
JP2022546531A (ja) 2019-08-29 2022-11-04 アロノウィッツ、ミレーヤ、シー. ラテラルフロー免疫化学における定量的分析物検出
US11536732B2 (en) 2020-03-13 2022-12-27 Jana Care, Inc. Devices, systems, and methods for measuring biomarkers in biological fluids
JP2023541128A (ja) * 2020-08-28 2023-09-28 アロノウィッツ、ミレーヤ、シー. ラテラルフロー免疫試験のトライコーダ反射率計

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3910701A (en) * 1973-07-30 1975-10-07 George R Henderson Method and apparatus for measuring light reflectance absorption and or transmission
US4163950A (en) 1978-03-01 1979-08-07 Tektronix, Inc. Isolating differential amplifier
WO1983000926A1 (en) * 1981-08-28 1983-03-17 Clark, Stanley Reflectance meter
US4723554A (en) * 1984-04-27 1988-02-09 Massachusetts Institute Of Technology Skin pallor and blush monitor
US4935346A (en) 1986-08-13 1990-06-19 Lifescan, Inc. Minimum procedure system for the determination of analytes
US5059394A (en) 1986-08-13 1991-10-22 Lifescan, Inc. Analytical device for the automated determination of analytes in fluids
US5049487A (en) 1986-08-13 1991-09-17 Lifescan, Inc. Automated initiation of timing of reflectance readings
US4821733A (en) * 1987-08-18 1989-04-18 Dermal Systems International Transdermal detection system
US4781195A (en) 1987-12-02 1988-11-01 The Boc Group, Inc. Blood monitoring apparatus and methods with amplifier input dark current correction
JPH0395435A (ja) 1989-09-08 1991-04-19 Terumo Corp 測定装置
US5239295A (en) * 1990-04-16 1993-08-24 Motorola, Inc. Serial light interface which also functions as an ambient light detector
EP0477417A1 (en) 1990-09-28 1992-04-01 Hewlett-Packard GmbH System for measuring a blood parameter and method therefor
US5174963A (en) * 1991-01-07 1992-12-29 United Medical Manufacturing Company Blood glucose reflectance meter including a null prompting means and a device for providing a constant brightness light
US5179288A (en) * 1991-09-30 1993-01-12 Ortho Pharmaceutical Corporation Apparatus and method for measuring a bodily constituent
US5900943A (en) * 1997-08-29 1999-05-04 Hewlett-Packard Company Page identification by detection of optical characteristics
US6525819B1 (en) * 1998-09-02 2003-02-25 Pocketspec Technologies Inc. Colorimeter for dental applications

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102325555A (zh) * 2009-02-11 2012-01-18 B·布莱恩·阿维图姆股份公司 体外血液处理的设备
CN102325555B (zh) * 2009-02-11 2015-10-21 B·布莱恩·阿维图姆股份公司 体外血液处理的设备
CN102439428A (zh) * 2009-06-05 2012-05-02 泰尔茂株式会社 成分测定装置
CN102439428B (zh) * 2009-06-05 2016-04-27 泰尔茂株式会社 成分测定装置
CN104603602A (zh) * 2012-09-05 2015-05-06 霍夫曼-拉罗奇有限公司 用于确定样本施加的方法和设备
CN104603602B (zh) * 2012-09-05 2017-03-08 霍夫曼-拉罗奇有限公司 用于确定样本施加的方法和设备
CN105492890A (zh) * 2013-02-22 2016-04-13 生命技术公司 用于生物分析的光学系统和方法
US10591416B2 (en) 2013-02-22 2020-03-17 Life Technologies Corporation Optical systems and methods for biological analysis
US11467092B2 (en) 2013-02-22 2022-10-11 Life Technologies Corporation Optical systems and methods for biological analysis
CN110530766A (zh) * 2019-07-19 2019-12-03 武汉四方光电科技有限公司 一种颗粒物浓度测量方法及装置
CN110530766B (zh) * 2019-07-19 2020-07-17 四方光电股份有限公司 一种颗粒物浓度测量方法及装置

Also Published As

Publication number Publication date
US20030214655A1 (en) 2003-11-20
AU1449699A (en) 1999-05-24
BR9815205B1 (pt) 2012-10-30
WO1999023479A1 (en) 1999-05-14
NO20002135L (no) 2000-06-08
CN1131425C (zh) 2003-12-17
US6574425B1 (en) 2003-06-03
TW533307B (en) 2003-05-21
NO20002135D0 (no) 2000-04-26
EP1034425A1 (en) 2000-09-13
KR20010031658A (ko) 2001-04-16
BR9815205A (pt) 2004-04-13
CA2308063A1 (en) 1999-05-14
JP2001522043A (ja) 2001-11-13
US6952263B2 (en) 2005-10-04
MXPA00004120A (es) 2004-12-02
KR100729585B1 (ko) 2007-06-19

Similar Documents

Publication Publication Date Title
CN1131425C (zh) 反射计
US5174963A (en) Blood glucose reflectance meter including a null prompting means and a device for providing a constant brightness light
JP3628727B2 (ja) ビデオ試験片読取り装置及び試験片の評価方法
US7947222B2 (en) Mobile communication terminal equipped with temperature compensation function for use in bio-information measurement
WO1995003537A1 (en) Colorimetric titration method and apparatus
AU2008225362B2 (en) Electrochemical biosensor measuring system
US6426505B1 (en) Phase-modulation fluorometer and method for measuring nanosecond lifetimes using a lock-in amplifier
US20020117639A1 (en) Method of strip insertion detection
CN1128353A (zh) 用于监测患者血液中待分析物质的分析系统
JP2011530128A (ja) 医療用物品をエンコーディングするためのエンコーディング方法
US8981284B2 (en) Method of determining information of a test sensor
JP2007010319A (ja) 生化学分析装置
CN1508538A (zh) 可携式多功能电化学式生物检测仪
CN101127792B (zh) 用在生物信息测量中的具有温度补偿功能的移动通信终端
JP2002228658A (ja) 分析装置
JPH02161354A (ja) 自動尿検査装置
US4162851A (en) Simultaneous photometering method and assembly for multi-dimensional measurements concerning biologically related materials
CN209481678U (zh) Pcr扩增光学模拟器
Pokrzywnicka et al. A very simple photometer based on paired-emitter-detector diodes
TW200938972A (en) Device and method for providing dynamic light standard
JP2004144672A (ja) 発色情報に基づく成分分析方法及び成分分析装置
US7968840B2 (en) Optical phase reference
CN115993343A (zh) 检测方法、近红外光谱式监测装置及存储介质
EP1889568A1 (en) Mobile communication terminal equipped with temperature compensation function for use in bioinformation measurement
KR100680271B1 (ko) 온도 보정기능을 갖는 생체정보측정용 무선통신단말기

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: JACK.L. ARONOWITZ

Free format text: FORMER OWNER: TECHNICAL CHEMICALS + PRODUCTS, INC.

Effective date: 20040618

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20040618

Address after: American Florida

Patentee after: Jack Aronowitz.L.

Address before: American Florida

Patentee before: Technical Chemicals & Products Inc.

C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20031217

Termination date: 20121030