CN1101934C - 无损伤性近红外光谱仪的多光谱分析方法和装置 - Google Patents

无损伤性近红外光谱仪的多光谱分析方法和装置 Download PDF

Info

Publication number
CN1101934C
CN1101934C CN97193402A CN97193402A CN1101934C CN 1101934 C CN1101934 C CN 1101934C CN 97193402 A CN97193402 A CN 97193402A CN 97193402 A CN97193402 A CN 97193402A CN 1101934 C CN1101934 C CN 1101934C
Authority
CN
China
Prior art keywords
radiation
optical filter
wavelength
analyte
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN97193402A
Other languages
English (en)
Other versions
CN1214769A (zh
Inventor
G·哈利勒
S·F·梅林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sensys Limited by Share Ltd
Original Assignee
Sensys Medical Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sensys Medical Inc filed Critical Sensys Medical Inc
Publication of CN1214769A publication Critical patent/CN1214769A/zh
Application granted granted Critical
Publication of CN1101934C publication Critical patent/CN1101934C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/14Devices for taking samples of blood ; Measuring characteristics of blood in vivo, e.g. gas concentration within the blood, pH-value of blood
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/314Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3577Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing liquids, e.g. polluted water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light

Abstract

描述了一种利用近红外光谱区的多光谱分析确定样品中存在的被分析物浓度的方法和装置。采用含有约1100至3500nm范围中多个不同不相重叠波长区的入射辐射对样品扫描。对样品的漫反射辐射进行检测,运用化学计量技术获得表示被分析物浓度的值。能够使每个不相重叠波长区所获得的信息互相关,以去除背景干扰。

