Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberCN1141656 A
Publication typeApplication
Application numberCN 94194839
PCT numberPCT/US1994/009526
Publication date29 Jan 1997
Filing date30 Aug 1994
Priority date22 Nov 1993
Also published asCA2177133C, CA2177134A1, CN1077151C, DE69419433D1, DE69419433T2, EP0730675A1, EP0730675B1, EP0730676A1, US5411641, US5580437, USRE37042, WO1995014796A1, WO1995014797A1
Publication number94194839.0, CN 1141656 A, CN 1141656A, CN 94194839, CN-A-1141656, CN1141656 A, CN1141656A, CN94194839, CN94194839.0, PCT/1994/9526, PCT/US/1994/009526, PCT/US/1994/09526, PCT/US/94/009526, PCT/US/94/09526, PCT/US1994/009526, PCT/US1994/09526, PCT/US1994009526, PCT/US199409526, PCT/US94/009526, PCT/US94/09526, PCT/US94009526, PCT/US9409526
InventorsJA特莱恩汉姆, 小CG罗, JS纽曼, KB基廷, DJ伊米斯
Applicant纳幕尔杜邦公司
Export CitationBiBTeX, EndNote, RefMan
External Links: SIPO, Espacenet
Electrochemical conversion of anhydrous hydrogen halide to halogen gas using a cation-transporting membrane
CN 1141656 A
Abstract  translated from Chinese
本发明涉及一种电化学转化无水卤化氢如氯化氢、氟化氢、溴化氢和碘化氢为相应的基本干燥的卤素气体如氯、氟、溴和碘气的方法。 The present invention relates to an electrochemical conversion of anhydrous hydrogen halide such as hydrogen chloride, hydrogen fluoride, hydrogen bromide and hydrogen iodide to the corresponding substantially dry halogen gas such as chlorine, fluorine, bromine and iodine gas method. 本方法可用以产生高纯度的卤素气体。 This method can be used to produce high-purity halogen gas. 在本方法中,基本无水卤化氢分子通过电化学槽的入口(18)进料和输送至该槽的阳极(14)。 In the present method, essentially anhydrous hydrogen halide molecule through the inlet of the electrochemical cell (18) to the feeding and conveying trough anode (14). 基本无水卤化氢分子在该槽的阳极上被氧化而产生基本干燥的卤素气体和质子,此质子迁移通过该槽的膜(12)。 Essentially anhydrous hydrogen halide molecules on the anode of the trench is oxidized to produce essentially dry halogen gas and protons, the protons migrate through the membrane of the groove (12). 所迁移的质子在阴极(16)上被还原。 Proton migration in the cathode (16) is reduced.
Claims(20)  translated from Chinese
1.一种由基本无水卤化氢直接产生基本干燥卤素气体的方法,其中:(a)基本无水卤化氢分子被送至电化学槽的入口和迁移至该槽的阳极;(b)基本无水卤化氢分子在阳极被氧化产生基本干燥的卤素气体和质子;(c)此质子被迁移通过该电化学槽的阳离子迁移膜;和(d)被迁移的质子在阴极被还原。 1. A substantially anhydrous hydrogen halide produced by the direct method essentially dry halogen gas, wherein: (a) a substantially anhydrous hydrogen halide molecule is supplied to the inlet of the electrochemical cell and migration to the anode of the trench; (b) substantially anhydrous hydrogen halide are oxidized at the anode to produce molecules essentially dry halogen gas and protons; (c) the protons migrate through the cation membrane of the electrochemical cell migration; proton and (d) are transported in the cathode is reduced.
2.权利要求1的方法,其中产生卤素气体的卤化氢选自氯化氢、溴化氢、氟化氢和碘化氢。 The method of claim 1, wherein the halogen gas generated hydrogen halide selected from hydrogen chloride, hydrogen bromide, hydrogen fluoride and hydrogen iodide.
3.权利要求1的方法,其中被迁移的质子被还原形成氢气。 The method of claim 1, wherein the migrated protons are reduced to form hydrogen gas.
4.权利要求1的方法,还包括保持膜的阴极一侧润湿的步骤以提高通过膜的质子迁移效率。 The method of claim 1, further comprising the step of maintaining the cathode side of the membrane through the membrane wetted in order to increase the efficiency of proton migration.
5.权利要求1的方法,其中在膜的阴极一侧导入含氧气体以及质子与氧在阴极一侧被还原生成水。 The method of claim 1, wherein the oxygen-containing gas is introduced into the cathode side of the membrane and the protons and oxygen are reduced at the cathode side to form water.
6.权利要求5的方法,其中所述的含氧气体包括:空气、氧气和富氧空气中的一种。 The method of claim 5, wherein said oxygen-containing gas comprises: air, oxygen and oxygen-enriched air in one.
7.权利要求1的方法,其中部分无水卤化氢在接触电化学槽之后未发生反应,以及这部分未反应的卤化氢从基本干燥的卤素气体中被分离出来和再循环至电化学槽。 The method of claim 1, wherein the anhydrous hydrogen halide, unreacted portion occurs after contacting the electrochemical cell, and this part of the unreacted hydrogen halide is separated from the essentially dry halogen gas out and recycled to the electrochemical cell.
8.权利要求1的方法,其中基本干燥的卤素气体循环至合成工艺,此工艺产生作为副产物的无水卤化氢。 The method of claim 1, wherein the essentially dry halogen gas is recycled to the synthesis process, as a by-product of this process produces anhydrous hydrogen halide.
9.权利要求7的方法,其中基本干燥的卤素气体循环至合成工艺,此工艺产生作为副产物的无水卤化氢。 The method of claim 7, wherein the essentially dry halogen gas is recycled to the synthesis process, as a by-product of this process produces anhydrous hydrogen halide.
10.一种从基本无水卤化氢直接产生基本干燥卤素气体的电化学槽,其中包括:(a)氧化基本无水卤化氢分子产生基本干燥卤素气体和质子的装置;(b)使质子迁移通过的阳离子迁移装置,被安置与此阳离子迁移装置的一个侧面接触的氧化装置;和(c)被迁移质子的还原装置,此还原装置被安置与阳离子迁移装置的另一侧面接触。 10. A method of producing essentially anhydrous hydrogen halide from the essentially dry halogen gas directly to the electrochemical cell, which comprises: (a) oxidizing the molecular essentially anhydrous hydrogen halide to produce essentially dry halogen gas and protons means; (b) the migration of protons through the ion transport means, one side was placed with the ion transport means in contact with the oxidizing means; and (c) are proton migration restoration apparatus, the reduction apparatus is arranged with the other side of the contact means of cation migration.
11.权利要求10的电化学槽,还包括输送基本无水卤化氢分子至氧化装置的输送装置。 11. The electrochemical cell of claim 10, further comprising a substantially anhydrous hydrogen halide molecule delivery to the conveying means oxidizing means.
12.权利要求10的方法,其中所述的氧化装置包括一个阳极和所述的还原装置包括一个阴极。 12. The method of claim 10, wherein the oxidizing means comprises an anode and reducing means comprises a cathode.
13.权利要求12的方法,其中所述的阴极和阳极包括气体扩散电极。 13. The method of claim 12, wherein the cathode and anode include a gas diffusion electrode.
14.权利要求12的电化学槽,其中所述的阳极和阴极包括电化学活性物质,此活性物质被配置与阳离子迁移膜的表面相邻接。 14. The electrochemical cell of claim 12, wherein said anode and cathode comprising electrochemically active material, the active material and the membrane is arranged adjacent to the surface of ion transport.
15.权利要求14的电化学槽,其中所述的电化学活性物质的薄膜被直接敷于所述的膜上。 15. The electrochemical cell of claim 14, wherein the thin film of the electrochemically active material being directly over said film.
16.权利要求14的电化学槽,其中所述的电化学活性物质被沉积在所述的膜上。 16. The electrochemical cell of claim 14, wherein said electrochemically active material is deposited on said film.
17.权利要求14的电化学槽,其中所述的电化学活性物质包括在载体材料上的催化剂材料。 17. The electrochemical cell of claim 14, wherein said electrochemically active material comprises a catalyst material on a support material.
16.权利要求17的电化学槽,其中所述的载体材料包括碳。 16. The electrochemical cell of claim 17, wherein said support material comprises carbon.
18.权利要求17的电化学槽,其中所述的催化剂材料包括下述之一:铂、钌、锇、铼、铑、铱、钯、金、钛和锆,及其氧化物、合金和混合物。 18. The electrochemical cell of claim 17, wherein said catalyst material comprises one of the following: platinum, ruthenium, osmium, rhenium, rhodium, iridium, palladium, gold, titanium and zirconium, and oxides, alloys and mixtures thereof .
19.一种从基本无水卤化氢直接产生基本干燥的卤素气体的方法,其中电化学槽包括:阳离子迁移膜,被安置与该膜的一个侧面相接触的阴极,以及被安置与该膜的另一侧面相接触的阳极,此方法中基本无水卤化氢分子被输送至阳极和在阳极上被氧化产生基本干燥的卤素气体和质子,该质子被迁移通过电化学槽的上述膜,以及所迁移的质子在阴极上被还原。 19. A directly from essentially anhydrous hydrogen halide to produce essentially dry halogen gas, wherein the electrochemical cell comprises: ion transport membrane, the cathode is positioned with one side of the membrane in contact, and is disposed with the membrane contacting the other side of the anode, this method essentially anhydrous hydrogen halide molecule is delivered to the anode and is oxidized at the anode to produce essentially dry halogen gas and protons, the aforementioned film obtained by the electrochemical cell is the proton migration, as well as proton transfer is reduced at the cathode.
Description  translated from Chinese
用阳离子迁移膜使无水卤化氢转化为卤素气体的电化学转化方法 Ion transport membrane with anhydrous hydrogen halide gas into a halogen electrochemical conversion process

发明背景1.发明领域本发明涉及一种应用阳离子迁移膜将无水卤化氢转化为基本干燥卤素气体的电化学转化方法。 BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ion transport membrane applied over anhydrous hydrogen halide to essentially dry halogen gas into the electrochemical conversion method. 特别是,本方法可用于从相应的无水卤化氢如氯化氢、溴化氢、氟化氢和碘化氢生产卤素气体如氯、溴、氟和碘。 In particular, the present method can be used from a respective anhydrous hydrogen halide such as hydrogen chloride, hydrogen bromide, hydrogen fluoride and hydrogen iodide producing halogen gas such as chlorine, bromine, fluorine and iodine.

