CN1199301C - 无定形电极的成分 - Google Patents

无定形电极的成分 Download PDF

Info

Publication number
CN1199301C
CN1199301C CNB018063861A CN01806386A CN1199301C CN 1199301 C CN1199301 C CN 1199301C CN B018063861 A CNB018063861 A CN B018063861A CN 01806386 A CN01806386 A CN 01806386A CN 1199301 C CN1199301 C CN 1199301C
Authority
CN
China
Prior art keywords
electrode
metal element
chemical activity
electro
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB018063861A
Other languages
English (en)
Other versions
CN1416601A (zh
Inventor
R·L·特纳
B·D·弗雷德里克森
L·J·克劳斯
J·R·达恩
D·C·拉切尔
I·A·考特尼
毛鸥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3M Innovative Properties Co
Original Assignee
3M Innovative Properties Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3M Innovative Properties Co filed Critical 3M Innovative Properties Co
Publication of CN1416601A publication Critical patent/CN1416601A/zh
Application granted granted Critical
Publication of CN1199301C publication Critical patent/CN1199301C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/14Alloys based on aluminium with copper as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/08Amorphous alloys with aluminium as the major constituent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0682Silicides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/123Spraying molten metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/387Tin or alloys based on tin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/44Alloys based on cadmium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/46Alloys based on magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • H01M4/405Alloys based on lithium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

一种电极成分,它包括本质上由环境温度下呈无定形态混合物形式的至少一种电化学非活性元素金属和至少一种电化学活性元素金属组成的电极材料。电化学活性元素金属最好是铝,硅或锡。当该电极成分加入锂电池并经过至少一次充电-放电全周期循环之后,该混合物在环境温度下仍保持为无定形态。