Description

无损伤性近红外光谱仪的多光谱分析方法和装置
技术领域
本发明涉及利用多光谱分析法确定样品中目标被分析物浓度的方法和装置。本发明可应用于各种各样的化学分析中,尤其是血液中被分析物的无损伤性分光光度分析中。
发明背景
测量血液中各组分的浓度在诊断和治疗人体状况和疾病的各种过程中得到应用。测量血液中的葡萄糖便是一种重要的应用。具体地说,对于糖尿病患者需要定期监测血液中葡萄糖的浓度,而对于胰岛素依赖型或I型糖尿病患者一天中常常必须或需要多次监测血液中的葡萄糖。此外,血液中胆固醇浓度的测量给人们治疗或预防冠状动脉疾病提供重要信息,对血液中其它有机被分析物,如胆红素和乙醇的测量在各种诊断中也是重要的。
获得血液中被分析物浓度的最准确和最广泛使用的一种方法是从病人那里抽取血样,然后利用高准确度和灵敏度的测定技术在实验室中对血样进行分析或是利用准确度较差的自测方法。具体地说,传统的监测血液中葡萄糖含量的方法每次测试需要从糖尿病人那里抽取血样(例如通过指针),利用葡萄糖计(一种读出葡萄糖浓度的分光光度计)或比色定标法读出葡萄糖含量。这种损伤性的抽血会给糖尿病人带来疼痛和厌倦负担,糖尿病人存在感染的可能性,尤其是需要频繁地测试。这些考虑导致糖尿病人想要取消监测过程。
于是,需要找到一种简单又准确的无损伤性测量血液中被分析物浓度,尤其是监测糖尿病人血液中葡萄糖含量的方法和装置。解决这一问题的一种方法便是采用传统的近红外(NIR)分析法,这里利用在一个或多个特定波长上的吸收测量从给定样品中提取被分析物的特定信息。
液体样品的近红外吸收光谱含有大量的有关样品各种有机组分的信息。具体地说,与有机分子结构(例如碳-碳、碳-氢、碳-氮和氮-氢化学键)有关的振动、旋转和伸缩能量在近红外光谱区中会产生能够被检测出的微扰,它们与样品中存在的这种有机组分的浓度有关。然而,在复杂的样品基质中,近红外光谱也含有一定量的干扰,一部分原因是被分析物中结构上的相似性、被分析物浓度的相对水平、被分析物与特定系统中固有的电子和化学“噪声”幅度之间的干扰关系。这种干扰降低了利用近红外光谱术确定液体样品被分析物浓度所获得的测量结果的有效性和精确度。然而,已经对提供的许多无损伤性血液被分析物确定结果的近红外装置和方法作了描述。
Purdy等人的美国专利5,360,004描述了一种确定血液中被分析物浓度的方法和装置,其中,用含有两个或多个不同的连续波长入射辐射波段的辐射照射一部分机体。Purdy等人强调了滤光技术,在水的NIR吸收光谱中在约1440和1935nm处出现两个特别阻断辐射的峰值。利用这种选择性阻断是为了避免由于受照射的机体中水吸收辐射而引起加热效应。
相反,Yang等人的美国专利5,267,152描述了仅利用一个红外光谱段,它包含了NIR水吸收峰,(例如“水的透射窗口”,它包含1300至1900nm之间的这些波长)的无损伤性测量血液中葡萄糖浓度的装置和技术。将光学控制的光射入组织源上,然后由积分球收集光。对收集的光进行分析并利用存储的参考定标曲线计算血液中的葡萄糖浓度。
还描述了确定复杂样品中被分析物浓度用的装置。
例如,Richardson等人的美国专利5,242,602描述了通过对含水系统的分析检测多种活性或非活性水处理成分的方法。这些方法涉及在200至2500nm范围上确定组分的吸收光谱或发射光谱以及运用化学计量算法提取一部分所获光谱数据,定量表示多种性能。
Nygaard等人的美国专利5,252,829描述了利用红外衰减测量技术测量牛奶样品中尿素浓度的方法和装置。执行多变量技术以利用部分最小平方算法、主要成分回归、多次线性回归或人工神经网络学习确定已知成分的光谱贡献。通过计入阻断所关注被分析物信号的组分贡献进行定标。因此,Nygaard等人描述了一种测量多个被分析物红外衰减并补偿背景被分析物影响从而获得更高准确度测量结果的技术。
Robinson等人的美国专利4,975,581描述了一种基于已知被分析物浓度与样品之间红外能量吸收的比较(即几个波长上的吸收之差)确定生物样品中被分析物浓度的方法和装置。利用部分最小平方分析或其它多变量技术进行比较。
Schlager的美国专利4,882,492描述了一种无损伤性确定血液中被分析物浓度的方法和装置。让经过调制的红外辐射射入组织样品(例如耳垂)上,红外辐射或是透过组织或是落在皮肤表面上,这里红外辐射的光谱被目标被分析物(葡萄糖)改变。然后,将光谱发生变化的辐射分束,一束射入负相关单元,另一束射入参考单元。对通过两个单元的辐射强度进行比较,确定样品中被分析物的浓度。
Ross等人的美国专利4,306,152描述了一种为使背景吸收(即液体样品的总体或基准光学吸收)对浑浊样品或难以用其它方法分析的液体样品中测量准确度的影响减至最小而设计的光学流体分析仪。装置测量在所关注样品组分的特征光学吸收上的光学信号和选来接近背景吸收波长上的另一信号,然后相减,以降低与被分析物有关信号的背景分量。
利用上述方法和装置获得的信息的准确度受到背景,即非被分析物和在近红外范围中也有吸收光谱的其它样品的组分所引起的光谱干扰的限制。一定程度的背景噪声代表了对系统的固有限制,尤其是在被分析物的含量很少时。鉴于这一限制,人们一直试图提高信噪比,例如通过避开水的吸收峰从而能够采用更高的辐射强度、通过降低被分析光谱信息量、或者通过采用基于近似背景吸收的相减或补偿技术。尽管这些技术已经作了一些改进,但是,仍然需要提供一种能够更精确地确定液体基质中被分析物浓度,尤其是监测血液中葡萄糖含量的方法和装置。
本发明的说明
于是,本发明的一个主要目的是通过提供一种确定含有可变背景基质以及可能存在实质性组分干扰的样品中存在的被分析物浓度的方法来满足现有技术中所述的需要。该方法计入了样品中存在的各种组分在结构上的相似性、被分析物浓度的相对幅度以及各种样品组分和仪器差异所导致的光谱干扰。
本发明的方法通常包括:(1)找出近红外范围中的几个不同的非重叠的波长区,它们与被分析物的浓度具有高的相关性;(2)用含有这些波长区的入射辐射照射样品,从而获得由于与样品组分的相互作用而在光谱上受到衰减的辐射;(3)检测经过光谱衰减的辐射;(4)测量非重叠的波长区中某一波长上的经过光谱衰减的辐射的强度;(5)校正测量结果,以获得表示被分析物浓度的值。
本发明的再一个目的是提供一种确定含有可变背景基质以及实质性组分干扰的样品中存在的被分析物浓度的分光光度计装置。在多光谱分析中采用该装置来获得含有被分析物特定信号以及与仪器背景噪声和干扰光谱信息有关信号的光谱信息。采用化学计量技术来构造能够增强被分析物特定信息与被分析物浓度的相关性的滤光片元件以及导出能够确定被分析物浓度值的系统算法。
在本发明的一个方面,提供这样一种装置,它包括能够增强被分析物特定信息与被分析物浓度的相关性的专用光学传递单元。该专用光学传递单元包括适合于选择性地突出与所选被分析物浓度具有高相关性的波长的正相关滤光片。将被突出的波长与接收信息把将该信息转变为代表该波长强度信号的装置相接。
附图简述
图1是依照本发明而构造的装置的图解表示。
图2是依照本发明而构造的相关光谱仪装置的图解表示。
图3是在体内葡萄糖耐量研究期间获取的与次数有关的扫描图。
图4示出利用本发明方法进行血液葡萄糖浓度无损伤性测定而获得的结果的曲线图。
实现本发明的方式
在对本发明作详细描述前,应当明白,本发明并不限于所述的装置或方法的特定组成部分,它们是可以变化的。还应当明白,这里所采用的术语是仅仅为了描述具体的实施例,并非是限制性的。必须注意,正如说明书和权利要求书中所采用的,除非文中另有明确说明外,单数形式也可包括多个涉及对象。因此,例如,说到“一种被分析物”也包括被分析物的混合物,说到“一个光学传递单元”也包括两个或多个光学传递单元,“一个反射地传播辐射的装置”也包括两个或多个装置,“一波长”包括两个或多个波长,“一种化学计量算法”包括两种或多种算法,等等。
在本说明书和下面的权利要求书中,将参考的许多术语具有以下含义:
“化学计量术”是指在化学分析应用中采用的数学、统计和模式识别技术。见Brown等人(1990)Anal.Chem.62:84-101。此处,化学计量术用于研制和利用采用先进信号处理和定标技术的无损伤性诊断仪器中。采用信号处理来提高被分析物信号中重要物理信息的可及性。信号处理技术的例子包括傅里叶变换、一阶和二阶导数、数字或自适应滤波。
在化学计量术方面,“定标”是指为了定量化对测量化学浓度的数据进行处理。具体说,可以采用利用化学计量方法的统计定标从一组复杂数据中提取特定信息。这种定标方法包括线性回归、多次线性回归、部分线性回归以及主要成分分析。在其它应用中,利用人工神经网络、智能算法和旋转主要成分分析可进行定标。
检测一种复杂化学基质中一种或多种组分的信息的仪器必然依赖于分析算法(如利用化学计量术导出的这些),以便揭示属于一种或多种化学组分特有的信息。可以采用化学计量术将未知的与经过定标的标准和数据库进行比较,提供先进的分组分析形式以及从未知样品中提取能够被用作统计和数学模型信息的特征。
“主要成分分析(PAC)”是一种在将化学计量技术应用于复杂基质中的化学被分析物分光光谱测量中能够进行的数据缩减方法。采用PAC来降低大量的相互相关变量的维数同时保持一种成分区别于另一种成分的信息。将原始的一组相互相关的变量(例如吸收光谱)进行本征矢量变换使其成为数量很少的代表了原始的一组变量中大部分信息的一组非相关主要组分(PC)变量,利用这种本征矢量变换可以实现这一缩减。新的一组变量的排序方法为使其少量的头几个变量保持了其所有原始变量中出现最多的变化。见Jolliffe L.T.等人的《主要成分分析》Sprinter-Verlag,New York(1986)。更具体说,每个PC是所有原始测量变量的一种线性组合。第一个是在观测变量的最大方差方向上的矢量。将接下来的各个PC选作代表测量数据的最大偏差并与以前计算的PC正交。因此,各个PC按照重要性的降序排列。
术语“加权因子”包括部分最小平方回归和/或主要成分回归的加权系数、或从任何统计定标获得的能够被用于计算未知样品值(如被分析物的浓度)的任何常数。“波长加权因子”是在构造能够从光谱数据中突出特定波长信息的光学滤光片装置中采用的加权常数的一个实施例。可以采用特定波长信息来确定与接受分析的样品有关的所需值(例如被分析物的浓度)。波长加权因子可以体现为特定的滤光片密度(例如中性或特定波长)、滤光片厚度等,这些参数都能利用上述统计定标技术确定。
术语“光学传递单元”包括部分吸收可见光、紫外或红外光谱区中入射辐射的任何光敏元件,其中部分吸收是对波长有选择性的。对于本发明,光学传递单元通常包括由部分最小平方或主要成分回归分析导出的吸收特性的光学滤光片装置。采用光学滤光片装置有选择性地突出与所选被分析物浓度相关性高的波长。“相关性高”或“紧密相关”是指在特定波长上的吸收与特定被分析物浓度之间的定量相关关系,这里两个变量的相关系数(r)为0.9或更高。
“正相关滤光片”是指其吸收光谱足以突出与目标被分析物相对应的特定波长而不是其它也吸收光的被分析物的波长的光学滤光片装置。因此,正相关滤光片提供与被测量样品中被分析物浓度相关性高的最佳传递函数。理想的正相关滤光片应当与目标被分析物完全相关(即相关系数r应为+1.0)而与特定样品中所有其它干扰吸收被分析物一点也不相关(r应为0.0)。这里利用化学计量技术进行正光学滤光片的合成,确定合适的波长加权因子。
“中性密度滤光片”是指具有平坦吸收光谱的标准光学滤光片装置。可以采用中性密度滤光片与滤光片系统中的相关滤光片一起提供一个加权因子来衰减被分析物在所选波长上的吸收和进一步改善系统所提供的相关性的准确度。中性密度滤光片可以具有足以等量地衰减所关注范围中所有波长的辐射的吸收光谱。
正如文中所采用的,“含水媒体”包括由水组成或者含有水的任何基质。因此,含水媒体包括水为主要成分的媒体,即含水量至少约50%,以及水为溶剂但是含量低于约50%。这里把含水媒体具体限定得使其包括哺乳动物的组织细胞。
术语“血液被分析物”是指在近红外范围中能吸收的血液组分,血液组分的测量对病人监测或保健保障中是有用的。
正如这里所采用的,术语“近红外”包括在约660nm至3500nm光谱范围,通常在约1050至2850nm,更经常地在约1100至2500nm范围的辐射。
术语“背景吸收”是指被分析的含水样品的整个或基准光学吸收,所选组分在一个或多个特征波长上的吸收要偏离这一背景吸收,达到表示所选组分浓度的程度。当背景吸收的基准高于所选组分的特征吸收,以致在复杂的含水媒体中找到大量干扰组分时,要准确地测量在所关注组分特征波长上吸收的少量变化幅度需要应用这里所述的化学计量技术。应用在所关注组分的总浓度相对地低于含水媒体时尤其如此,例如在测量血液中的被分析物情况。
一般方法
提供一种利用近红外辐射确定液体样品中被分析物浓度的分光光度法。为了获得能够被用于以更高的准确度确定被分析物浓度的一组测量结果,本发明的方法与以前的技术不同,它利用了近红外范围中所含的所有光谱信息。
该方法包括步骤:(1)选择几个不同的非重叠的近红外波长区,其中每个波长区限定一个光谱范围;(2)利用包含所选光谱范围的近红外光照射样品,获得被衰减的光谱变化了的辐射;(3)收集并测量包含在每一个所选光谱范围内的一个或多个波长上光谱上经过衰减的辐射的强度;(4)对这些测量结果进行相关,获得表示被分析物浓度的值。
利用这一方法获得的光谱信息可以结合一些数学变换,以获得更精确的被分析物浓度的值。例如,可以采用标准统计技术,如部分最小平方(PLS)分析、或主要成分回归(PCR)分析,使特定波长上的辐射吸收与被分析物的结构和浓度相关。例如,Geladi等人(1986)Analica Chimica Acta 185:1-17描述了PLS技术。对于PCR技术的描述,可以参考Jolliffe L.T.Principal ComponentAnalysis,Sprinter-Verlag,New York(1986)。
于是,在从机体组织样品确定血液中被分析物浓度中,一种方法涉及从1100至3500nm近红外范围中选择三个不相重叠的波长区,具体说,第一波长区为1100至1350nm,第二波长区为1430至1450nm或者1930至1950nm,第三波长区为2000至2500nm,这里,每个区域限定一个“光谱范围”。第一波长区包含蛋白质和其它细胞成分显示主要光谱活性的波长,第二波长区以水的吸收光谱为主,第三波长区包含被分析物有机分子显露明显的光谱活性的波长。在这些组分不为主要物质的区域中,它们对吸收光谱也产生作用。于是,从每个区域获得的光谱上经过衰减的辐射含有大量的相关信息,必须利用统计方法减少这些相关信息,获得被分析物的特定信息。
本发明还涉及采用信号处理来改善分析信号中重要物理信息的可及性。因此可以对特定波长上获得的信号的强度值进行处理,降低仪器噪声的影响。然后,利用已知的统计技术对经过处理的信号作多变量分析。
数据缩减的主要成分分析(PCA)方法是本发明中实际采用的减少大量相关变量的维数同时保留一种成分区别于另一种成分的信息的较佳方法。将原始的一组相互相关的变量(例如吸收光谱)进行本征矢量变换使其成为数量很少的代表了原始组变量中大部分信息的一组非相关主要组分(PC)变量,利用这种本征矢量变换可以进行数据缩减。新的一组变量排序为其少量的头几个变量保持了其所有原始变量中出现最多的变化。
通过相对吸收比平均值的正交旋转可以对主要成分矢量进行变换,获得一个已知波长和属于被分析物的波长上的吸收比的相对值。通过对三个光谱区中每个光谱区获得的信息进行这样的分析,经过线性算法对主要成分矢量进行交叉相关,以及利用减法去除干扰被分析物的影响,所获得的值能够被用于系统算法中,确定被分析物的浓度。
采用多变量技术来提供每个光谱区中特定波长上的辐射强度与特定样品基质(如机体组织)中被分析物浓度相关的模型。利用两组同时获得的示范测量结果构造该模型,第一组测量结果,“预计组”包括光谱数据,如所选波长上的辐射强度,第二组测量结果,“定标组”包括利用损伤性取样技术已经确定的较高准确度的被分析物浓度。在被分析物浓度的一个量程上进行这种过程,提供一组定标数据和一组预计数据。
在定标组和预计组中所获得的测量结果接受多变量分析,例如利用市场上可得到的多变量模型开发软件程序,提供初始模型。将初始模型运用到预计数据中,导出能够与损伤性技术获得值进行比较的被分析物浓度。通过逐次进行上述步骤,发展为一个精炼的模型,能够被用于建立系统算法,用于对采用本发明方法获得的数据进行分析。
采用上述的多变量技术还能够设计能增强光谱信息与被分析物浓度相关性的光敏元件,例如正相关滤光片系统。具体说,利用多变量分析获得的解能够被用于确定正相关滤光片系统的光学参数,如吸收特性。
在本发明的实施中,还采用了不同的非重叠光谱区的非被分析物的特定信息,例如对每次光谱扫描进行归一化,减去背景和基线干扰,或者提供用于检测非准确测量结果的信号值。
在确定机体组织样品中血液的被分析物浓度时,在约1320-1340nm光谱范围中获取的测量结果提供高反射、未经衰减的信号,因为光谱区中不存在主要吸收波段。通过收集和测量该范围内的辐射强度,获得的值能够被用于估测用以照射样品的近红外光的实际强度。可以用该值对各次扫描进行归一化并校正光源强度的起伏,光源强度的起伏会影响利用本发明方法获得的被分析物浓度值的准确度。
另外,在约1430-1450nm或约1930-1950nm光谱范围内获取的测量结果提供了基本非反射的经过高度衰减的信号,这是因为在水的近红外吸收光谱中在约144和1935nm处出现的两个主吸收峰的缘故。通过收集和测量此一个或两个光谱范围内的辐射强度,获得的值能够被用作估测不完全被被照样品吸收的近红外光的强度。利用该值可以从其它光谱区中获得的被分析物特定信号中减去背景或基线信息和/或为检测不准确测量结果提供内部参考。为了校正镜面反射引起的垫底效应(随皮肤质地和年龄而不同),可以从利用本发明方法获得的每个光谱测量结果中减去该值。
从第一光谱区(例如跨越约1320-1340nm的光谱范围)获得的基本未经衰减的信号的测量结果和从第二光谱区(例如约1430-1450nm或1930-1950nm)获得的经过高度衰减的信号的测量结果也可以用于将漫反射辐射与镜面反射辐射进行比较。如果两个光谱区中的信号具有相对可比的值,那么,用于照射组织样品的大部分辐射看来是被皮肤表面反射的,因此未能穿透皮肤与血液中被分析物相互作用。利用这一信息可以识别由于未能获得组织的适当仪器扫描而引起的无效测量。
利用许多分光光度计配置都能够执行本发明的方法。现在参考图1,以标号10从总体上表示确定液体样品中被分析物浓度的特定装置。该装置包括辐射源12,它提供约600至3500nm范围中的多个不同的不相重叠的波长区。本领域人员熟知许多合适的辐射源,如射向干涉滤光片的白炽灯光源、经相关调制盘调制的卤素光源、激光光源、激光二极管阵列、或高速发光二极管(LED)阵列。在一个特定装置中,辐射源12提供三个不同波长区的辐射,具体说,近红外的第一波长区,通常约为1100至1350nm的范围;第二波长区,通常约为1930至1950nm的范围;和第三波长区,通常约为2000至3500nm的范围。
装置10还包括样品接口光学装置14,它将来自辐射源的入射辐射射入含有被分析物的样品媒体16,在与样品媒体接触后,收集从样品媒体上以漫反射光出射的光谱发生变化的辐射并将其送至第一透镜系统18,由此将光射向第一和第二光路,分别以20和22表示。第一透镜系统18可以包括本领域人员熟知的部分反射的反射镜配置。
在不同的配置中,可以将样品接口光学装置14设计成能够使装置10与媒体16紧密相接,例如通过将装置置于样品媒体上与之直接接触,由此将辐射源置于紧靠被分析样品的地方而进行光束发射。光束发射后,利用光敏装置,如光束会聚装置或光束偏转光学元件收集反射辐射。另一方面,样品接口光学装置14可以包括与装置耦合的光纤波导,从而能够将装置置于远处和操作。也提供一些其它配置,其中采用单束光纤将辐射送至媒体和从媒体接收辐射。设置在单束光纤一端的光极将近红外辐射发射到样品媒体16中并接收通过单束光纤返回到装置10的光谱上发生变化的辐射。可以采用蓝宝石或高等级的石英作上述光纤波导中的光学元件,因为这些材料在近红外光谱范围中具有很好的透射特性。
第一光路20中的反射光与第一滤光片装置22相接,该装置构造成让与被分析物浓度无关的特定波长的光通过。在一种构造中,第一滤光片装置可以包括具有一定近红外吸收特性的窄带带通滤光片,让含有与被分析物浓度基本不相关的波长的辐射有选择地通过。然后使从第一滤光片22出射的辐射与第一检测装置24相接。辐射与第一检测装置的相接可以经聚焦装置26,例如准直透镜等进行。另一方面,装置10可以包括能够直接接收来自第一滤光片装置辐射的辐射检测器。
第一检测装置对通过的辐射进行检测并将其转变为代表与被分析物无关的辐射强度的信号。在一种特定装置中,第一检测装置24包括硫化铅光电检测器,它能够以1nm的间隔对约1100至至少3500nm的波长范围进行扫描。
利用模拟-数字转换器能够方便地将从第一检测装置获得的信号转变为数字信号,例如代表与被分析物无关波长的辐射强度的数字信号。可以方便地把数字化的信息输入到本领域专业人员熟知的微处理器或其它电子存储器装置中。
仍然参考图1,第二光路22中的反射光被送至可调滤光片装置28,该装置能够根据外部产生或者装置10已经产生的信号调节其吸收特性。可调滤光片装置通常包括筛选滤光片,如中性密度滤光片,可以调节其吸收特性,改变对外部信号或系统命令所表示辐射强度的衰减。可调滤光片28所提供的衰减度与所选的预定因素有关,以保证从可调滤光片出射的辐射将维持恒定值,而不管滤光前的辐射的强度如何。在一种特定装置中,可调滤光片装置提供的衰减是由第一检测装置24产生的反馈信号调节的。
从可调滤光片装置28出来的经过衰减的辐射与主被分析物滤光片30相接,后者的光学特性能够有选择地让辐射源12发射的各个不相重叠的波长区中一个或多个波长通过。将通过主被分析物滤光片的波长选择为与被分析物的浓度有关。
在装置10中配备一个第二滤光片装置32,它与主被分析物滤光片30有关,使得有选择地通过主被分析物滤光片的波长与第二滤光片装置相互作用,由第二滤光片装置独立地对每个通过波长的强度进行衰减。例如,利用化学计量技术导出的一组独立的加权因子能够确定第二滤光片装置所提供的衰减。
在一种特定结构中,利用从含有被分析物的样品获得的原始光谱的部分最小平方或主要成分回归确定加权因子。利用能够透射至少600至3500nm范围辐射的合适基底层能够构造第二滤光片装置32。基底层上通常镀有一层或多层本领域中常用的金属和/或氧化物,提供多种衰减滤光片密度。利用感光乳剂或本领域专业人员熟知的化学汽相淀积(CVD)技术可以将这种涂层加在基底上。在另一种装置中,第二滤光片装置为照相掩膜,该掩膜上具有光学密度的光谱线后者正比于用旋转主要成分或最小平方分析技术确定的加权因子。
经过第二滤光片装置衰减后,各个波长与第二检测装置34,如PbS检测器等相接。如上所述,从第二滤光片装置出射的波长经聚焦装置36,如准直透镜等能够与第二检测装置相接。另一方面,装置10可以包括一个直接接收第二滤光片装置辐射的辐射检测器。
第二检测装置对从第二滤光片装置出射的经过衰减的波长进行检测并将其转变为能够应用被分析物特定算法确定被分析物浓度的信号。具体说,利用模拟-数字转换器将从第二检测装置获得的信号转变为数字信号。将数字化信息提供给微处理器,这里利用该数字化信息提供能够在显示装置上看到的和/或记录在输出记录器上的被分析物浓度。
利用装置10能够获得各种复杂媒体,如具有复杂光谱背景的含水媒体中的被分析物浓度的测量结果。在一种应用中,可以采用该装置确定血液中被分析物的浓度,尤其是血液中的有机被分析物,如葡萄糖、尿素(BUN)、类脂物、胆红素和乙醇,但不限于这些。血液中的被分析物可能存在于体外的样品媒体(例如血样)或者可以采用装置测量组织中的血液被分析物。然而,装置10特别适合用于野外场合(例如测量血液中乙醇)或者家庭健康监测(例如确定血液中葡萄糖含量)。
现在参考图2,标号60总体表示测量复杂含水媒体中被分析物浓度的另一种装置。该装置包括辐射源62,它提供约600至3500nm范围中的多个不同非重叠波长区。来自光源62的辐射射入光敏装置64,如准直透镜、有选择的滤光片装置等,它接收辐射并将辐射射入一条光路和/或让所选波长通过。
从装置64出射的近红外辐射与分束器66相接,由此将辐射分为两束光束,分别以68和70表示。来自分束器66的第一光束68射入含有未知浓度的被分析物的样品媒体72中。在图2中,样品媒体72包括由能够透射所关注近红外范围辐射的合适基底形成的样品室。在一种情况中,样品可以包括血清样品,其中需要确定血液中被分析物的浓度。另一方面,可以利用直接接口装置或简接接口装置(如上述光纤波导装置)将第一光束68射入诸如组织表面的样品表面。采用这一方式,利用辐射与组织样品相互作用后的反射近红外吸收光谱的测量结果可以无损伤地确定组织样品存在的血液样品中被分析物的浓度。
然后,收集辐射,包括已经与样品组分(如所关注的被分析物)相互作用的光谱上发生变化的辐射,并将其射入设置在光路中的光学传递元件74。光学传递元件74包括吸收光谱足以接受辐射并有选择地突出与所关注被分析物浓度相关性高而与样品中存在的干扰组分基本不相关的一个或多个波长的正相关滤光片系统。因此,正相关滤光片系统让大部分所选波长范围通过,它们提供被分析物特定信息以及有关测量背景的信息和能够用于校正仪器变化或干扰效应的信息。由检测装置76接收从光学传递元件74出射的辐射,将光谱上发生变化的辐射转变为代表该辐射强度的信号。检测装置可以包括诸如PbS光电检测器等的宽光谱光电检测器。
仍然参考图2,从分束器66出来的第二光束70被射入设置在该光路中的光敏元件78上。在一种结构中,光敏元件78包括吸收特性足以在所选近红外波长范围上等量地衰减辐射的中性密度滤光片装置。在另一种结构中,光敏元件78为光学传递元件,它包括吸收光谱与光学传递元件74的吸收光谱一样的正相关滤光片系统。从光敏元件78出射的辐射被检测装置80接收并将该辐射转变为代表其强度的信号。
正相关滤光片系统可以由带有光敏涂层的单个基底层形成,其吸收特性能够有选择地突出与特定被分析物浓度相关性高的一个或多个波长。在特定的系统结构中,正相关滤光片包括多个滤光片层,每一层有一个所选滤光片密度和/或适合于提供所需吸收特性的滤光片厚度。在一种情况中,系统中至少有一层具有包含波长加权因子的滤光片密度和/或厚度,这里,加权因子增大所通过波长与所选样品媒体中被分析物浓度的正相关性。
然后,检测装置76和80产生的信号接至装置82,将这些信号转变为数字信号,表示从光源62出射的辐射与从样品出射的光谱上发生变化的相应辐射的强度之比。以这种方式能够校正从光源62出射的辐射强度的变化,从而消除系统中获得的测量结果的潜在误差源。此外,可以将信号之比转变为数字形式并判读,利用本领域专业人员熟知的方法由内部的微处理器84系统或有关系统确定被分析物的浓度。
如果需要的话,可以给微处理器编制程序,通过将化学计量算法运用到比值信号上,可计算被分析物的浓度。利用上述的化学计量学技术,如对所关注的被分析物的原始吸收光谱的最小平方分析或旋转主要成分分析,可以确定合适的算法。
应当明白,虽然结合具体的较佳实施例对本发明作了描述,但是,以上的描述以及下面给出的例子只是为了进行说明而非限制本发明的范围。对于本领域的专业人员而言,在本发明范围内的其它方面、优点和改进是显而易见的。
                               例子
利用本发明的方法能够获得无损伤性葡萄糖测量结果。具体说,在约1100nm至3500nm近红外光谱区中进行反射式光学测量。利用钨-汞(W-Hg)辐射源、硫化铅(PbS)检测器和扫描率为nm/0.4秒的仪器,从自愿者前臂收集光谱扫描。
已知有一些特定的光谱范围能够用于从前臂组织扫描中找出含有葡萄糖浓度的信息。将体内葡萄糖耐量研究与无损伤性获得的体内血液中葡萄糖浓度确定相结合,以确定特定的光谱区。具体说,图3示出在体内耐量研究期间获得的与次数有关的扫描(1-6)。正如图中所能看到的,在研究的次数过程期间记录了约2120至2180nm范围上反射强度差明显变化。这种变化的增大与耐量试验期间血液中葡萄糖含量的增大直接有关,这表明2120至2180nm的范围含有葡萄糖的特定光谱信息。
一旦找出特定的光谱范围,利用四个不同光谱范围的信息可获得无损伤性葡萄糖测量结果。第一光谱范围包含在约1320至1340nm处产生的辐射。这个范围提供很强的反射信号,在这一范围中没有葡萄糖的主吸收波段。可以利用第一光谱范围上获得的信息对各次扫描进行归一化,以便校正辐射源的起伏以及由于机械扰动造成的变化。
第二光谱范围包含在约1440至1460nm或约1940至1960nm中任一范围上产生的辐射。由于是衰减漫反射辐射的水的强吸收波段,这些范围提供基本没有反射的信号。利用这些范围上获得的信息能够作为从其它测量中减去的背景和基准线。这些测量结果允许对镜面反射信号值引起的起伏作垫底调节,能够用作检测不适当的测量结果。
第三光谱范围包含在约1670至1690nm处产生的辐射。这个范围提供由于存在葡萄糖振动谐波波段引起的被分析物的特定信息。
第四光谱范围包含在约2120至2280nm处产生的辐射。这个范围提供由于葡萄糖组合振动波段引起的被分析物的特定信息。
利用第一范围获得的信号对其它光谱区的信号进行归一化。当对每次光谱扫描重复进行时,这一过程可消除与光源变化有关的问题并起提供内部参考的作用。于是极大地减小了由光学接口偏差(例如病人移动)引起的测量偏差。
从第三和第四被分析物特定范围中获得的信号中减去第二范围中获得的信号,可以消除背景信息。用这种方式,校正镜面反射产生的垫底效应,这种效应会随皮肤质地和年龄而变化。
在被分析的化学计量分析中可以应用第三和第四范围信号校正的归一化和基准线。图4示出第二与第三范围中信号之间的归一化之差。
正如从图4中所示结果中能够看到的,血液中葡萄糖含量的增大导致两个范围中信号差的增大。