2.相关技术描述氯化氢(HCl)或氢氯酸是许多应用氯气的生产工艺的反应副产物。 2. Description of Related Art Hydrogen chloride (HCl) or hydrochloric acid is a by-product of the reaction of many applications chlorine production process. 例如,应用氯气生产聚氯乙烯、异氰酸酯和氯代烃/氟代烃,在这些工艺过程中都有副产物氯化氢。 For example, application of chlorine production of polyvinyl chloride, isocyanates, and chlorinated hydrocarbons / fluorinated hydrocarbons, in these processes has byproduct hydrogen chloride. 由于供应超过需求,因而生产出的氯化氢或氢氯酸即使经过精细提纯也往往不能售出或利用。 Because of supply exceeding demand, thus producing hydrogen chloride or hydrochloric acid, even after fine purification are often not sold or used. 过长距离的装运在经济是不可行的。 Over long distances is not economically feasible shipment. 将酸或氯离子排放至废水中对环境也是不妥的。 The acid or chlorine ions in wastewater discharged to the environment is inappropriate. 为处理HCl副产物,最理想的方法是回收和将氯送回生产工艺过程。 To deal with HCl byproduct, the best way is to recover and returned to the chlorine production process. 已经研究出一些商业化方法,以使HCl转化为有用的氯气。 Some commercial methods have been developed, so that HCl is converted into useful chlorine. 例如请参阅FRMing的论文“用于回收氯的HCl电解技术”,Bayer AG,Conference onElectrochemical Processing,Innovation & Progress,Glasgow,Scotland,UK,4/21-4/23,1993。 See FRMing papers such as "recycled HCl chlorine electrolysis technology used", Bayer AG, Conference onElectrochemical Processing, Innovation & amp; Progress, Glasgow, Scotland, UK, 4 / 21-4 / 23,1993.

目前,有热催化氧化法用以转化无水HCl和含水HCl为氯气。 Currently, there are thermal catalytic oxidation method for the conversion of anhydrous HCl and aqueous HCl to chlorine. 商业化方法,已知如“Shell-chlor”、“Kel-chlor”和“MT-chlor”等方法,是基于Deacon反应。 Business methods, known as "Shell-chlor", "Kel-chlor" and "MT-chlor" and other methods, is based on the Deacon reaction. 于1870年代提出的最初的Deacon反应曾使用流化床,其中包括起催化剂作用的氯化铜盐。 Deacon initial reaction in the 1870s had made use of a fluidized bed, which includes copper chloride acts as a catalyst. Deacon反应通常表示如下:其中,依据反应或应用式(1)的方法,可应用下列催化剂。 Deacon reaction is generally expressed as follows: where, according to the method of reaction or use of formula (1), the following catalysts can be applied. 催化剂 反应或方法Cu DeaconCu、稀士、碱金属 shell-chlorNO2、NOHSO4Kel-chlorCrmOnMT-chlor对Deacon反应的商业化改进已经采用其他催化剂以补充或替代Deacon反应中应用的铜,如稀土化合物、各种形式的氮的氧化物以及铬的氧化物,以便改善转化速率、降低能耗和减少由于苛刻的化学反应条件而产生的对工艺设备的腐蚀作用。 Catalyst or method Cu DeaconCu, rare earth, alkali metal shell-chlorNO2, commercial improvements NOHSO4Kel-chlorCrmOnMT-chlor for the Deacon reaction have used other catalysts in addition to or instead of copper applied Deacon reaction, such as rare earth compounds, various forms of nitrogen oxides and chromium oxide, in order to improve the conversion rate, reduce energy consumption and reduce the corrosive effects due to the harsh chemical reaction conditions have on the process equipment. 然而,一般说来,这些热催化氧化方法比较复杂,因为这些方法要求分离不同的反应组分以达到产品的纯度。 However, in general, these thermal catalytic oxidation method is relatively complicated, because these methods require separate different reaction components in order to achieve product purity. 这些方法还包括产生高腐蚀性的中间体,因而反应系统需要昂贵的结构材料。 The method further includes generating a highly corrosive intermediates, and thus the reaction system needs expensive structural material. 此外,这些热催化氧化法需在250℃以及更高的高温条件下操作。 Moreover, these thermal catalytic oxidation method for an operation at 250 ℃ and higher temperature conditions.

为转化含水HCl为氯气,目前还有电化学方法,此方法是在溶液中通过直流电流。 For the conversion of aqueous HCl to chlorine gas, there are still the electrochemical method, which is in solution by direct current. 目前流行的商业化电化学方法称为Uhde法。 Currently popular commercial electrochemical method called Uhde. 在Uhde法中,浓度约为22%的HCl水溶液在65至80℃下被送至电化学槽的两个小室中,在电化学槽中通过直流电流发生电化学反应,同时产生氯气和氢气,并使HCl浓度降至17%。 In the Uhde process, a concentration of about 22% aqueous HCl at from 65 to 80 ℃ is supplied to the two chambers of the electrochemical cell, the electrochemical reaction in an electrochemical cell by direct current, while generating chlorine and hydrogen, and HCl concentration to 17%. 用聚合物隔板将两个小室分隔开。 With a polymer separator separates the two chambers. 此方法要求循环使用电解过程产生的HCl稀溶液(17%),使其再生为浓度22%的HCl溶液,以便送回电化学槽。 This method requires recycling of dilute HCl solution (17%) produced by the electrolytic process, so that the regeneration of 22% HCl solution concentration, returned to the electrochemical cell. Uhde法的总反应用下式表示:由(2)式可以看出,Uhde法产生的氯气是潮湿的,通常含有约1%至2%的水。 Total reaction Uhde law represented by the formula: As can be seen from equation (2), chlorine gas is generated Uhde wet method, generally contain from about 1-2% of water. 这种潮湿的氯气之后必须进一步处理为干燥的能用的气体。 This wet chlorine gas must then be further processed as a dry gas can be used. 如果HCl在水中的浓度过低,就有可能从Uhde法中存在的水中产生出氧气。 If the HCl concentration in the water is too low, it is possible from the Uhde method to produce oxygen present in the water. 由于存在水,Uhde法的这一可能的副反应可用下式表示:(3)此外,在Uhde体系中,水的存在限制着电流密度,由于此副反应使电化学槽运行的电流密度低于500amps/ft2。 Due to the presence of water, the possible side reaction of the Uhde law can be expressed as: (3) In addition, in the Uhde system, the presence of water to limit the current density, so that side reactions due to the electrochemical cell operating current density is lower than 500amps / ft2. 其结果降低了电能效率,并使电化学槽的构件由于氧而发生腐蚀。 As a result, reducing the power efficiency, and electrochemical cell components and corrosion due to oxygen.

处理含HCl的另一电化学方法在Balko的美国专利USPatent No.4,311,568中已描述过。 Another electrochemical method containing HCl in U.S. Patent USPatent No.4,311,568 Balko in the already described. Balko使用一种具有固体高聚物电解质膜的电解槽。 Balko using a cell having a solid polymer electrolyte membrane. 在电解槽中通入以氢离子和氯离子形式存在于水中的氯化氢。 In an electrolytic cell fed with hydrogen ions and chloride ions in the form of hydrogen chloride in the presence of water. 固体高聚物电解质膜与阳极贴合在一起,以允许从阳极表面迁移进入电解质膜。 The solid polymer electrolyte membrane with an anode bonded together, to allow the electrolyte to migrate from the anode surface into the membrane. 在Balko法中,控制和减少析氧副反应是一重要的考虑因素。 In Balko law, the control and reduction of oxygen evolution is an important side effect considerations. 氧气的析出不仅降低电解槽效率,而且导致电解槽构件的迅速腐蚀。 Oxygen evolution not only reduces the efficiency of the electrolytic cell, and lead to rapid corrosion cell member. Balko所采用的阳极微孔尺寸及电极厚度的设计和结构最大限度地有利于氯离子迁移。 Design and construction of the anode electrode thickness and pore size of Balko used to maximize the beneficial chlorine ion migration. 其结果可使氯气放出更有效,同时减少氧的析出,这是因为氧的析出倾向于在阳极表面附近氯离子耗尽的条件下增加。 The result can be more effective chlorine evolution while minimizing the precipitation of oxygen, because oxygen precipitates near the anode surface tends to under conditions of chloride ion depletion increases. 在Balko法中,虽然氧的析出可以减少,但并不能消除。 In Balko method, although the precipitation of oxygen can be reduced, but not eliminated. 从Balko的图3至图5可以看出,随着总电流密度的提高,氧的析出速率也提高,这可由产生的氯气中发现氧的浓度增加来证明。 Balko can be seen from Figure 3 to Figure 5, with the total current density is increased, the rate of oxygen precipitation is also improved, as evidenced by the chlorine gas generated in the oxygen concentration was found to increase to prove. Balko法可在较高的电流密度下运行,然而受到析氧的有害作用限制。 Method Balko can run at higher current densities, however, limit the harmful action of oxygen evolution. 如果Balko电解槽在高电流密度下运行,阳极将受到破坏。 If the Balko cell operating at high current densities, the anode would be destroyed.

一般说来,电化学过程的速率可由其电流密度表征。 In general, the rate of the electrochemical process may be characterized by its current density. 在许多情况下,若干个电化学反应可同时发生。 In many cases, a number of electrochemical reactions may occur simultaneously. 当实际情况如此时,电化学反应的电推动力可导致一个以上电化学反应的相当大的电流密度。 When such a situation, the electrical driving force for electrochemical reactions can lead to more than one electrochemical reaction of a large current density. 对于这些情况,所记录的或测定的电流密度是由一个以上电化学反应的电流得到的结果。 For these cases, the recorded or measured current density is a result of the current by more than one electrochemical reaction obtained. 含水氯化氢的电化学氧化反应就是这种情况。 Aqueous electrochemical oxidation reaction of hydrogen chloride is the case. 氯离子的氧化反应是主要反应。 Oxidation of chloride ions is the primary reaction. 然而,在含水氯化氢中存在的水也被氧化而释放出氧气,此反应如式(3)所示。 However, in the water present in the aqueous hydrogen chloride is oxidized to also release oxygen, the reaction of formula (3) below. 这是一个不希望有的反应。 This is an undesirable reaction. 电流效率可以定量地描述多重来源电流的相对贡献。 The current efficiency can be quantitatively describe the relative contribution of multiple source current. 例如,如果在阳极或阴极上有多重反应发生,那么电流效率可由下式表不:ηj=ijΣj=1NRij------(4)]]>其中,ηj是反应j的电流效率,NR是发生反应的数目。 For example, if there are multiple reaction occurs at the anode or the cathode, the current efficiency in the following formula is not: & eta; j = ij & Sigma; j = 1NRij ------ (4)]]> where, ηj j is the reaction of current efficiency, NR is the number of react. 以Hcl水溶液和阳极为例,上述一般表达式为:ηCl2=iCl2iCl2+iO2------(5)]]>ηCl1+ηO2=1.0]]>就氯化氢水溶液而论,氯化物的氧化是主反应,而氧的析出是副反应。 In Hcl solution and the anode, for example, the above general expression is: & eta; Cl2 = iCl2iCl2 + iO2 ------ (5)]]> & eta; Cl1 + & eta; O2 = 1.0]]> is an aqueous solution of hydrogen chloride in terms of oxide chloride is the main reaction, oxygen precipitation is side effects. 在这种情况下,电流密度是这两个阳极反应的总合。 In this case, the current density is the sum of the two anodic reactions. 由于ηO2不为零,所以氯化物氧化反应的电流效率小于1,如下面式(7)和式(8)所示。 Since ηO2 is not zero, the current efficiency of the oxidation reaction of the chloride is less than 1, as in the following equation (7) and (8) below. 每当涉及水溶液中氯化物的氧化反应时,氧析出反应的电流效率就不为零,并且对氯气的收率及产量有不利作用。 Whenever involves the oxidation reaction of chloride aqueous solution, the current efficiency of oxygen evolution reaction is not zero, and on the yield and yield chlorine has an adverse effect. ηO2≠0-----(7)]]> & Eta; O2 & NotEqual; 0 ----- (7)]]> 此外,含水HCl的电解过程可受传质限制。 In addition, aqueous HCl electrolysis process may be subject to mass transfer limitations. 物质浓度以及扩散速率对传质的影响非常大。 Substances of concentration and diffusion rate of mass transfer is very large. 被迁移物质的扩散系数和浓度是影响传质速率的重要因素。 Diffusion coefficient and concentration migrated substance is an important factor affecting the rate of mass transfer. 在水溶液中,如在Balko法中所用者,物质的扩散系数为~10-5cm2/sec。 In aqueous solution, such as in the method used by Balko, the diffusion coefficient of the material is ~ 10-5cm2 / sec. 在气体中,物质的扩散系数显著提高,其值为~10-2cm2/sec。 In the gas, the diffusion coefficient of the material is significantly improved, a value of ~ 10-2cm2 / sec. 在电解含水氯化氢的常规工业实践中,氯化氢或氯离子的实际浓度是~17%至22%,而在无水氯化氢气体中氯化氢的浓度是100%。 In conventional commercial practice electrolytic aqueous hydrogen chloride, the practical concentration of hydrogen chloride or chloride ion is ~ 17-22%, and dry hydrogen chloride gas in the concentration of hydrogen chloride is 100%. 若高于22%,则电导下降,且电力损耗开始上升。 If higher than 22%, the conductance decreased, and the power consumption begins to rise. 若低于17%,根据式(3)的副反应,氧气可由水中析出,导致腐蚀电解槽构件、降低电能效率和污染氯气。 If less than 17%, side reactions according to formula (3), the oxygen in the water by precipitation, leading to corrosion of the cell components, reducing energy efficiency and pollution chlorine.