Description

无定形电极的成分
优先权声明
本申请要求2000年1月13日提出的序号为60/175,893的临时申请的优先权。
技术领域
本发明涉及使用在二次锂电池中的电极材料。
背景技术
已经提出过两种材料作为二次锂电池的阳极。一种材料包括能插入锂内的石墨和其他碳的形式。虽然插入阳极一般显示出良好的周期寿命和库仑效率,但其容量相对不高。第二种材料包括同锂金属形成合金的金属。虽然和插入式阳极相比,这些合金型阳极一般显示出较高的容量,但其周期寿命和库仑效率却相对欠佳。
发明内容
本发明提供适用于二次锂电池的电极成分,其中电极成分具有高的起始容量,即使重复进行充—放周期之后该容量仍保持着。该电极成分以及加入这些成分的电池也便于制造。
为达到这些目标,本发明提供了一种电极成分,它包含:在环境温度下以无定形混合物形式存在的包括至少一种电化学非活性元素金属和至少一种电化学活性元素金属的电极材料,当所述电极成分加进锂电池并经过至少一次充—放电全周期循环后,电极材料仍保持为无定形态,其中所述电化学非活性元素金属选自由以下元素构成的族:钼、铌、钨、钽、铁、镍、锰、和铜,以及所述电化学活性元素金属选自由以下元素构成的族:铝、硅、锡、锑、铅、锗、镁、锌、镉、铋和铟。
较佳的是,该混合物在经过至少10次充放电周期之后仍保持无定形态,更佳的是至少100次,最佳的是至少1000次之后仍保持为无定形态。
“电化学活性元素金属”是在锂电池充—放电期间典型所遇条件下同锂发生反应的金属。“电化学非活性元素金属”是在该条件下不同锂发生反应的金属。
“无定形态混合物”是缺少结晶材料的长距离原子序特性的混合物。利用诸如X-光衍射、透射电镜以及差分扫描量热学等技术可以证实无定形态混合物的存在。
当加入进锂电池后,该电极成分最好显示出(a)对30次充—放电全周期每克活性金属至少约100mAh的比容量,和(b)当循环以实现每克活性金属成分约100mAh时对于30次充—放电全周期至少为99%的库仑效率(较佳的是至少99.5%,更佳的是至少99.9%)。较佳的是对500次周期,更佳的是对1000次周期实现这一性能水平。
在另一实施例中,当电极成分加进锂电池之后显示出(a)对30次充—放电全周期每克活性金属至少大约500mAh的比容量,和(b)当循环以实现每克活性金属成分约100mAh时对于30次充—放电全周期至少为99%的库仑效率(较佳的是至少99.5%,更佳的是至少99.9%)。较佳的是对200次周期,更佳的是对500次周期实现这一性能水平。
该电极成分可以是薄膜或粉末形式。可以采用许多种技术来制备该薄膜,其中包括溅射或熔融自旋。合适电化学活性元素金属的例子包括铝、硅、锡、锑、铅、锗、镁、锌、镉、铋以及铟。合适电化学非活性元素金属的例子包括IB族至VIIB族元素金属以及VIII族和稀土元素金属。具体的例子包括Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Y、Zr、Nb、Mo、La、Hf、Ta、W、Ce、Pr、Nd、Eu、Gd、Tb、Dy、Ho、Er、Yb、Lu、Be和Sm。该族中较佳的是钼、铌、钨、钽、铁、镍、锰、以及铜。
本发明还提供了一种锂离子电池,它包含:(a)含有电极材料的第一电极,它包括在环境温度下以无定形混合物形式存在的至少一种电化学非活性元素金属和至少一种电化学活性元素金属,其中所述电化学非活性元素金属选自由以下元素构成的族:钼、铌、钨、钽、铁、镍、锰、和铜,以及所述电化学活性元素金属选自由以下元素构成的族:铝、硅、锡、锑、铅、锗、镁、锌、镉、铋和铟;(b)对电极;以及(c)分隔所述电极和所述对电极的电解质,其中所述电极材料在所述电池经过至少一次充—放电全周期循环之后仍保持为无定形态。
包括上述电极成分的锂电池可在各种应用中作为电源加以使用。这些例子包括供汽车、计算机、电力工具以及电信装置用的电源。
本发明的其他特征和优点从其以下较佳实施例的叙述以及从权利要求看将是不言自明的。
附图说明
图1是在充—放电周期之前获得的例1中所述铝—硅—锰试样的X-光衍射分布图。
图2A说明例1中所述铝—硅—锰试样相对于可逆比容量的充—放电周期性能。
图2B说明例1中所述铝—硅—锰试样相对于库仑效率的充—放电周期性能。
图3是对例1中所述铝—硅—锰试样得到的差分电压曲线。
图4是进行充放电周期之前得到的例2中所述锗—镍—硅—铝试样的X-光衍射分布图。
图5是进行充放电周期前得到的例2中所述锗—镍—硅—铝试样的TEM(透射电镜)衍射图。
图6是进行充—放电周期前得到的例2中所述锗—镍—硅—铝试样的TEM照片。
图7说明例2中所述锗—镍—硅—铝试样相对于可逆比容量的充—放电周期性能。
图8A和图8B是对例2中所述锗—镍—硅—铝试样得到的差分电压曲线。
图9说明利用例2中所述锗—镍—硅—铝试样进行差分扫描量热学试验的结果。
图10是进行充—放电周期之前得到的例3中所述铝—硅—铜试样的X-光衍射分布图。
图11是对例3中所述铝—硅—铜试样所得差分电压曲线。
图12说明例3中所述铝—硅—铜试样相对于可逆比容量的充—放电周期性能。
图13(a)—(d)是从采用例4中所述硅—锡—铜试样所构建电池得到的原位X-光衍射扫描。
图14说明例5中所述具有导电层的硅—锡—铜试样相对于充电中止电压和涓流充电的充放电周期性能。
图15是进行充放电周期之前得到的例4中所述具有导电层的硅—锡—铜试样的X-光衍射分布图。
图16说明例6中所述退火和未退火的硅—锡—铜试样相对于不可逆比容量的充—放电周期性能。
具体实施方式
诸电极成分具有以上本发明概述中所述的化学成分和微结构。它们可以是薄膜或粉末的形式。薄膜制备可以采用以下技术,诸如化学和汽相沉积、真空沉积(也即溅射)、真空蒸发、熔融自旋、喷涂细片冷却、喷雾化、电化学沉积等等。粉末制备可以直接采用诸如球磨或活性金属化学还原之类的技术。或者,粉末可制备成薄膜形式然后粉碎形成。