Claims (21)

1.一种确定样品中被分析物浓度的装置,其特征在于它包括:
(a)将包含1100-3500nm光谱中多个不同不相重叠波长光谱区的入射辐射照射在样品上的装置;
(b)收集来自样品的反射辐射并将所述反射辐射射入第一和第二光路的装置,这里,所述第一光路包括来自第一波长光谱区1100-1350nm的辐射;
(c)设置在所述第一光路中的第一滤光片装置,这里,所述的第一滤光片装置能够让与被分析物浓度基本不相关的辐射有选择地通过;
(d)接收有选择地通过所述第一滤光片装置的辐射并将所述有选择地通过所述第一滤光片装置的辐射转换为代表所述辐射强度的信号的第一检测装置;
(e)设置在所述第二光路中的可调滤光片装置,这里,所述的可调滤光片装置使所述第二光路中辐射强度衰减;
(f)能够接收经所述可调滤光片装置衰减的辐射并从中让一个或多个单独波长有选择地通过的主要被分析物滤光片装置,这里,所述的一个或多个单独波长与所述被分析物浓度具有特定相关性;
(g)能够接收从所述主要被分析物滤光片装置出射的一个或多个单独波长并使每个单独波长的强度衰减的第二滤光片装置;
(h)接收经所述第二滤光片装置衰减的单独波长并将被检测波长转换为代表所述波长强度的信号的第二检测装置。
2.如权利要求1所述的装置,其特征在于:所述的第一滤光片装置包括窄带带通滤光片。
3.如权利要求2所述的装置,其特征在于:所述的可调滤光片装置包括与滤光片系统中相关滤光片协同使用的中性密度滤光片。
4.如权利要求3所述的装置,其特征在于:采用从所述第一检测装置获得的信号调整由所述可调滤光片装置提供的衰减。
5.如权利要求1所述的装置,其特征在于:所述的第二滤光片装置包括与滤光片系统中相关滤光片协同使用的中性密度滤光片。
6.如权利要求5所述的装置,其特征在于:利用加权因子建立由所述第二滤光片装置提供的所述衰减。
7.一种确定样品中被分析物浓度的装置,其特征在于它包括:
(a)能够发射包含1100-3500nm光谱中多个不同不相重叠光谱区辐射的辐射源;
(b)将(a)部分辐射源发射的辐射分束为第一和第二射束光路的装置;
(c)用第一光路中的辐射照射所述样品,由此提供反射辐射的装置;
(d)收集所述样品的反射辐射并将所述反射辐射射入反射光路的装置;
(e)设置在所述反射光路中的第一光学传递单元,所述单元包括吸收特性适于吸入所述反射辐射并从所述反射辐射中突出一个或多个波长的第一正相关滤光片装置,这里,所述一个或多个波长与所述样品中被分析物浓度的相关性高;
(f)接收被所述第一光学传递单元突出的一个或多个波长并将所述一个或多个波长转变为代表所述被突出波长强度的信号的装置;
(g)设置在所述第二光路中的第二光学传递单元,所述第二单元包括吸收特性足以等量地衰减所选1100-3500nm波长区上第二光路中辐射强度的中性密度滤光片装置;
(h)接收经所述第二光学传递单元衰减辐射并将所述辐射转变为代表其强度的信号的装置;
(i)利用装置(f)和(h)产生的信号计算所述样品中被分析物浓度的装置。
8.如权利要求7所述的装置,其特征在于:所述第二光学传递单元包括吸收特性与第一正相关滤光片装置吸收特性相同的第二正相关滤光片装置。
9.如权利要求7所述的装置,其特征在于:所述的计算样品中被分析物浓度的装置将装置(f)和(h)产生的信号转换为数字信号,表示来自光源的辐射强度与来自样品的相应辐射强度之比。
10.如权利要求7所述的装置,其特征在于:所述的计算样品中被分析物浓度的装置包括把化学计量算法运用到装置(f)和(h)产生的信号上的装置。
11.如权利要求7所述的装置,其特征在于:所述第一正相关滤光片装置包括多层膜,每一层膜具有使所述滤光片装置突出与被分析物浓度相关性高的数个波长的选择吸收特性。
12.一种确定样品中被分析物浓度的装置,其特征在于它包括:
(a)能够发射包含1100-3500nm光谱区中多个不同不相重叠波长光谱区辐射的辐射源;
(b)将所述辐射源发射的辐射分束为第一和第二射束光路的装置;
(c)用第一光束光路中的辐射照射样品,由此提供反射辐射的装置;
(d)收集来自样品的反射辐射并将所述反射辐射射入反射光光路的装置;
(e)设置在所述反射光光路中的第一光学传递单元,所述第一元件包括吸收特性适于吸入反射辐射并从所述反射辐射中突出一个或多个波长的第一正相关滤光片装置,这里,所述的一个或多个波长于样品中被分析物的浓度的相关性高;
(f)接收被第一光学传递单元突出的一个或多个波长并将其转换为代表所述被突出波长强度的信号的装置;
(g)设置在第二光束光路中的第二光学传递单元,所述第二单元包括吸收特性与第一正相关滤光片装置吸收特性相同的第二正相关滤光片装置;
(h)接收经第二光学传递单元衰减的辐射并将其转换为代表其强度的信号的装置;
(i)利用装置(f)和(h)部分产生的信号计算样品中被分析物浓度的装置。
13.如权利要求12所述的装置,其特征在于:所述第一正相关滤光片装置包括多层膜,每一层膜具有使所述滤光片装置突出与被分析物浓度相关性高的数个波长的选择吸收特性。
14.如权利要求13所述的装置,其特征在于:利用加权因子建立第一和第二正相关滤光片装置中至少一层膜的吸收特性。
15.如权利要求6或14所述的装置,其特征在于:所述加权因子是利用化学计量技术导出的。
16.如权利要求15所述的装置,其特征在于:所述加权因子是利用被分析物的吸收光谱的旋转主要成分分析导出的。
17.如权利要求1所述的装置,其特征在于:所述入射辐射的波长约在1100至3500nm范围。
18.如权利要求7或12所述的装置,其特征在于:所述辐射源发射辐射的波长约在1100至3500nm范围。
19.如权利要求1、7或12所述的装置,其特征在于:所述样品包括机体组织,所述被分析物包括有机血液被分析物。
20.如权利要求19所述的装置,其特征在于:所述血液被分析物选自葡萄糖、尿素(BUN)、类脂物、胆红素和乙醇。
21.如权利要求20所述的装置,其特征在于:所述血液被分析物是葡萄糖。
CN97193402A 1996-02-02 1997-01-31 无损伤性近红外光谱仪的多光谱分析方法和装置 Expired - Fee Related CN1101934C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/596,409 US5747806A (en) 1996-02-02 1996-02-02 Method and apparatus for multi-spectral analysis in noninvasive nir spectroscopy
US08/596,409 1996-02-02