发明概述本发明通过提供一种由无水卤化氢直接产生基本干燥卤素气体的方法,来解决现有技术问题。 SUMMARY OF THE INVENTION The present invention provides a substantially dry halogen gas generating method directly from anhydrous hydrogen halide, to solve prior art problems. 本方法能直接处理由各种制造工艺生产的无水卤化氢,无需首先将卤化氢溶解于水中。 This method can be handled directly by the various manufacturing process anhydrous hydrogen halide, without first dissolving the hydrogen halide in water. 这一直接产生基本干燥卤素气体,例如氯气的方法比现有技术投资少,因后者需要从氯气中将分离出去。 This direct basic dry halogen gas, such as chlorine way less than existing technology investments, separated from the chlorine will need because the latter.

本发明还通过提供一种由基本无水的介质产生氯气的方法,来解决现有技术问题。 The present invention also provides a method by a substantially anhydrous medium by generating chlorine gas, to solve the prior art problems. 从而,在电化学转化氯化氢(气体)为氯气和氢气中,没有可察觉量的氧气产生。 Thus, in the electrochemical conversion of hydrogen chloride (gas) to chlorine and hydrogen, no appreciable amount of oxygen produced. 在阳极上水的氧化是不希望发生的副反应,在本发明中这种副反应实质上已被消除。 Anodic oxidation of water on undesirable side reactions occur in the present invention such side effects virtually been eliminated. 因此,转化为氯气的反应能在较高的电流密度下进行,这可使单位电极面积有较高的氯气产量。 Thus, the reaction can be converted to chlorine at a higher current density, which can have a higher per unit electrode area of chlorine production. 因而,本发明比现有技术电化学转化氯化氢需要较低的投资。 Accordingly, the present invention over the prior art electrochemical conversion of hydrogen chloride requires less investment.

本发明使用无水氯化氢而不用含水氯化氢的优点是理论槽电压至少低0.3V,这可使电解槽操作时总槽压比含水氯化氢者低。 Advantages of the present invention is the use of anhydrous hydrogen chloride and aqueous hydrogen chloride is without theoretical cell voltage of at least low 0.3V, which allows the operation when the cell voltage is lower than the total groove by aqueous hydrogen chloride. 此优点直接体现在生产每磅氯气的电能成本低于现有技术的含水电化学法。 This advantage directly reflected in the production of chlorine per pound of electricity costs less than conventional aqueous electrochemical method.

本发明还提供一种方法,此方法比现有技术的电化学系统或催化系统可用较少的操作步骤产生较干燥的氯气,从而可简化操作条件和减少基本投资。 The present invention also provides a method, this method than an electrochemical system or the catalyst system of the prior art can be used to generate fewer steps than dry chlorine, thereby simplifying operating conditions and reducing capital costs.

本发明还提供一种转化无水氯化氢为基本干燥氯气的方法,目的是使氯气再循环返回制造或合成工艺,从而消除排放氯离子带来的环境问题。 The present invention also provides a conversion of anhydrous hydrogen chloride to essentially dry chlorine gas method, chlorine gas is recycled back to the purpose of manufacturing or synthesis process, thereby eliminating the discharge of chloride ions caused environmental problems.

为实现上述技术解决方案,以及根据在此处概述的本发明的目的,现提供一种从基本无水卤化氢直接产生基本干燥卤素气体的方法,其中基本无水卤化氢分子被输送通过一电化学槽的入口,该槽包括一种阳离子迁移膜以及与此膜相应侧面接触的阳极和阴极;基本无水卤化氢分子在阳极被氧化而产生基本干燥卤素气体和质子;质子通过此电化学槽的上述膜而迁移;以及所迁移的质子在阴极上被还原。 To achieve the above technical solutions, and in accordance with the purpose of the present invention outlined here, is to provide a substantially dry halogen gas generating method from essentially anhydrous hydrogen halide directly, wherein the molecular essentially anhydrous hydrogen halide are transported through an electrical chemical inlet slot, the slot comprising a cationic transport membrane and an anode and a cathode in contact with the respective side of the film; essentially anhydrous hydrogen halide molecules are oxidized at the anode to produce essentially dry halogen gas and protons; protons through the electrochemical cell The above-mentioned film and migration; and proton migration is reduced at the cathode.

在本发明的优选的实施方案中,提供了一种从基本无水氯化氢直接产生基本干燥氯气的方法,其中无水氯化氢分子被输送通入一电化槽的入口,该槽包括一种阳离子迁移膜以及与此膜相应侧面接触的阳极和阴极;基本无水氯化氢分子在阳极被氧化而产生基本干燥氯气和质子;质子通过此电化学槽的上述膜而迁移;以及所迁移的质子在阳极上被还原。 In a preferred embodiment of the present invention, there is provided a method of producing substantially anhydrous hydrogen chloride from essentially dry chlorine gas, wherein the molecular anhydrous hydrogen chloride is fed into an electrochemical tank through the inlet, the groove comprising a cationic transport membrane and with this film in contact with the respective anode and cathode side; substantially anhydrous hydrogen chloride molecules are oxidized at the anode to produce essentially dry chlorine gas and protons; protons through said membrane and migration of this electrochemical cell; and a proton is migrated to the anode Restore. 一种含氧气体可在膜的阴极侧面导入,这样处理时,质子和氧在阴极侧面将被还原而生成水。 An oxygen-containing gas may be introduced into the membrane at the cathode side, when thus treated, the protons and oxygen is reduced at the cathode side to generate water.

很可能有部分无水氯化氢在接触电化学槽之后未发生反应。 It may be some unreacted anhydrous hydrogen chloride in the electrochemical cell after contacting. 在本发明中,未反应的这部分氯化氢从基本干燥氯气中被分离出来和循环返回电化学槽。 In the present invention, this part of unreacted hydrogen chloride from the essentially dry chlorine gas is separated out and recycled back to the electrochemical cell. 此外,所述基本干燥氯气可供给合成工艺过程,用以产生作为副产物的无水氯化氢。 In addition, the essentially dry chlorine gas may be supplied to the synthesis process for producing anhydrous hydrogen chloride as a byproduct.

附图的简短说明图1是根据本发明第一实施方案从无水卤化氢产生卤素气体的电化学槽的示意图,此槽具有产生氢气的阴极。 Brief description of the drawings Figure 1 is a schematic diagram of the electrochemical cell to produce halogen gas according to the present invention from the first embodiment of the anhydrous hydrogen halide, the groove having a cathode for producing hydrogen.

图2是根据本发明第二实施方案从无水卤化氢产生卤素气体的电化学槽的示意图,此槽具有产生水的阴极。 Figure 2 is a schematic view of an electrochemical cell to produce halogen gas from anhydrous hydrogen halide according to a second embodiment of the invention, this groove having a cathode to produce water.

图3是一系统的示意图,其中包括从基本干燥氯气中分离未起反应的氯化氢和将其循环返回图1的电化学槽。 Figure 3 is a schematic diagram of a system, including the separation of unreacted hydrogen chloride from essentially dry chlorine gas and is recycled back to the electrochemical cell of Figure 1.

图4是图3系统改进型的示意图,其中包括产生无水氯化氢作为副产物的合成工艺,和基本干燥氯气循环至合成工艺,以及未反应的氯化氢循环返回图1的电化学槽。 4 is a schematic system of Figure 3 modification, including producing anhydrous hydrogen chloride as a byproduct of the synthesis process, and essentially dry chlorine gas is recycled to the synthesis process, and the unreacted hydrogen chloride is recycled back electrochemical cell of Figure 1.

优选的实施方案的描述现在将详细介绍如附图所示的本发明的优选实施方案。 Description of preferred embodiments will now be described in detail preferred embodiments shown in the drawings of the present invention.

根据本发明的第一实施方案,现提供一种电化学槽以从无水卤化氢直接产生基本干燥的卤素气体。 According to a first embodiment of the present invention, is to provide an electrochemical cell to produce essentially dry halogen gas from anhydrous hydrogen halide directly. 根据本发明的优选的实施方案,这种从无水氯化氢直接产生基本干燥氯气的电化学槽将予以描述。 According to a preferred embodiment of the present invention, which directly produces essentially dry chlorine gas from anhydrous hydrogen chloride in an electrochemical cell will be described. 然而,这种电化学槽可替代地用于从相应的无水卤化氢如溴化氢、氟化氢和碘化氢直接产生其他卤素气体如溴、氟和碘。 However, this electrochemical cell can alternatively be used from the respective anhydrous hydrogen halide such as hydrogen bromide, hydrogen fluoride and hydrogen iodide to produce other halogen gases, such as direct bromine, fluorine and iodine. 这里“直接”一词的意思是,本电化学槽不需要从产生的氯气中除水或在电化学处理前不需要将基本无水的氯化氢转化为含水的氯化氢。 Here word "direct" means that the electrochemical cell does not require removal of water from the chlorine produced in electrochemical processing is not required prior to or in the conversion of essentially anhydrous hydrogen chloride to aqueous hydrogen chloride. 这种电化学槽概括地表示在图1的10。 This electrochemical cell 10 generally shown in FIG. 1. 在这第一实施方案中,用这种电解槽产生氯气以及氢气。 In this first embodiment, the electrolytic cell to produce chlorine gas and this hydrogen gas.