诸电极成分在二次锂电池中特别有用。为制备电池,直接采用含有活性材料的薄膜作为电极。或者,如果活性材料是粉末形式,则用结合剂(例如,聚偏二氟乙烯结合剂)和溶剂与粉末进行混合以形成稀浆,然后使用一般涂覆技术涂在支座上,并使之干燥以形成电极。然后用电解质和对电极同该电极相结合。
电解质可以是固体或液体电解质。固体电解质的例子包括聚合体电解质,诸如聚乙烯氧化物、聚四氟乙烯、含氟的共聚物、以及其联合。液体电解质的例子包括碳酸乙烯酯、碳酸二乙酯、碳酸丙烯、及其联合。电解质以锂电解质盐提供。合适盐的例子包括LiPF6、LiBF4以及LiClO4
含液体电解质电池用对电极成分的合适例子包括LiCoO2、LiCo0.2Ni0.8O2,以及LiMn2O4。含固体电解质电池用对电极成分的合适例子包括LiV3O8和LiV2O5
现将利用以下诸实例进一步阐明本发明。
实例
A.电极制备
按照下列步骤通过溅射或借助于熔融自旋以薄膜形式制备各电极材料。
溅射步骤#1
薄膜形式的电极采用改进过的Perkin-Elmer Randex 2400-8SA型溅射系统通过顺序或单靶溅射加以制备。用购自加州San Diego的Materials Science的直径6英寸直流磁控溅射源来代替原始直径8英寸的溅射源。使用以恒流模式运行的Advanced Energy MDX-10型直流溅射电源向溅射源供电。用步进马达代替Randex系统的转盘部件以改进旋转速度范围和控制。用由常规旋转叶片泵支持的未加捕集器的油扩散泵对该系统进行抽真空。
在范围为3-30mTorr氩气压力下进行溅射。通过结合置于扩散泵上的威尼斯百叶帘式导通限制器控制氩的流量来维持该压力。
使用双面粘合带(购自MN St Paul的3M公司的3M商标Y9415)将铜箔(厚度=0.001英寸)结合至Randex系统的水冷却基底转盘。关闭并抽真空使该系统保持在典型地小于1×10-5Torr的基压(沉积前的基压并不严格)。在沉积之前采用Randex系统的“溅射蚀刻”模式对试样进行蚀刻,此时施加至基底转盘的功率为13.56MHz,溅射室的氩气压力为8mTorr。该步骤引起铜箔表面被中等能量的氩离子(100-150eV)轰击,以进一步清洁铜并确保溅射膜与铜表面的良好粘结。典型的清洁周期是150W进行30分,在此期间保持基底盘在旋转。
腐蚀后接下来利用诸源和铜基底之间的机构阀门起动诸溅射源。这使一些污染物从源表面去除而不在基底表面沉积。下一步在预定的电流水平下起动两个源而使沉积开始。在经合适的沉积时间之后,使一个或两个源断开。
溅射步骤#2
薄膜采用由一常规织物操纵系统构成的溅射涂覆器进行制备,所述织物操纵系统驱动对着3个6英寸长水冷溅射靶的水冷却滚筒上宽为6英寸的织物。多个水冷却屏限止溅射的等离子,并限定移动织物所暴露的面积。采用CTI-CRYOGENICS ON-BORD高真空低温泵和由普通粗泵支持的Leybold 220型高真空涡轮泵对涂覆器抽真空。通过以恒定功率运行的ADVANCED ENERGY MDX II型直流电源对诸靶进行供电。在30mTorr的氩气下进行溅射。调节溅射功率和织物速度以控制所沉积材料的总量(涂覆重量)。
熔融自旋步骤
在熔融自旋的准备中,如下制备金属混合物的铸块。将金属碎片混合物置于50mL氧化铝坩埚中(Vesuvius McDaniel,Beaver Falls,PA)。将此坩埚置于缠绕有石墨纤维的感受器中,并把包含坩埚的感受器置于2030型GCA真空感应炉(Centor Vacuum Industries,Nashua,NH)的铜线圈内。将该炉子抽真空至大约0.05mTorr,接通射频电源,使混合物加热并熔化大约1小时以确保合金化。冷却之后从坩埚中取出得到的铸块,并用锤子敲碎成较小的碎片以形成供熔融自旋用的试样小片。
熔融自旋工艺进行如下。用1000号砂纸对熔融自旋用标准石英喷嘴进行研磨以在顶端获得直径测量为0.03英寸的小孔。将许多试样小片塞入该喷嘴并悬挂在真空室内的铜线圈中。将该石英管连接至向该喷嘴提供加压氮的管道。调节该喷嘴使喷嘴顶端与一8英寸直径的Cu/Be轮表面之间获得0.048英寸的高度。将小室抽真空至66mTorr并在氮气钢瓶和真空室内部之间保持30mm汞柱的过压。马达/皮带驱动Cu/Be轮以2500rpm的速度旋转,对铜线圈提供足够的射频功率使感应场中的合金小片熔化。当这些小片液化时,将氮气施加至喷嘴促使熔融的金属喷射在旋转Cu/Be轮的表面。该工艺制得一可延展的长条,其宽为1~2mm,厚为0.0012英寸。
B.透射电子显微镜
采用透射电子显微镜(“TEM”)来检验充放电周期之前电极试样的微结构。这一技术利用透射强度的空间变化得到微结构的图象,所述透射强度的空间变化同试样的结构、化学和/或厚度的空间变化有关。由于形成这些图象用的辐射由波长极短的高能电子构成,故在高分辨的电子显微镜(HREM)成象条件下有可能获得原子级的信息。再者,这些电子同试样的交互作用产生有关晶体结构(电子衍射)和局部化学(X-光微分析)的信息,这对图像中所得信息是个补充。
在充—放电周期进行之前,通过以随机方向切割薄膜而从熔融自旋的薄膜中制备出试样。于是将切割得到的试样嵌入3M ScotchcastTM电气树脂#5(从MN,ST.Paul的3M公司购得)内,并进行超微化以获得足以供TEM检验用的薄片。薄片厚度约称为24nm。
用来获得微结构数据的TEM仪器是以300kV加速电压运行的日立H9000-NAR型透射电子显微镜。它能达到的点—至—点分辨率为1.75,而X-光微分析用的微探针分辨率则为16。微分析仪器由NORAN VOYAGER III构成,直接数字图像获取和定量长度测量由GATAN慢扫描CCD(电荷耦合器件)相机完成。采用图像和微分析两者的分辨率极限均为1.4的JEOL 2010-F型场发射TEM/STEM来产生Z-相差图像。