Publications (2)

Publication Number Publication Date
CN1214769A CN1214769A (zh) 1999-04-21
CN1101934C true CN1101934C (zh) 2003-02-19

Family

ID=24387178

Family Applications (1)

Application Number Title Priority Date Filing Date
CN97193402A Expired - Fee Related CN1101934C (zh) 1996-02-02 1997-01-31 无损伤性近红外光谱仪的多光谱分析方法和装置

Country Status (16)

Country Link
US (2) US5747806A (zh)
EP (1) EP0877926B1 (zh)
JP (2) JPH11506207A (zh)
KR (1) KR19990082236A (zh)
CN (1) CN1101934C (zh)
AT (1) ATE239910T1 (zh)
BR (1) BR9707246A (zh)
CA (1) CA2244111C (zh)
CZ (1) CZ239298A3 (zh)
DE (1) DE69721732T2 (zh)
DK (1) DK0877926T3 (zh)
HK (1) HK1019635A1 (zh)
NZ (1) NZ331158A (zh)
PL (1) PL184609B1 (zh)
TW (1) TW426802B (zh)
WO (1) WO1997028438A1 (zh)

Families Citing this family (380)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6240306B1 (en) 1995-08-09 2001-05-29 Rio Grande Medical Technologies, Inc. Method and apparatus for non-invasive blood analyte measurement with fluid compartment equilibration
DE19601923C1 (de) * 1996-01-12 1997-07-24 Inst Chemo Biosensorik Verfahren und Vorrichtung zum Erkennen organischer Substanzen
US5747806A (en) * 1996-02-02 1998-05-05 Instrumentation Metrics, Inc Method and apparatus for multi-spectral analysis in noninvasive nir spectroscopy
US6040578A (en) * 1996-02-02 2000-03-21 Instrumentation Metrics, Inc. Method and apparatus for multi-spectral analysis of organic blood analytes in noninvasive infrared spectroscopy
US6544193B2 (en) * 1996-09-04 2003-04-08 Marcio Marc Abreu Noninvasive measurement of chemical substances
US7890158B2 (en) * 2001-06-05 2011-02-15 Lumidigm, Inc. Apparatus and method of biometric determination using specialized optical spectroscopy systems
US6115673A (en) * 1997-08-14 2000-09-05 Instrumentation Metrics, Inc. Method and apparatus for generating basis sets for use in spectroscopic analysis
US7383069B2 (en) * 1997-08-14 2008-06-03 Sensys Medical, Inc. Method of sample control and calibration adjustment for use with a noninvasive analyzer
US6070093A (en) * 1997-12-02 2000-05-30 Abbott Laboratories Multiplex sensor and method of use
US6097975A (en) * 1998-05-13 2000-08-01 Biosensor, Inc. Apparatus and method for noninvasive glucose measurement
PT1053043E (pt) 1998-05-13 2002-11-29 Cygnus Therapeutic Systems Montagens de recolha para sistemas de amostragem transdermica
US6587702B1 (en) 1999-01-22 2003-07-01 Instrumentation Metrics, Inc Classification and characterization of tissue through features related to adipose tissue
US6501982B1 (en) * 1999-01-22 2002-12-31 Sensys Medical, Inc. System for the noninvasive estimation of relative age
AT406711B (de) * 1999-02-25 2000-08-25 Joanneum Research Forschungsge Verfahren zur spektroskopischen bestimmung der konzentration von alkoholen mit 1 bis 5 kohlenstoffatomen
US7123844B2 (en) * 1999-04-06 2006-10-17 Myrick Michael L Optical computational system
US6529276B1 (en) 1999-04-06 2003-03-04 University Of South Carolina Optical computational system
US6247648B1 (en) * 1999-04-29 2001-06-19 Symbol Technologies, Inc. Bar code scanner utilizing multiple light beams output by a light beam splitter
US6475800B1 (en) * 1999-07-22 2002-11-05 Instrumentation Metrics, Inc. Intra-serum and intra-gel for modeling human skin tissue
JP2003508745A (ja) * 1999-08-31 2003-03-04 シーエムイー テレメトリクス インコーポレーテッド 近赤外、隣接可視スペクトルおよびより長い近赤外波長のアレイを使用する被分析対象の判定方法
EP1214577A1 (en) * 1999-08-31 2002-06-19 CME Telemetrix Inc. Method for determination of analytes using nir, adjacent visible spectrum and discrete nir wavelengths
US6919566B1 (en) * 1999-08-31 2005-07-19 Nir Diagnostics Inc. Method of calibrating a spectroscopic device
US6816605B2 (en) 1999-10-08 2004-11-09 Lumidigm, Inc. Methods and systems for biometric identification of individuals using linear optical spectroscopy
US7519406B2 (en) * 2004-04-28 2009-04-14 Sensys Medical, Inc. Noninvasive analyzer sample probe interface method and apparatus
US7606608B2 (en) * 2000-05-02 2009-10-20 Sensys Medical, Inc. Optical sampling interface system for in-vivo measurement of tissue
US20060211931A1 (en) * 2000-05-02 2006-09-21 Blank Thomas B Noninvasive analyzer sample probe interface method and apparatus
US7006858B2 (en) * 2000-05-15 2006-02-28 Silver James H Implantable, retrievable sensors and immunosensors
US8133698B2 (en) 2000-05-15 2012-03-13 Silver James H Sensors for detecting substances indicative of stroke, ischemia, infection or inflammation
US7181261B2 (en) 2000-05-15 2007-02-20 Silver James H Implantable, retrievable, thrombus minimizing sensors
US6442413B1 (en) 2000-05-15 2002-08-27 James H. Silver Implantable sensor
US7769420B2 (en) * 2000-05-15 2010-08-03 Silver James H Sensors for detecting substances indicative of stroke, ischemia, or myocardial infarction
US7079252B1 (en) 2000-06-01 2006-07-18 Lifescan, Inc. Dual beam FTIR methods and devices for use in analyte detection in samples of low transmissivity
EP1299709A1 (en) * 2000-06-02 2003-04-09 Hema Metrics, Inc. System and method for measuring blood urea nitrogen, blood osmolarity, plasma free haemoglobin and tissue water content
US6525319B2 (en) 2000-12-15 2003-02-25 Midwest Research Institute Use of a region of the visible and near infrared spectrum to predict mechanical properties of wet wood and standing trees
US6549861B1 (en) 2000-08-10 2003-04-15 Euro-Celtique, S.A. Automated system and method for spectroscopic analysis
DE60133653T2 (de) * 2000-08-18 2009-06-04 Animas Technologies Llc Vorrichtung zum vorhersagen von hypoglyecemiefällen
WO2002017210A2 (en) 2000-08-18 2002-02-28 Cygnus, Inc. Formulation and manipulation of databases of analyte and associated values
AU2001288292A1 (en) 2000-08-21 2002-03-04 Euroceltique S.A. Near infrared blood glucose monitoring system
WO2002018936A2 (en) * 2000-08-28 2002-03-07 Cygnus, Inc. Methods of monitoring glucose levels in a subject and uses thereof
US7138156B1 (en) 2000-09-26 2006-11-21 Myrick Michael L Filter design algorithm for multi-variate optical computing
JP4054853B2 (ja) * 2000-10-17 2008-03-05 独立行政法人農業・食品産業技術総合研究機構 近赤外分光法を用いた血液分析法
US6534768B1 (en) 2000-10-30 2003-03-18 Euro-Oeltique, S.A. Hemispherical detector
US6593572B2 (en) 2000-12-13 2003-07-15 Midwest Research Institute Method of predicting mechanical properties of decayed wood
US6406916B1 (en) 2001-01-22 2002-06-18 General Electric Company Method and apparatus for rapid quantitation of a dihydric phenol
US6574490B2 (en) 2001-04-11 2003-06-03 Rio Grande Medical Technologies, Inc. System for non-invasive measurement of glucose in humans
US7126682B2 (en) * 2001-04-11 2006-10-24 Rio Grande Medical Technologies, Inc. Encoded variable filter spectrometer
US8581697B2 (en) * 2001-04-11 2013-11-12 Trutouch Technologies Inc. Apparatuses for noninvasive determination of in vivo alcohol concentration using raman spectroscopy
US6983176B2 (en) 2001-04-11 2006-01-03 Rio Grande Medical Technologies, Inc. Optically similar reference samples and related methods for multivariate calibration models used in optical spectroscopy
US8174394B2 (en) * 2001-04-11 2012-05-08 Trutouch Technologies, Inc. System for noninvasive determination of analytes in tissue
US6862091B2 (en) 2001-04-11 2005-03-01 Inlight Solutions, Inc. Illumination device and method for spectroscopic analysis
US6865408B1 (en) 2001-04-11 2005-03-08 Inlight Solutions, Inc. System for non-invasive measurement of glucose in humans
US7043288B2 (en) 2002-04-04 2006-05-09 Inlight Solutions, Inc. Apparatus and method for spectroscopic analysis of tissue to detect diabetes in an individual
US6697658B2 (en) 2001-07-02 2004-02-24 Masimo Corporation Low power pulse oximeter
US6731961B2 (en) 2001-11-09 2004-05-04 Optiscan Biomedical Corp. Method for transforming phase spectra to absorption spectra
WO2003045235A1 (en) * 2001-11-21 2003-06-05 Optiscan Biomedical Corporation Method for adjusting a blood analyte measurement
US6862534B2 (en) * 2001-12-14 2005-03-01 Optiscan Biomedical Corporation Method of determining an analyte concentration in a sample from an absorption spectrum
US7355512B1 (en) 2002-01-24 2008-04-08 Masimo Corporation Parallel alarm processor
US8504128B2 (en) * 2002-03-08 2013-08-06 Glt Acquisition Corp. Method and apparatus for coupling a channeled sample probe to tissue
US7440786B2 (en) * 2002-03-08 2008-10-21 Sensys Medical, Inc. Method and apparatus for presentation of noninvasive glucose concentration information
US20070149868A1 (en) * 2002-03-08 2007-06-28 Blank Thomas B Method and Apparatus for Photostimulation Enhanced Analyte Property Estimation
JP4189322B2 (ja) * 2002-03-08 2008-12-03 センシス メディカル インク 近赤外線分光によるブドウ糖の非侵襲的測定のためのコンパクトな装置
US7697966B2 (en) * 2002-03-08 2010-04-13 Sensys Medical, Inc. Noninvasive targeting system method and apparatus
US8718738B2 (en) * 2002-03-08 2014-05-06 Glt Acquisition Corp. Method and apparatus for coupling a sample probe with a sample site
US20050187439A1 (en) * 2003-03-07 2005-08-25 Blank Thomas B. Sampling interface system for in-vivo estimation of tissue analyte concentration
US20050054908A1 (en) * 2003-03-07 2005-03-10 Blank Thomas B. Photostimulation method and apparatus in combination with glucose determination
ATE507766T1 (de) 2002-03-22 2011-05-15 Animas Technologies Llc Leistungsverbesserung einer analytenüberwachungsvorrichtung
JPWO2003079900A1 (ja) * 2002-03-25 2005-07-21 山越 憲一 非観血血液成分値測定装置及び方法
US6850788B2 (en) 2002-03-25 2005-02-01 Masimo Corporation Physiological measurement communications adapter
US7027848B2 (en) 2002-04-04 2006-04-11 Inlight Solutions, Inc. Apparatus and method for non-invasive spectroscopic measurement of analytes in tissue using a matched reference analyte
US6654125B2 (en) 2002-04-04 2003-11-25 Inlight Solutions, Inc Method and apparatus for optical spectroscopy incorporating a vertical cavity surface emitting laser (VCSEL) as an interferometer reference
EP1551299A4 (en) * 2002-08-05 2010-01-20 Infraredx Inc SPECTROSCOPIC NEAR-INFRARED ANALYSIS OF BLOOD VESSELS
US7486985B2 (en) * 2002-08-05 2009-02-03 Infraredx, Inc. Near-infrared spectroscopic analysis of blood vessel walls
US7259906B1 (en) 2002-09-03 2007-08-21 Cheetah Omni, Llc System and method for voice control of medical devices
US7174198B2 (en) * 2002-12-27 2007-02-06 Igor Trofimov Non-invasive detection of analytes in a complex matrix
US6920345B2 (en) 2003-01-24 2005-07-19 Masimo Corporation Optical sensor including disposable and reusable elements
WO2004069164A2 (en) * 2003-01-30 2004-08-19 Euro Celtique Sa Wireless blood glucose monitoring system
US7154592B2 (en) * 2003-02-11 2006-12-26 Bayer Healthcare Llc. Multiwavelength readhead for use in the determination of analytes in body fluids
US7627151B2 (en) * 2003-04-04 2009-12-01 Lumidigm, Inc. Systems and methods for improved biometric feature definition
US7539330B2 (en) * 2004-06-01 2009-05-26 Lumidigm, Inc. Multispectral liveness determination
US7668350B2 (en) * 2003-04-04 2010-02-23 Lumidigm, Inc. Comparative texture analysis of tissue for biometric spoof detection
AU2004227886A1 (en) * 2003-04-04 2004-10-21 Lumidigm, Inc. Multispectral biometric sensor
US7460696B2 (en) 2004-06-01 2008-12-02 Lumidigm, Inc. Multispectral imaging biometrics
US7347365B2 (en) * 2003-04-04 2008-03-25 Lumidigm, Inc. Combined total-internal-reflectance and tissue imaging systems and methods
US7751594B2 (en) * 2003-04-04 2010-07-06 Lumidigm, Inc. White-light spectral biometric sensors
US7283242B2 (en) * 2003-04-11 2007-10-16 Thornton Robert L Optical spectroscopy apparatus and method for measurement of analyte concentrations or other such species in a specimen employing a semiconductor laser-pumped, small-cavity fiber laser
US7633621B2 (en) * 2003-04-11 2009-12-15 Thornton Robert L Method for measurement of analyte concentrations and semiconductor laser-pumped, small-cavity fiber lasers for such measurements and other applications
US20060097173A1 (en) * 2003-10-15 2006-05-11 Sanofi-Aventis Deutschland Method and device for the quantitative analysis of solutions and dispersions by means of near infrared spectroscopy
US20050092941A1 (en) * 2003-06-06 2005-05-05 Aventis Pharma Deutschland Gmbh Method and device for the quantitative analysis of solutions and dispersions by means of near infrared spectroscopy
US7500950B2 (en) 2003-07-25 2009-03-10 Masimo Corporation Multipurpose sensor port
DE202004021824U1 (de) 2003-08-15 2011-04-28 Animas Technologies Llc Mikroprozessoren und Vorrichtungen zur Überwachung von physiologischen Analyten
US20070234300A1 (en) * 2003-09-18 2007-10-04 Leake David W Method and Apparatus for Performing State-Table Driven Regression Testing
US20050073690A1 (en) * 2003-10-03 2005-04-07 Abbink Russell E. Optical spectroscopy incorporating a vertical cavity surface emitting laser (VCSEL)
WO2005047834A1 (en) * 2003-10-15 2005-05-26 Polychromix Corporation Light processor providing wavelength control and method for same
US7483729B2 (en) 2003-11-05 2009-01-27 Masimo Corporation Pulse oximeter access apparatus and method
EP1699422A4 (en) * 2003-12-31 2009-04-29 Univ South Carolina THIN-FILED POROUS OPTICAL SENSORS FOR GASES AND OTHER LIQUIDS
GB2410800B (en) 2004-02-06 2007-12-12 Statoil Asa Fingerprinting of hydrocarbon containing mixtures
US7415297B2 (en) 2004-03-08 2008-08-19 Masimo Corporation Physiological parameter system
US20080033275A1 (en) * 2004-04-28 2008-02-07 Blank Thomas B Method and Apparatus for Sample Probe Movement Control
US8868147B2 (en) * 2004-04-28 2014-10-21 Glt Acquisition Corp. Method and apparatus for controlling positioning of a noninvasive analyzer sample probe
US20080319286A1 (en) * 2004-05-24 2008-12-25 Trent Ridder Optical Probes for Non-Invasive Analyte Measurements
US20110178420A1 (en) * 2010-01-18 2011-07-21 Trent Ridder Methods and apparatuses for improving breath alcohol testing
US8730047B2 (en) 2004-05-24 2014-05-20 Trutouch Technologies, Inc. System for noninvasive determination of analytes in tissue
US8515506B2 (en) * 2004-05-24 2013-08-20 Trutouch Technologies, Inc. Methods for noninvasive determination of in vivo alcohol concentration using Raman spectroscopy
US7508965B2 (en) * 2004-06-01 2009-03-24 Lumidigm, Inc. System and method for robust fingerprint acquisition
US8229185B2 (en) 2004-06-01 2012-07-24 Lumidigm, Inc. Hygienic biometric sensors
TWI387746B (zh) 2004-07-02 2013-03-01 Bayer Healthcare Llc 用以決定一於一流體樣品中之分析物的光導測試感測器及其製造方法
WO2006020292A2 (en) * 2004-07-20 2006-02-23 Prescient Medical, Inc. Systems and methods for medical interventional optical monitoring with molecular filters
US8787630B2 (en) 2004-08-11 2014-07-22 Lumidigm, Inc. Multispectral barcode imaging
US7310153B2 (en) 2004-08-23 2007-12-18 Palo Alto Research Center, Incorporated Using position-sensitive detectors for wavelength determination
US7522786B2 (en) * 2005-12-22 2009-04-21 Palo Alto Research Center Incorporated Transmitting light with photon energy information
US20070201136A1 (en) * 2004-09-13 2007-08-30 University Of South Carolina Thin Film Interference Filter and Bootstrap Method for Interference Filter Thin Film Deposition Process Control