电化学槽10包括阳离子迁移膜12,如图1所示。 The electrochemical cell 10 includes ion transport membrane 12, as shown in FIG. 更准确地说,膜12是一种质子传导膜。 More specifically, the membrane 12 is a proton-conducting membrane. 膜12可以是一种市售的阳离子膜,由含氟聚合物或全氟聚合物制成,最好是两种或两种以上含氟的或全氟的单体的共聚物,至少其中之一具有侧磺酸基。 Film 12 may be a commercially available cationic membranes, made of a fluoropolymer or perfluoropolymer, preferably two or more fluorine-containing monomers or perfluorinated, and at least one of one side having a sulfonic acid group. 不希望有羧基,因为羧基质子化时倾向于降低膜的电导率。 Do not want to have a carboxyl group, because the conductivity of the film tends to decrease when the carboxyl protonated. 各种适用的树脂材料可以在市场上买到或根据专利文献制作。 Suitable resin materials of various commercially available or produced according to the patent literature in the market. 这些树脂材料包括具有侧链的氟化高聚物,侧链类型为-CF2CFRSO3H和-OCF2CF2CF2SO3H,其中R是F、Cl、CF2Cl或C1至C10的全氟烃基。 These resin materials include fluorinated polymers, having a side chain to side chain type -CF2CFRSO3H and -OCF2CF2CF2SO3H, wherein R is F, Cl, CF2Cl or a C1 to C10 perfluoroalkyl. 这种膜的树脂可以是,例如四氟乙烯与CF2=CFOCF2CF(CF3)OCF2CF2SO3H的共聚物。 Such a resin film may be, for example, tetrafluoroethylene and CF2 = CFOCF2CF (CF3) OCF2CF2SO3H copolymer. 有时这些树脂类型具有-SO2F侧基,而不是-SO3H侧基。 Sometimes these types of resins having -SO2F pendant groups, rather than side groups -SO3H. 这氟化碘酰基可用氢氧化钾水解为-SO3K基,之后可与酸交换成为-SO3H基。 This iodoxybenzoic available potassium fluoride hydrolysis -SO3K group, can then be exchanged with an acid to become -SO3H group. 适用的阳离子膜由EIdu pont de Nemours andCompany of Wilmington,Delaware公司提供,商标为“NAFION”(下文用NAFION_表示),它是由聚四氟乙烯和含有侧磺酸基的聚氟化磺酰基乙烯基醚组成的水合的共聚物制作的。 Suitable cationic membranes of Wilmington, Delaware company by EIdu pont de Nemours andCompany, under the trademark "NAFION" (hereinafter represented by NAFION_), it is made of polytetrafluoroethylene and polyethylene containing pendant sulfonic acid groups sulfonyl fluoride vinyl ether copolymer composition produced hydrated. 具体说,含侧磺酸基的NAFION_膜包括NAFION_117、NAFION_324和NAFION_417。 Specifically, NAFION_ side of the membrane containing sulfonic acid groups include NAFION_117, NAFION_324 and NAFION_417. 第一种NAFION_是无载体的,其当量为1100g,当量的定义是中和1升1M氢氧化钠溶液所需要的树脂量。 The first NAFION_ is unsupported, an equivalent weight of 1100g, is defined equivalent amount of the resin in 1M aqueous sodium hydroxide solution and 1 liter needed. 其他两种NAFION_两者均被载带在碳氟化合物织物上,NAFION_417的当量也是1100g。 The other two NAFION_ Both are supported on a fluorocarbon fabric, NAFION_417 equivalent is 1100g. NAFION_324具有两层结构,一是厚度为125μm的膜,其当量是1100g,和厚度为25μm的膜,其当量为1500g。 NAFION_324 having a two-layer structure, first, a film thickness of 125μm, and its equivalent is 1100g, and a film thickness of 25μm, the equivalent weight of 1500g. 还提供一种NAFION_117F,这是一种前体膜,它具有-SO2F侧基,此侧基可转化为磺酸基。 Also provides a NAFION_117F, which is a precursor membrane having pendant groups -SO2F, the pendant groups can be converted to a sulfonic acid group.

虽然本发明描述了固体高聚物电解质膜的使用,然而其他不是高聚物的阳离子迁移膜的使用也完全在本发明范围内。 Although the present invention describes the use of a solid polymer electrolyte membrane, but not other polymers using ion transport membranes are also entirely within the scope of the present invention. 例如,质子传导陶瓷,如β-氧化铝有可能使用。 For example, proton-conducting ceramics, such as alumina, it is possible to use β-. β-氧化铝是一种非化学计量的结晶态化合物,一般结构为Na2OxAl2O3,其中x的范围从5(β″-氧化铝)到11(β-氧化铝)。可用于本发明的这种材料以及若干固体电解质已描述于《燃料电池手册》(Fuel Cell Handbook),AJAppleby and FRFoulkes,Van Nostrand Reinhold,NY,1989,308-312页。其他可用的固态质子导体,特别是锶和钡的铈酸盐,如镱酸铈酸锶(SrCe0.95Yb0.05O3-α)和钕酸铈酸钡(BaCe0.99Nd0.01O3-α)已描述于一研究报告(final report),DOE/MC/24218-2957,Jewulski,Osif and Remick,Prepared for theU.S.Department of Energy,Office of Fossil Energy,Morgantown EnergyTechnology Center by Institute of Gas Technology,Chicago,Illinois,December,1990。 β- alumina is a crystalline non-stoichiometric compound, the general structure of Na2Ox Al2O3, where x ranges from 5 (β "- alumina). to 11 (β- alumina) can be used in this present invention Several kinds of materials as well as the solid electrolyte has been described in "Fuel Cell Handbook" (Fuel Cell Handbook), AJAppleby and FRFoulkes, Van Nostrand Reinhold, NY, 1989,308-312 page. Other useful solid state proton conductors, especially strontium and barium cerium salts, such as cerium, ytterbium strontium (SrCe0.95Yb0.05O3-α) cerium and neodymium barium (BaCe0.99Nd0.01O3-α) have been described in a research report (final report), DOE / MC / 24218 -2957, Jewulski, Osif and Remick, Prepared for theU.S.Department of Energy, Office of Fossil Energy, Morgantown EnergyTechnology Center by Institute of Gas Technology, Chicago, Illinois, December, 1990.

电化学槽10还包括一对电极,具体地说,是阳极14和阴极16,每个电极被安置分别与膜的相应侧面接触,如图1所示。 Electrochemical cell 10 further includes a pair of electrodes, specifically, an anode 14 and cathode 16, respectively, each electrode is positioned in contact with the respective sides of the membrane, as shown in Fig. 阳极14有一阳极入口18,它通至阳极室20,阳极室20本身又通至阳极出口22。 Anode 14 has an anode inlet 18 which pass to the anode chamber 20, in turn, through the anode chamber 20 to the anode outlet 22. 阳极16有一阴极入口24,它通至阴极室26,阴极室26本身又通至阴极出口28。 Anode 16 has a cathode inlet 24, which pass to the cathode chamber 26, the cathode chamber 26 in turn pass to the cathode outlet 28. 如本领域的技术人员所知,如果两电极分别放置在膜的相对的两面,阳离子电荷(已描述过的HCl反应中的质子)将通过膜从阳极迁移至阴极,此时每个电极在进行着半电池反应。 As known to a person skilled in the art, if the two electrodes are placed in opposite sides of the membrane, cationic charges (already described in the HCl reaction protons) migrate from the anode to the cathode through the membrane, each electrode during this time the half-cell reactions. 在本发明中,无水氯化氢分子通过入口18被输送至阳极表面。 In the present invention, molecules of anhydrous hydrogen chloride is fed to anode inlet 18 through the surface. 无水氯化氢分子被氧化产生基本干燥的氯气和质子。 The molecular anhydrous hydrogen chloride are oxidized to produce essentially dry chlorine gas and protons. 基本干燥的氯气通过阳极出口22引出,如图1所示。 Substantially dry chlorine gas through the anode lead-out outlet 22, as shown in FIG. 此质子,在图1中表示为H+,被迁移通过膜,并在阴极上被还原。 This proton, as represented in FIG. 1 H +, migrated through the membrane and is reduced at the cathode. 下面对此点将更详细地予以说明。 Below this point will be explained in more detail.

阳极和阴极可包括多孔的气体扩散电极。 The anode and cathode may comprise a porous gas diffusion electrode. 正如本领域的技术人员所知,这种电极具有高比表面积的优点。 As is known to a person skilled in the art, such an electrode has the advantage of high specific surface area. 阳极和阴极均包括电化学活性物质,此活性物质被置于与阳离子迁移膜的表面相邻处(意思是在表面处或在表面之下)。 The anode and cathode includes the electrochemically active material, the active material is placed in the ion transport membrane surface adjacent (meaning at the surface or below the surface). 电化学活性物质薄膜可直接敷在此膜上。 Electrochemically active material film can be directly deposited in this film. 另一方法是,将电化学活性物质热压在此膜上,如文献AJAppleby and EBYeager,Energy,Vol.11,137(1986)所述。 Another method is that the electrochemically active material in this hot film, such as Document AJAppleby and EBYeager, Energy, Vol.11,137 (1986) described. 此外,还可将电化学活性物质沉积在此膜上,如专利文献USPatent No.4,959,132 to Fedkiw所述。 In addition, the electrochemically active material may also be deposited on this film, as described in Patent Document USPatent No.4,959,132 to Fedkiw said. 电化学活性物质可包括任何类型的催化物质或金属物质或金属氧化物,只要这种物质能支持电荷转移即可。 Electrochemically active material may comprise a catalytic material or a metal oxide or a metal material of any type, as long as this material can support charge transfer can. 电化学活性物质最好包括一种催化剂材料,如铂、钌、锇、铼、铑、铱、钯、金、钛或锆及其氧化物、合金或包含它们的混合物。 Electrochemically active material preferably comprises a catalyst material, such as platinum, ruthenium, osmium, rhenium, rhodium, iridium, palladium, gold, titanium or zirconium and their oxides, alloys or mixtures containing them. 所谓“包含任何这些元素、氧化物及合金的混合物”一语的意思是,至少有一种这些元素、氧化物及合金与至少一种其他上述元素、氧化物及合金和/或其他组分相混合。 The so-called "contain these elements, any oxide mixtures and alloys," a phrase meaning that at least one of these elements, oxides and alloys with at least one other of the above elements, oxides and alloys and / or mixed with other ingredients . 然而,一般说来,这些材料中的氧化物不应用于阴极。 However, in general, these materials should not be used in an oxide cathode. 适宜应用于本发明的其他催化剂材料可包括,但不限于,呈单体或聚合物形式的过渡金属大环化合物以及过渡金属氧化物,包括钙钛矿和烧绿石(pyrochlores)。 Suitable catalysts employed in the present invention, other materials may include, without limitation, monomeric or polymeric form of a transition metal macrocyclic compounds, and transition metal oxides, including perovskites and pyrochlore (pyrochlores).

在热压电极中,电化学活性物质可包括在载体材料上的催化剂材料。 In the hot electrode, the electrochemically active material may comprise a catalyst material on a support material. 载体材料可包括碳素微粒和聚四氟乙烯微粒,此聚四氟乙烯出售的商标为“TEFLON”(下文以TEFLON_表示),市场上可以买到,公司是EIdu Pont de Nemours andCompany of Wilmington,Delaware.电化学活性物质可借助于TEFLON_粘合在碳素纸或石墨布的载体结构上以及热压在阳离子迁移膜上。 The support material may include carbon particles and polytetrafluoroethylene particles, the polytetrafluoroethylene sold under the trademark "TEFLON" (hereinafter expressed as TEFLON_), commercially available, is EIdu Pont de Nemours andCompany of Wilmington, Delaware. TEFLON_ electrochemically active material by means of an adhesive on the carrier structure carbon paper or graphite cloth and hot-pressing in ion transport membrane. TEFLON_的疏水性质不允许在阳极上形成水膜。 Hydrophobic properties TEFLON_ does not allow a water film formed on the anode. 电极中的水阻挡层将会阻碍HCl至反应区的扩散。 Electrodes will hinder HCl aqueous barrier to the diffusion of the reaction zone. 电极最好热压在膜上,以使催化剂与膜之间接触良好。 Electrodes are preferably hot pressing the film, so that good contact between the catalyst and the membrane.

电化学活性物质的用量可根据施加在膜上方法的不同而变化。 The amount of the electrochemically active material may be applied on the membrane according to the different methods varies. 热压的气体扩散电极用量一般为0.10至0.50mg/cm2。 Hot pressing the gas diffusion electrode is generally used in an amount from 0.10 to 0.50mg / cm2. 其他适用的沉积方法有可能用量较低,例如将其从墨汁状分散在膜上形成薄膜,如“用于聚合物电解质燃料电池的超低Pt用量的高性能催化膜”一文所述,Wilson and Gottesfeld,Los Alamos NationalLaboratory,J.Electrochem.Soc.,Vol.139,No.2 L28-30,1992,其中所述墨汁含有增溶NAFION_离聚物,以加强催化剂-离聚物表面接触,并且对NAFION_膜起粘合剂作用。 Other suitable deposition methods less likely dosage, e.g., dispersed in the membrane film from the ink-like, such as "High Performance Catalytic membrane for a polymer electrolyte fuel cell ultralow Pt amount" of the formed article, Wilson and Gottesfeld, Los Alamos NationalLaboratory, J.Electrochem.Soc, Vol.139, No.2 L28-30,1992, wherein said ink contains a solubilizing NAFION_ ionomer to enhance the catalyst - ionomer contact surface, and membrane functions as a binder for NAFION_. 对于这种体系,活性物质用量已低至0.017mg/cm2。 For this system, the amount of active material has low 0.017mg / cm2.

集电器30、32分别被安置与阳极、阴极电接触以分别收集电荷。 Current collector 30, 32 are respectively disposed in contact with the anode and cathode to collect charges respectively. 集电器的另一功能是将无水氯化氢导向阳极以及将入口24加入的水导向阴极以使膜保持水合状态,如下面之讨论。 Another function of the collector is anhydrous hydrogen chloride to the anode inlet 24 and the cathode in order to guide the water added to maintain hydration state of the membrane, as discussed below it. 更准确地说,集电器加工成具有流动通道34、36,如图1所示,以使无水HCl导向阳极和使加入的水导向阴极。 More specifically, the current collector has flow channels 34 and 36 into the processing shown in Figure 1, so that the anhydrous HCl to the anode and cathode of the charged water guide. 集电器和流动通道的结构造型可有各种变化,这些均包括在本发明的范围之内。 Structural form current collector and the flow channel may have a variety of variations, which are included within the scope of the present invention. 此外,集电器可用本领域技术人员已知的任何方法制作。 In addition, the current collector by any method available to the skilled artisan production. 例如,集电器可用环氧树脂浸渍过的石墨块加工,以避免氯化氢和氯气通过此块渗出。 For example, the current collector can be used epoxy resin impregnated graphite block processing, hydrogen chloride and chlorine gas in order to avoid leaking through the blocks. 此浸渍还可防止氧气和水通过此块渗漏。 This impregnation also prevents oxygen and water leakage through the block. 集电器还可由多孔碳以泡沫、织物或无光泽等形式制成。 May also be made of a porous carbon current collector made of foam, fabric or matte form. 集电器还可包括热电偶或热元件(未表示出来)以监视和控制槽温度。 Current collector may also include a thermocouple or thermal element (not shown) to monitor and control the tank temperature.

第一实施方案的电化学槽还包括结构支架以将此槽固定在一起。 An electrochemical cell of the first embodiment further includes structural support to this groove together. 支架最好包括一对背板,将其扭紧至很高压力以减少集电器与电极间的接触电阻。 Bracket preferably includes a pair of back, tighten it to a high pressure in order to reduce the contact resistance between the collector and the electrode. 此板可是铝制的,不过最好是耐腐蚀的金属合金板。 This panel may be made of aluminum, but preferably is a corrosion-resistant metal alloy plate. 此板包括加热元件(未表示出来),用以控制槽温度。 This plate comprises a heating element (not shown) for controlling the bath temperature. 有一不导电元件,例如TEFLON_或其他绝缘体,安置在集电器和背板之间。 A non-conductive member, e.g., between the current collector and the rear plate TEFLON_ or other insulators, disposed.

第一实施方案的电化学槽还包括一电压源(未示出)以给此槽提供电压。 An electrochemical cell of the first embodiment further includes a voltage source (not shown) to provide a voltage to this groove. 此电压源按照图1所示的+、-接线端分别通过集电器30及32与电化学槽连接。 This voltage source +, as shown in Figure 1 - are connected via terminals 30 and 32 and the current collector electrochemical cell.

当使用一对以上阳极-阴极对时,例如在工业生产中,最好采用双极性排布。 When using more than one pair of the anode - cathode pair, for example, in industrial production, preferably bipolar arrangement. 在图1所示的简单的电化学槽中,给出的是单个阳极和阴极。 In a simple electrochemical cell shown in Figure 1, given a single anode and cathode. 电流从外电源流至阴极并通过与阳极连接的导线返回外电源。 Current from foreign origins to the cathode and the anode through a wire connected to the external power supply returns. 对于大量阳极-阴极对的堆集来说,用这种方式供应电流不是最方便的。 For a large number of anode - cathode pair of accumulation, the current is supplied in this way is not the most convenient. 然而,对于双极性排布来说,此时电流通过电解池堆流动。 However, for a bipolar arrangement, the current at this time flows through the electrolytic cell stack. 这可以由阳极和阴极的集电器是从一块材料加工而得来实现。 This can be processed by the anode and the cathode current collector material derived from a realized. 如是,在集电器的一面,阳极气体(HCl)在加工成的通道中流动通过阳极。 If so, the collector side of the anode gas (HCl) into the passage in the processing flow through the anode. 在同一集电器的另一面,加工有通道,以及电流用于阴极反应,在本发明中此反应产生氢气。 On the other side of the same collector, formed with channels, and a current for the cathode reaction, in the present invention, this reaction produces hydrogen gas. 电流通过电解池堆的重复单元流动,并不需要对每个单体电解池去除和供给电流。 Repeating unit current flowing through the electrolytic cell stack, does not need to be removed for each single cell and the current is supplied. 为集电器选择的材料必须能在阳极面耐氧化条件和在阴极面耐还原条件。 Material selection for the current collector must be resistant to the oxidizing conditions on the anode surface and the cathode surface resistant to reducing conditions. 当然,此材料必须是导电的。 Of course, this material must be conductive. 在双极性结构中,绝缘体不散置在如上所述的电解池堆中。 In the bipolar configuration, insulators dispersed as described above disposed in the electrolytic cell stack. 相反,在电解池堆的末端有背板,需将其与相邻的集电器绝缘。 In contrast, at the end of the cell stack have backplane, need to be insulated from the adjacent current collector.

进而根据本发明的第一实施方案,提供一种从基本无水卤化氢直接产生基本干燥卤素气体的方法。 Further in accordance with a first embodiment of the invention, there is provided A method of producing substantially dry halogen gas from essentially anhydrous hydrogen halide method directly. 所述无水卤化氢包括氯化氢、溴化氢、氟化氢或碘化氢。 The anhydrous hydrogen halide include hydrogen chloride, hydrogen bromide, hydrogen fluoride or hydrogen iodide. 应该指出,当电化学槽在提高温度条件下操作时,溴气和碘气的产生可以实现(即,溴为约60℃及以上,碘为约190℃及以上)。 It should be noted that when increasing the temperature in the electrochemical cell operating conditions, to produce bromine gas and iodine gas can be achieved (i.e., bromine is about 60 ℃ and above, iodine is about 190 ℃ and above). 在碘的情况下,应使用由其他材料制作的膜,而不是NAFION_制作的。 In the case of iodine, should be used a film made from other materials, rather than NAFION_ produced.

现将描述第一实施方案的电化学槽的操作,由于涉及本发明方法的优选方案,所以此处无水卤化氢是氯化氢。 Operation of the electrochemical cell will now be described first embodiment, since the preferred embodiment of the present invention relates to a method of, so here anhydrous hydrogen halide is hydrogen chloride. 在操作时,基本无水的氯化氢气体分子经阳极入口18和气体通道34被输送至阳极表面。 In operation, essentially anhydrous hydrogen chloride gas molecules through anode inlet 18 and the gas passage 34 is delivered to the anode surface. 水(H2O(液),如图1所示)经阴极入口24以及经过在阴极集电器32中加工成的通道36被输送至阴极,以使膜水合,从而提高质子经过膜的迁移效率。 Water (H2O (liquid), as shown in Figure 1) through cathode inlet 24 and processed into cathode current collector 32 in channel 36 is fed to the cathode, so that the membrane hydrated, thereby improving the efficiency of the migration of protons through the membrane. 无水氯化氢分子(HCl(气),如图1所示)在阳极上在电压源产生的电压下被氧化产生基本干燥的氯气(Cl2(气))和质子(H+),如图1所示。 The molecular anhydrous hydrogen chloride (HCl (gas), shown in Figure 1) are oxidized at the anode to produce essentially dry chlorine gas (Cl2 (gas)) at a voltage of the voltage source and the generated protons (H +), shown in Figure 1 . 此反应由下式给出:氯气(Cl2(气))经阳极出口22引出,如图1所示。 This reaction is given by: chlorine gas (Cl2 (gas)) drawn by the anode outlet 22, as shown in FIG. 质子(H+)被迁移通过膜,此膜起电解质作用。 Protons (H +) is migrated through the membrane, the electrolyte membrane plays the role. 被迁移的质子在阴极被还原。 Proton migration is reduced at the cathode. 此反应由下式给出:氢气在电极与膜之间交界面上产生,经阴极出口28放出,如图1所示。 This reaction is given by: hydrogen in the junction surface between the electrode and the membrane produced, discharged through the cathode outlet 28, as shown in FIG. 氢气经过水鼓泡,且不受电极中TEFLON_的影响。 Hydrogen is bubbled through water, electrodes and are not affected TEFLON_.

图2说明本发明的第二实施方案。 Figure 2 illustrates a second embodiment of the present invention. 凡是可能之处,对应于图1实施方案的元件将采用与图1中相同的标记号码表示,但是将用撇号(′)予以标明。 Where possible, the figure corresponds to an embodiment of the device will be used in Figure 1 represents the same tag number, but will (') shall be marked with an apostrophe.

根据本发明的第二实施方案,现提供一种由无水卤化氢直接产生基本干燥卤素气体的电化学槽。 According to a second embodiment of the present invention, is to provide an anhydrous hydrogen halide to produce essentially dry halogen gas direct electrochemical cell. 根据本发明的优选的实施方案,这种由无水氯化氢直接产生基本干燥氯气的电化学槽将予以描述。 According to a preferred embodiment of the present invention, such a direct anhydrous hydrogen chloride from essentially dry chlorine gas of the electrochemical cell will be described. 然而,该槽还可替代地用于从相应的无水卤化氢如溴化氢、氟化氢和碘化氢直接产生其他卤素气体如溴、氟和碘。 However, the groove may alternatively be used from the respective anhydrous hydrogen halide such as hydrogen bromide, hydrogen fluoride and hydrogen iodide to produce other halogen gases, such as direct bromine, fluorine and iodine. 这种电化学槽概括地表示在图2的10′。 Such electrochemical cell generally indicated at 10 in FIG. 2 '. 在这第二实施方案中,由此槽产生水以及氯气。 In this second embodiment, the groove thereby produce water and chlorine gas.

槽10′包括阳离子迁移膜12′,如图2所示。 Groove 10 'includes ion transport membrane 12', as shown in FIG. 膜12′可以是一种质子传导膜。 Membrane 12 'may be a proton conductive membrane. 膜12′最好包括一种固体聚合膜,且此聚合物包括如前面关于第一实施方案所描述的NAFION_就更好。 Membrane 12 'preferably comprises a solid polymeric film, and this polymer comprises as previously NAFION_ on the first embodiment described better.

电化学槽10′还包括一对电极,具体地说,一个阳极14′和一个阴极16′,每个电极均被安置与膜的相应侧面接触,如图2所示。 Electrochemical cell 10 'further includes a pair of electrodes, specifically, an anode 14' and a cathode 16 ', each electrode are disposed in contact with the membrane corresponding to the side, as shown in Fig. 阳极14′和阴极16′的功能与前面关于第一实施方案的描述相同。 Anode 14 'and cathode 16' function as described above with respect to the first embodiment of the same. 阳极14′有一入口18′,它通至阳极室20′,阳极室本身又通至出口22′。 Anode 14 'has an inlet 18', which pass to the anode chamber 20 ', in turn, through the anode chamber to the outlet 22'. 阴极16′有一入口24′,它通至阴极室26′,阴极室本身又通至出口28′。 Cathode 16 'has an inlet 24', which pass to the cathode chamber 26 ', in turn, through the cathode chamber to the outlet 28'.

与第一实施方案相同,该阳极和阴极可包括多孔电极,更准确地说,是气体扩散电极,这种电极的构造及所包含的材料与前面第一实施方案中所描述的相同。 The same as in the first embodiment scheme, the anode and the cathode may comprise porous electrodes, more specifically, a gas diffusion electrode, the same structure of such an electrode material and the foregoing first embodiment included as described.

本发明第二实施方案的电化学槽还包括集电器30′、32′,它们分别被安置与阳极、阴极电接触以收集电荷。 The electrochemical cell of the second embodiment of the present invention further comprises a current collector 30 ', 32', which are arranged respectively in contact with the anode and cathode to collect charge. 集电器被加工成具有流动通道34′、36′,如图2所示,以引导无水HCl至阳极和引导氧气(O2)至阴极。 Collector was processed to have a flow channel 34 ', 36', shown in Figure 2, in order to guide the anhydrous HCl to the anode and the guide oxygen (O2) to the cathode. 集电器的构造及功能与上述第一实施方案相同。 Structure and functions of the current collector and the same as the above-described first embodiment. 在这第二实施方案中,集电器除收集电荷外,另一功能是引导无水氯化氢通过阳极。 In this second embodiment, the current collector in addition to collecting charge, another function is to guide the anhydrous hydrogen chloride through the anode. 阴极集电器引导含氧气体至阴极,此气体通过加湿可含水蒸汽。 A cathode current collector to the cathode to guide oxygen-containing gas, this gas may be humidified by water vapor. 不可能需要水蒸汽以使膜保持水合。 May not be necessary to make the film holding water vapor hydrated. 然而,在本实施方案中可能不需要水蒸汽,,这是因为所引进氧气(O2)的电化学反应可产生水,如下文之讨论。 However, in the present embodiment, water vapor may not be required ,, because the oxygen (O2) introduced by the electrochemical reaction on water, below the produce.

第二实施方案的电化学槽还包括结构支架以使学此槽固定在一起。 An electrochemical cell of the second embodiment further includes structural support so learn this groove together. 此结构支架最好包括一对背板(未示出),其结构和作用与上述第一实施方案相同。 This structure preferably includes a pair of holder back plate (not shown), which structure and functions are the same as in the first embodiment.

第二实施方案的电化学槽还包括一电压源(未示出)以给该槽提供电压。 An electrochemical cell of the second embodiment further includes a voltage source (not shown) to provide voltage to the trench. 此电压源按照图2所示的+、-接线端分别通过集电器30′和32′与电化学槽连接。 This voltage source in accordance with the +, as shown in Figure 2 - are respectively connected to the terminal through the electrochemical cell current collector 30 'and 32'.

进而根据本发明的第二实施方案,提供一种从基本无水的卤化氢直接产生基本干燥的卤素气体的方法。 Further according to the second embodiment of the present invention, there is provided a method of generating a substantially dry halogen gas from essentially anhydrous hydrogen halide directly. 所述无水卤化氢可包括氯化氢、溴化氢、氟化氢或碘化氢。 The anhydrous hydrogen halide may comprise hydrogen chloride, hydrogen bromide, hydrogen fluoride or hydrogen iodide. 应该指出,当电化学槽在提高温度的条件下操作时,溴气和碘气的产生才可实现(即,溴为约60℃及以上,碘为约190℃及以上)。 It should be noted that when the electrochemical cell operating at elevated temperature conditions, to produce bromine gas and iodine gas in order to achieve (i.e., bromine is about 60 ℃ and above, iodine is about 190 ℃ and above). 在碘的情况下,应使用由其他材料制作的膜,而不是NAFIOL_制作的。 In the case of iodine, should be used a film made from other materials, rather than NAFIOL_ produced.

现将描述第二实施方案的电化学槽的操作,由于涉及本发明方法的优选方案,所以此处无水卤化氢是氯化氢。 Will now be described the operation of the electrochemical cell of the second embodiment, since the preferred embodiment of the present invention relates to a method of, so here anhydrous hydrogen halide is hydrogen chloride. 在操作中,基本无水的氯化氢分子通过阳极入口18′及气体通道34′被输送至阳极。 In operation, essentially anhydrous hydrogen chloride molecules through anode inlet 18 'and the gas channel 34' is delivered to the anode. 含氧气体,如氧气(O2(气),如图2所示)、空气和富氧空气(即,氧在氮中大于21mol%)通过如图2所示的阴极入口24′和在阴极集电器上加工成的通道36′被导入。 An oxygen-containing gas, such as oxygen (O2 (gas), shown in Figure 2), air and oxygen-enriched air (i.e., greater than 21mol% oxygen in nitrogen) as shown in Figure 2 through cathode inlet 24 'and the cathode current collector the electrical processing into channel 36 'is imported. 虽然应用空气比较便宜,但是当使用富氧空气或氧气时,电化学槽的性能可以提高。 Although the application of air is cheaper, but when using oxygen-enriched air or oxygen, the performance of the electrochemical cell can be improved. 供入阴极的气体可以加湿以帮助控制膜中的湿度。 The gas may be supplied to the cathode humidification to help control the film humidity. 氯化氢分子(HCl(气),如图2所示)在电压源产生的电压下在阳极上被氧化产生基本干燥的氧气和如图2所示的质子(H+),此反应如前面式(9)所示。 Molecular hydrogen chloride (HCl (gas), shown in Figure 2) at a voltage generated by the voltage source is oxidized to produce oxygen and protons (H +) 2 shown in FIG substantially dry on the anode, the reaction as described above for formula (9 ) Fig. 氯气(Cl2)经阳极出口22′引出,如图2所示。 Chlorine (Cl2) through anode outlet 22 'leads, as shown in Figure 2. 质子(H+)被迁移通过膜,此膜起电解质作用。 Protons (H +) is migrated through the membrane, the electrolyte membrane plays the role. 氧与迁移的质子在阴极上还原为水,此反应用下式表示: Oxygen and protons migrating reduced to water at the cathode, this reaction is represented by the following formula:

(11)反应生成的水(式(11)中的H2O(气))与氮气及未反应的氧气一起经阴极出口28′排出,如图2所示。 (11) the water of reaction (formula (11) in H2O (gas)) with a nitrogen gas and unreacted oxygen together via cathode outlet 28 'is discharged, as shown in Fig. 此水还可有助于膜维持水合,下面将进一步予以解释。 This water also helps to maintain hydration of the membrane, as will be further explained.

在这第二实施方案中,阴极反应为水的生成反应。 In this second embodiment, the cathodic reaction water formation reaction. 此阴极反应相对于第一实施方案中在阴极上H2的生成具有热力学较为有利的优点。 This cathode reaction with respect to the first embodiment, the H2 generated in the cathode having the advantage of more favorable thermodynamics. 这是因为本实施方案中的总反应,以下式表示:与第一实施方案中的总反应,以下式表示:相比具有较小的自由能变化。 This is because the present embodiment, the overall reaction, represented by the formula: in the first embodiment of the overall reaction with the following formula: with a smaller free energy change. 因而,在这第二实施方案中降低了对电化学槽输入的电压值或减少了所需的能量。 Thus, in this second embodiment reduces the voltage value of the electrochemical cell or reduces the required input energy.

第一实施方案和第二实施方案两者的膜都必须是水合的,以获得高效的质子迁移。 The first embodiment and the second embodiment both the membrane must be hydrated in order to obtain high proton migration. 因而,本发明不论哪个实施方案的方法都包括保持膜的阴极侧面润湿的步骤,以提高通过膜的质子迁移效率。 Thus, regardless of which embodiment of the method of the present invention include the step of wetting the cathode side holding film in order to improve the efficiency of the migration of protons through the membrane. 在第一实施方案中,具有产生氢气的阴极,膜的水合作用是通过保持液态水与阴极接触而得到的。 In a first embodiment, a cathode for producing hydrogen, water membrane cooperation with liquid water by maintaining contact with the cathode obtained. 液态水穿过气体扩散电极与膜接触。 Liquid water through the membrane in contact with the gas diffusion electrode. 在第二实施方案中,具有产生水的阴极,膜的水合作用是通过前面式(11)表示的水生成反应以及在加湿的氧气或空气进气中引进的水来实现的。 In a second embodiment, having a cathode to produce water, the water film is co-generated by reaction with water in front of formula (11), and humidified oxygen or air in the intake air introduced in the water to achieve. 这可使膜保持高的电导率。 This allows the film to maintain high electrical conductivity.

无论在第一还是第二实施方案中,电化学槽均可在宽广的温度范围内操作。 Whether the first or the second embodiment, the electrochemical cell can operate over a wide temperature range. 室温操作是有利的,因为使用电化学槽容易。 Operating at room temperature is advantageous, because the use of electrochemical cell easily. 然而,在提高温度的条件下操作具有改善动力学特性以及提高电解质电导率等优点。 However, at elevated temperature operating conditions with improved kinetics and increased electrolyte conductivity and so on. 还应指出,无论第一还是第二实施方案的电化学槽均不只限于在大气压下操作。 It should also be noted that the electrochemical cell, whether the first or the second embodiment are not limited to operating at atmospheric pressure. 本槽可在不同的压力梯度下运行,这可改变水或其他组分在槽中,包括膜中的迁移特性。 The grooves may run at different pressure gradients, which can change the water or other components in the tank, including membrane transport characteristics.

本发明不论哪个实施方案的电化学槽比现有技术用含水氯化氢操作的电化学槽在给定压力下都能在更高的温度下操作。 The electrochemical cell of the present invention, regardless of which embodiment of the electrochemical cell than in the prior art can be operated with aqueous hydrogen chloride at higher operating temperatures at a given pressure. 这对反应的动力学以及NAFION_的电导率有影响。 This reaction kinetics and NAFION_ affect the conductivity. 较高的温度导致较低的槽电压。 Higher temperatures result in lower cell voltage. 然而,由于槽的元部件所用材料的性质,对温度有一定限制。 However, since the component parts of the groove with the nature of the material, there are certain restrictions on the temperature. 例如,当此槽在120℃以上操作时,NAFION_膜的性质发生变化。 For example, when this slot operation above 120 ℃, nature NAFION_ film changes. 由于聚合物电解质膜的性质,使此槽在150℃以上操作很困难。 Due to the nature of the polymer electrolyte membrane, so that the groove above 150 ℃ operation is very difficult. 对于其他材料制成的膜,例如象β-氧化铝那样的陶瓷材料,这种槽有可能在温度200℃以上操作。 For membranes made of other materials, such as for example β- alumina as a ceramic material, such grooves may have a temperature above 200 ℃ in operation.

无论在本发明的第一还是第二实施方案中,都可能有部分无水氯化氢在接触电解槽之后未起反应,而随着氯气一起通过阳极出口从槽中排出。 Whether the first or the second embodiment of the present invention, there may be portions of anhydrous hydrogen chloride in unreacted after contacting the cell, and through the anode outlet along with the chlorine gas discharged from the tank. 根据图3可说明此概念,图中给出一系统以从基本干燥的氯气中回收并循环使用未反应的无水氯化氢,此系统概括地表示于40。 According to Figure 3 illustrate this concept, the figure shows a system to recover from the essentially dry chlorine and recycling the unreacted anhydrous hydrogen chloride, the system generally indicated at 40. 应该指出,图3所示的系统可以用于再循环其他未反应的无水卤化氢,分别从对应的基本干燥的卤素气体,如氟、溴或碘,氯气仅用来作为卤素气体的一个代表。 It is noted that the system shown in Figure 3 can be used for other recycling unreacted anhydrous hydrogen halide, respectively, from the corresponding substantially dry halogen gas, such as fluorine, bromine or iodine, chlorine is only used as a representative halogen gas . 图3中的系统使未反应的无水氯化氢循环返回至第一实施方案的槽10,该槽包括膜12、阳极14、阳极室20、阴极16和阴极室26,如前所述。 Figure 3 system the unreacted anhydrous hydrogen chloride is recycled back to the first embodiment of the groove 10, the groove includes a membrane 12, anode 14, anode chamber 20, cathode 16 and cathode chamber 26, as previously described. 槽10还包括集电器30、32,集电器中有加工成的流动通道34、36。 Slot 10 also includes a current collector 30, 32, the current collector has processed into the flow channel 34, 36. 槽10还包括供入无水氯化氢的进料管线38和供水的进料管线39,如前对第一实施方案的有关描述。 Groove 10 further comprising anhydrous hydrogen chloride is fed to a feed line 38 and water feed line 39, as previously described about the first embodiment. 无水HCl的未反应部分通过分离器44从基本干燥的氯气中被分离,其分离方法可包括蒸馏、吸附、萃取、膜分离或任何已知的分离技术。 Unreacted portion of anhydrous HCl through the separator 44 is separated from the essentially dry chlorine gas, the separation method may include distillation, adsorption, extraction, membrane separation, or any known separation technique. 从基本干燥的氯气中分离出来的未反应的无水HCl经图3所示的管线45再循环返回至电化学槽10的阳极入口18,如图3所示。 Line shown separated from the essentially dry chlorine gas out the unreacted anhydrous HCl in Figure 3 by the electrochemical cell 45 is recycled back to the anode inlet 10 of 18, as shown in FIG. 被分离的氯气通过管线46送出。 The separated chlorine gas fed through line 46. 在图3的系统中,氢气(H2)通过第一实施方案所述的阴极出口28和管线48从槽10排出。 In the system of Figure 3, the hydrogen (H2) through a first embodiment of the cathode outlet 28 and the discharge line 48 from the groove 10. 过量水也可通过阴极出口28排出,在分离器49中从氢气中分离出来,并经管线41循环至阴极入口24。 The excess water can be discharged through the cathode outlet 28, separated from the hydrogen gas in the separator 49, via line 41 and recycled to cathode inlet 24. 分离出来的氢气经管线47排出。 The separated hydrogen is discharged via line 47. 应该理解,本发明第二实施方案的电化学槽可替代地应用于图3的系统中,只是氧气(O2)应从进料管线39进入阴极入口和气态水(H2O(气))应与氮气以及未反应的氧气一起从阴极出口排出。 It should be understood, the electrochemical cell of the second embodiment of the present invention may alternatively be applied to the system in FIG. 3, only oxygen (O2) should be fed into the cathode inlet line 39 and gaseous water (H2O (gas)) should be a nitrogen gas, and together with the unreacted oxygen discharged from the cathode outlet.

对上述图3系统的改进包括循环从未反应的无水氯化氢中分离出来的基本干燥的氯气至合成工艺,在此工艺中氯气是一反应物而无水氯化氢是一副产物。 Figure 3 of the above-described system the improvement comprises circulating the unreacted anhydrous hydrogen chloride isolated from the essentially dry chlorine gas to the synthesis process, in this process, chlorine is a reactant and anhydrous hydrogen chloride is a product. 此改进表示于图4中,其中循环分离出来的氯气至合成工艺的这个系统概括地表示于50。 This improvement is shown in Figure 4, in which the separated chlorine gas to the circulating synthesis process of the system generally indicated at 50. 系统50包括如上所述的系统40以及合成工艺52和如下所述的其他有关部分。 System 50 includes a part 40 and other related synthesis process as described below 52 and system as described above. 基本干燥氯气经上述管线46循环至合成工艺52。 The basic dry chlorine via the line 46 is recycled to the synthesis process 52. 其他反应物进料管线表示在54和56。 Other reactant feed line 54 and 56 indicates. 例如在氢氟化作用过程中,进料管线54可引入碳氢化合物,以及进料管线56可引入氟化氢(HF)。 For example, in hydrogen fluorination process, the feed line 54 may be introduced hydrocarbon, and feed line 56 may be introduced into the hydrogen fluoride (HF). 氟化碳氢化合物、未反应的HF和无水氯化氢经管线58离开合成工艺52,并在分离器60中以任何已知的分离方法进行分离。 Fluorinated hydrocarbons, unreacted HF and anhydrous hydrogen chloride via line 58 to leave the synthesis process 52 and the separator 60 is separated by any known separation method. 无水氯化氢经管线68送至阳极入口18,并与管线45中的循环气合并,如图4所示。 Anhydrous hydrogen chloride via line 68 to the anode inlet 18, and combined with recycle gas in line 45, as shown in Fig. 氟化碳氢化合物和未反应的HF经管线62离开分离器60和进入另一分离器64,在此将氟化碳氢化合物从未反应的HF中分离出来。 Fluorinated hydrocarbons and unreacted HF leaves the separator 62 through line 60 and into another separator 64, separated in the fluorinated hydrocarbons from the unreacted HF in. 氟化碳氢化合物经管线66从分离器64中排出。 Fluorinated hydrocarbons is discharged from the separator 64 via line 66. 未反应的HF经进料管线56循环返回至合成工艺52。 Unreacted HF circulating through a feed line 56 back to synthesis process 52. 此系统还可用于引入含氯氟烃或氯氟碳化合物加氢以及加氢脱氯催化剂以产生氯化氢。 This system can also be used to introduce the CFCs or chlorofluorocarbons and Hydrodechlorination hydrogenation catalyst to produce hydrogen chloride. 在图4的系统中替代地应用第二实施方案的电化学槽,与以上指出的系统有差别,这些当然应包括在本发明的范围以内。 Alternatively, the application in the system of Figure 4, an electrochemical cell of the second embodiment, a difference with the above-noted system, which of course should be included within the scope of the present invention.

本发明将由下述实施例阐明,这些实施例的目的是本发明的单纯的示范。 Illustrate embodiments of the present invention will be described below, these embodiments are purely exemplary of the invention. 在下面给出的这些实例中,提供了一些实施数据,这些数据表示本发明的第一实施方案操作时对于不同的电极材料、温度、不同的操作方式所得到的一些结果。 In the examples given below, some embodiments provide a data that represents some of the results of the first embodiment of the present invention when the operation for different electrode materials, temperatures, different operation modes obtained. 更准确地说,在这些实验中,测定了对于三种不同温度以及两种不同电极材料条件下的电流和槽压值。 More specifically, in these experiments, the measured values for the current and the cell voltage at three different temperatures and two different conditions of the electrode materials.

下述实施例中应用的电极/膜组件可以在市场上从公司Giner,Inc.ofWaltham,Massachusetts买到,作为膜和电极组件(MEAS)含有贵金属0.35mg/cm2,且整体地粘接在H+型NAFION_117膜上。 Electrode / membrane module Application Example The following embodiment may be from the company Giner, Inc.ofWaltham, Massachusetts available on the market, as a membrane and electrode assembly (MEAS) noble metal-containing 0.35mg / cm2, and integrally bonded to the H + form NAFION_117 film. 专利USPatent No.4,210,501所述的电极也可用于本发明。 Electrode described in Patent USPatent No.4,210,501 also be used in the present invention. 用于本发明制作电极时所应用的其他已知的金属化技术也包括在本发明的范围内。 Other known metallization techniques for the production of electrode of the present invention is applied are also included within the scope of the present invention. 例如,专利USPatent No.4,959,132 toFedkiw所用的技术常被称为浸渍-还原法,此技术是适用于本发明的方法。 For example, Patent USPatent No.4,959,132 toFedkiw used technique is often called impregnation - reduction method, this technique is useful in the present invention is a method. 其他方法,如在文献Japanese Publication No.38934,published in 1980和J.HydrogenEnergy,5,397(1982)中所描述的金属化技术也可以应用。 Other methods, such as in the literature Japanese Publication No.38934, published in 1980 and J.HydrogenEnergy, metallization techniques 5,397 (1982) described may also be applied.

例1在此实例中,在尺寸为1cm1cm的电化学槽中进行了产生氯气和氢气的非稳态电化学实验(即,对每次电压设定持续时间为5分钟)。 Example 1 In this example, the size of 1cm 1cm tank for electrochemical generation of chlorine and hydrogen unsteady electrochemical experiments (i.e., the voltage of each set duration of 5 minutes). 掺入碳的铂(Pt)用于阴极,掺入碳的氧化钌(RuO2)用于阳极。 Carbon incorporation platinum (Pt) for the cathode, carbon incorporation of ruthenium oxide (RuO2) for the anode. 每个阳极和阴极都含有贵金属0.35mg/cm2。 Each anode and cathode are noble metal-containing 0.35mg / cm2. 阳极和阴极两者均粘接在由NAFION_117制成的膜上。 Film made from NAFION_117 bonded both anode and cathode. 电源提供的电压以每步0.10伏的增加量呈阶梯形从1.0伏上升至2.0伏。 Voltage power supply in order to increase the amount of 0.10 volts per step was stepped from 1.0 volts up to 2.0 volts. 每步进0.10伏,电压均保持5分钟。 Each stepper 0.10 volts, the voltage was held for 5 minutes. 在给定槽电压下记录了三种不同温度,即40℃、60℃和80℃条件下的电流响应,以估价这一变量对槽性能的重要性,结果在下面表1中给出。 In a given cell voltage at three different temperatures are recorded, i.e. 40 ℃, the current response at 60 ℃ and 80 ℃ conditions, to evaluate the performance of this variable on the importance of the slot, results are given in Table 1 below.

表1槽电压 电流值[v] [mAmp./cm.2]40℃ 60℃ 80℃1.1 24 35 101.2 112 140 551.3 250 265 1351.4 380 410 2401.5 540 540 3401.6 585 620 4401.7 640 710 5401.8 660 760 6301.9 700 7002.0 770 750例2在此实例中,在尺寸为1cm1cm的电化学槽中进行了产生氯气和氢气的稳态电化学实验(即,对每次电压设定持续时间为7至20小时)。 Table 1 slot voltage and current values [v] [mAmp. / Cm.2] 40 ℃ 60 ℃ 80 ℃ 1.1 24 35 101.2 112 140 551.3 250 265 1351.4 380 410 2401.5 540 540 3401.6 585 620 4401.7 640 710 5401.8 660 760 6301.9 700 7002.0 770 750 Example 2 In this example, carried out in the steady state to produce chlorine and hydrogen electrochemical experiments (i.e., the voltage of each set duration 7-20 hours) of a size of 1cm 1cm electrochemical cells. 与例1相同,掺入碳的铂(Pt)用于阴极,掺入碳的氧化钌(RuO2)用于阳极。 The same carbon incorporation platinum Example 1 (Pt) and for the cathode, carbon incorporation ruthenium oxide (RuO2) for the anode. 还与例1相同,每个阳极和阴极都含有贵金属0.35mg/cm2,且阳极和阴极两者均与NAION_117膜粘接。 Also the same as in Example 1, each of the anode and the cathode are noble metal-containing 0.35mg / cm2, and both the anode and cathode and NAION_117 film adhesive. 电源提供的槽电压在给定值下保持很长的时间间隔,即7至20小时。 Cell voltage power supply at a given value of maintaining a long time interval, ie 7-20 hours. 再一次,记录了在给定槽电压下三种不同温度,即40℃、60℃和80℃条件下的电流响应,结果在下面表2中给出。 Again, recorded at a given cell voltage at three different temperatures, i.e. 40 ℃, the current response at 60 ℃ and 80 ℃ conditions, the results are given in Table 2 below.

表2槽电压 电流值[v] [mAmp./cm.2]40℃ 60℃ 80℃1.4 200 210 2101.5 310 250 2501.6 380 3801.7 470 4601.8 540例3在本实例中,在电化学槽中进行了产生氯气和氢气的非稳态电化学实验(即,对每次电压设定持续时间为5分钟),槽尺寸为1cm1cm与以上实例相同。 Table 2 cell voltage current values [v] [mAmp. / Cm.2] 40 ℃ 60 ℃ 80 ℃ 1.4 200 210 2101.5 310 250 2501.6 380 3801.7 470 4601.8 540 EXAMPLE 3 In this example, the electrochemical cell was produced chlorine and hydrogen unsteady electrochemical experiments (i.e., the duration of each voltage is set to 5 minutes), the slot size of 1cm 1cm same as the above examples. 在本实例中,掺入碳的铂(Pt)用于阳极和阴极两者。 In the present example, the incorporation of carbon in platinum (Pt) for both anode and cathode. 阳极和阴极每个均含贵金属0.35mg/cm2。 The anode and cathode each inclusive of precious metal 0.35mg / cm2. 阳极和阴极两者均与NAFION_117制成的膜粘接。 Both the anode and cathode and NAFION_117 made film bonding. 电源提供的电压从1.0至2.0优呈阶梯形增加,每次增加量为0.10伏。 Power supply voltage from 1.0 to 2.0 were gifted stepped increase, the amount of each increase of 0.10 volts. 每步进0.10伏,电压均保持5分钟。 Each stepper 0.10 volts, the voltage was held for 5 minutes. 记录了在给定槽电压下两种不同温度,即40℃和60℃条件下的电流响应,结果在下面表3中给出。 Recorded at a given cell voltage of two different temperatures, i.e. 40 ℃ and at 60 ℃ current response, the results are given in Table 3 below.

表3槽电压 电流值[v] [mAmp./cm.2]40℃ 60℃1.1 25 301.2 96 1251.3 200 2601.4 310 3951.5 425 5001.6 520 6101.7 600 6851.8 670 7201.9 725 7602.0 780 780例4在本实例中,在电化学槽中进行了产生氯气和氢气的稳态电化学实验(即,对每次电压设定持续时间为7至20小时),槽尺寸为1cm1cm,与以上实例相同。 Table 3 slot voltage and current values [v] [mAmp. / Cm.2] 40 ℃ 60 ℃ 1.1 25 301.2 96 1251.3 200 2601.4 310 3951.5 425 5001.6 520 6101.7 600 6851.8 670 7201.9 725 7602.0 780 780 Example 4 In this example, the an electrochemical cell to produce chlorine and hydrogen were steady state electrochemical experiment (i.e., the voltage of each set duration 7-20 hours), the slot size of 1cm 1cm, and the same as the above example. 在本实例中,掺入碳的铂(Pt)用于阳极和阴极两者。 In the present example, the incorporation of carbon in platinum (Pt) for both anode and cathode. 阳极和阴极每个均含贵金属0.35mg/cm2。 The anode and cathode each inclusive of precious metal 0.35mg / cm2. 阳极和阴极两者均与由NAFION_117制成的膜粘接。 Both the anode and cathode films made by the NAFION_117 bonding. 在本实例中,电源提供的槽电压在给定值下保持很长的时间间隔,即7至20小时。 In the present example, the slot power supply voltage is maintained at a given value for a long time interval, i.e., 7-20 hours. 再一次,记录了在给定槽电压下三种不同温度,即40℃、60℃和80℃条件下的电流响应,结果在下面表4中给出。 Again, recorded at a given cell voltage at three different temperatures, i.e. 40 ℃, the current response at 60 ℃ and 80 ℃ conditions, the results are given in Table 4 below.

表4槽电压 电流值[v] [mAmp./cm.2]40℃ 60℃ 80℃1.3 2401.4 300 350 3301.5 400 450 3801.6 495 5201.7 560这些实例的结果指出,本电化学槽的性能可超过现有技术通常能获得的结果。 Table 4 slot voltage and current values [v] [mAmp. / Cm.2] 1.3 2401.4 Results 300 350 400 450 3801.6 495 5201.7 3301.5 560 of these examples 40 ℃ 60 ℃ 80 ℃ noted that the performance of the electrochemical cell may exceed existing technique usually results obtained.

本领域的技术人员将容易地想到更多的优点和改进。 Those skilled in the art will readily occur to those additional advantages and improvements. 因此,本发明,在其较广的方面,不限制在已给出的和描述过的详细说明、典型装置和具体实施例之内。 Accordingly, the present invention, in its broader aspects is not limited to the details shown and described are given, and the typical means of specific embodiments are within. 所以,有可能从这些具体说明中作出改变而不脱离如所附权利要求及其相当条款确定的本发明基本构思的精神或范围。 Therefore, it is possible to make a change from those specifically described without departing from the terms of the appended claims and their equivalents determine the basic concept of the present invention, the spirit or scope.

Referenced by
Citing PatentFiling datePublication dateApplicantTitle
CN102395711A *15 Apr 201028 Mar 2012东亚合成株式会社Electrolysis method using two-chamber ion-exchange membrane sodium chloride electrolytic cell equipped with gas diffusion electrode
CN102395711B15 Apr 20103 Sep 2014氯工程公司Electrolysis method using two-chamber ion-exchange membrane sodium chloride electrolytic cell equipped with gas diffusion electrode
CN102459067A *30 Mar 201016 May 2012巴斯夫欧洲公司Method for reacting natural gas to aromatics while electrochemically removing hydrogen
CN102459067B *30 Mar 201019 Aug 2015巴斯夫欧洲公司使天然气反应成芳族烃同时电化学分离氢气的方法
CN104451767A *29 Dec 201425 Mar 2015甘肃银光聚银化工有限公司Oxidation device and method
Classifications
International ClassificationH01M8/02, B01D61/44, C25B1/16, C25B1/22, C25B15/08, C25B11/04, C25B1/02, H01M4/92, H01M4/90, C25B9/04, C25B9/00, C25B9/10, C25B1/26, C25B1/24, H01M8/24
Cooperative ClassificationH01M8/247, C25B1/16, C25B1/26, H01M8/0206, C25B1/22, C25B9/10, C25B15/08, B01D61/44, Y02P70/56, H01M8/0213, C25B1/24, H01M4/9083, H01M4/92, H01M8/0208, H01M8/0228, C25B9/04, H01M2300/0082
European ClassificationC25B15/08, C25B1/16, H01M8/02C2C, B01D61/44, C25B1/22, H01M8/02C2A, H01M4/90S2, H01M4/92, C25B1/26, C25B1/24, C25B9/04, C25B9/10, H01M8/24D2
Legal Events
DateCodeEventDescription
29 Jan 1997C06Publication
12 Feb 1997C10Entry into substantive examination
2 Jan 2002C14Grant of patent or utility model
23 Nov 2005C41Transfer of patent application or patent right or utility model
23 Nov 2005ASSSuccession or assignment of patent right
Owner name: SOUTH CAROLINA STATE COLLEGE
Free format text: FORMER OWNER: E. I. DU PONT DE NEMOURS AND CO.
Effective date: 20051014
23 Nov 2011C17Cessation of patent right