C.X-光衍射
采用西门子的Kristalloflex 805 D500型衍射计来收集衍射图案,该衍射计装备铜或钼靶X-光管和衍射束单色仪。在试样架上安放约2cm2的薄膜试样。所有溅射沉积试样均在铜基底上,后者在特定散射角下引起一系列可识别的衍射峰。具体而言,铜基底在43.30度、50.43度以及74.13度的散射角下引起的峰值分别对应于Cu(111),Cu(200)以及Cu(220)。
为了检验充—放电期间的电极材料,室温下采用2325硬币电池进行原位X-光衍射试验,该电池采用50μm厚的微孔聚丙烯隔离器和锂负电极构建。电解质为1∶1体积比的碳酸乙烯酯和碳酸二乙酯混合物中1摩尔的LiPF6。硬币电池外壳还配备有直径为18mm的圆孔。采用压敏粘合剂(购自纽约Rosce ofPort Chester的Roscobond)将直径21mm的铍窗(厚度=250μm)粘附在该孔的内侧。通过混合85wt(重量)%活性粉末,10wt% Super-S碳黑(比利时MMMCarbon),和5wt%聚偏二氟乙烯以形成可涂覆的成分,然后在其接触外壳之前直径涂此成分于该窗口来制备电极材料。
将电池在充满氩气的手套箱内进行装配和卷摺。以恒定的充电和放电电流(30mA/g)进行试验并使用MACCOR充—放电循环器在固定容量极限之间进行充—放电周期。第一次放电到达660mAh/g的极限。第一次充电至1.3V,被抽取的锂超过600mAh/g。第二次放电到达720mAh/g。
将电池安放在西门子D5000型衍射计中,并在0.0V至1.3V之间缓慢地放电和充电。X-光衍射计每三小时重复进行扫描。选择试验电流使放电至600mAh/g将需要约20小时。在充—放电期间顺序地收集2小时X-光衍射图案。
现描述诸特定电极例子的制备和特征。
例1
一含有54wt%铝,28wt%硅,和18wt%锰的无定形膜通过按上述溅射步骤#1的溅射沉积由单靶加以制备,其条件是在15mTorr氩气压和38rpm试样转速下使用1安培的电流120分钟。此三元单靶材料以230/min的速率进行溅射沉积。溅射沉积膜的厚度为2.8μm,密度约为2.9g/cm3。不存在之先或之后的诸层。
该膜的X-光衍射分布图按上述步骤利用—钼靶X-光管进行测量并显示在图1中。该图案表明,结晶的铝、硅或锰,或结晶的金属间化合物AlSiMn都没有峰值。所有示出的峰值均源自试样基座中所用的铜。
对膜的充—放电周期行为进行如下试验。用一测量为7.1mm的模具(die)从溅射膜上切下一电极。试验电池为一半电池,其中该膜形成1225硬币电池的阴极,而锂箔(厚约300μm,购自WI,Milwaukee的Aldrich Chemical公司)则形成阳极。
采用50μm厚的聚乙烯隔离器构建电池。电解质为1∶1体积比的碳酸乙烯酯和碳酸二乙酯混合物中1摩尔的LiPF6。采用铜间隔器作为集电器,并填充电池中的空隙区。
采用MACCOR充—放电循环器测量该电池的电化学性能。电池的第一次放电是在0.5mA/cm2下恒流放电降至5mV,然后恒压(5mV)放电直至电流下降至50μA/cm2。起始放电(锂化)的比容量约为1400mAh/g。于是在设定为约C/3速率(0.5mA/cm2)的恒流充电和放电条件下对该电池进行充—放电周期循环,其终止电压为5mV和1.4V。图2A和2B分别示出该电池的可逆比容量和库仑效率。该结果表明,电极膜将在大于450mAh/g下可逆地进行充放电周期至少450次,而库仑效率则大于99.0%。
该电极的差分电压曲线示于图3。该曲线表明,在充—放电周期进行期间电极的电化学行为并无明显变化,表示充放电周期中未产生较大的结晶区。
例2
含有10wt%锗、10wt%镍、20wt%硅和60wt%铝的无定形熔融自旋膜按上述步骤进行制备。膜的X-光衍射分布图采用铜靶X-光管按上述步骤进行测量。采用0.05度的步长和5秒的扫描时间。结果列于图4。正如图4所示,该分布图缺少结晶材料的峰值特征。
在进行充—放电周期之前按上述步骤也使该膜经受TEM和电子衍射分析。列于图5中的膜的TEM衍射图案缺少结晶材料尖的环或点的特征。示于图6的TEM照片同样缺少表征结晶材料的特点。
膜的充—放电周期行为如下进行试验。从两条熔融自旋的膜制备电极,其中一条测得长为15.11mm,宽为1.15mm,而另一条则测得为7.76mm长,1.15mm宽。试验电池为一半电池,其中膜形成2325硬币电池的阴极而锂箔(约0.015英寸厚和17mm直径)则形成阳极。采用厚0.001英寸的Celgard LLC隔离器(NC,Celgard Charlotte)来构建该电池。电解质为1∶1体积比的碳酸乙烯酯和碳酸二乙酯混合物中1摩尔的LiPF6
采用MACCOR充—放电循环器测量该电池的电化学性能。电池第一次放电是在0.5mA/cm2下恒流放电降至5mV,然后恒压(5mV)放电直至电流降至50μA/cm2。起始放电(锂化)的比容量为约800mAh/g。于是在设定为约C/3速率(0.5mA/cm2)的恒流充放电条件下对该电进行充—放电周期循环,其终止电压为5mV和1.4V。可逆比容量示于图7。该结果表明,电极膜将在大于400mAh/g下可逆地进行充放电周期至少20次。
图8A(周期0-5)和8B(周期6-10)示出电极的差分电压曲线。该曲线表明,在充—放电周期进行期间电极的电化学行为并无明显变化,表示充放电周期中未产生结晶区。
膜的结晶化温度采用Seiko Instruments DSC220C型量热计通过差分扫描量热学(DSC)进行测定。使用1.58mg的膜试样。对量热计编程使之稳定在25EC20分钟,然后以5EC/分钟的速率从25EC升至450EC,最后以10EC/分钟的速率从450EC降至25EC。在试验期间,试样室充满氩气。结果示于图9并表明,该试样具有大于150EC的结晶化温度。
例3
含74wt%铝—硅(50wt%铝和24wt%硅)和26wt%铜的无定形膜按上述溅射步骤#1由铝—硅靶和铜靶通过溅射沉积加以制备。根据元素分析,铝—硅靶含铝68wt%和硅32wt%。沉积在12mTorr氩气压下采用38rpm的基底旋转速度完成。溅射速度对铝—硅靶为180/分钟,对铜靶为18/分钟。溅射沉积膜厚4.61μm,密度约3.13g/cm3。试样同时具有300厚的之前铜层和300厚的之后铝—硅层。
膜的X-光衍射分布图采用铜靶X-光管按上述步骤进行测量,且列于图10。所有出现峰值均源于试样支座中所用的铜。这通过以下事实加以证明,即从按同一步骤但不含铜支座制备的膜取得的X-光衍射分布图就没有显示出这些峰值。
膜的充—放电周期行为按例1中所述步骤进行试验。图11说明在前6次充电周期中所测试样的差分容量。该差分容量平滑且无特色,和不存在结晶材料相符。对于最初两个再充电周期,在C/40下测得的膜的可逆比容量约为700mAh/g。正如图12所示,在C/10下该试样保持约600mAh/g的容量超过100次周期。
例4
含30wt%硅、66wt%锡和4wt%铜的无定形膜按上述溅射步骤#2通过溅射沉积加以制备,对于三个单靶使用11kW的总功率。溅射在氩气压30mTorr下采用0.24ft/min的织物速度进行。三个相同硅/锡/铜成分的靶以约3g/kWh的速度进行溅射沉积。采用涂有结合剂的10μm厚的铜箔(日本)作为支座。支座制备如下:用8mil带凹口的棒对该箔涂以40wt%超级P碳和60wt%聚偏二氟乙烯在N-甲基-2-吡咯烷二酮中6wt%的固体弥散物,接着在60℃真空下干燥4小时以除去残余的溶剂。干燥的结合剂厚约8μm。溅射沉积膜的厚度为约5μm和密度为约4g/cm3
硅—锡—铜材料的X-光衍射分布图采用钼靶X-光管获得并在图15中列出。其特征在于不存在结晶的锡和硅。较大的峰值均由于铜箔集电器引起。
借助于丙酮,用刀片将膜从铜支座上剥下,粉碎,并用270筛孔(美国标准筛尺寸;ASTM E-11-61)过筛。于是用此材料构建2325硬币电池供原位X-光衍射测量用。为制备该硬币电池,制备一弥散物,它具有86wt%的该材料,7wt%的超级-P碳(MMM Carbon,比利时),以及7wt%的N-甲基-2-吡咯烷二酮中的聚偏二氟乙烯结合剂。然后将此弥散物涂覆在铜箔上并在真空下干燥数小时以除去残余溶剂。用—锂箔(约厚300μm,购自WI,Milwaukee的AldrichChimical公司)作为对电极,用得到的涂覆箔构建2325硬币电池。采用50μm厚的聚乙烯隔离器来构建该电池。电解质为体积比1∶1的碳酸乙烯酯和碳酸二乙酯混合物中1摩尔的LiPF6
如上所述用—铜靶X-光管进行原位X-光衍射测量。结果示于图13(a)~(d)。图13(d)示出放电电流启动之前该电极的起始图案。图案中所有的尖峰均源自电池的成分(例如,窗口上的铍,氧化铍等)。这些峰值在充放电期间是不变的。中心靠近26和43度的各个宽峰值是由于硅—锡—铜电极所致。
图13(c)表示在660mAh/g的锂和电极结合之后所测得的X-光衍射分布图。正如该图所示,各个宽峰由于锂的作用而迁移位置。各峰仍保持为宽的。未观察到有结晶的迹象。
图13(b)表示在所有锂第一次去除之后电极的状态。该图案返回至图13(d)所示原始材料的。再次未观察到有结晶的迹象。
图13(a)表示将锂再次插入到达720mAh/g水平之后电极的状态。再一次未观察到有结晶的迹象。
例5
电极按例4的步骤制备,除了制备该电极所用最后的弥散物通过混合1克过筛粉末和16g N-甲基-2-吡咯烷二酮中4.5%的固体弥散物加以制作,固体弥散物包括超级-P碳和聚偏二氯乙烯(70∶30)。最后干燥的涂层含有50wt%活性硅—锡—铜,35wt%超级-P碳和15wt%聚偏二氟乙烯。用此电极如例4所述构建2325硬币电池。
相对于涓流充电容量和充电中止电压,用一MACCOR充放电循环器测量该电池的电化学性能。该电池以350mA/g的高速率第一次放电至700mAh/g固定容量以使电极锂化。然后将此电池以350mA/g的速率充电至1.2V电压以从电极抽取锂。下一步允许该电池中止(零电流)15分钟,之后电池电压可降至1.0V以下。在此中止周期结束时的电势就被记录为“充电中止电压”。它对留在电极中锂的总量提供—量度。一般讲,充电中止电压越高,它作为充电周期数的函数就越稳定,去除锂就越有效。
在中止周期结束时,将该电池以35mA/g的低速(“涓流充电”)充电至1.2V以去除在高速率(350mA/g)下未被去除的锂。涓流充电容量是锂去除程度的一个量度,并相似于库仑效率。一般讲,在施加涓流充电期间被去除的锂越多,高速率充电期间电极放弃锂的效率就越低。因此,对给定充放电周期,期望使涓流充电容量减至最少,并在重复充放电周期之后保持低的涓流充电容量。
对试样的结果示于图14。这些结果表明,相对于涓流充电和充电中止电压两者,该电极表现良好。
例6
含30wt%硅,66wt%锡和4wt%铜的无定形膜为例4所示进行制备,并按例5所述规定进行充—放电周期循环。该膜的不可逆容量作为每次周期之后放电和充电容量之差加以计算。为了比较起见,制备了其他三个膜,但在测量其作为周期数函数的不可逆容量之前,先在150℃真空炉内退火24小时。退火导致产生一半结晶膜。所有四个膜的结果均示于图16。图16中无定形膜标以“A”并以4小时速率进行充—放电周期。退火膜标以“B”、“C”和“D”,并分别以6、2和4小时的速率进行充放电周期。这些结果表明,无定形膜所具有的不可逆容量明显地比退火膜的低。

Claims (9)

1.一种电极成分,其特征在于包含:
在环境温度下以无定形混合物形式存在的包括至少一种电化学非活性元素金属和至少一种电化学活性元素金属的电极材料,当所述电极成分加进锂电池并经过至少一次充一放电全周期循环后,电极材料仍保持为无定形态,
其中所述电化学非活性元素金属选自由以下元素构成的族:钼、铌、钨、钽、铁、镍、锰、和铜,以及
所述电化学活性元素金属选自由以下元素构成的族:铝、硅、锡、锑、铅、锗、镁、锌、镉、铋和铟。
2.如权利要求1所述的电极成分,其特征在于所述电极材料包括至少一种电化学非活性元素金属和多种电化学活性元素金属。
3.如权利要求1所述的电极成分,其特征在于所述电极材料包括多种电化学非活性元素金属和至少一种电化学活性元素金属。
4.如权利要求1所述的电极成分,其特征在于所述电化学活性元素金属为铝。
5.如权利要求1所述的电极成分,其特征在于所述电化学活性元素金属为硅。
6.如权利要求1所述的电极成分,其特征在于所述电化学活性元素金属为锡。
7.如权利要求1所述的电极成分,其特征在于所述成分为薄膜形式。
8.如权利要求1所述的电极成分,其特征在于所述成分为粉末形式。
9.一种锂离子电池,其特征在于,它包含:
(a)含有电极材料的第一电极,它包括在环境温度下以无定形混合物形式存在的至少一种电化学非活性元素金属和至少一种电化学活性元素金属,
其中所述电化学非活性元素金属选自由以下元素构成的族:钼、铌、钨、钽、铁、镍、锰、和铜,以及
所述电化学活性元素金属选自由以下元素构成的族:铝、硅、锡、锑、铅、锗、镁、锌、镉、铋和铟;
(b)对电极;以及
(c)分隔所述电极和所述对电极的电解质,其中所述电极材料在所述电池经过至少一次充-放电全周期循环之后仍保持为无定形态。
CNB018063861A 2000-01-13 2001-01-03 无定形电极的成分 Expired - Fee Related CN1199301C (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US17589300P 2000-01-13 2000-01-13
US60/175,893 2000-01-13
US09/751,169 2000-12-29
US09/751,169 US6699336B2 (en) 2000-01-13 2000-12-29 Amorphous electrode compositions

Publications (2)

Publication Number Publication Date
CN1416601A CN1416601A (zh) 2003-05-07
CN1199301C true CN1199301C (zh) 2005-04-27

Family

ID=26871668

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB018063861A Expired - Fee Related CN1199301C (zh) 2000-01-13 2001-01-03 无定形电极的成分

Country Status (11)

Country Link
US (2) US6699336B2 (zh)
EP (1) EP1252670B1 (zh)
JP (1) JP2003520398A (zh)
KR (1) KR100688999B1 (zh)
CN (1) CN1199301C (zh)
AT (1) ATE279021T1 (zh)
AU (1) AU2001229269A1 (zh)
CA (1) CA2397061A1 (zh)
DE (1) DE60106202T2 (zh)
HK (1) HK1051442B (zh)
WO (1) WO2001052337A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104993115A (zh) * 2015-08-03 2015-10-21 温州大学 一种锂电池SiCO-Si梯度薄膜电极体系及制备方法

Families Citing this family (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6699336B2 (en) * 2000-01-13 2004-03-02 3M Innovative Properties Company Amorphous electrode compositions
JP2002170555A (ja) 2000-12-01 2002-06-14 Sanyo Electric Co Ltd リチウム二次電池用電極の製造方法
KR100382767B1 (ko) 2001-08-25 2003-05-09 삼성에스디아이 주식회사 리튬 2차 전지용 음극 박막 및 그의 제조방법
EP1313158A3 (en) 2001-11-20 2004-09-08 Canon Kabushiki Kaisha Electrode material for rechargeable lithium battery, electrode comprising said electrode material, rechargeable lithium battery having said electrode , and process for the production thereof
US7498100B2 (en) * 2003-08-08 2009-03-03 3M Innovative Properties Company Multi-phase, silicon-containing electrode for a lithium-ion battery
WO2006052313A1 (en) * 2004-11-08 2006-05-18 3M Innovative Properties Company Polyimide electrode binders
US7767349B2 (en) * 2005-07-25 2010-08-03 3M Innovative Properties Company Alloy compositions for lithium ion batteries
US7851085B2 (en) * 2005-07-25 2010-12-14 3M Innovative Properties Company Alloy compositions for lithium ion batteries
US7871727B2 (en) * 2005-07-25 2011-01-18 3M Innovative Properties Company Alloy composition for lithium ion batteries
US7790312B2 (en) * 2005-09-08 2010-09-07 3M Innovative Properties Company Electrolyte composition
US7691282B2 (en) * 2005-09-08 2010-04-06 3M Innovative Properties Company Hydrofluoroether compounds and processes for their preparation and use
US20070099084A1 (en) * 2005-10-31 2007-05-03 T/J Technologies, Inc. High capacity electrode and methods for its fabrication and use
US7906238B2 (en) 2005-12-23 2011-03-15 3M Innovative Properties Company Silicon-containing alloys useful as electrodes for lithium-ion batteries
KR100814816B1 (ko) 2006-11-27 2008-03-20 삼성에스디아이 주식회사 리튬 이차 전지용 음극 활물질 및 그를 포함하는 리튬 이차전지
US8124280B2 (en) * 2006-12-22 2012-02-28 Uchicago Argonne, Llc Intermetallic electrodes for lithium batteries
US7875388B2 (en) * 2007-02-06 2011-01-25 3M Innovative Properties Company Electrodes including polyacrylate binders and methods of making and using the same
US20080206641A1 (en) * 2007-02-27 2008-08-28 3M Innovative Properties Company Electrode compositions and electrodes made therefrom
US20090053589A1 (en) * 2007-08-22 2009-02-26 3M Innovative Properties Company Electrolytes, electrode compositions, and electrochemical cells made therefrom
US20080206631A1 (en) * 2007-02-27 2008-08-28 3M Innovative Properties Company Electrolytes, electrode compositions and electrochemical cells made therefrom
KR100796664B1 (ko) 2007-03-21 2008-01-22 삼성에스디아이 주식회사 리튬 이차 전지용 음극 활물질 및 이를 포함하는 리튬 이차전지
US20080248386A1 (en) * 2007-04-05 2008-10-09 Obrovac Mark N Electrodes with raised patterns
KR100869796B1 (ko) 2007-04-05 2008-11-21 삼성에스디아이 주식회사 리튬 이차 전지용 음극 활물질, 이의 제조 방법, 및 이를포함하는 리튬 이차 전지
WO2009131700A2 (en) * 2008-04-25 2009-10-29 Envia Systems, Inc. High energy lithium ion batteries with particular negative electrode compositions
US9012073B2 (en) * 2008-11-11 2015-04-21 Envia Systems, Inc. Composite compositions, negative electrodes with composite compositions and corresponding batteries
KR20120128125A (ko) * 2009-11-03 2012-11-26 엔비아 시스템즈 인코포레이티드 리튬 이온 전지용 고용량 아노드 물질
US20110183209A1 (en) * 2010-01-27 2011-07-28 3M Innovative Properties Company High capacity lithium-ion electrochemical cells
US8968940B2 (en) 2010-05-25 2015-03-03 Uchicago Argonne, Llc Redox shuttles for high voltage cathodes
US8877390B2 (en) 2010-05-25 2014-11-04 Uchicago Argonne, Llc Redox shuttles for lithium ion batteries
JP5460922B2 (ja) 2010-05-25 2014-04-02 ウチカゴ アルゴン,エルエルシー リチウムイオン電池のためのポリエーテル官能化レドックスシャトル添加剤
US9178249B2 (en) 2010-05-27 2015-11-03 Uchicago Argonne, Llc Electrode stabilizing materials
US9601228B2 (en) 2011-05-16 2017-03-21 Envia Systems, Inc. Silicon oxide based high capacity anode materials for lithium ion batteries
JP5751448B2 (ja) 2011-05-25 2015-07-22 日産自動車株式会社 リチウムイオン二次電池用負極活物質
US9601806B2 (en) 2011-08-31 2017-03-21 Uchicago Argonne, Llc Redox shuttle additives for lithium-ion batteries
CN103857626B (zh) 2011-08-31 2016-07-27 3M创新有限公司 用于锂离子电化学电池的高容量正极及其制备方法
US8859144B2 (en) * 2011-09-16 2014-10-14 GM Global Technology Operations LLC Multi-phase separated silicon based alloys as negative electrode material for lithium batteries
US9142830B2 (en) * 2011-09-16 2015-09-22 GM Global Technology Operations LLC Phase separated silicon-tin composite as negative electrode material for lithium-ion batteries
US9005811B2 (en) * 2011-09-16 2015-04-14 GM Global Technology Operations LLC Phase separated silicon—tin composite as negative electrode material for lithium-ion and lithium sulfur batteries
US9139441B2 (en) 2012-01-19 2015-09-22 Envia Systems, Inc. Porous silicon based anode material formed using metal reduction
US9203112B2 (en) 2012-04-26 2015-12-01 Uchicago Argonne, Llc Redox shuttles having an aromatic ring fused to a 1,1,4,4-tetrasubstituted cyclohexane ring
US9780358B2 (en) 2012-05-04 2017-10-03 Zenlabs Energy, Inc. Battery designs with high capacity anode materials and cathode materials
US10553871B2 (en) 2012-05-04 2020-02-04 Zenlabs Energy, Inc. Battery cell engineering and design to reach high energy
US20140063219A1 (en) 2012-08-28 2014-03-06 General Electric Company System and method including a portable user profile for medical imaging systems
JP6040996B2 (ja) 2012-11-22 2016-12-07 日産自動車株式会社 リチウムイオン二次電池用負極、及びこれを用いたリチウムイオン二次電池
US20150303451A1 (en) * 2012-11-22 2015-10-22 Nissan Motor Co., Ltd. Negative electrode for electric device and electric device using the same
US9053901B2 (en) 2012-12-21 2015-06-09 General Electric Company X-ray system window with vapor deposited filter layer
US9005822B2 (en) 2013-03-06 2015-04-14 Uchicago Argonne, Llc Functional electrolyte for lithium-ion batteries
US10020491B2 (en) 2013-04-16 2018-07-10 Zenlabs Energy, Inc. Silicon-based active materials for lithium ion batteries and synthesis with solution processing
US10086351B2 (en) 2013-05-06 2018-10-02 Llang-Yuh Chen Multi-stage process for producing a material of a battery cell
US10886526B2 (en) 2013-06-13 2021-01-05 Zenlabs Energy, Inc. Silicon-silicon oxide-carbon composites for lithium battery electrodes and methods for forming the composites
US11476494B2 (en) 2013-08-16 2022-10-18 Zenlabs Energy, Inc. Lithium ion batteries with high capacity anode active material and good cycling for consumer electronics
DE102015100209A1 (de) * 2014-01-10 2015-07-16 GM Global Technology Operations LLC (n. d. Gesetzen des Staates Delaware) Silicium-basierte legierungen mit mehreren getrennten phasen als negatives elektrodenmaterial für lithiumbatterien
EP3098892B1 (en) 2014-01-24 2018-11-14 Nissan Motor Co., Ltd Electrical device
KR20160102026A (ko) 2014-01-24 2016-08-26 닛산 지도우샤 가부시키가이샤 전기 디바이스
US9577251B2 (en) 2014-03-27 2017-02-21 GM Global Technology Operations LLC Active electrode materials and methods for making the same
US10396865B2 (en) * 2015-03-19 2019-08-27 Commscope Technologies Llc Spectral analysis signal identification
US10326131B2 (en) 2015-03-26 2019-06-18 Sparkle Power Llc Anodes for batteries based on tin-germanium-antimony alloys
US20190088932A1 (en) * 2015-06-23 2019-03-21 Nanyang Technological University Electrode, battery cell and battery cell arrangement
JP6451889B1 (ja) * 2017-07-18 2019-01-16 Tdk株式会社 リチウムイオン二次電池用負極およびこれを用いたリチウムイオン二次電池
US11094925B2 (en) 2017-12-22 2021-08-17 Zenlabs Energy, Inc. Electrodes with silicon oxide active materials for lithium ion cells achieving high capacity, high energy density and long cycle life performance
US11121354B2 (en) 2019-06-28 2021-09-14 eJoule, Inc. System with power jet modules and method thereof
US11673112B2 (en) 2020-06-28 2023-06-13 eJoule, Inc. System and process with assisted gas flow inside a reaction chamber
US11376559B2 (en) 2019-06-28 2022-07-05 eJoule, Inc. Processing system and method for producing a particulate material

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4623597A (en) * 1982-04-28 1986-11-18 Energy Conversion Devices, Inc. Rechargeable battery and electrode used therein
US4948558A (en) 1983-10-03 1990-08-14 Allied-Signal Inc. Method and apparatus for forming aluminum-transition metal alloys having high strength at elevated temperatures
FR2577941B1 (fr) * 1985-02-27 1991-02-08 Pechiney Alliages amorphes a base d'al contenant essentiellement du ni et/ou du fe et du si et procede d'obtention
IN167995B (zh) 1985-07-26 1991-01-19 Alcan Int Ltd
JP3215448B2 (ja) 1991-03-12 2001-10-09 三洋電機株式会社 亜鉛アルカリ電池
JPH08506689A (ja) * 1993-02-12 1996-07-16 バレンス テクノロジー インコーポレイティッド 再充電可能リチウム電池の電極
JP3403449B2 (ja) 1993-05-13 2003-05-06 松下電器産業株式会社 非水電解質二次電池
JP3079343B2 (ja) 1993-07-13 2000-08-21 セイコーインスツルメンツ株式会社 非水電解質二次電池及びその製造方法
JP3405418B2 (ja) * 1993-11-04 2003-05-12 松下電器産業株式会社 非水電解質二次電池
JPH07296812A (ja) 1994-04-28 1995-11-10 Mitsubishi Cable Ind Ltd 負極及びLi二次電池
EP1339116A3 (en) * 1994-05-30 2005-03-23 Canon Kabushiki Kaisha Rechargeable lithium battery
US5554456A (en) 1994-06-14 1996-09-10 Ovonic Battery Company, Inc. Electrochemical hydrogen storage alloys and batteries containing heterogeneous powder particles
US5721065A (en) 1995-05-05 1998-02-24 Rayovac Corporation Low mercury, high discharge rate electrochemical cell
EP0750359B1 (en) 1995-06-23 1999-12-08 Hitachi, Ltd. Secondary battery comprising electrode with multiphase, porous active material
JP3601124B2 (ja) 1995-09-22 2004-12-15 株式会社デンソー 非水溶液を用いる二次電池の正極活物質、および正極。
US5840440A (en) 1995-11-20 1998-11-24 Ovonic Battery Company, Inc. Hydrogen storage materials having a high density of non-conventional useable hydrogen storing sites
US6030726A (en) * 1996-06-17 2000-02-29 Hitachi, Ltd. Lithium secondary battery having negative electrode of carbon material which bears metals
JPH10208741A (ja) * 1997-01-22 1998-08-07 Hitachi Ltd リチウム二次電池
JP3805053B2 (ja) 1997-02-10 2006-08-02 旭化成エレクトロニクス株式会社 リチウム二次電池
JP3846661B2 (ja) 1997-02-24 2006-11-15 日立マクセル株式会社 リチウム二次電池
JP3559720B2 (ja) * 1998-01-30 2004-09-02 キヤノン株式会社 リチウム二次電池及びその製造方法
US6517974B1 (en) * 1998-01-30 2003-02-11 Canon Kabushiki Kaisha Lithium secondary battery and method of manufacturing the lithium secondary battery
US6203944B1 (en) 1998-03-26 2001-03-20 3M Innovative Properties Company Electrode for a lithium battery
US6528208B1 (en) * 1998-07-09 2003-03-04 The University Of Chicago Anodes for rechargeable lithium batteries
US6255017B1 (en) 1998-07-10 2001-07-03 3M Innovative Properties Co. Electrode material and compositions including same
CN1131570C (zh) 1998-09-08 2003-12-17 住友金属工业株式会社 非水电解质二次电池用负极材料及其制造方法
JP3620703B2 (ja) 1998-09-18 2005-02-16 キヤノン株式会社 二次電池用負極電極材、電極構造体、二次電池、及びこれらの製造方法
ATE467914T1 (de) 1998-09-18 2010-05-15 Canon Kk Elektrodenmaterial für den negativen pol einer lithiumsekundärzelle, elektrodenstruktur die dieses verwendet, lithiumsekundärzelle mit dieser struktur und verfahren zur herstellung der zelle und der struktur
JP4393610B2 (ja) 1999-01-26 2010-01-06 日本コークス工業株式会社 リチウム二次電池用負極材料、リチウム二次電池、及び同二次電池の充電方法
US6428933B1 (en) * 1999-04-01 2002-08-06 3M Innovative Properties Company Lithium ion batteries with improved resistance to sustained self-heating
US6699336B2 (en) * 2000-01-13 2004-03-02 3M Innovative Properties Company Amorphous electrode compositions
JP4144997B2 (ja) * 2000-05-26 2008-09-03 三洋電機株式会社 リチウム二次電池用負極

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104993115A (zh) * 2015-08-03 2015-10-21 温州大学 一种锂电池SiCO-Si梯度薄膜电极体系及制备方法

Also Published As

Publication number Publication date
AU2001229269A1 (en) 2001-07-24
US20020162606A1 (en) 2002-11-07
US20040131936A1 (en) 2004-07-08
EP1252670B1 (en) 2004-10-06
US6699336B2 (en) 2004-03-02
KR100688999B1 (ko) 2007-03-09
HK1051442A1 (en) 2003-08-01
EP1252670A1 (en) 2002-10-30
DE60106202T2 (de) 2006-02-02
CN1416601A (zh) 2003-05-07
KR20020064379A (ko) 2002-08-07
WO2001052337A1 (en) 2001-07-19
CA2397061A1 (en) 2001-07-19
DE60106202D1 (de) 2004-11-11
HK1051442B (zh) 2005-05-27
JP2003520398A (ja) 2003-07-02
ATE279021T1 (de) 2004-10-15

Similar Documents

Publication Publication Date Title
CN1199301C (zh) 无定形电极的成分
JP4846901B2 (ja) 電極材料およびそれを含む組成物
CN1310356C (zh) 改进循环性的电极组合物
EP1066659B1 (en) Tin alloy electrode compositions for lithium batteries
US20150200392A1 (en) Negative electrode active material
JP2003077529A (ja) リチウム電池及びリチウム二次電池
JP2004185991A (ja) リチウム二次電池用負極材料及びこれを用いたリチウム二次電池並びにこの負極材料の製造方法
JP2002093411A (ja) 非水電解質二次電池用負極材料
JP2003077464A (ja) リチウム2次電池用陰極薄膜およびその製造方法
CN1208858C (zh) 具有改进的循环性能的电极成分
TW488101B (en) Amorphous electrode compositions
JP2007128767A (ja) 活物質の製造方法および電池

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20050427

Termination date: 20190103

CF01 Termination of patent right due to non-payment of annual fee