US8140140B2 (en) * 2005-02-14 2012-03-20 Optiscan Biomedical Corporation Analyte detection system for multiple analytes
DE102005007755B4 (de) * 2005-02-18 2007-10-18 Betriebsforschungsinstitut VDEh - Institut für angewandte Forschung GmbH Verfahren zur Analyse der Zusammensetzung einer flüssigen Metallschmelze
WO2006094171A1 (en) 2005-03-01 2006-09-08 Masimo Laboratories, Inc. Multiple wavelength sensor drivers
US20060206018A1 (en) * 2005-03-04 2006-09-14 Alan Abul-Haj Method and apparatus for noninvasive targeting
EP1874178A4 (en) 2005-04-13 2009-12-09 Glucolight Corp METHOD OF DECREASING AND CALIBRATION OF DATA OF A CROSS-REFERENCE OF A BLOOD GLUCOMETER BASED ON OPTICAL COHERENCE TOMOGRAPHY AND RELATED APPLICATIONS
US7801338B2 (en) 2005-04-27 2010-09-21 Lumidigm, Inc. Multispectral biometric sensors
US7409239B2 (en) * 2005-05-05 2008-08-05 The Hong Kong Polytechnic University Method for predicting the blood glucose level of a person
EP1897486A1 (en) * 2006-09-11 2008-03-12 FOSS Analytical AB Optical blood analyte monitor
US20060281982A1 (en) * 2005-06-14 2006-12-14 Diasense, Inc. Method and apparatus for the non-invasive sensing of glucose in a human subject
US8140139B2 (en) 2005-06-14 2012-03-20 Dominion Assets, Llc Method and apparatus for the non-invasive sensing of glucose in a human subject
US7962188B2 (en) 2005-10-14 2011-06-14 Masimo Corporation Robust alarm system
US7519253B2 (en) 2005-11-18 2009-04-14 Omni Sciences, Inc. Broadband or mid-infrared fiber light sources
US20070166245A1 (en) * 2005-11-28 2007-07-19 Leonard Mackles Propellant free foamable toothpaste composition
US8345234B2 (en) * 2005-11-28 2013-01-01 Halliburton Energy Services, Inc. Self calibration methods for optical analysis system
EP1955046A1 (en) * 2005-11-28 2008-08-13 University of South Carolina Method of high-speed monitoring based on the use of multivariate optical elements
WO2007062202A1 (en) * 2005-11-28 2007-05-31 University Of South Carolina Novel multivariate optical elements for optical analysis system
EP1955122A2 (en) * 2005-11-28 2008-08-13 Ometric Corporation Optical analysis system and optical train
WO2007064575A1 (en) * 2005-11-28 2007-06-07 Ometric Corporation Optical analysis system and method for real time multivariate optical computing
WO2007064579A1 (en) * 2005-11-28 2007-06-07 University Of South Carolina Optical analysis system and elements to isolate spectral region
WO2007063961A1 (ja) 2005-11-30 2007-06-07 Toshiba Medical Systems Corporation グルコースの非侵襲性測定方法及びグルコースの非侵襲性測定装置
US8437582B2 (en) 2005-12-22 2013-05-07 Palo Alto Research Center Incorporated Transmitting light with lateral variation
US7433552B2 (en) * 2005-12-22 2008-10-07 Palo Alto Research Center Incorporated Obtaining analyte information
US7547904B2 (en) * 2005-12-22 2009-06-16 Palo Alto Research Center Incorporated Sensing photon energies emanating from channels or moving objects
US7315667B2 (en) 2005-12-22 2008-01-01 Palo Alto Research Center Incorporated Propagating light to be sensed
US7420677B2 (en) * 2005-12-22 2008-09-02 Palo Alto Research Center Incorporated Sensing photon energies of optical signals
US7358476B2 (en) * 2005-12-22 2008-04-15 Palo Alto Research Center Incorporated Sensing photons from objects in channels
US8182443B1 (en) 2006-01-17 2012-05-22 Masimo Corporation Drug administration controller
US7492372B2 (en) * 2006-02-21 2009-02-17 Bio-Rad Laboratories, Inc. Overlap density (OD) heatmaps and consensus data displays
US7623233B2 (en) 2006-03-10 2009-11-24 Ometric Corporation Optical analysis systems and methods for dynamic, high-speed detection and real-time multivariate optical computing
US8219172B2 (en) 2006-03-17 2012-07-10 Glt Acquisition Corp. System and method for creating a stable optical interface
US8027855B2 (en) * 2006-05-30 2011-09-27 Halliburton Energy Services Inc. Methods of assessing and designing an application specific measurement system
US10188348B2 (en) 2006-06-05 2019-01-29 Masimo Corporation Parameter upgrade system
WO2008002903A2 (en) 2006-06-26 2008-01-03 University Of South Carolina Data validation and classification in optical analysis systems
US8175346B2 (en) 2006-07-19 2012-05-08 Lumidigm, Inc. Whole-hand multispectral biometric imaging
US8355545B2 (en) 2007-04-10 2013-01-15 Lumidigm, Inc. Biometric detection using spatial, temporal, and/or spectral techniques
US7995808B2 (en) * 2006-07-19 2011-08-09 Lumidigm, Inc. Contactless multispectral biometric capture
CN101506826A (zh) * 2006-07-19 2009-08-12 光谱辨识公司 多重生物测定多谱成像器
US7804984B2 (en) 2006-07-31 2010-09-28 Lumidigm, Inc. Spatial-spectral fingerprint spoof detection
US7801339B2 (en) 2006-07-31 2010-09-21 Lumidigm, Inc. Biometrics with spatiospectral spoof detection
US8457707B2 (en) 2006-09-20 2013-06-04 Masimo Corporation Congenital heart disease monitor
US8840549B2 (en) 2006-09-22 2014-09-23 Masimo Corporation Modular patient monitor
CA2664691A1 (en) * 2006-09-29 2008-04-03 Ottawa Health Research Institute Correlation technique for analysis of clinical condition
US8255026B1 (en) 2006-10-12 2012-08-28 Masimo Corporation, Inc. Patient monitor capable of monitoring the quality of attached probes and accessories
US8280473B2 (en) 2006-10-12 2012-10-02 Masino Corporation, Inc. Perfusion index smoother
US9861305B1 (en) 2006-10-12 2018-01-09 Masimo Corporation Method and apparatus for calibration to reduce coupling between signals in a measurement system
US7880626B2 (en) 2006-10-12 2011-02-01 Masimo Corporation System and method for monitoring the life of a physiological sensor
US9182282B2 (en) * 2006-11-02 2015-11-10 Halliburton Energy Services, Inc. Multi-analyte optical computing system
US8379199B2 (en) 2006-11-02 2013-02-19 Halliburton Energy Services, Inc. Self-contained multivariate optical computing and analysis system
US7718948B2 (en) * 2006-12-04 2010-05-18 Palo Alto Research Center Incorporated Monitoring light pulses
JP5441707B2 (ja) 2006-12-09 2014-03-12 マシモ コーポレイション プレチスモグラフ変動プロセッサ
CN100449302C (zh) * 2007-01-15 2009-01-07 浙江大学 瓶装黄酒标注酒龄快速无损鉴别方法和装置
US8652060B2 (en) 2007-01-20 2014-02-18 Masimo Corporation Perfusion trend indicator
US9164037B2 (en) 2007-01-26 2015-10-20 Palo Alto Research Center Incorporated Method and system for evaluation of signals received from spatially modulated excitation and emission to accurately determine particle positions and distances
US8821799B2 (en) 2007-01-26 2014-09-02 Palo Alto Research Center Incorporated Method and system implementing spatially modulated excitation or emission for particle characterization with enhanced sensitivity
US7502123B2 (en) * 2007-02-05 2009-03-10 Palo Alto Research Center Incorporated Obtaining information from optical cavity output light
US7852490B2 (en) * 2007-02-05 2010-12-14 Palo Alto Research Center Incorporated Implanting optical cavity structures
US7936463B2 (en) 2007-02-05 2011-05-03 Palo Alto Research Center Incorporated Containing analyte in optical cavity structures
US7817276B2 (en) * 2007-02-05 2010-10-19 Palo Alto Research Center Incorporated Distinguishing objects
US7633629B2 (en) * 2007-02-05 2009-12-15 Palo Alto Research Center Incorporated Tuning optical cavities
US7817281B2 (en) * 2007-02-05 2010-10-19 Palo Alto Research Center Incorporated Tuning optical cavities
EP2120713A2 (en) 2007-03-21 2009-11-25 Lumidigm, Inc. Biometrics based on locally consistent features
US8184295B2 (en) * 2007-03-30 2012-05-22 Halliburton Energy Services, Inc. Tablet analysis and measurement system
US8213006B2 (en) * 2007-03-30 2012-07-03 Halliburton Energy Services, Inc. Multi-analyte optical computing system
EP2140238B1 (en) * 2007-03-30 2020-11-11 Ometric Corporation In-line process measurement systems and methods
US8374665B2 (en) 2007-04-21 2013-02-12 Cercacor Laboratories, Inc. Tissue profile wellness monitor
US20090036759A1 (en) * 2007-08-01 2009-02-05 Ault Timothy E Collapsible noninvasive analyzer method and apparatus
US8283633B2 (en) * 2007-11-30 2012-10-09 Halliburton Energy Services, Inc. Tuning D* with modified thermal detectors
US8320983B2 (en) * 2007-12-17 2012-11-27 Palo Alto Research Center Incorporated Controlling transfer of objects affecting optical characteristics
US7817254B2 (en) * 2008-01-30 2010-10-19 Palo Alto Research Center Incorporated Obtaining information from time variation of sensing results
US8263955B2 (en) * 2008-12-18 2012-09-11 Palo Alto Research Center Incorporated Causing relative motion
US7894068B2 (en) * 2008-02-04 2011-02-22 Palo Alto Research Center Incorporated Producing filters with combined transmission and/or reflection functions
US8153950B2 (en) * 2008-12-18 2012-04-10 Palo Alto Research Center Incorporated Obtaining sensing results and/or data in response to object detection
US8153949B2 (en) * 2008-12-18 2012-04-10 Palo Alto Research Center Incorporated Obtaining sensing results indicating time variation
US8629981B2 (en) 2008-02-01 2014-01-14 Palo Alto Research Center Incorporated Analyzers with time variation based on color-coded spatial modulation
US8373860B2 (en) * 2008-02-01 2013-02-12 Palo Alto Research Center Incorporated Transmitting/reflecting emanating light with time variation
WO2009111542A2 (en) 2008-03-04 2009-09-11 Glucolight Corporation Methods and systems for analyte level estimation in optical coherence tomography
US8212213B2 (en) * 2008-04-07 2012-07-03 Halliburton Energy Services, Inc. Chemically-selective detector and methods relating thereto
TWI394580B (zh) 2008-04-28 2013-05-01 Halozyme Inc 超快起作用胰島素組成物
JP5575752B2 (ja) 2008-05-02 2014-08-20 マシモ コーポレイション モニター構成システム
US9107625B2 (en) 2008-05-05 2015-08-18 Masimo Corporation Pulse oximetry system with electrical decoupling circuitry
US8519337B2 (en) * 2008-06-28 2013-08-27 The Boeing Company Thermal effect measurement with near-infrared spectroscopy
US7897923B2 (en) * 2008-06-28 2011-03-01 The Boeing Company Sample preparation and methods for portable IR spectroscopy measurements of UV and thermal effect
EP2326239B1 (en) 2008-07-03 2017-06-21 Masimo Laboratories, Inc. Protrusion for improving spectroscopic measurement of blood constituents
US8515509B2 (en) 2008-08-04 2013-08-20 Cercacor Laboratories, Inc. Multi-stream emitter for noninvasive measurement of blood constituents
US8552382B2 (en) * 2008-08-14 2013-10-08 The Boeing Company Thermal effect measurement with mid-infrared spectroscopy
SE532941C2 (sv) 2008-09-15 2010-05-18 Phasein Ab Gasprovtagningsledning för andningsgaser
US8771204B2 (en) 2008-12-30 2014-07-08 Masimo Corporation Acoustic sensor assembly
US8588880B2 (en) 2009-02-16 2013-11-19 Masimo Corporation Ear sensor
US10032002B2 (en) 2009-03-04 2018-07-24 Masimo Corporation Medical monitoring system
EP2404253B1 (en) 2009-03-04 2019-09-18 Masimo Corporation Medical monitoring system
US9323894B2 (en) 2011-08-19 2016-04-26 Masimo Corporation Health care sanitation monitoring system
US10007758B2 (en) 2009-03-04 2018-06-26 Masimo Corporation Medical monitoring system
US8388353B2 (en) 2009-03-11 2013-03-05 Cercacor Laboratories, Inc. Magnetic connector
US7896498B2 (en) * 2009-03-30 2011-03-01 Ottawa Hospital Research Institute Apparatus and method for optical measurements
US8571619B2 (en) 2009-05-20 2013-10-29 Masimo Corporation Hemoglobin display and patient treatment
US8473020B2 (en) 2009-07-29 2013-06-25 Cercacor Laboratories, Inc. Non-invasive physiological sensor cover
BR112012004177A2 (pt) 2009-08-26 2016-03-29 Lumidigm Inc método e sistema biométrico, sistema, método, métodos de localização de objeto, e de discriminação de objeto e de segundo plano, e, prisma multifacetado
US20110137297A1 (en) 2009-09-17 2011-06-09 Kiani Massi Joe E Pharmacological management system
US20110082711A1 (en) 2009-10-06 2011-04-07 Masimo Laboratories, Inc. Personal digital assistant or organizer for monitoring glucose levels
US8823802B2 (en) * 2009-10-15 2014-09-02 University Of South Carolina Multi-mode imaging in the thermal infrared for chemical contrast enhancement
US9839381B1 (en) 2009-11-24 2017-12-12 Cercacor Laboratories, Inc. Physiological measurement system with automatic wavelength adjustment
US8801613B2 (en) 2009-12-04 2014-08-12 Masimo Corporation Calibration for multi-stage physiological monitors
US9153112B1 (en) 2009-12-21 2015-10-06 Masimo Corporation Modular patient monitor
WO2011091059A1 (en) 2010-01-19 2011-07-28 Masimo Corporation Wellness analysis system
GB2490832B (en) 2010-03-01 2016-09-21 Masimo Corp Adaptive alarm system
US8584345B2 (en) 2010-03-08 2013-11-19 Masimo Corporation Reprocessing of a physiological sensor
US8570149B2 (en) 2010-03-16 2013-10-29 Lumidigm, Inc. Biometric imaging using an optical adaptive interface
US9307928B1 (en) 2010-03-30 2016-04-12 Masimo Corporation Plethysmographic respiration processor
US8666468B1 (en) 2010-05-06 2014-03-04 Masimo Corporation Patient monitor for determining microcirculation state
US8330109B2 (en) * 2010-09-02 2012-12-11 The Boeing Company Method for determining contamination of material using Mid-IR spectroscopy
US8821397B2 (en) 2010-09-28 2014-09-02 Masimo Corporation Depth of consciousness monitor including oximeter
US9211095B1 (en) 2010-10-13 2015-12-15 Masimo Corporation Physiological measurement logic engine
US20120226117A1 (en) 2010-12-01 2012-09-06 Lamego Marcelo M Handheld processing device including medical applications for minimally and non invasive glucose measurements
JP5591680B2 (ja) * 2010-12-21 2014-09-17 株式会社フォトサイエンス コレステロール濃度測定装置
WO2012109671A1 (en) 2011-02-13 2012-08-16 Masimo Corporation Medical characterization system
US8527212B2 (en) 2011-02-14 2013-09-03 Honeywell Asca Inc. Increased absorption-measurement accuracy through windowing of photon-transit times to account for scattering in continuous webs and powders
US9066666B2 (en) 2011-02-25 2015-06-30 Cercacor Laboratories, Inc. Patient monitor for monitoring microcirculation
US20130011378A1 (en) 2011-06-17 2013-01-10 Tzung-Horng Yang Stable formulations of a hyaluronan-degrading enzyme
BR112013032265A2 (pt) 2011-06-17 2016-12-20 Halozyme Inc métodos de infusão de insulina subcutânea contínua com uma enzima de degradação do hialuronano
US9532722B2 (en) 2011-06-21 2017-01-03 Masimo Corporation Patient monitoring system
US9986919B2 (en) 2011-06-21 2018-06-05 Masimo Corporation Patient monitoring system
US11439329B2 (en) 2011-07-13 2022-09-13 Masimo Corporation Multiple measurement mode in a physiological sensor
US9029800B2 (en) 2011-08-09 2015-05-12 Palo Alto Research Center Incorporated Compact analyzer with spatial modulation and multiple intensity modulated excitation sources
US8723140B2 (en) 2011-08-09 2014-05-13 Palo Alto Research Center Incorporated Particle analyzer with spatial modulation and long lifetime bioprobes
US9782077B2 (en) 2011-08-17 2017-10-10 Masimo Corporation Modulated physiological sensor
US9436645B2 (en) 2011-10-13 2016-09-06 Masimo Corporation Medical monitoring hub
US9808188B1 (en) 2011-10-13 2017-11-07 Masimo Corporation Robust fractional saturation determination
US9943269B2 (en) 2011-10-13 2018-04-17 Masimo Corporation System for displaying medical monitoring data
US9778079B1 (en) 2011-10-27 2017-10-03 Masimo Corporation Physiological monitor gauge panel
US11172890B2 (en) 2012-01-04 2021-11-16 Masimo Corporation Automated condition screening and detection
US9392945B2 (en) 2012-01-04 2016-07-19 Masimo Corporation Automated CCHD screening and detection
US10149616B2 (en) 2012-02-09 2018-12-11 Masimo Corporation Wireless patient monitoring device
US9195385B2 (en) 2012-03-25 2015-11-24 Masimo Corporation Physiological monitor touchscreen interface
JP6490577B2 (ja) 2012-04-17 2019-03-27 マシモ・コーポレイション パルスオキシメーターデバイスの作動方法
US9766126B2 (en) 2013-07-12 2017-09-19 Zyomed Corp. Dynamic radially controlled light input to a noninvasive analyzer apparatus and method of use thereof
US9351672B2 (en) 2012-07-16 2016-05-31 Timothy Ruchti Multiplexed pathlength resolved noninvasive analyzer apparatus with stacked filters and method of use thereof
US9585604B2 (en) 2012-07-16 2017-03-07 Zyomed Corp. Multiplexed pathlength resolved noninvasive analyzer apparatus with dynamic optical paths and method of use thereof
US9351671B2 (en) 2012-07-16 2016-05-31 Timothy Ruchti Multiplexed pathlength resolved noninvasive analyzer apparatus and method of use thereof
US9697928B2 (en) 2012-08-01 2017-07-04 Masimo Corporation Automated assembly sensor cable
US9955937B2 (en) 2012-09-20 2018-05-01 Masimo Corporation Acoustic patient sensor coupler
US9877650B2 (en) 2012-09-20 2018-01-30 Masimo Corporation Physiological monitor with mobile computing device connectivity
US9749232B2 (en) 2012-09-20 2017-08-29 Masimo Corporation Intelligent medical network edge router
RU2520940C2 (ru) * 2012-10-05 2014-06-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Новосибирский национальный исследовательский государственный университет" (Новосибирский государственный университет, НГУ) Устройство для мониторинга параметров пучка ионов
US9560996B2 (en) 2012-10-30 2017-02-07 Masimo Corporation Universal medical system
US9787568B2 (en) 2012-11-05 2017-10-10 Cercacor Laboratories, Inc. Physiological test credit method
US9494567B2 (en) 2012-12-31 2016-11-15 Omni Medsci, Inc. Near-infrared lasers for non-invasive monitoring of glucose, ketones, HBA1C, and other blood constituents
US9993159B2 (en) 2012-12-31 2018-06-12 Omni Medsci, Inc. Near-infrared super-continuum lasers for early detection of breast and other cancers
WO2014105521A1 (en) 2012-12-31 2014-07-03 Omni Medsci, Inc. Short-wave infrared super-continuum lasers for early detection of dental caries
CA2895969A1 (en) 2012-12-31 2014-07-03 Omni Medsci, Inc. Near-infrared lasers for non-invasive monitoring of glucose, ketones, hba1c, and other blood constituents
US10660526B2 (en) 2012-12-31 2020-05-26 Omni Medsci, Inc. Near-infrared time-of-flight imaging using laser diodes with Bragg reflectors
WO2014143276A2 (en) 2012-12-31 2014-09-18 Omni Medsci, Inc. Short-wave infrared super-continuum lasers for natural gas leak detection, exploration, and other active remote sensing applications
US9724025B1 (en) 2013-01-16 2017-08-08 Masimo Corporation Active-pulse blood analysis system
US9965946B2 (en) 2013-03-13 2018-05-08 Masimo Corporation Systems and methods for monitoring a patient health network
US9936917B2 (en) 2013-03-14 2018-04-10 Masimo Laboratories, Inc. Patient monitor placement indicator
JP6116956B2 (ja) * 2013-03-22 2017-04-19 パナソニックヘルスケアホールディングス株式会社 グルコース濃度の定量法及びその装置
US9891079B2 (en) 2013-07-17 2018-02-13 Masimo Corporation Pulser with double-bearing position encoder for non-invasive physiological monitoring
US10555678B2 (en) 2013-08-05 2020-02-11 Masimo Corporation Blood pressure monitor with valve-chamber assembly
CN103434647A (zh) * 2013-09-11 2013-12-11 中国民航大学 一种能够消除环境干扰的飞机残冰监测装置
WO2015038683A2 (en) 2013-09-12 2015-03-19 Cercacor Laboratories, Inc. Medical device management system
US11147518B1 (en) 2013-10-07 2021-10-19 Masimo Corporation Regional oximetry signal processor
EP3054849B1 (en) 2013-10-07 2022-03-16 Masimo Corporation Regional oximetry sensor
US10832818B2 (en) 2013-10-11 2020-11-10 Masimo Corporation Alarm notification system
US10279247B2 (en) 2013-12-13 2019-05-07 Masimo Corporation Avatar-incentive healthcare therapy
US10213550B2 (en) 2014-01-23 2019-02-26 Covidien Lp Systems and methods for monitoring clinical procedures using regional blood oxygen saturation
US9867561B2 (en) 2014-01-27 2018-01-16 Covidien Lp Systems and methods for determining whether regional oximetry sensors are properly positioned
US11259745B2 (en) 2014-01-28 2022-03-01 Masimo Corporation Autonomous drug delivery system
US9861317B2 (en) 2014-02-20 2018-01-09 Covidien Lp Methods and systems for determining regional blood oxygen saturation
CN103870999A (zh) * 2014-02-25 2014-06-18 国家电网公司 一种基于旋转经验正交分解的辐照度区域划分方法
JP6323060B2 (ja) * 2014-02-25 2018-05-16 セイコーエプソン株式会社 成分分析装置、成分分析方法
US10123729B2 (en) 2014-06-13 2018-11-13 Nanthealth, Inc. Alarm fatigue management systems and methods
US10231670B2 (en) 2014-06-19 2019-03-19 Masimo Corporation Proximity sensor in pulse oximeter
CN104034704A (zh) * 2014-06-27 2014-09-10 无锡利弗莫尔仪器有限公司 一种提高红外辐射成像分辨率的方法及装置
EP3172487B1 (en) 2014-07-23 2020-10-21 Ascensia Diabetes Care Holdings AG Light switching indicators by wavelength filtration
US10111591B2 (en) 2014-08-26 2018-10-30 Nanthealth, Inc. Real-time monitoring systems and methods in a healthcare environment
WO2016036985A1 (en) 2014-09-04 2016-03-10 Masimo Corportion Total hemoglobin index system
WO2016035881A1 (ja) 2014-09-05 2016-03-10 パナソニックヘルスケアホールディングス株式会社 グルコース濃度の定量方法及びグルコース濃度測定装置
US10383520B2 (en) 2014-09-18 2019-08-20 Masimo Semiconductor, Inc. Enhanced visible near-infrared photodiode and non-invasive physiological sensor
US9459201B2 (en) 2014-09-29 2016-10-04 Zyomed Corp. Systems and methods for noninvasive blood glucose and other analyte detection and measurement using collision computing
WO2016057553A1 (en) 2014-10-07 2016-04-14 Masimo Corporation Modular physiological sensors
JP6535461B2 (ja) * 2014-12-16 2019-06-26 株式会社トプコン 材料分析センサ及び材料分析装置
KR102335739B1 (ko) 2014-12-19 2021-12-06 삼성전자주식회사 비 침습적 혈당 측정 방법 및 이를 위한 장치
US10328202B2 (en) 2015-02-04 2019-06-25 Covidien Lp Methods and systems for determining fluid administration
CN113054464B (zh) 2015-02-06 2023-04-07 迈心诺公司 连接器和传感器组件
KR102609605B1 (ko) 2015-02-06 2023-12-05 마시모 코오퍼레이션 광 프로브를 위한 폴드 플렉스 회로
US10568553B2 (en) 2015-02-06 2020-02-25 Masimo Corporation Soft boot pulse oximetry sensor
US9885147B2 (en) 2015-04-24 2018-02-06 University Of South Carolina Reproducible sample preparation method for quantitative stain detection
US10041866B2 (en) 2015-04-24 2018-08-07 University Of South Carolina Reproducible sample preparation method for quantitative stain detection
US10524738B2 (en) 2015-05-04 2020-01-07 Cercacor Laboratories, Inc. Noninvasive sensor system with visual infographic display
WO2016191307A1 (en) 2015-05-22 2016-12-01 Cercacor Laboratories, Inc. Non-invasive optical physiological differential pathlength sensor
WO2017027621A1 (en) 2015-08-11 2017-02-16 Masimo Corporation Medical monitoring analysis and replay including indicia responsive to light attenuated by body tissue
JP6940483B2 (ja) 2015-08-31 2021-09-29 マシモ・コーポレイション ワイヤレス患者監視システムおよび方法
US11504066B1 (en) 2015-09-04 2022-11-22 Cercacor Laboratories, Inc. Low-noise sensor system
US11679579B2 (en) 2015-12-17 2023-06-20 Masimo Corporation Varnish-coated release liner
US10537285B2 (en) 2016-03-04 2020-01-21 Masimo Corporation Nose sensor
US10993662B2 (en) 2016-03-04 2021-05-04 Masimo Corporation Nose sensor
CN108778098A (zh) * 2016-03-14 2018-11-09 美国亚德诺半导体公司 皮肤类型和条件的光学评估
US9554738B1 (en) 2016-03-30 2017-01-31 Zyomed Corp. Spectroscopic tomography systems and methods for noninvasive detection and measurement of analytes using collision computing
US11191484B2 (en) 2016-04-29 2021-12-07 Masimo Corporation Optical sensor tape
CN106066981B (zh) * 2016-06-01 2018-08-24 上海慧银信息科技有限公司 扫描探头
WO2018009612A1 (en) 2016-07-06 2018-01-11 Patient Doctor Technologies, Inc. Secure and zero knowledge data sharing for cloud applications
US10617302B2 (en) 2016-07-07 2020-04-14 Masimo Corporation Wearable pulse oximeter and respiration monitor
KR102539142B1 (ko) 2016-09-05 2023-06-01 삼성전자주식회사 스펙트럼 분석 장치와 방법, 및 혈당 측정 장치
WO2018071715A1 (en) 2016-10-13 2018-04-19 Masimo Corporation Systems and methods for patient fall detection
US11504058B1 (en) 2016-12-02 2022-11-22 Masimo Corporation Multi-site noninvasive measurement of a physiological parameter
WO2018119239A1 (en) 2016-12-22 2018-06-28 Cercacor Laboratories, Inc Methods and devices for detecting intensity of light with translucent detector
CN106706523A (zh) * 2017-01-13 2017-05-24 清华大学 基于上转换材料的近红外光谱仪
US10721785B2 (en) 2017-01-18 2020-07-21 Masimo Corporation Patient-worn wireless physiological sensor with pairing functionality
US10388120B2 (en) 2017-02-24 2019-08-20 Masimo Corporation Localized projection of audible noises in medical settings
US11086609B2 (en) 2017-02-24 2021-08-10 Masimo Corporation Medical monitoring hub
WO2018156648A1 (en) 2017-02-24 2018-08-30 Masimo Corporation Managing dynamic licenses for physiological parameters in a patient monitoring environment
US10327713B2 (en) 2017-02-24 2019-06-25 Masimo Corporation Modular multi-parameter patient monitoring device
US11024064B2 (en) 2017-02-24 2021-06-01 Masimo Corporation Augmented reality system for displaying patient data
US20180247712A1 (en) 2017-02-24 2018-08-30 Masimo Corporation System for displaying medical monitoring data
US11185262B2 (en) 2017-03-10 2021-11-30 Masimo Corporation Pneumonia screener
WO2018194992A1 (en) 2017-04-18 2018-10-25 Masimo Corporation Nose sensor
US10918281B2 (en) 2017-04-26 2021-02-16 Masimo Corporation Medical monitoring device having multiple configurations
WO2018201078A1 (en) 2017-04-28 2018-11-01 Masimo Corporation Spot check measurement system
KR102559598B1 (ko) 2017-05-08 2023-07-25 마시모 코오퍼레이션 동글을 이용하여 의료 시스템을 네트워크 제어기에 페어링하기 위한 시스템
KR102597283B1 (ko) 2017-05-22 2023-11-01 브로리스 센서 테크놀로지, 유에이비 혈액 구성성분 농도 레벨의 실시간 모니터링을 위한 튜닝가능형 하이브리드 iii-v/iv 레이저 센서 시스템 온 칩
US11026604B2 (en) 2017-07-13 2021-06-08 Cercacor Laboratories, Inc. Medical monitoring device for harmonizing physiological measurements
CN111031908B (zh) 2017-08-15 2023-07-14 梅西莫股份有限公司 用于无创性患者监护仪的防水连接器
JP2021500128A (ja) 2017-10-19 2021-01-07 マシモ・コーポレイション 医療監視システムの表示構成
EP3703566B1 (en) 2017-10-31 2023-07-26 Masimo Corporation System for displaying oxygen state indications
USD925597S1 (en) 2017-10-31 2021-07-20 Masimo Corporation Display screen or portion thereof with graphical user interface
TWI662261B (zh) * 2018-01-17 2019-06-11 國立交通大學 同軸異質整合高光譜系統
US11766198B2 (en) 2018-02-02 2023-09-26 Cercacor Laboratories, Inc. Limb-worn patient monitoring device
US11177630B2 (en) 2018-02-02 2021-11-16 Brolis Sensor Technology, Uab Wavelength determination for widely tunable lasers and laser systems thereof
US11660027B2 (en) 2018-03-14 2023-05-30 Google Llc Fourier-transform infrared (FT-IR) spectroscopy using a mobile device
WO2019204368A1 (en) 2018-04-19 2019-10-24 Masimo Corporation Mobile patient alarm display
US11883129B2 (en) 2018-04-24 2024-01-30 Cercacor Laboratories, Inc. Easy insert finger sensor for transmission based spectroscopy sensor
US10939878B2 (en) 2018-06-06 2021-03-09 Masimo Corporation Opioid overdose monitoring
US10779098B2 (en) 2018-07-10 2020-09-15 Masimo Corporation Patient monitor alarm speaker analyzer
US11872156B2 (en) 2018-08-22 2024-01-16 Masimo Corporation Core body temperature measurement
US11406286B2 (en) 2018-10-11 2022-08-09 Masimo Corporation Patient monitoring device with improved user interface
USD999246S1 (en) 2018-10-11 2023-09-19 Masimo Corporation Display screen or portion thereof with a graphical user interface
USD917564S1 (en) 2018-10-11 2021-04-27 Masimo Corporation Display screen or portion thereof with graphical user interface
US11389093B2 (en) 2018-10-11 2022-07-19 Masimo Corporation Low noise oximetry cable
USD916135S1 (en) 2018-10-11 2021-04-13 Masimo Corporation Display screen or portion thereof with a graphical user interface
CA3115776A1 (en) 2018-10-11 2020-04-16 Masimo Corporation Patient connector assembly with vertical detents
USD998631S1 (en) 2018-10-11 2023-09-12 Masimo Corporation Display screen or portion thereof with a graphical user interface
USD917550S1 (en) 2018-10-11 2021-04-27 Masimo Corporation Display screen or portion thereof with a graphical user interface
USD998630S1 (en) 2018-10-11 2023-09-12 Masimo Corporation Display screen or portion thereof with a graphical user interface
US11272839B2 (en) 2018-10-12 2022-03-15 Ma Simo Corporation System for transmission of sensor data using dual communication protocol
US11464410B2 (en) 2018-10-12 2022-10-11 Masimo Corporation Medical systems and methods
USD897098S1 (en) 2018-10-12 2020-09-29 Masimo Corporation Card holder set
US11684296B2 (en) 2018-12-21 2023-06-27 Cercacor Laboratories, Inc. Noninvasive physiological sensor
CN109781681A (zh) * 2019-01-14 2019-05-21 广州大学 一种荧光量子产率测试仪及其测试方法
AU2020259445A1 (en) 2019-04-17 2021-12-02 Masimo Corporation Patient monitoring systems, devices, and methods
USD921202S1 (en) 2019-08-16 2021-06-01 Masimo Corporation Holder for a blood pressure device
USD919100S1 (en) 2019-08-16 2021-05-11 Masimo Corporation Holder for a patient monitor
USD919094S1 (en) 2019-08-16 2021-05-11 Masimo Corporation Blood pressure device
USD985498S1 (en) 2019-08-16 2023-05-09 Masimo Corporation Connector
USD917704S1 (en) 2019-08-16 2021-04-27 Masimo Corporation Patient monitor
US11832940B2 (en) 2019-08-27 2023-12-05 Cercacor Laboratories, Inc. Non-invasive medical monitoring device for blood analyte measurements
USD927699S1 (en) 2019-10-18 2021-08-10 Masimo Corporation Electrode pad
US20210117525A1 (en) 2019-10-18 2021-04-22 Masimo Corporation Display layout and interactive objects for patient monitoring
CN115176155A (zh) 2019-10-25 2022-10-11 塞卡科实验室有限公司 指示剂化合物、包括指示剂化合物的装置及其制备和使用方法
US11721105B2 (en) 2020-02-13 2023-08-08 Masimo Corporation System and method for monitoring clinical activities
US11879960B2 (en) 2020-02-13 2024-01-23 Masimo Corporation System and method for monitoring clinical activities
US20210296008A1 (en) 2020-03-20 2021-09-23 Masimo Corporation Health monitoring system for limiting the spread of an infection in an organization
USD933232S1 (en) 2020-05-11 2021-10-12 Masimo Corporation Blood pressure monitor
USD979516S1 (en) 2020-05-11 2023-02-28 Masimo Corporation Connector
USD980091S1 (en) 2020-07-27 2023-03-07 Masimo Corporation Wearable temperature measurement device
USD974193S1 (en) 2020-07-27 2023-01-03 Masimo Corporation Wearable temperature measurement device
CN112087663B (zh) * 2020-09-10 2021-09-28 北京小糖科技有限责任公司 一种移动端生成明暗环境适配舞蹈视频的方法
USD946596S1 (en) 2020-09-30 2022-03-22 Masimo Corporation Display screen or portion thereof with graphical user interface
USD946597S1 (en) 2020-09-30 2022-03-22 Masimo Corporation Display screen or portion thereof with graphical user interface
USD946598S1 (en) 2020-09-30 2022-03-22 Masimo Corporation Display screen or portion thereof with graphical user interface
USD997365S1 (en) 2021-06-24 2023-08-29 Masimo Corporation Physiological nose sensor
USD1000975S1 (en) 2021-09-22 2023-10-10 Masimo Corporation Wearable temperature measurement device

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3821550A (en) * 1969-07-18 1974-06-28 Deere & Co Plant thinner having radiant energy plant detecting means
US3822098A (en) * 1973-05-02 1974-07-02 Mc Donnell Douglas Corp Multispectral sensor means measuring depolarized radiation
US4306152A (en) * 1979-07-23 1981-12-15 Anarad, Inc. Optical fluid analyzer
DE2934190A1 (de) * 1979-08-23 1981-03-19 Müller, Gerhard, Prof. Dr.-Ing., 7080 Aalen Verfahren und vorrichtung zur molekuelspektroskopie, insbesondere zur bestimmung von stoffwechselprodukten
US4655225A (en) * 1985-04-18 1987-04-07 Kurabo Industries Ltd. Spectrophotometric method and apparatus for the non-invasive
US4738535A (en) * 1986-07-22 1988-04-19 Pacific Scientific Company Optical instrument employing fiber optics to direct light through tilting filter wheel
US4805623A (en) * 1987-09-04 1989-02-21 Vander Corporation Spectrophotometric method for quantitatively determining the concentration of a dilute component in a light- or other radiation-scattering environment
JPH0827235B2 (ja) * 1987-11-17 1996-03-21 倉敷紡績株式会社 糖類濃度の分光学的測定法
US4882492A (en) * 1988-01-19 1989-11-21 Biotronics Associates, Inc. Non-invasive near infrared measurement of blood analyte concentrations
US5086229A (en) * 1989-01-19 1992-02-04 Futrex, Inc. Non-invasive measurement of blood glucose
ATE80225T1 (de) * 1989-05-23 1992-09-15 Biosensors Technology Inc Verfahren zur bestimmung mittels strahlungsabsorption von substanzen in absorbierenden und streuenden matrixmaterialien.
US5023804A (en) * 1989-05-23 1991-06-11 The Perkin-Elmer Corporation Method and apparatus for comparing spectra
US4975581A (en) * 1989-06-21 1990-12-04 University Of New Mexico Method of and apparatus for determining the similarity of a biological analyte from a model constructed from known biological fluids
CA2028261C (en) * 1989-10-28 1995-01-17 Won Suck Yang Non-invasive method and apparatus for measuring blood glucose concentration
US5222496A (en) * 1990-02-02 1993-06-29 Angiomedics Ii, Inc. Infrared glucose sensor
US5222495A (en) * 1990-02-02 1993-06-29 Angiomedics Ii, Inc. Non-invasive blood analysis by near infrared absorption measurements using two closely spaced wavelengths
US5054487A (en) * 1990-02-02 1991-10-08 Boston Advanced Technologies, Inc. Laser systems for material analysis based on reflectance ratio detection
WO1991011136A1 (en) * 1990-02-02 1991-08-08 Boston Advanced Technologies, Inc. Systems for material analysis based on reflectance ratio detection
US5079421A (en) * 1990-04-19 1992-01-07 Inomet, Inc. Invasive FTIR blood constituent testing
GB2248925B (en) * 1990-09-18 1994-08-24 Anthony Michael Charles Davies Method and apparatus for calibrating a spectrometer
US5121337A (en) * 1990-10-15 1992-06-09 Exxon Research And Engineering Company Method for correcting spectral data for data due to the spectral measurement process itself and estimating unknown property and/or composition data of a sample using such method
US5209231A (en) * 1990-11-02 1993-05-11 University Of Connecticut Optical glucose sensor apparatus and method
GB9106672D0 (en) * 1991-03-28 1991-05-15 Abbey Biosystems Ltd Method and apparatus for glucose concentration monitoring
US5242602A (en) * 1992-03-04 1993-09-07 W. R. Grace & Co.-Conn. Spectrophotometric monitoring of multiple water treatment performance indicators using chemometrics
US5370114A (en) * 1992-03-12 1994-12-06 Wong; Jacob Y. Non-invasive blood chemistry measurement by stimulated infrared relaxation emission
DK39792D0 (da) * 1992-03-25 1992-03-25 Foss Electric As Fremgangsmaade til bestemmelse af en komponent
US5406082A (en) * 1992-04-24 1995-04-11 Thiokol Corporation Surface inspection and characterization system and process
US5355880A (en) * 1992-07-06 1994-10-18 Sandia Corporation Reliable noninvasive measurement of blood gases
US5360004A (en) * 1992-12-09 1994-11-01 Diasense, Inc. Non-invasive determination of analyte concentration using non-continuous radiation
EP0631137B1 (en) * 1993-06-25 2002-03-20 Edward W. Stark Glucose related measurement method and apparatus
EP0670143B1 (en) * 1993-08-12 2003-05-28 Kurashiki Boseki Kabushiki Kaisha Non invasive method and instrument for measuring blood sugar level
US5459317A (en) * 1994-02-14 1995-10-17 Ohio University Method and apparatus for non-invasive detection of physiological chemicals, particularly glucose
US5500530A (en) * 1994-10-31 1996-03-19 Spar Aerospace Limited Electro-optic ice detection
SG38866A1 (en) * 1995-07-31 1997-04-17 Instrumentation Metrics Inc Liquid correlation spectrometry
US5747806A (en) * 1996-02-02 1998-05-05 Instrumentation Metrics, Inc Method and apparatus for multi-spectral analysis in noninvasive nir spectroscopy

Also Published As

Publication number Publication date
AU713502B2 (en) 1999-12-02
BR9707246A (pt) 2001-10-02
DE69721732D1 (de) 2003-06-12
EP0877926A1 (en) 1998-11-18
JPH11506207A (ja) 1999-06-02
CN1214769A (zh) 1999-04-21
CA2244111A1 (en) 1997-08-07
EP0877926B1 (en) 2003-05-07
DK0877926T3 (da) 2003-09-01
US5747806A (en) 1998-05-05
CA2244111C (en) 2003-04-08
AU1844997A (en) 1997-08-22
HK1019635A1 (en) 2000-02-18
TW426802B (en) 2001-03-21
DE69721732T2 (de) 2004-03-18
WO1997028438A1 (en) 1997-08-07
NZ331158A (en) 1999-10-28
PL184609B1 (pl) 2002-11-29
PL328060A1 (en) 1999-01-04
US5945676A (en) 1999-08-31
KR19990082236A (ko) 1999-11-25
CZ239298A3 (cs) 1999-07-14
JP2002236097A (ja) 2002-08-23
ATE239910T1 (de) 2003-05-15

Similar Documents

Publication Publication Date Title
CN1101934C (zh) 无损伤性近红外光谱仪的多光谱分析方法和装置
CN1185478C (zh) 无损伤性红外分光术中多光谱分析用的方法和装置
US5750994A (en) Positive correlation filter systems and methods of use thereof
US7640140B2 (en) Method of processing noninvasive spectra
US7079252B1 (en) Dual beam FTIR methods and devices for use in analyte detection in samples of low transmissivity
JP4636762B2 (ja) 分光装置を較正する方法
WO1997028437A9 (en) Method and apparatus for multi-spectral analysis in noninvasive infrared spectroscopy
US6748251B2 (en) Method and apparatus for detecting mastitis by using visual light and/or near infrared lights
US20030191393A1 (en) Apparatus and method for reducing spectral complexity in optical sampling
AU1839595A (en) Method and apparatus for non-invasive detection of physiological chemicals, particularly glucose
McMurdy et al. Raman spectroscopy-based creatinine measurement in urine samples from a multipatient population
JPH09159606A (ja) 液体相関分光測定法
AU713502C (en) Method and apparatus for multi-spectral analysis in noninvasive NIR spectroscopy
CA2169881C (en) Liquid correlation spectrometry

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C56 Change in the name or address of the patentee

Owner name: SANTHES CO., LTD.

Free format text: FORMER NAME OR ADDRESS: INSTRUMENTATION METRICS INC.

CP01 Change in the name or title of a patent holder

Patentee after: Sensys Limited by Share Ltd

Patentee before: Instrumentation Metrics Inc.

C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee