CN104386816A - 低浓度废水处理系统和方法 - Google Patents

低浓度废水处理系统和方法 Download PDF

Info

Publication number
CN104386816A
CN104386816A CN201410616152.4A CN201410616152A CN104386816A CN 104386816 A CN104386816 A CN 104386816A CN 201410616152 A CN201410616152 A CN 201410616152A CN 104386816 A CN104386816 A CN 104386816A
Authority
CN
China
Prior art keywords
sorptive material
bio
waste water
compound
regeneration reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410616152.4A
Other languages
English (en)
Other versions
CN104386816B (zh
Inventor
W.G.康纳
T.E.舒尔茨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Building Technologies AG
Saudi Arabian Oil Co
Siemens Industry Inc
Original Assignee
Siemens Building Technologies AG
Saudi Arabian Oil Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Building Technologies AG, Saudi Arabian Oil Co filed Critical Siemens Building Technologies AG
Publication of CN104386816A publication Critical patent/CN104386816A/zh
Application granted granted Critical
Publication of CN104386816B publication Critical patent/CN104386816B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/301Aerobic and anaerobic treatment in the same reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/307Treatment of water, waste water, or sewage by irradiation with X-rays or gamma radiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F2001/007Processes including a sedimentation step
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F2003/001Biological treatment of water, waste water, or sewage using granular carriers or supports for the microorganisms
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2203/00Apparatus and plants for the biological treatment of water, waste water or sewage
    • C02F2203/004Apparatus and plants for the biological treatment of water, waste water or sewage comprising a selector reactor for promoting floc-forming or other bacteria
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/16Regeneration of sorbents, filters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1236Particular type of activated sludge installations
    • C02F3/1268Membrane bioreactor systems
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • C02F3/2853Anaerobic digestion processes using anaerobic membrane bioreactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

提供一种低浓度废水处理系统,包括和低通量吸附性材料生物再生反应器一体化的高通量吸附性材料处理系统。高通量吸附性材料处理系统包括一个或多个单元操作以混合低浓度废水和吸附性材料,该吸附性材料是新鲜的、循环的或两者,并且倾泻具有降低水平的污染物的液体流出物。具有吸附的污染物的吸附性材料在低通量吸附性材料生物再生反应器(其中发生生物反应,例如生物氧化)中再生,其中废水中的有机污染物通常代谢为二氧化碳和水。过量生物质从吸附性材料中回收,并且这样再生的吸附性材料循环至高通量吸附性材料处理系统。

Description

低浓度废水处理系统和方法
本申请是申请日为2010年7月8日、发明名称为“低浓度废水处理系统和方法”、申请号为201080030092.8的发明专利申请的分案申请。
相关说明
本申请要求2009年7月8日申请的美国临时专利申请第61/224,011号的权益,其全部内容通过引用方式列入本文中。
技术领域
本发明涉及用于废水处理的系统和方法,特别地,本发明涉及用于处理低浓度废水流的系统和方法。
背景技术
家庭污水及工业废水的有效处理乃提高生活质量与保有洁净水的一个极为重要的方面。直至约半世纪前的标准操作,单纯将废水排放于水源诸如河川、湖泊及海洋造成的问题明显,生物及化学废物对全部生命形式造成危害,包括传染病的传播及暴露于致癌化学品。因此,废水处理方法出现于自泛在的都市废水处理设施,清洁来自人群的卫生废水,直至特化的工业废水处理方法,其中必须解决来自于各种工业应用的特定污染物。
废水处理工厂典型地使用多个处理阶段,包括初级处理、次级处理和三级处理。生物氧化是用于除去大部分废水污染物的熟知次级处理步骤。通常,来自生物氧化和/或其他次级处理方法的流出物仍旧含有进一步处理(例如三级处理)用于它们除去所要求的污染物的水平。
生物难处理的及生物抑制性有机及无机化合物存在于某些待处理的工业及卫生废水流。多方面尝试解决这些生物难处理的及生物抑制性化合物的处理。某些类型的已知处理包括使用粉末活性炭来吸附及随后去除生物难处理的及生物抑制性有机化合物。
操作上成本密集的某些废水处理方法的一部分包括从已经通过曝气或其他次级方法处理的废水除去相对低浓度的污染物。尽管多种系统已经用于三级处理,例如吸附和过滤器,但是存在需要更有效和成本更低的三级处理,而没有和常规方法关联的限制和缺点。
发明内容
根据一个或多个实施方案,本发明涉及处理废水的系统和方法。
根据一个或多个实施方案,本发明涉及一种处理废水的方法,包括:
在混合区段中使废水(在某些实施方案中为低浓度废水)和吸附性材料混合足够时间,以使来自所述废水的污染物吸附到所述吸附性材料上去;
从废水和吸附性材料的混合物中分离和除去大部分所述废水;
将具有吸附其上的污染物的吸附性材料和少部分所述废水送至生物再生反应器;
使所述吸附性材料和废水在所述生物再生反应器中呈悬浮一定时间,该时间足以允许所述生物再生反应器中的微生物对所述吸附的污染物的至少一部分产生生物作用;
从所述生物再生反应器排放生物处理的水流出物;以及
使再生的吸附性材料循环至所述混合区段。
根据一个或多个实施方案,本发明涉及用于处理废水(在某些实施方案中为低浓度废水)的系统。该系统包括混合区段,包括废水入口、吸附性材料入口和排放出口。该系统还包括吸附性材料沉积和液体分离区段,包括与混合区段的排放出口相连的浆料入口、处理的水出口和污染的吸附性材料出口。系统还包括吸附性材料生物再生反应器系统,包括生物再生反应器,该生物再生反应器包括与吸附性材料沉积和液体分离区段的污染的吸附性材料出口相连的污染的吸附性材料入口、生物处理的水出口、和与混合区段的吸附性材料入口相连的再生的吸附性材料出口。
根据一个或多个实施方案,本发明涉及用于处理废水(在某些实施方案中为低浓度废水)的系统。该系统包括高通量吸附系统和低通量吸附性材料生物再生反应器系统。高通量吸附系统包括:用于接纳废水的入口,用于接触所述废水和来自所述废水的污染物的吸附性材料源,用于排放已经接触所述吸附性材料的大部分接纳的废水的液体出口,和用于排放具有吸附的污染物和少部分接纳的废水的吸附性材料的吸附性材料出口。低通量吸附性材料生物再生反应器系统,其用于使具有吸附的污染物的吸附性材料保持呈悬浮一定时间,该时间足以允许微生物消化吸附的有机污染物。所述吸附性材料生物再生反应器系统包括:用于从所述高通量吸附系统的吸附性材料出口接纳具有吸附的污染物的吸附性材料的入口,混合液出口,和与所述高通量吸附系统的吸附性材料源相连的吸附性材料出口。
附图说明
将以进一步细节及参考附图说明本发明如下,全部是说明或涉及本发明的装置、系统及方法。附图中,并未照比例绘制,各个类似组件在各幅图间以类似的组件符号表示。附图中:
图1为使用生物反应器的一种膜生物反应器系统的示意图,其含有一个或多个区段,带有悬浮的吸附性材料;
图2为使用吸附性材料的废水处理系统的实施方案的示意图,该吸附性材料在本发明中使用的膜操作系统的生物反应器上游中以再生和/或再激活吸附性材料;
图3为废水处理系统的示意图,该系统包括高通量吸附性材料处理系统的实施方案,包括混合区段和吸附性材料沉积和液体倾泻区段(和具有生物再生反应器和膜操作系统的低通量吸附性材料生物再生反应器一体化);
图4为废水处理系统的示意图,该系统包括高通量吸附性材料处理系统,包括混合区段和吸附性材料沉积和液体分离区段的另一实施方案(和低通量吸附性材料膜生物再生反应器一体化);
图5为废水处理系统的示意图,该系统包括高通量吸附性材料处理系统(和低通量吸附性材料生物再生反应器的另一实施方案一体化);
图6为废水处理系统的示意图,该系统包括高通量吸附性材料处理系统的进一步实施方案(和低通量吸附性材料生物再生反应器一体化);
图7为根据本发明的一个实施方案的处理废水的流程的示意图,包括主要固体的辐射;以及
图8为根据本发明的另一个实施方案的处理废水的流程的示意图,包括主要固体的辐射。
具体实施方式
如此处使用,“生物难处理的化合物”表示废水中当接触微生物时难以被生物分解的该等类别化学需氧量(“COD”)化合物(有机和/或无机)。“生物难处理的化合物”可具有各种难处理的程度性质,自轻度难处理至高度难处理的范围。
“生物抑制性化合物”表示废水中抑制生物分解程序的该等化合物(有机和/或无机)。
“生物不稳定性”表示容易消化的简单有机物,诸如人类及动物排泄物、食物废料,及无机物,诸如氨及磷系化合物。
“COD”或“化学需氧量”表示导致有机物质氧化及无机化学品诸如氨及亚硝酸盐氧化的化学反应期间,废物耗用氧的能力测量值。COD测量包括生物不稳定性、生物抑制性及生物难处理的化合物。
“BOD5”表示在5天期间内可生物降解的生物需氧化合物。
“混合液悬浮固体”或“MLSS”表示存在于接受处理的废水中的溶解的及悬浮的微生物及其他物质;“混合液挥发性悬浮固体”或“MLVSS”表示MLSS中的活性微生物;以及“混合液”表示废水、MLSS和MLVSS的组合型混合物。
如此处使用,“吸附剂”或“吸附性材料”表示粒状活性炭包括已经处理提供对预定化学品种类、金属或其他出现于待处理的废水中的化合物的亲和力;以粒状铁为主的化合物例如氧化铁复合物;合成树脂;以及粒状硅酸铝复合物中的一者或多者。
在描述于自系统的一个区段至另一个区段例如自含有悬浮吸附性材料的生物反应器至膜操作系统的流出物中吸附性材料存在的上下文中,“基本上不含”或“基本上免除”一词指限制送至膜操作系统的吸附性材料量于不会对其中的膜过滤程序要求的效率造成不良影响的量。例如,在某些实施方案中,“基本上不含”或“基本上免除”指在给定系统于生物反应器或一个或多个生物反应区段内部所使用的预定量吸附性材料,达至少约80体积%;在额外实施方案中至少约90体积%,及又其他实施方案中至少约95体积%,及又进一步其他实施方案中至少约99体积%。但本领域技术人员基在此处教示应该理解这些百分比仅供举例说明之用,而可依据下列因素而改变,包括但不限于所使用的膜类型及其防蚀性、要求的流出物质量、在一给定系统所使用的预定量的吸附性材料,及其他因素。
本发明涉及废水处理系统及方法。如此处使用,“废水”(例如流入物流101,201,301,401,501,601或701)定义流入废水处理系统的任何待处理的水,诸如地表水、地下水、及来自工业、农业及都市来源的废水流,其具有可生物分解材料污染物、可被细菌分解的无机物、不稳定性有机化合物、生物难处理的化合物、和/或生物抑制性化合物。
来自工业及都市来源的废水典型地含有生物固体,及惰性物质及有机物,包括生物抑制性及生物难处理的有机物。生物抑制性及生物难处理的有机物的实例包括合成有机化学品,诸如聚电解质处理化学品。其他生物抑制性及生物难处理的有机物包括多氯联苯类、多环芳香烃类、多氯二苯并-对-二噁英类、及多氯二苯并呋喃类。内分泌干扰性化合物也属一类生物抑制性及生物难处理的有机物,其可能影响有机体的激素系统且出现于环境。内分泌干扰性化合物包括:烷基酚化合物,诸如用于去除油脂的壬基酚及出现于避孕药的天然激素及合成类固醇,诸如17-b-雌二醇、雌酮、睾固酮、乙炔基雌二醇。
欲处理的废水的其他实例包括:高强度废水;低强度废水;以及来自掩埋场的渗滤物。水也可经处理来去除病毒。废水中的污染物的其他实例包括:阻燃剂、溶剂、稳定剂、多氯联苯类(PCB);二噁英类;呋喃类;多核芳香化合物(PNA);药物、石油;石化产物;石化副产物;纤维素;来自纸浆造纸工业的废物产物;磷;磷化合物及衍生物;以及农业化学品诸如衍生自或用于制造肥料、杀虫剂、及除草剂的化学品。
来自工业及都市来源的废水也含有源自于水处理过程而随后难以去除的微量组成化合物。水处理过程所导入的微量成分的实例包括亚硝胺类,诸如可能自专有的阳离子及阴离子树脂释放的N-亚硝二甲胺(NDMA)。
如此处使用,“低浓度废水”是指具有低浓度的生物不稳定性(即,易于消化)有机化合物的废水,该浓度低于在常规次级处理系统(例如激活的淤泥曝气过程或膜生物反应器)中典型地支持生物处理系统的流入物物料浓度。另外,如此处使用,“低浓度废水”包括在传统处理生物系统中不易于生物氧化的流入物,因为废水强度太低或者含有不易生物降解的某些化合物。它们还可含有完全耐受生物降解的化合物、生物抑制性化合物和/或生物难处理的化合物、或这些化合物的组合,其不能生物氧化,或者比典型生物氧化系统可得的情况要求更长的残留时间。
另外,如此处使用,“经历上游废水处理的流出物”通常表示来自一个或多个常规或任何稍后开发的废水处理系统的流出物。“经历上游废水处理的流出物”可以衍生自经历初级和/或主要处理方法和次级处理方法(例如激活的淤泥曝气方法或膜生物反应器)的废水,并且通常具有低浓度的生物不稳定性(即,易于消化)有机化合物,其典型地将不足以在大部分常规次级处理系统(例如激活的淤泥曝气方法或膜生物反应器)中支持生物反应。另外,在本发明某些实施方案中还涵盖的是,“经历上游废水处理的流出物”是也已经经历一个或多个常规或稍后开发的三级处理的流出物,例如在某些废水处理工厂中,来自三级处理系统的流出物可以含有超过批准的排放水平的污染物水平,并且这种流出物可以被本发明的系统和方法所处理。在进一步实施方案中,“经历上游废水处理的流出物”可以衍生自主要分离系统,其中基本上所有的固体都已经除去,例如沉积器、澄清池或其他固体分离装置中的一个或多个。在甚至进一步实施方案中,“经历上游废水处理的流出物”可以包括已经经历主要分离系统并稍后进行辐射的废水。
一般而言,废水处理设施使用多个处理阶段来清洁水,让水可安全地释放入水体,诸如湖泊、河川、及溪流。目前,许多卫生污水处理厂包括初步处理阶段,其中使用机械装置来去除大型对象(例如,条筛),及使用砂石或砾石槽道来沉积砂石、砾石及石头。某些处理系统也包括第一阶段,此处某些脂肪、油脂及油类漂浮至表面供撇取,及较重的固体沉积至底部,及随后于有氧消化槽或无氧消化槽处理来消化生质及减低生物固体含量。
在初级和/或主要处理后,废水送至次级生物活性淤泥处理阶段。废水的生物处理广泛实施。废水常使用废弃活性淤泥处理,其中于处理槽内通过细菌作用于生物固体。活性淤泥程序涉及于曝气槽内的需氧生物处理,典型地接着为澄清池/沉积槽。沉积的淤泥循环返回曝气槽来获得充分混合液悬浮固体浓度来消化污染物。可用于处置过量生物固体例如淤泥的某些替代的道包括但不限于焚化、抛弃于掩埋场、或若不含有毒组分则可用作为肥料。然后废水被送至次级生物激活的淤泥处理阶段。广泛实施废水的生物处理。废水通常使用废物激活的淤泥来处理,其中生物固体通过处理槽内的细菌发挥作用。激活的淤泥过程包括在曝气槽中、典型地之间在澄清池/沉积槽中进行需氧生物处理。沉积的淤泥循环回到曝气槽以保持足够的混合液悬浮固体浓度以消化污染物。处置过量生物固体(例如淤泥)的一些可替换的手段包括但不限于焚化、在垃圾填埋地处置或用作肥料(如果没有毒性组分的话)。
在曝气槽内,含氧气体诸如空气或纯氧添加至混合液。氧气典型由细菌用于生物氧化溶解于或携载于废水进料的悬浮液。生物氧化典型为可用于自废水去除有机污染物及其他无机化合物诸如氨及磷化合物的最低成本氧化法;且为最广用于处理污染有可生物处理有机化合物的废水的废水处理系统。含有对抗生物分解的化学物、生物抑制性化合物和/或生物难处理的化合物的废水可能无法通过常规简单生物废水处理系统充分处理。这些化合物可于水停留于特定处理槽内的停留时间被细菌作用。因水停留时间通常不足以进行足量生物抑制性化合物和/或生物难处理的化合物的生物氧化,可能一些部分的这些顽抗的化合物未被足够处理或摧毁,而未改变地通过处理程序,或排放于流出物或过量残余淤泥前只经部分处理。
来自曝气槽的混合液流出物典型地进入澄清池/沉积槽,其中淤泥包括通过重力沉积的浓缩的混合液悬浮固体。沉积的生物质废气(即排放)至厂外处置或循环回到曝气槽。然而,基于废水和经济需要,一些生物氧化系统使用不同处理方法而自废水流出物中去除固体。澄清池/沉积槽可以膜操作系统或其他单元操作替代,诸如溶解/诱导气体漂浮装置。来自澄清池/沉积槽、操作系统或溶解/诱导气体漂浮装置的液体流出物经排放或于排放前接受进一步处理。从澄清/分离装置除去的固体返回到曝气槽作为返回的激活的淤泥以在系统中保持足够浓度的细菌。某些部分该返回的激活的淤泥(也称为废物激活的淤泥)定期自此循环管线中移出以便控制混合液中细菌的浓度。然后该废物激活的淤泥以预定方式处置。
在常规工业生物废水处理厂技术的一项近期进展包括添加粉末活性炭颗粒至混合液。在利用粉末活性炭的生物处理法中,有机物可吸附至活性炭上且保留于处理槽内历经水停留时间,其类似淤泥停留时间,因而进行吸附处理及延长的生物处理,导致某些生物抑制性或生物难处理的化合物的移除增加。这些程序中,某些有机及无机化合物以物理方式吸附至粉末活性炭颗粒表面。然后在其存在于系统的过程中这些化合物中的至少一些部分生物降解(例如需氧过程中的氧化)延长的时间,并且当其从系统中废气的时候剩余物被活性炭吸附和排放。
粉末活性炭由于可吸附生物抑制性或生物难处理的化合物,故已经用在常规生物处理厂,通过提供含较低浓度这些污染物的流出物。混合液内含括粉末活性炭提供多项操作效果。碳提供悬浮介质生物处理系统的优点,包括污染物去除增加及对扰动状况的耐受性增高。此外,碳允许生物抑制性或生物难处理的化合物吸附于碳表面上及暴露于生物处理历经比常规生物处理系统显著更长的时间,通过提供类似固定膜系统的效果。碳也允许某些细菌品的演化更加可消化生物抑制性有机物质。碳连续循环返回含回送的活性淤泥的曝气槽,亦即淤泥停留时间,表示细菌可作用于消化吸附于碳表面上的生物抑制性有机化合物的时间比生物处理系统的水停留时间更长。此种方法也导致碳的生物再生,及比较于简单填充床碳过滤系统,允许碳去除显著更大量生物抑制性或生物难处理的化合物,简单填充床碳过滤系统一旦于碳的吸附能力耗尽时也需要频繁更换碳或昂贵的碳物理再生。混合液内的碳也吸附某些化合物,因而提供不含或基本上含有较低浓度无法通过常规生物氧化处理或对生物分解全然具有抗性的化合物的流出物。已知的粉末活性炭系统的一个实例由西门子水技术公司(Siemens Water Technologies)以商标供应。
但因为生物的生长及有机及无机化合物的吸附二者于粉末形式的活性炭上发生,所以浪费过量固体。此外,粉末活性炭自处理程序的排放伴以生物固体的去除,因而须连续补充。系统中污染物除去的主要方式是吸附,其是吸附到粉末活性炭上的有机物的生物再生的二级函数,粉末活性炭不会保留在系统中足够的时间以进行生物再生(将是主要处理机理)。
逐渐增多地,卫生废水使用膜生物反应器技术处理,其提供改良的流出物质量,较小的物理足迹(每单位面积可处理的废水较多),对湍流的耐受性增加,处理难处理废水的能力改良,及多项其他操作优势。例如,含有高总溶解固体的废水能在常规澄清池/沉积槽遭遇沉积问题,而要求显著更难操作的固体分离装置诸如溶解/诱导气体漂浮装置或其他固体去除系统。虽然膜生物反应器可去除澄清池/沉积槽系统遭遇的沉积问题,但经常有未出现在常规使用澄清池的系统的膜秽垢及发泡问题。膜秽垢可能因来自于混合液悬浮固体中的生物生命形式分解结果所得胞外聚合化合物、有机物质诸如油类的蓄积、或经由无机物质引起的剥落结果。
此外,至今膜生物反应器未曾于商业上用于粉末活性炭的添加。曾经使用粉末活性炭于利用膜来进行过滤的表面水处理系统。但曾报告这些利用膜及粉末活性炭的表面水处理系统有碳磨蚀膜及碳持久性堵塞和/或秽垢膜的问题。
排放或再使用前须处理的工业废水经常包括油性废水,其可能含有乳化烃类。油性废水可能来自于多种工业,包括钢业及铝业、化学加工业、汽车工业、洗衣业、及原油制造业及石油精炼业。如前文讨论,某种量的未经乳化油及其他烃类可于初级处理程序移除,此处漂浮的油自顶上撇取。但生物次级废水程序通常采用于自废水去除剩余油,典型地为溶解的及乳化的油,但可能存在有某些自由态油。初级处理后典型剩余的烃类包括润滑剂、切削流体、焦油、原油、柴油、汽油、煤油、喷射机燃料等。这些烃类典型于水排放入环境或水再用于工业过程前须被去除。除了政府法规及生态考虑外,剩余烃的有效去除也有利,原因在于经适当处理的废水可用于多种工业方法,及免除原水处理成本,及减少法规上的排放问题。
须处理的其他类型废水包括来自其他工业产品,诸如药品、多种货品、农产品(例如肥料、杀虫剂、除草剂)的制造及造纸以及医疗废水的污染工序水。
膜生物反应器商业上部署用于油性/工业废水的处理发展缓慢,主要原因在于与油及化学品秽垢膜相关联的维护问题。测试于膜生物反应器(其中添加粉末活性炭至混合液)处理的工业/油性废水指示在常规生物废水处理系统包括粉末活性炭观察得的相同处理优点。也发现也可达成使用膜生物反应器的优点。有及无添加粉末活性炭的膜生物反应器并排比较验证,有添加粉末活性炭的膜生物反应器比较无添加粉末活性炭的膜生物反应器提供处理优势。此外,未添加粉末活性炭的膜生物反应器极难以操作,原因在于溶解的有机物质及额外胞外聚合化合物秽垢膜。然而,测试进一步验证:虽添加粉末活性炭提供极为有用的生物废水处理系统,但碳具有对膜产生显著量磨蚀及不可逆秽垢的不利效应。此种磨蚀及不可逆秽垢显著足以导致此种系统的操作成本极为昂贵,原因在于膜的预期使用寿命显著缩短及膜的清洁频率。
废水的传统生物氧化通常是用于除去大部分废水污染物的次级处理步骤,因为其典型地是处理废水中的有机化合物可得的最昂贵的氧化方法。另外,在较小程度上,生物系统还可以除去有机化合物中的一些,如可以被氧化(例如氨、磷酸盐)、粘附至生物质或可以被生物质吸附的有机化合物中的一些。如果其被生物质吸附,其最终和废物激活的淤泥一起排放。
尽管生物氧化方法和其他次级处理的进展和发展,但是许多次级处理系统不能单独通过生物氧化足够处理废水进料。已经经历次级处理的废水流出物有时不具有足够低水平的有机和/或无机污染物,以允许符合规定限制来排放或再使用。因此,通常需要三级处理步骤。
常规三级处理步骤通常包括已经通过一个或多个吸附柱经历次级处理的流出物的通过,包括吸附性材料(例如活性炭),通常称为“抛光”。其他三级处理方法可包括通过一种或多种过滤器、聚结剂、UV氧化、化学氧化、其他三级处理系统或这些系统的组合来通过次级处理流出物。然而,这些三级处理系统通常较大和/或昂贵而难以操作。常规三级处理系统的麻烦的尺寸和化肥问题的主要原因是具有相对低浓度的污染物或其基本上一部分的整个次级处理流出物经历这些处理。
本发明的系统和方法克服了现有三级处理系统的缺陷,并且在某些实施方案中提供可以用作次级或三级处理系统的系统,在待处理的废水是低浓度废水时尤其是如此。
本发明涉及用于处理废水流的改善的废水处理方法和系统,该废水流的流速类似于具有低通量的生物处理系统中的流入物流速(即高通量)。这通过下列方式来实现:使高通量流的污染物吸附到吸附性材料上,然后在悬浮的介质膜生物再生反应器系统中生物再生和/或再激活吸附性材料。该系统特别有用于加工低浓度废水,该低浓度废水因为低水平的生物不稳定性化合物而不是特别适用于常规生物废水处理。
在某些实施方案中,用于低污染物浓度废水的废水处理方法和系统可用作三级处理系统,其中已经进行次级处理和/或其他其他处理的流出物的大量部分暴露于高通量吸附性材料处理,并且具有相对高水平的吸附到吸附性材料上的污染物的少部分进行低通量吸附剂生物再生处理系统以再生吸附性材料。
本发明的处理废水的系统和方法涵盖这样的处理系统,其包括与低通量吸附性材料生物再生反应器一体的高通量吸附性材料处理系统。通常,高通量吸附性材料处理系统包括一个或多个单元操作,其用于混合低浓度废水或其他废水(含有完全耐受生物降解的化合物、生物抑制性化合物和/或生物难处理的化合物、或这些化合物的组合)与吸附性材料,并且倾泻具有降低浓度的污染物的液体流出物。
具有来自低浓度废水的污染物(吸附到其表面上和/或孔壁的表面上)的吸附性材料送至低通量吸附性材料生物再生反应器,其中生物微生物降解有机和某些无机污染物,并且提供具有更低浓度的这些化合物的吸附性材料,使得其可以作为新鲜吸附剂而再使用。在其中生物反应器是具有氧气源以支持需氧微生物的某些实施方案中,生物反应包括生物氧化,其中废水中的有机污染物通常代谢为二氧化碳和水。过量生物质从吸附性材料除去,并且再生的吸附性材料循环至高通量吸附性材料处理系统。或者,低通量吸附性材料生物反应器可以是厌氧生物再生反应器系统,例如在其中待吸附到吸附性材料上的化合物在厌氧反应器更容易降解的实施方案中。
根据一个或多个实施方案,本发明使用这样的系统,包括悬浮的介质膜生物反应器系统,例如颗粒活性炭曝气反应器,然后是膜操作系统,其中吸附性材料基本上防止进入膜操作系统,如PCT公开号WO/09085252中所述,其通过引用并入本文。
在一个优选的实施方案中,本发明提供三级处理方法,包括下列步骤:混合吸附性材料与低浓度废水;沉积吸附性材料;倾泻或者除去吸附性材料接触的水;在生物再生反应器中处理具有吸附的污染物的吸附性材料;在膜操作系统中处理来自生物反应器的混合液,包括混合液悬浮固体和混合的挥发性液体悬浮固体(即基本上不含吸附性材料);从吸附性材料除去过量生物质;以及循环吸附性材料至在高通量吸附性材料处理系统中将其与低浓度废水混合的步骤中。有利地,倾泻的上清包括低浓度废水的大量部分。因此,生物再生反应器和膜操作系统用于仅处理之前经历现有技术的其他处理的全部低浓度废水流出物的体积的一小部分。因而提供用于低浓度废水的成本有效的处理,特别是相比于典型地用于从次级处理区段排放的抛光废水的常规三级处理系统例如颗粒活性炭吸附柱。这些系统典型地使用能量密集再生方法来再生吸附性材料,例如热空气再生或气流再生法。
本发明的低浓度废水处理系统包括吸附性材料,在某些优选实施方案中其是颗粒活性炭,其在一个或多个容器中被布置以吸附低浓度的有机化合物。随后该吸附的有机物在低通量吸附性材料生物反应器中暴露于生物微生物一定时间,该时间长于颗粒活性炭过滤器中典型的水压残留时间。本发明的低浓度废水处理系统和方法浓缩来自已经进行上游废水处理的流出物的这些有机化合物。因此,当用作三级处理系统时,本发明的低浓度废水处理系统和方法允许有机污染物暴露于细菌一定时间,该时间长于在常规次级处理系统中基于上游废水处理的通量而可以标称实现的那些。因此,生物反应(例如在其中微生物是需氧细菌的实施方案中是生物氧化)的时间基本上减少。使用生物再生而不是能量密集系统(其典型地用于抛光过滤器中的再生的颗粒活性炭),这是更成本有效的再生系统。
根据一个或多个实施方案,本发明的低浓度废水处理系统包括吸附性材料,在某些优选实施方案中是颗粒活性炭,在一个或多个容器中被布置以吸附低浓度的有机化合物。本发明的低浓度废水处理系统和方法浓缩来自已经进行上游废水处理的流出物的这些有机化合物。因此,当用作三级处理系统时,本发明的低浓度废水处理系统和方法允许有机污染物暴露于细菌一定时间,该时间长于在常规三级处理系统(例如碳抛光系统)中基于上游废水处理的通量而可以标称实现的那些。因此,生物反应(例如在其中微生物是需氧细菌的实施方案中是生物氧化)的时间基本上长于在处理整个流入物流动的生物反应器中可以实现的那些。
另外,根据一个或多个实施方案,本发明的低浓度废水处理系统和方法使用吸附性材料(例如颗粒活性炭)以从低浓度废水(例如来自次级处理系统的全流低浓度废水流)吸附污染物,并且将具有吸附的污染物的吸附性材料转移至相对较小的膜生物反应器系统,该系统的布置类似于共审待决和共同拥有的PCT申请号PCT/US10/38644中所述的膜生物反应器系统(其通过引用并入本文),和PCT公开号WO/09085252中所述的(其也通过引用并入本文)。吸附到吸附性材料上的有机化合物在悬浮的介质膜生物反应器系统中生物处理,并且因此,克服下列需要:处理来自上游废水处理系统的完全废水流动和有机物负载。在其中悬浮的介质膜生物反应器系统是需氧系统的实施方案中,通过使用来自空气扩散器和/或其他源的空气或氧气,生物质供应于生物氧化所需要的氧气。在其中悬浮的介质膜生物反应器系统是厌氧生物反应器的实施方案中,系统在需要条件下操作以厌氧降解化合物。因此相对较小的膜生物反应器系统可以处理有机化合物,该有机化合物以低浓度存在于经历上游废水处理的流出物的高通量流。
另外,尽管本发明的某些实施方案描述为处理来自一个或多个上游废水处理过程(包括主要和/或次级过程)的流出物的三级系统和方法,本领域技术人员将意识到,本发明的系统和方法可以用于处理直接来自某些过程的废水流出物,该过程具有低浓度的有机物,例如将不会有效地支持常规生物反应器中的生物过程。
图1和2表示适于与本发明的系统一体的悬浮的介质膜生物反应器系统,本发明的系统用于处理低浓度废水,特定地,用于在高通量吸附步骤中再生和/或再激活具有其上吸附的污染物的吸附性材料。这些系统,描述于PCT申请号PCT/US10/38644和PCT公开号WO/09085252,提供在膜操作系统上游的生物反应器系统中使用吸附性材料例如颗粒活性炭。特定地,该系统包括分离次系统,其基本上防止吸附性材料送至膜操作系统,从而磨损、弄污或损坏其中的膜。
现在参考图1,示意显示废水处理系统100包括膜操作系统104上游的生物反应器系统102。在某些实施方案中,生物反应器系统102包括单一生物反应器容器。在另外的实施方案中,生物反应器系统102包括多个生物反应器容器、一个生物反应器容器划分为分开区段、或多个生物反应器容器其中部分或全部划分为分开区段。个别反应器容器或分隔区段一般在此处称作为生物反应区段。在使用悬浮的介质膜生物反应器系统的废水处理操作期间,吸附性材料连同微生物于全部生物反应区段或生物反应区段总数的子集维持呈悬浮状。膜操作系统104使用此处所述分离次系统中的一者或多者维持基本上不含吸附性材料。流入废水流106自主要处理系统、初级筛选系统、或呈先前未经处理的废水直接串流导入。在进一步实施方案中,流入废水流106可为先前经处理的废水,例如来自一个或多个上游生物反应器的流出物,包括但不限于有氧生物反应器、缺氧生物反应器、连续流反应器、排序批次反应器、或任何数目的可生物分解有机物及在某些实施方案中某些无机化合物的其他类型生物处理系统。
生物反应器和/或某些生物反应器区段可为各型生物反应器,包括但不限于需氧生物反应器、缺氧生物反应器、厌氧生物反应器、连续流动反应器、排序批次反应器、滴滤过滤器、或任何数目的可生物分解有机物及于某些实施方案中某些无机化合物的其他类型生物处理系统。
此外,用在此处的生物反应器和/或某些生物反应器区段可为适合结合悬浮系统而悬浮吸附性材料的任何尺寸或形状。例如,容器可具有任一种形状的截面积,诸如圆形、椭圆形、方形、矩形、或任何其他不规则形状。于某些实施方案中,容器可经构造或修改来促进吸附性材料的适当悬浮。
图2示意显示用以制造已处理的流出物的废水处理系统200的处理流程图,该流出物具有减低浓度的生物不稳定性、生物难处理的、生物抑制性和/或有机及无机化合物其全然对生物分解有抗性。系统200通常包括生物反应器202及膜操作系统204。生物反应器202包括用以接纳废水的入口206及用以排放已经经过生物处理的流出物包括混合液挥发性悬浮固体和/或混合液至膜操作系统204的出口208。
生物反应器202包括具有多孔236的吸附性材料234的分散团块,及有效量的一种或多种微生物238,二者皆附着至吸附性材料及自由漂浮而与混合液中的吸附性材料分开用于作用于混合液中的生物不稳定性及某些生物难处理的、生物抑制性化合物。吸附性材料吸附位置,包括吸附颗粒或颗粒外表面及孔隙236壁面初步用作为生物不稳定性、生物难处理的、生物抑制性和/或有机及无机化合物其全然对生物分解有抗性的吸附位置。此外微生物238可吸附至吸附性材料的吸附位置。如此允许某些生物难处理的和/或生物抑制性化合物的优选消化程度而无需成比例地较长水停留时间及淤泥停留时间,原因在于实际上有些生物难处理的和/或生物抑制性化合物保留吸附性材料上长时间,该吸附性材料隔离或保留于生物反应器。
通常生物不稳定性及某些无机物将相对快速消化,主要通过未吸附至吸附性材料的微生物,亦即混合液中自由漂浮的微生物。有些组分包括全然对生物分解有抗性的有机物及无机物以及极为顽抗的生物难处理的及生物抑制性化合物将保留吸附在吸附性材料上,或可通过反应器内自由漂浮的生物材料吸附和/或吸收。最后,这些无法消化的化合物将浓缩在吸附剂上至这样的点,其中需要除去或洗涤和更换吸附剂来维持流出物质量于可接受的水平。当吸附性材料留在悬浮的介质膜生物反应器系统时,微生物生长且被保留在吸附性材料上,通常历经够长时间足以分解已经浓缩在该吸附性材料上的该特定流入废水中的至少一部分的某些生物难处理的和/或生物抑制性化合物。虽然不欲受理论所限,但相信微生物最终演化为成熟菌株,带有分解该特定流入废水中的至少一部分某些难以处理的化合物所需的特殊驯化。经历额外时间,例如数日至数周,随着系统的变驯化,其中含有某些生物难处理的和/或生物抑制性化合物的吸附性材料维持于系统,具有高度专一性的微生物变成第二代、第三代、及更高世代,通过提高其生物分解存在于该特定流入废水中的至少一部分某些特殊生物难处理的和/或生物抑制性化合物的效果。
各流入废水可能缺乏出现于生物反应器202的生物有利的某些营养素。另外,某些流入的废水可能具有过酸或过碱的pH值。因此,如对本领域技术人员显然易知,磷、氮、及pH调整材料、补充的简单碳或化学品可添加来维持生物反应器202内的最佳营养素比及pH值用于生物生命及相关活性,包括生物氧化。
来自于生物反应器202的流出物透过分离次系统222被导入膜操作系统204入口210。已经于生物反应器202处理的此种转运的混合液基本上不含吸附性材料。在膜操作系统204中,废水通过一个或多个微滤膜或超滤膜,通过去除或减少澄清和/或三级过滤的需要。膜渗透物亦即通过膜240的液体经由出口212而自膜操作系统204排放。膜截留物亦即来自于生物反应器202流出物的固体包括活性淤泥,则透过回送活性淤泥管线214被送返生物反应器202。
来自生物反应器202的用过的吸附性材料例如粒状活性炭,无法再有效吸附污染物,诸如某些全然对生物分解有抗性的化合物、生物难处理的化合物及生物抑制性化合物,这些吸附性材料可透过生202的混合液废物排放埠口216去除。废物出口218也可连结至激活的淤泥管线214来将部分或全部回送的活性淤泥处置,例如控制混合液和/或培养浓度。淤泥当增至某一点时自带有废物活性淤泥的装置排放,在该点,混合液固体浓度过高因而摧毁特定膜生物反应器系统的操作。此外,混合液废物排放埠口216可用于去除部分吸附性材料,通过去除某些部分生物难处理的化合物、生物抑制性化合物、和/或全然对生物分解有抗性的有机及无机化合物,而非来自带有废物活性淤泥的回送活性淤泥管线,结果导致排放物中较低浓度的这些生物难处理的化合物、生物抑制性化合物、和/或全然对生物分解有抗性的有机及无机化合物,及膜生物反应器内更稳定的生质。然后可添加等量新鲜或再生的吸附性材料以取代这样除去的吸附剂。
初级筛选和/或分离系统220可设于生物反应器202入口206的上游。此初步筛选和/或分离系统可包括溶氧漂浮系统、粗网筛、或本领域已知的该型用以分离悬浮物质的这些和/或其他初步处理装置。任选地,可删除初级筛选和/或分离系统220,或可含括其他类型初级处理装置,取决于接受处理的特定废水。
为了防止至少大部分吸附性材料234进入膜操作系统204及造成膜240非期望的磨蚀和/或秽垢,提供分离次系统222。如图所示,图2中,分离次系统222是位于生物反应器202出口近端。但在某些实施方案中,分离次系统222可位于生物反应器202下游的一个分开容器内。任一种情况下,分离次系统222包括用以防止至少大部分吸附剂234与膜操作系统204间接触的装置和/或结构。分离次系统222可包括筛选装置、沉积区段、和/或其他适当分离装置中的一者或多者。
用于悬浮的介质膜生物反应器系统的某些实施方案的适当类型网筛或筛选装置包括楔形丝网筛、金属或塑料孔板、或织造织物,呈圆柱或扁平组态及排列成各种角度,包括垂直取向、水平取向、或介于其间的任何角度。在额外实施方案中,可采用活性筛选装置,诸如转鼓筛、振摇筛或其他移动筛选装置。一般而言,用于其他分离次系统222为筛选装置的系统,网眼大小小于所使用的吸附性材料有效粒径的下限。
其他类型的分离次系统也可用于该分离次系统作为筛选装置的替代的道或与其组合使用。例如,容后详述,可设置沉积区段,其中吸附性材料通过重力而沉积。
在其他实施方案中,或结合前述实施方案中,分离次系统可包括离心系统(例如,水力旋风器、离心机等)、曝气沈砂池、漂浮系统(诸如诱导气体漂浮或溶气),或其他已知装置。
任选地,或组合生物反应器202出口近端的分离次系统222,分离次系统可设在生物反应器202与膜操作系统204(图中未显示)之间。此种替代的或额外的分离次系统就型式和/或尺寸而言可与分离次系统222相同或互异。例如,在某些实施方案中,沉积区段、澄清池、水力旋风器分离器、离心机、或其组合可设置作为生物反应器202与膜操作系统204间的分开单元操作。
注意,分离次系统222高度有效用于防止其初始尺寸的吸附性材料通过至膜操作系统。在某些优选实施方案中,分离次系统222基本上防止全部吸附性材料234通过至膜操作系统204。但在系统200操作期间,多项吸附性材料的磨耗起因包括颗粒间碰撞、剪切、循环、或固定设备或移动设备内部的颗粒撞击皆可能造成过小而无法有效保留在分离次系统222的颗粒形成。为了减少对膜的伤害及吸附性材料耗损而浪费,某些实施方案包括分离次系统222,该分离次系统222可防止基本上全部在其初始尺寸的约70%至约80%的吸附性材料234通过。可接受的初始尺寸的缩小百分比可由本领域技术人员例如基于经济评估决定。若尺寸的缩小导致颗粒通筛选选系统的增加,则膜将出现磨蚀增加。如此,基于磨蚀与最终更换膜的成本,比较减少破损的吸附性材料相关联的成本、及可防止远比初始吸附性材料颗粒或颗粒更小的颗粒通过的分离次系统相关联的处理及操作成本,可使用成本-效益分析来判定哪一种是可接受的吸附性材料缩小百分比。此外,在某些实施方案中,期望某种程度的颗粒间碰撞、或固定设备或移动设备内部的颗粒撞击来自吸附性材料外表面剥脱过量生质。
来自生物反应器202已经筛选或分离的混合液流出物可被泵送或通过动力流动(取决于该特定系统的设计)入膜操作系统204。在使用外部分离次系统(图中未显示)的系统中,装置优选组配来使来自混合液分离的吸附性材料通过外部细网筛或分离次系统而通过重力落回生物反应器202内。
吸附性材料诸如粒状活性炭例如经适当预先湿润而形成吸附性材浆料,可在系统200的各点,例如自吸附性材料源229添加至废水。如图2所示,吸附性材料可导入一个或多个位置230a、230b、230c及230d。例如,吸附性材料可添加至初步筛选系统220下游进料流(例如,位置230a)。任选地,或组合地,吸附性材料可直接添加至生物反应器202(亦即位置230b)。在某些实施方案中,吸附性材料可透过回送活性淤泥管线214(例如,位置230c)导入。在额外实施方案中,可能期望添加吸附性材料于初步筛选系统220上游(例如,位置230d),此处经由含括筛选允许吸附性材料通过及进入生物反应器202,初步筛选系统220特别设计用于此项应用。混合液通过分离次系统222,及吸附性材料基本上防止进入带有混合液悬浮固体的膜操作系统204。
当吸附性材料留在系统中且暴露于废水成分,包括生物难处理的化合物、生物抑制性化合物、和/或全然对生物分解有抗性的有机及无机化合物时,部分或全部吸附性材料将变成无法有效用于处理废水成分,亦即吸附能力减低。如此导致较高浓度的这些成分进入膜操作系统204,此处其通过膜,及与膜流出物212一起排放。此外,吸附性材料因被覆以细菌、多醣类和/或胞外聚合物质而变无效。此被覆层可能达阻断孔口位置的程度,因而阻止接近生物难处理的化合物、生物抑制性化合物、和/或全然对生物分解有抗性的有机及无机化合物,及结果妨碍吸附及抑制生物分解。在悬浮的介质膜生物反应器系统的某些实施方案中,此被覆层可通过系统中的一项或多项机制产生的剪切作用而去除,诸如悬浮于混合液的吸附性材料颗粒间的碰撞或吸附性材料悬浮和/或移动相关联的剪切力。
当吸附性材料已经丧失其用以减少生物难处理的化合物、生物抑制性化合物、和/或全然对生物分解有抗性的有机及无机化合物的全部或部分效果时,部分吸附性材料可经由废料埠口216废弃,例如经由排放含有吸附性材料分散于其中的部分混合液。
如前文说明,另外的新鲜或再生的吸附性材料可透过吸附性材料导入装置229和/或于一个或多个适当添加位置导入系统内部。可监视流入废水及流出废水COD化合物浓度和/或无机化合物浓度来判定何时系统内的吸附性材料及其伴随的生质遭逢效果减低。流入COD与流出COD间的差除以流入COD浓度的作图将显示混合液内吸附性材料功效的递减损耗。同一种类型作图可用于监视系统的无机物去除能力或特定有机物质的去除。自进料流的COD去除量可提供自废水进料去除的生物难处理的化合物和/或生物抑制性化合物的相对量。当系统操作员有了处理特定废水的经验后,将可判定何时此比值指示需要去除生物反应器内的部分吸附性材料而以新制的吸附性材料替代的时间点。因此,系统对生物难处理的化合物、生物抑制性化合物、和/或全然对生物分解有抗性的有机及无机化合物要求的功效将重新获得,例如制造符合法规要求的流出物。取样与分析流出物有关特定有机及无机化合物浓度也可用于判定何时混合液内的吸附性材料及其伴随的生质遭逢效果减低且须开始部分更换。
当流出物的特定有机或无机化合物开始趋近于设施允许这些化合物的排放浓度时,悬浮的介质膜生物反应器系统200的操作员可开始更换部分吸附性材料。允许排放浓度典型地受设施的证照所限,例如美国环境保护署制定的国家污染物质排放清除系统(NPDES)许可计划决定,或于特定州或国家的类似主管机关决定。随着操作员以其特定废水操作此系统获得经验时,将可预期何时应开始更换吸附性材料。当操作员判定吸附性材料及其伴随的生质的功效趋近于无法达成要求的流出物的污染物浓度时,可停止经由废弃来自管线218的回送的活性淤泥所执行的正常废弃过量生质,过量生质及伴随的吸附性材料透过废物埠口216而自生物反应器202废弃。废弃的材料量由维持混合液悬浮固体于该特定膜生物反应器系统的最佳操作范围内要求决定。在更换部分吸附性材料后,由操作员监视流出物来判定是否已经恢复要求的污染物去除效率。基于操作经验,视需要可作额外更换。
在某些实施方案中,如果需要,系统和/或系统的个别装置可包括控制器来监视及调整系统。控制器可依期望的操作条件指导系统内部的任何参数,该等条件例如基于有关流出物流的政府法规。控制器可基于位于于系统或个别装置内部的传感器或定时器所产生的一个或多个信号而关联各个潜在流量调整或调节阀门、进料器或泵。控制器也可基于位于系统或个别装置内部的传感器或定时器所产生的一个或多个信号,其指示特定趋势,例如历经一段预定时间系统的特性或性质的向上或向下趋势,而关联各个潜在流量调整或调节阀门、进料器或泵。例如,在流出物流中的传感器可产生信号指示污染物浓度,诸如生物难处理的化合物、生物抑制性化合物、和/或全然对生物分解有抗性的有机及无机化合物已达预定数值或趋势,或指示COD程度已经达到预定值或趋势,从而触发控制器来自传感器上游或下游或于传感器执行某些动作。此项动作可包括自生物反应器去除吸附性材料、添加新的或已再生的吸附性材料至生物反应器、添加不同型吸附性材料、在进料入口或系统内部任何装置的入口调整废水流量、将进料入口或系统内部任何装置的入口的液流转向至储存槽、调整生物反应器内部的气流、调整在生物反应器或其他装置内部的停留时间,及调整于生物反应器或其他装置内部的温度和/或pH中的任一者或多者。一个或多个传感器可用在系统的一个或多个装置或液流来提供在系统执行的任一项或多项程序的状态或状况的指示或特性。
悬浮的介质膜生物反应器系统的一个或多个实施方案的系统及控制器提供具有多重操作模式的多样化单元,其可响应于多个输入信号来提高废水处理系统的效率。控制器可使用一个或多个计算机系统实施,该计算机系统例如可为通用型计算机。另外,计算机系统可包括特别经编程的特用目的硬件,例如意图用于水处理系统的特殊应用集成电路(ASIC)或控制器。
计算机系统可包括一个或多个处理器,典型地连结至一个或多个存储元件,其例如可包括硬盘内存、快闪存储元件、RAM存储元件、或用以储存数据的其他组件中的任一者或多者。内存典型地用于系统操作期间用于储存程序及数据。例如,内存可用于储存参数相关历史数据历经一段时间及操作数据。软件包括实施本发明的实施方案的程序代码可储存于计算机可读和/或可写式非依电性记录介质,及然后典型地拷贝入内存,其中其然后可通过一个或多个处理器执行。此种程序代码可以多种程序语言中的任一者或其组合写程序。
计算机系统的组件可耦接一个或多个互连机构,其可包括例如整合于同一装置内部的各组件间的一个或多个总线,和/或例如驻在分开的离散装置的各组件间的网络。互连机构典型地允许通讯,例如允许数据、指令介于系统的各组件间交换。
计算机系统也包括一个或多个输入装置,例如键盘、鼠标、轨迹球、麦克风、触控面板及其他人机接口装置,以及输出装置,例如打印装置、显示屏幕、或扬声器。此外,计算机系统可含有一个或多个接口其可连结该计算机系统至通讯网路,作为可通过该系统的一个或多个组件形成的网络的额外网络或替代的道。
根据悬浮的介质膜生物反应器系统的一个或多个实施方案,一个或多个输入装置可包括用以测量系统和/或其组件的任一个或多个参数的传感器。另外,传感器、泵、或系统其他组件中的一者或多者包括计量阀门或定量进料器可连结至工作式耦接至该计算机系统的一通讯网路。前述中的任一者或多者可耦接至另一计算机系统或组件来透过一个或多个通讯网路而与该计算机系统通讯。此种配置组态允许任何传感器或信号产生装置位于距离该计算机系统的显著距离和/或允许任何传感器位于距离任何次系统和/或控制器的显著距离,同时仍然介于其间提供数据。此种通讯机制可经由利用任何适当技术包括但不限于利用无线通讯协议执行。
虽然该计算机系统举例说明为可实施悬浮的介质膜生物反应器系统和本发明的多个方面的一种类型计算机系统,但应该理解本发明并未限于于软件或举例说明显示的该计算机系统上实施。确实并非于例如通用型计算机系统上实施,控制器或其组件或其小区段另外可实施为专用系统或专用可编程逻辑控制器(PLC)或实施于分布式控制系统。另外,应该理解一个或多个悬浮的介质膜生物反应器系统和本发明的特征或方面可以软件、硬件或韧体或其任一种组合实施。例如,控制器可执行的演绎法则的一个或多个节段可于分开的计算机执行,而该等计算机又可透过一个或多个网络通讯。
在某些实施方案中,一个或多个传感器可含括在遍布系统200的位置,该等传感器与人工操作员通讯或自动化控制系统通讯来于可编程辑控制膜生物反应器系统中实施适当方法修改。在一个实施方案中,系统200包括控制器205,其可为任何经适当编程的或专用的计算机系统、PLC、或分布式控制系统。某些有机和/或无机化合物的浓度可于膜操作系统流出物212或来自生物反应器202出口208的流出物测定,如控制器205与流出物管线212及出口208与入口210间的中间流出物管线二者间的虚线连结指示。在另一实施方案中,挥发性有机化合物的浓度或系统的其他性质或特性可在入口201、206、或210中的一者或多者测定。方法控制装置业界的本领域技术人员已知的传感器包括基于雷射感应荧光的传感器或适合用于原位实时监视流出物中有机或无机化合物的浓度或系统特性的任何其他传感器。可使用的传感器包括用于水包油测量的浸没式传感器其使用UV荧光用于检测,诸如来自娣欧斯光学传感器公司(TriOS OpticalSensors)(德国奥伦堡)的环保荧光(enviroFlu)-HC传感器。传感器可包括经被覆或以其他方式经处理来防止或限制出现于透镜上的秽垢或薄膜量的透镜。当系统中的一个或多个传感器产生一种或多种有机和/或无机化合物浓度超过预定浓度的信号时,控制系统可实施响应动作,诸如适当回授动作或前传动作,包括但不限于透过废物排放埠口216去除吸附性材料(如控制器205与废物排放埠口216间的虚线连结指示);透过吸附性材料导入装置229或于其他位置中的一者(如控制器205与吸附性材料导入装置229间的虚线连结指示)添加新的或再生的吸附性材料;添加不同型吸附性材料;修改水停留时间;修改生物特性诸如微生物的简单碳食物或添加磷、氮和/或pH调整化学品;以和/或前述其他修改或本领域技术人员显然易知的修改。
注意虽然控制器205及吸附性材料导入装置229仅就图2显示,但预期这些特征及多个回授及前传能力可并入此处说明的系统中的任一者。此外,控制器205可电连结至其他组件,诸如废水进料泵及悬浮系统232。
在混合液经曝气及通过生物反应器202中的吸附性材料处理后,已处理的混合液通过分离次系统222,及基本上不含吸附性材料转运至膜操作系统204。分离次系统222防止吸附性材料进入膜操作系统204。经由维吸附性材料于生物反应器202,或维持于膜操作系统204上游,悬浮的介质膜生物反应器系统减少或消除膜操作系统槽膜被吸附性材料秽垢和/或磨蚀的机率。
膜操作系统204含有过滤膜240来自来自生物反应器212的流出物过滤膜操作系统槽204中混合液内的生质及任何其他固体。如本领域技术人员已知,这些膜240可为中空纤维膜或其他适当配置组态形式,典型地极为昂贵且高度需要保护膜免于受损,以最大化其使用寿命。在悬浮的介质膜生物反应器系统200中,操作系统槽的膜寿命延长,原因在于分离次系统222基本上减少或消除吸附性材料诸如粒状活性炭和/或任何其他固体颗粒及颗粒进入膜操作系统204。
出口212转运来自膜操作系统槽204的已过滤的流出物。回送的活性淤泥管线214将回送的活性淤泥自膜操作系统槽204转运至生物反应器202供进一步用于废水进料流的处理。过量淤泥如同常规膜生物反应器系统般使用废物管线218自系统废弃。
悬浮系统232利用喷射悬浮、机械混合、粗气泡曝气、气举悬浮系统例如通风管和通风槽、及其他类型机械或空气悬浮系统中的一者或多者来维持吸附性材料234于悬浮,同时减少吸附性材料234的磨耗。
在某些实施方案中,在初期之后,其中吸附性材料234在生物反应器202内及部分颗粒破损,吸附性材料234的部分粗糙和/或突起的表面破裂而变成粉末、细料、针状物、或其他小型微粒,吸附性材料234通过悬浮系统232维持于悬浮液稳定化,因而极少或未再进一步发生破损或尺寸的降级。
吸附性材料于混合液的浓度通常取决于特定系统参数及欲处理的废水、生物难处理的和/或生物抑制性有机或无机化合物的特定组合符合工厂的排放要求。测试指出使用典型工业混合液悬浮固体浓度(在所采用的特定膜生物反应器配置的正常范围)及吸附性材料浓度诸如粒状活性炭约20%(占总混合液悬浮固体浓度)来操作膜生物反应器足以去除存在于废水进料中的生物难处理的和/或生物抑制性化合物而未于所使用的筛选系统形成秽垢问题。可添加更高浓度的吸附性材料来提供对抗工序扰动的额外安全边际,该等扰动可能造成生物难处理的化合物、生物抑制性化合物、和/或全然对生物分解有抗性的有机及无机化合物的高于正常流出物浓度。注意此种额外吸附性材料将导致增高的筛选和/或沉积需求。基于经验或否则基于视为适合该特定系统及方法,基于对抗方法扰动期望的安全边际,可以实验方式测定可用而仍然达成所要求的流出物质量的最低吸附性材料浓度。
悬浮的介质膜生物反应器系统使用膜操作系统槽上游的吸附性材料来吸附有机及无机材料(生物难处理的、生物抑制性、或其他),以及提供悬浮介质膜生物反应器应用于多种不同配置组态。此外,多种分离装置也可用于维持吸附性材料于生物反应器。本领域技术人员显然易知,基于废水的个别特性及设施欲架设区域,不同系统将有不同经济效益。
控制来产生最佳处理条件的因素包括吸附性材料类型,包括其尺寸、形状、硬度、比重、沉积速率、要求的空气流速、或颗粒悬浮于混合液的其他悬浮需求,亦即维持粒状活性炭为悬浮介质、条筛间隔或开口尺寸及孔洞组态、混合液中的吸附性材料浓度、混合液挥发性悬浮固体浓度、混合液悬浮固体总浓度、回送的活性淤泥流速除以进入膜操作系统槽的混合液流速的比、水停留时间、及淤泥停留时间。此种最佳化提供生物难处理的化合物、容易分解的生物需氧量化合物(BOD5)、生物抑制性化合物、全然对生物分解有抗性的有机或无机化合物、及胞外聚合物质中的某些部分被吸附性材料诸如悬浮于混合液的粒状活性炭吸附。
悬浮的介质膜生物反应器系统的另一效果提供混合液悬浮固体中的微生物可黏附的位置。该方法的此一方面产生混合液挥发性悬浮固体液流,比较使用类似的水停留时间及淤泥停留时间操作但未经粒状活性炭加强的膜生物反应器,其较为稳定且对扰动状况的反应较为有弹性,且允许促进存在于废水中的有机物的生物降级。在上游过程扰动结果导致自动漂浮于混合液的某些可存活的微生物损耗的情况下,吸附性材料孔洞空间内部或表面上的微生物来源用作为种菌来源。在热震或有毒化学品冲击系统的情况下,在常规系统将造成某些细菌死亡,而部分于孔洞空间内部或表面上的微生物可能存活,如此比较不含吸附剂的常规系统,只需部分回复时间。例如,在细菌为嗜温性的系统中,吸附剂可能允许于孔洞位置内部的某些细菌于温度升高造成的热震情况下存活。同理,在细菌为嗜热性的系统中,吸附剂可能允许于孔洞位置内部的某些细菌于温度减低造成的热震情况下存活。两种情况下,培养物再驯化所需时间大为缩短。此外,在系统冲击摧毁全部或部分微生物族群的情况下,吸附性材料的存在允许持续操作,其中不稳定的、难处理的、及抑制性污染物可被吸附及同时调整微生物族群。
已经示出,各种效果导致比较常规膜生物反应器装置所能获得者,混合液更快速驯化于废水进料、减少膜的秽垢、改良对进料浓度及流速的耐受性、制造更快速去水的淤泥,带有更少油性质而更易处理,及具有较低的有机及无机杂质浓度的流出物。
使用吸附剂诸如粒状活性炭替代粉末活性炭可允许免除于粉末活性炭膜生物反应器测试中已经辨识的膜秽垢和/或磨蚀问题。
虽然使用粒状活性炭替代粉末活性炭就重量基准而言无法同等有效地使用碳,但悬浮的介质膜生物反应器系统和分离子系统基本上防止粒状活性炭进入膜操作系统,因而减少或消除膜磨蚀及秽垢的机率。但因使用粒状活性炭替代粉末活性炭结果导致对吸附效率减低的冲击,不会显著影响活性炭加强的膜生物反应器装置的总效率。
测试指出去除某些生物抑制性化合物和/或生物难处理的化合物的主要机转涉及粉末活性炭加强的装置中,生物难处理的和/或生物抑制性化合物暴露于微生物的停留时间的延长。吸附于吸附性材料诸如粒状活性炭上的混合液挥发性悬浮固体中的微生物有较长的时间来消化这些某些生物难处理的及生物抑制性化合物。用于生物分解的停留时间的延长业已显示为于膜生物反应器流出物中,减低某些生物难处理的及生物抑制性化合物浓度的主要因素,及无需粉末活性炭的较高吸附效率来达成期望的结果。
就加强生物难处理的化合物、生物抑制性化合物、全然对生物分解有抗性的有机及无机化合物、及胞外聚合化合物的去除方面,通过允许颗粒活性炭的基本上再生,粒状活性炭于碳协助膜生物反应器的功能同等良好或更优于粉末活性炭加强的膜生物反应器。另外,因粒状活性炭尺寸较大,故可有效过滤或以其他方式自进入膜操作系统槽的混合液分离。通过采用悬浮介质膜生物反应器系统中的粒状活性炭,可消弭或显著减少使用粉末活性炭时出现的磨蚀。
虽然使用粉末活性炭颗粒在膜生物反应器已经显示部分前文对粒状活性炭系统说明的相同优点,但膜操作系统槽中,来自粉末活性炭的膜磨蚀无法为人所接受,原因在于膜的预期寿命可能缩短至无法接受的程度,例如比典型膜的保证期显著更短。因膜成本占膜生物反应器系统总成本的显著部分,故其使用寿命延长乃膜操作系统的操作成本的一项重要因素。
图3-6示出本发明的废水处理系统的某些实施方案。如上所述,本发明的废水处理系统可以使用参照图1和2中所述的悬浮的介质膜生物反应器系统,并且还在PCT申请号PCT/US10/38644和公开号WO/09085252中有所描述。尽管某些优选实施方案结合低浓度废水(例如衍生自经历上游废水处理的流出物)的处理来描述,但是本领域技术人员将意识到具有本公开的益处:本发明的废水处理系统可以有利地用于处理具有一些水平的生物不稳定性化合物以及完全耐受生物降解的化合物、生物抑制性化合物和/或生物难处理的化合物、或这些化合物的组合的废水。
参照图3,示意性示出处理来自一个或多个上游废水处理阶段的流出物351的处理系统354,通常称为废水处理系统350。废水处理系统350典型地处理流入物301并排放过量激活的淤泥352和液体处理的流出物351,其在本文中称为“低浓度废水”或“经历上游废水处理的流出物”,这是常规已知的。尽管下面描述将流出物351称为衍生自一个或多个上游废水处理阶段,例如主要和/或次级处理阶段,本领域普通技术人员将理解,本发明的系统和方法也有效地用于处理来自其他源的低浓度废水,例如直接来自具有低水平的悬浮固体和相对低水平的溶解的有机物的过程的那些。另外,本发明的废水处理系统可以有利地用于处理具有一些水平的生物不稳定性化合物以及完全耐受生物降解的化合物、生物抑制性化合物和/或生物难处理的化合物、或这些化合物的组合的废水。在这些实施方案中,流351可以是直接流入物,或经历最小上游过程,例如主要分离系统其中基本上所有固体都已经除去。
如上所讨论,来自次级处理区段的流出物的三级处理通常包括使完全次级流出物通过一个或多个颗粒活性炭柱或其他三级系统以用于另外处理例如抛光,从而获得需要的水质量标准。相反,本发明的处理系统354,可用作三级处理系统,使用高通量吸附性材料系统359的组合以吸附大量污染物,和使用另外系统399以生物处理吸附的污染物,即,通过生物再生和/或再激活吸附到吸附性材料上的污染物。
在通常的术语中,本发明的处理系统354涵盖高通量吸附性材料处理系统359和低通量吸附性材料生物再生反应器系统399。高通量吸附性材料处理系统359包括用于从吸附性材料源393接纳新鲜和/或循环的吸附性材料的混合区段360。混合区段360与低浓度废水351源流体相连,例如经历上游废水处理的流出物或其他低浓度废水。混合区段360使吸附性材料和废水紧密混合,并且使低浓度废水和吸附性材料361的混合物送至吸附性材料沉积和液体分离区段370。全部液体体积/通量的大部分从吸附性材料沉积和液体分离区段370作为流出物371倾泻或排出,其可以任选地进行进一步三级处理390。吸附性材料从吸附性材料沉积和液体分离区段370作为吸附性材料流出物排出372而除去,其送至低通量吸附性材料生物再生反应器系统399,包括生物再生反应器302、膜操作系统304、吸附性材料剪切区段386和吸附性材料/生物质分离区段387。在需氧系统中,生物再生反应器302还包括氧气源,并且微生物生物氧化在生物再生反应器302中吸附到吸附性材料上的有机物和某些无机物,并且包括混合液挥发性悬浮固体的混合液通过吸附剂固体分离设备322并且作为生物再生反应器混合液流出物308排放出口至固体分离设备,以除去生物质和混合液中的任何其他固体。例如,在本发明的某些实施方案中,固体分离设备包括膜操作系统304,其中生物再生反应器流出物308通过膜操作系统304的入口310以除去生物质和混合液中的任何其他固体。膜处理的流出物312作为渗透物排放,并且激活的淤泥314作为残留物返回到生物再生反应器302。一部分激活的淤泥可以通过废物管线318从系统中排放。来自生物再生反应器302的吸附性材料送至吸附性材料剪切区段386,其中过量生物质从吸附性材料的颗粒或粒子剪切。生物质在吸附性材料/生物质分离区段387中与吸附性材料分离。分离的吸附性材料(已经通过生物再生反应器302再生并随后在区段386和387中剪切和分离)通过循环管线389循环至混合区段360,并且生物质通过388返回到生物再生反应器302。用过的吸附性材料可以通过管线316从生物再生反应器302除去,或者通过管线392从吸附性材料/生物质分离区段387除去。
在某些实施方案中,吸附性材料剪切区段386和吸附性材料/生物质分离区段387的功能可以整合到单一单元操作中。可以进行剪切和生物质分离的设备的例子包括连续回冲过滤器和/或核桃壳过滤器。在另外的实施方案中,吸附性材料剪切区段386和吸附性材料/生物质分离区段387的一些或所有功能可以在生物再生反应器302中完成,例如如果生物再生反应器302合适地装配足够的涡旋以促进必须剪切。在这些实施方案中,生物质可以保留在生物再生反应器302中,并且再生的、剪切的和分离的吸附性材料可以直接通过混合区段360。
另外,吸附性材料可以引入系统中的多个位置。例如源393可以用于通过管线389引入新鲜或再生的吸附性材料,例如,混合循环的吸附性材料(返回至混合区段360)。其他合适的位置可以用于引入吸附性材料,例如涉及图2所讨论,直接到混合区段360或直接到液体分离区段370。
在某些实施方案中,吸附性材料流出物流372缺乏足够的营养物,以支持生物再生反应器302内生物过程。因此,来自流入物301的原始废水的一部分可以例如通过旁路流303引入生物再生反应器302。该流303可以是间断或连续的,这取决于废水类型、其组成和是否废水组分是否随着时间而改变。添加该原始废水或一些其他简单碳源可以增强细菌生长,这是难处理的有机物(通过吸附性材料从低浓度废水流351除去)的最优降解所需要的。原始废水初始提供细菌,该细菌变得习惯于原始废水进料组成,并且这些细菌然后提供可以生物降解难处理的有机物的细菌的开始点。初始细菌可以随着时间演变为可以消化难处理的有机物的物质。使未处理的废水流进料有机物到生物再生反应器302中将导致细菌群,其能够消化比卫生废水处理系统中存在的细菌更多的复杂有机化合物,该卫生废水处理系统通常是废水处理系统中细菌的最通常的开始点。或者,以联合的方式,接种培养基可以加入生物再生反应器302。定期地,可以添加相同或不同类型的另外接种培养基,例如如果由于上游时间或热冲击,或如果废水污染物改变,细菌群减少。
流入物低浓度废水可以缺乏某些营养物,该营养物有益于生物再生反应器302中发生的生物过程。另外,某些流入的废水可能具有过酸或过碱的pH值。因此,如对本领域技术人员显然易知,磷、氮、及pH调整材料可添加来维持生物再生反应器302内的最佳营养素比及pH值用于生物生命及相关活性,包括生物氧化。另外,在某些实施方案中,可以加入简单碳化合物流以增加吸附的污染物的生物降解的速度。
特定地,低浓度废水引入混合区段360,其供应吸附性材料例如颗粒活性炭。吸附性材料可以包括新鲜吸附性材料和/或从系统内循环的吸附性材料,即,来自吸附性材料/生物质分离区段387。低浓度废水和吸附性材料在混合区段360亲密混合,并且流出物351中存在的溶剂的有机物和/或无机物中的至少一部分吸附到吸附性材料上,即外表面上、孔壁表面上或两者上。
来自混合区段360的混合的系统361,包括吸附来自流出物351的有机物和/或无机物中的至少一部分的吸附性材料,然后送至吸附性材料沉积和液体分离区段370,例如以浆料的形式。如果有机物和/或无机物保留在混合物361的液体部分中,吸附可以在吸附性材料沉积和液体分离区段370中继续,这取决于流速、沉积速度、吸附性材料的吸附能力和其他因素。优选地,大量污染物被除去,使得剩余液体部分、作为高通量吸附性材料流出物流371倾泻或除去的至少满足相关管理机构的要求,并且可以以环境友好的方式来循环或排放。如果需要,流371可以送至三级处理区段390以用于最终抛光并且抛光的流出物391被排放。有利地,从流371(即,相比于来自废水处理系统350的流出物351)除去的有机物和/或无机物被吸附到吸附性材料上,并且流371表示初始低浓度废水流的大部分液体体积展现至系统354,例如,流351。在某些实施方案中,流371的通量是流351的通量的至少90%;在其他实施方案中,流371的通量是流351的通量的至少95%;在另外的实施方案中,流371的通量是流351的通量的至少99%;在进一步实施方案中,流371的通量是流351的通量的至少99.9%;以及在甚至进一步实施方案中,流371的通量是流351的通量的至少99.99%。流371相对于流351的比例可以取决于多种因素,包括初始污染水平、混合区段360中的混合水平、吸附性材料沉积和液体分离区段370内的构造和残留时间、吸附性材料的吸附能力和/或其他因素。
在一个实施方案中,吸附性材料沉积和液体分离区段370包括容器,其构造有反相锥形或截头圆锥底部385。因此,吸附性材料通过重力沉积经过容器底部的排放口和来自流入物流351的少部分水一起除去。另外,在其中有机物和/或无机物不足以吸附到混合区段360中的实施方案中,吸附性材料沉积和液体分离区段370可以具有合适的尺寸以提供这样处理的废水流出物和吸附性材料之间的另外的接触时间。在吸附性材料沉积和液体分离区段370的某些实施方案中,这可以在容器内完成,从而提供低浓度废水残留时间大于约5分钟,并且在某些实施方案中残留时间大于约15分钟。当然,本领域技术人员获知本文教导的益处将意识到,从流出物分离吸附剂所需要的时间将取决于多种因素,包括但不限于吸附性材料的密度、废水的密度和槽的几何尺寸。
吸附性材料沉积和液体分离区段370可以优选包括:分离次系统,其用于防止吸附性材料离开吸附性材料沉积;和具有高速液体流出物371的液体倾泻区段。在某些实施方案中,分离次系统可以包括静止区段384,例如,由挡板381和382形成。这允许吸附性材料沉积和液体分离区段370中存在的大量吸附性材料导向反相锥形或截头圆锥底部385。在另外的实施方案中,分离次系统可以包括吸附性材料沉积和液体分离区段370出口近端的筛选设备383。筛选设备383可以是固定筛、移动筛、楔形丝筛、转筒筛或其他合适的网筛类型。在进一步实施方案中,分离次系统可以包括静止区段384和筛选设备383。在甚至进一步实施方案中,分离次系统可以包括静止区段和位于吸附性材料沉积和液体分离区段370出口的液体流出物371的堰。注意,吸附性材料沉积和液体倾泻区段370中使用的分离次系统可以和生物再生反应器302(包括筛选系统、沉积区段或其组合中的一个或多种)中使用的分离次系统相同或不同。另外,如果需要进一步固体从流出物371除去,澄清池、过滤器或其他分离装置可以与吸附性材料沉积和液体分离区段370出口的流出物371的下游流体相连。
例如,吸附性材料沉积和液体分离区段370内的分离次系统可以在这样的实施方案中除去,其中吸附性材料具有相对高的比重(例如在20℃水中比重大于约1.10,在某些实施方案中,在20℃水中比重大于约1.40,并且在另外实施方案中,在20℃水中比重至多约2.65),从而高沉积速度、联合吸附性材料沉积和液体倾泻区段370(包括底部385的几何形状和流出物371出口的位置)的合适的尺寸和构造。在这些实施方案中,澄清池、过滤器或其他分离装置可以设置在吸附性材料沉积和液体分离区段370的下游。或者,澄清池、过滤器或其他分离装置还可以消除,其中流出物371进行最终抛光设备390。在某些实施方案中,如果最终抛光设备390是固定床颗粒活性炭吸附柱,来自流出物371可以通过的吸附性材料沉积和液体倾泻区段370的任何过量吸附性材料将不影响最终流出物,因为其将捕获在抛光设备390中。
吸附性材料从吸附性材料沉积和液体分离区段370送至生物再生反应器,其中微生物生物降解吸附到吸附性材料上的有机物和某些无机物。
在某些实施方案中,生物再生反应器302是需氧系统,其中微生物是需氧的,并且生物再生反应器302是曝气槽,包括氧气源(未示出),例如扩散器、喷射悬浮设备或气举悬浮系统中的一个或多个,如PCT申请号PCT/US10/38644中所述,并且生物降解包括生物氧化。生物再生反应器内的生物过程在PCT申请号PCT/US10/38644和PCT公开号WO/09085252中详细讨论。
在另外的实施方案中,生物再生反应器302是厌氧系统,其中微生物是厌氧的。
混合液,包括混合液挥发性悬浮固体,通过生物反应器302中或下游的分离次系统322排放,并且通过入口310从生物反应器302的出口308送至膜操作系统304。膜操作系统304含有一个或多个膜340。膜处理的流出物312作为渗透物排放,并且激活的淤泥314作为残留物返回到生物再生反应器302。任选地,激活的淤泥废物可以通过废物管线318从返回激活的淤泥管线314来排放。另外,任选的吸附性材料废物管线316(如长虚线所示)可以除去已经失去其效果的用过的吸附性材料,或用于定期除去吸附性材料,如结合图2和PCT公开号WO/09085252与PCT申请号PCT/US10/38644所述。优选地,除去的用过的吸附性材料使用等量的新鲜或再生的吸附性材料来补充。在另外优选的实施方案中,膜处理的流出物312的全部或一部分可以通过任选管线313(如长虚线所示)送至三级处理区段390以进行最终抛光。
吸附性材料例如颗粒活性炭、以及送至生物再生反应器302中的流372中任何捕获的液体以和PCT申请号PCT/US10/38644与PCT公开号WO/09085252中所述的膜生物反应器系统类似的方式来处理。然而,流372的通量相对较低。例如,流372的通量可以小于流351的通量的约10%,5%,1%,0.1%或甚至小于约0.001%。在某些实施方案中,通量是可以通过膜操作系统304而不会影响生物再生反应器302中的微生物的活性的最小流量。或者,该系统可以作为顺序分批式反应器来操作,其中当废水被足够处理时流出物被排放。另外,在某些实施方案中,生物再生反应器302可以是曝气槽,其引入喷射悬浮或气举悬浮、静止区段和楔形丝筛的组合,如PCT申请号PCT/US10/38644中所述。本发明的低浓度废水处理系统354中的膜操作系统304以和PCT申请号PCT/US10/38644与PCT公开号WO/09085252中所述的膜生物反应器类似的方式进行操作,然而,以非常低的流速操作。因为生物质在该系统中积累,所以其可以以和常规膜生物反应器系统(例如通过返回激活的淤泥废物管线318)类似的方式进行废弃。还提供吸附性材料废物管线316。例如,吸附性材料可以在这样的条件下失去其吸附能力,其中经历上游废水处理的流出物含有无机物或生物抑制性化合物,其甚至使用本发明的低浓度废水处理系统在基本上增加的残留时间也不氧化。吸附性材料可以在系统中补充,例如,使用PCT公开号WO/09085252中所述的一个或多个吸附性材料输入位置或在另外的位置或源393。
在连续或间歇的基础上,侧流包括吸附性材料和任选的混合液以提供促进转移的吸附性材料的液体载体(例如,以浆料的形式),该测流从生物再生反应器302除去并送至剪切区段386。在剪切区段386中,过量生物质从吸附性材料的外表面剪切,使得混合区段360和/或吸附性材料沉积和液体分离区段370中吸附性材料的吸附能力最大化。剪切区段386可以包括泵、喷射喷嘴、曝气沉砂池、机械搅拌器、离心装置例如水力旋流器或离心分离机、或其他促进碰撞以完成剪切并且在某些实施方案中促进生物质从吸附性材料分离的设备中的一个或多个。剪切区段的涡旋、颗粒之间碰撞和与其他固体对象(静止或移动)的碰撞、在某些实施方案中剪切区段和生物再生反应器302之间的管道系统可导致过量生物质从吸附性材料的外表面剪切,并且变成包括混合液挥发性悬浮固体的游离漂浮混合液悬浮固体。
另外,流体循环的作用,包括高速液体和/或气体接触具有过量生物质的吸附性材料的表面有助于期望的剪切。
在某些实施方案中,吸附性材料剪切区段386可以包括连续再生系统,例如具有核桃壳过滤器的构造或其他类似的单元操作,例如而没有核桃壳介质,例如一种类型购自Siemens Water Technologies。例如,当吸附性材料通过连续再生系统例如连续回冲过滤器或核桃壳过滤器时,连续再生系统中颗粒之间碰撞和与其他固体对象和/或表面的碰撞引起过量生物质从吸附性材料的颗粒剪切。
浆料(包括剪切的吸附性材料、从吸附性材料剪切的游离生物质和任何混合液)送至吸附性材料/生物质分离区段387,以将从来自更稠密吸附性材料的吸附性材料剪切的混合液悬浮固体生物质分离。吸附性材料/生物质分离区段387可包括水力旋流器分离器、离心分离机、连续再生系统的测流、或其他适于从生物质分离吸附性材料的装置中的一种或多种。
注意,在其中生物再生反应器302包括PCT申请号PCT/US10/38644中所述的在生物再生反应器302实现剪切的喷射喷嘴或其他设备的某些实施方案中,剪切区段386可以消除或旁路化,从而来自生物再生反应器302的侧流直接送至吸附/生物质分离区段387。
从吸附性材料/生物质分离区段387分离的吸附性材料通过管线389送至混合区段360。返回至混合区段360的吸附性材料含有降低浓度的微生物,并因此低浓度废水中的有机物可以在混合区段360和吸附性材料沉积和液体分离区段370中被吸附和暴露于期望的生物过程,之后送至生物再生反应器302。
剪切的生物质,可包括具有来自吸附性材料/生物质分离区段387的混合液悬浮固体和混合液挥发性悬浮固体的混合液体,通过管线388送至生物再生反应器302。
在可选择的实施方案中,来自吸附性材料/生物质分离区段387的混合液可以从例如生物再生反应器302的分离次系统322联合流出物308转移到下游,或直接送至膜操作系统。明显地,分离次系统322的分离要求在该可选择的实施方案中可降低或消除,因为混合液可以被转移而无需进一步分离。在某些实施方案中,用于膜操作系统304(或结合图3所述时的澄清池/沉积槽395)的混合液的源可以是来自吸附性材料/生物质分离区段387的液体流出物。
在某些优选的实施方案中,为了在吸附性材料沉积和液体分离区段370中促进吸附性材料的沉积,使用具有相对高的比重水平的颗粒活性炭。例如,可以使用比重大于1.10的颗粒活性炭。在进一步实施方案中,可以使用比重大于1.40的颗粒活性炭。因为含有颗粒活性炭的混合物的流速相对较低,因此生物再生反应器302和膜操作系统304相对较小,要求更高的能量以保持更稠的吸附性材料呈悬浮一定的时间,该时间足以在生物再生反应器302内引起期望水平的生物过程,这在操作系统的总体能量要求中不是显著性因素。
某些低浓度废水流入物可包括不能被微生物降解的无机化合物。这些无机物的水平必须典型地降低在允许的规定要求内。吸附性材料可以用处理方法和/或物质改性,从而例如通过浸渍合适的化合物提供于化学物质和/或废水中的金属的亲和力,如PCT申请号PCT/US10/38644中进一步描述。本发明的低浓度废水处理系统中的微生物不能有效地除去这些无机化合物,因为它们可以除去有机化合物,使用吸附性材料来吸附无机污染物的系统通常要求和仅处理有机化合物的系统相比更频繁地替换吸附性材料。用过的吸附性材料从系统除去,此时其达到待从低浓度废水除去的各化合物的吸附限。例如,取样和分析或在线监控可以定期或连续进行以确定本发明的低浓度废水处理系统的有机物或无机物的浓度,因为多种化合物的颗粒活性炭的吸附能力反相相关于流出物371的废物浓度。
在其中使用三级处理系统390并且包括常规吸附性材料过滤系统的另外的实施方案中,来自系统390的污染的吸附性材料可以使用吸附性材料生物再生反应器系统399再生和/或再激活,如三级处理系统390和生物再生反应器302之间的线394所示。某些现有颗粒活性炭吸附剂过滤器系统使用分级吸附,其中新鲜颗粒活性炭在最终下游过滤器中加入,并且部分负载的颗粒活性炭用在上游过滤器中。在其中来自系统390的污染的吸附性材料在吸附性材料生物再生反应器系统399过程中再生和/或再激活的本发明的实施方案中,部分负载的颗粒活性炭转移至生物再生反应器302以进行再生,并且作为混合区段360中的所有或一部分吸附性材料而重新使用。尽管线394表示将部分负载的吸附性材料直接转移到生物再生反应器302,但是本领域技术人员获知本文教导的益处将意识到,该部分负载的吸附性材料可以引入吸附性材料剪切区段386、吸附性材料/生物质分离区段387、吸附性材料的源393、混合区段360或液体分离区段370。
在一些实施方案中,一个或多个传感器可以包括在整个系统350的位置处,包括高通量吸附性材料处理系统359和低通量吸附性材料生物再生反应器系统399内。这些传感器可以用于手工控制和操作的系统或自动控制系统以在可编程逻辑控制的废水处理系统中实施合适的程序改性。在一个实施方案中,系统350(或高通量吸附性材料处理系统359和低通量吸附性材料生物再生反应器系统399)包括控制器305,其可以是任何合适的编程的或专用计算机系统、PLC或分布的控制系统。某些有机和/或无机化合物的浓度可以通过与流出物312或生物再生反应器302的出口308的流出物流体相连的一个或多个传感器来监控和测量,这由控制器305和流出物管线312之间的点划线连接以及出口308和入口310之间的中间流出物管线来表示。在另外实施方案中,系统的挥发性有机化合物的浓度或其他性能或特性可以在入口301,351或310中的一个或多个处测量。在另外的实施方案中,某些有机和/或无机化合物的浓度可以通过与吸附性材料沉积和液体分离区段370的流出物371流体相连的一个或多个传感器来监控和测量,这由控制器305和流出物管线371之间的点划线连接表示。程序控制设备领域技术人员已知的传感器可包括基于激光诱导的荧光的那些或任何其他适用于原位实时监控系统的流出物中有机或无机化合物的浓度或其他性能或特性的设备。可以使用的传感器包括水包油测量中使用的可潜下的传感器,其使用UV荧光来检测,例如得自TriOS Optical Sensors(Oldenburg,Germany)的enviroFlu-HC传感器。传感器可包括透镜,该透镜被涂覆或处理以防止或限制在透镜上发生的污染或成膜的量。当系统中的一个或多个传感器产生一种或多种有机和/或无机化合物的浓度超过预定浓度的信号时,控制系统可以实施反应性动作,例如合适的进料返回动作或进料前进动作,包括但不限于通过废物排放口316(如控制器305和废物排放口316相关的阀之间的虚线连接所表示)除去吸附性材料;通过废物管线318(如控制器305和废物排放口318相关的阀之间的虚线连接所表示)除去返回激活的淤泥;通过吸附性材料源393或在其他位置中的一个处(如控制器305和吸附性材料源393相关的阀之间的虚线连接所表示)加入新的或再生的吸附性材料;添加不同类型的吸附性材料;改进水力停留时间(hydraulic retention time);改进生物特性例如用于微生物的简单碳食物或者添加磷、氮和/或pH调整化学品;和/或上述或者本领域技术人员将意识到得其他改进。
在另外的实施方案中,含有吸附性材料的浆料的条件可以由一种或多种传感器(在图3中用阴影圆圈来表示),例如光学传感器和/或UV荧光传感器。例如,一种或多种传感器可以相关于吸附性材料流出物流372,如由控制器305和流372之间的点划线连接来表示,以测量流中的一种或多种化合物的浓度和/或确定浆料中吸附性材料的质量。另外,一种或多种传感器可以相关于来自生物再生反应器的吸附性材料流出物流,如由控制器305和生物再生反应器与吸附性材料剪切区段386之间的管线之间的点划线连接来表示,和/或一种或多种传感器可以相关于吸附性材料循环管线389,如由控制器305和循环管线389之间的点划线连接来表示。在测定的情况下,基于来自这些传感器和/或其他传感器中的一种或多种的信息或信息源,具有降低的吸附能力、合适的进料返回或进料前进动作的吸附性材料可以发挥作用。
现在参照图4,示意性示出类似于图3的系统354的低浓度废水处理系统454。在系统454中,提供吸附性材料沉积和液体分离区段470,其可以是离心分离机、水力旋流器、澄清池、多种类型过滤器、或其他合适的分离装置中的一种或多种。吸附性材料沉积和液体分离区段470从含有来混合区段460的吸附性材料的低浓度废水的混合的系统461中分离液体。
在系统454的某些实施方案中,高通量吸附性材料系统459内的流速被控制以提供足够的残留时间,以允许来自流451的污染物的要求水平,从而吸附到吸附性材料例如颗粒活性炭上并排放流471,从而满足流出物排放的允许的质量水平,或者污染物水平足够低以在补充三级处理系统490中便捷地处理。低浓度废水处理系统454的其他方面基本上等同于系统354中所描述的那些,并且图4中使用类似的附图标记来表示类似或等同的组件。
现在参照图5,示意性示出类似于图4中的系统454的低浓度废水处理系统554,其中低通量吸附性材料生物再生反应器系统599包括除了膜操作系统的生物反应器系统。特定地,低通量吸附性材料生物再生反应器再生系统599包括生物再生反应器502、吸附性材料剪切区段86、吸附性材料/生物质分离区段587和作为固体分离设备的澄清池/沉积设备595。澄清池/沉积设备595可以是澄清池设备、沉积设备或进行澄清和沉积的设备。系统以类似于系统354的方式进行操作,但是没有膜操作系统304。相反,为了除去混合液中的生物质和任何其他固体,使用澄清池/沉积设备595。特定地,澄清池/沉积设备595允许激活的淤泥沉积,并且其通过返回激活的淤泥管线514返回至生物反应器502。澄清的液体作为流出物512而通过。澄清池/沉积槽595可以在涉及图3、4和/或6描述的任何系统中置换。低浓度废水处理系统554的其他方面基本上相同于涉及系统354所描述的那些,并且图5中使用类似的附图标记来表示类似或等同的组件。
现在参照图6,示意性示出类似于图3中的系统354的低浓度废水处理系统654,其中高通量吸附性材料系统659是一体的混合/沉积单元操作。例如,在某些实施方案中,高通量吸附性材料系统659可包括类似于连续再生核桃壳过滤器(无核桃壳介质)的连续回冲过滤器或连续再生过滤系统,例如该类型购自Siemens Water Technologies。吸附性材料作为流出物672除去,并且流出物671是已经从其中吸附污染物的废水。在某些实施方案中,连续再生系统还可以进行剥落功能,联合或替换吸附性材料剪切区段686和吸附性材料/生物质分离区段687。注意,在这样的实施方案中,吸附性材料/生物质分离区段设置在来自连续逆流高通量吸附性材料系统659的下游。在另外的实施方案中,高通量吸附性材料系统659包括吸附性材料过滤设备例如常规三级碳过滤器,其中处理的水作为流671排放,并且部分负载的吸附性材料672而不是用常规热空气或气流再生(例如使用生物处理吸附的污染物的系统699的再生)处理的,其以类似于涉及图3所描述的类似的方式来进行操作,并且再生的吸附性材料688引入高通量吸附性材料系统659中包括的三级碳过滤器。低浓度废水处理系统654的其他方面基本上等同于涉及系统354所描述的那些,并且图6中使用类似的附图标记来表示类似或等同的组件。
在本发明的另外实施方案中,被根据本发明一体化低通量吸附性材料生物再生反应器的高通量吸附性材料处理系统处理的废水源可以来自通过辐射处理主要固体的系统,该主要固体包括一部分BOD5化合物。特定地并参照图7,示出系统700以处理流入废水流701,其含有悬浮的有机固体、溶解的有机固体和任选的其他污染物例如无机物。流入废水流701引入主要分离系统753,例如允许生物固体沉积的沉积区段、澄清池、离心分离机、过滤器、网筛、压带机、涡流分离器、漂浮装置或其他固体除去系统。在主要分离系统753中,易于降解生物需氧化合物(BOD5)材料的固体和部分从废水流分离。
典型的主要处理系统通常能够使BOD5浓度降低约40%至约50%,并且使总悬浮固体浓度降低约60%至约70%。该步骤中除去的固体通常是更大的缓慢生物降解的悬浮固体,并且流出物典型地是更易挥发、易于处理卫生废水中存在的化合物的混合物。另外的单元操作还可用于提供原始废水中的未溶解的污染物的更大的去除效率。例如,可以使用一种或多种离心分离机装置、沉积装置或漂浮装置(例如,溶解空气、诱导空气漂浮)。在进一步实施方案中,另外的单元操作可以包括添加合适的待处理的化合物以除去原始废水中存在的更不稠密的固体的至少一部分。
在某些实施方案中,水相,典型地包括溶解的污染物和大部分悬浮固体,可以作为含有一些水平的生物不稳定性化合物或低浓度废水流出物751的废水流出物而排放,然后通过废水处理系统754下游处理,其以类似于例如之前所述系统354、454、554或654中的一种或多种的方式来操作。流出物712被排放,其通常适于作为工业用水、灌溉物、或环境友好的排放物的形式循环。未处理的生物固体从主要处理系统753作为固体流出物流774而分离,典型地含有夹带的液体,并且例如使用适于处置固体-装满液体和浆料至匀化区段775的污水杂质泵或进行性螺杆泵(未示出)通过,其中固体通过合适的机械设备来均匀化,例如一个或多个研磨器和/或撕碎机。匀化区段775确保没有固体的密实的块体引入辐射/消毒区段777的下游,从而确保最大水平的消毒。
未处理的均化固体776,通常为浆料的形式,泵送至辐射/消毒区段777,其中固体使用β-射线、γ-射线、x-射线或电子束辐射来消毒,例如以达到United States Environmental Protection Agency Class A或B生物固体消毒要求或其他管辖机构的允许的淤泥消毒要求。因此消毒的固体778可以以环境友好的方式来进行处理。
图8示出废水处理系统的另一实施方案,其包括辐射混合惰性材料的主要固体,以使其作为土壤替代物而重新使用或用于其他用途。特定地,系统800类似于系统700,具有混合区段763的另外操作,其中消毒的固体778混合惰性填充材料762,例如砂子、粘土和/或另外合适的填充材料,以制备产物764,其可以用作土壤、堆肥或肥料。包括提供产物764的系统800对于处理具有固体而不具有毒性有机或无机化合物的废水是特别期望的。
任选地,脱水区段可以设置在系统700或800中。然而,在系统800中,过量的水可以被砂子或混合消毒的主要固体的其他惰性材料吸附。
在某些实施方案中,流入废水701包括高浓度的金属、其他无机物或毒性有机物。因此,即使当消毒至合适的水平时,消毒的生物固体和填充材料的混合物不适合作为土壤、堆肥或肥料产物。然而,可以获得大部分资本成本、能量和尺寸益处,即使在消毒的材料在垃圾填埋地中处置时也是如此,例如在干燥和/或混合合适的惰性材料后。
在本发明的某些实施方案中,系统被构造为可携带的系统,例如安装在垫木、卡车车身、拖车等上。可携带性允许三级处理系统作为承包(turnkey)系统来生产和递送。可携带或垫木安装的系统还将促进三级系统根据需要来设置,例如在其中其他三级处理系统处于服务、在维修或在构建的情况下。另外,某些工厂加工化学品较短时间,并且产生特别难处理的废水流,这可受益于根据本发明的可携带或垫木安装的系统。可以设置管道配置,其适于匹配现有废水处理工厂中标准的配置和端口,以容易和快速地安装本发明的系统。
本发明的系统和方法避免现有技术中的问题,其涉及通过下列方式处理低浓度废水:使已经进行次级处理的废水,例如来自次级系统的流出物,通过吸附性材料混合区段,其中吸附性材料和次级流出物紧密混合。注意,次级流出物,在送至吸附性材料混合区段的点处,具有基本上所有固体,因此大部分高BOD5组分被除去。因此,次级流出物不易生物氧化传统处理生物系统,因为废水的强度太低,含有生物难处理的化合物,含有生物抑制性化合物,含有无机化合物,或含有这些的组合,其不能生物氧化或需要比典型适于生物氧化更长的残留时间。典型地,更加能量密集的三级系统例如颗粒活性炭吸附过滤器或另外三级处理系统用于抛光该流,该流不再被正常生物氧化处理。
本发明的低浓度废水处理系统允许污染物浓缩在碳上,并且提供低强度废水或具有生物难处理化合物(包括生物抑制性和/或生物难处理的化合物)的废水的处理。另外,低浓度废水中存在的无机化合物可以被吸附。
本发明的低浓度废水处理系统是目前使用的方法(因为其利用生物氧化)的更低成本选择方案–典型地适于处理废水的更低成本的除去技术。活性炭吸附柱典型地非常昂贵来操作,并且要求非常能量密集的方法来再生碳,典型地基于焚化以再生颗粒活性炭。本发明的三级处理系统的发展作为活性炭柱的代替或补充可以产生相当大的能量节省。结果,可以获得和降低能量消耗有关的二氧化碳降低的碳交易额(carbon credit)。
本发明的低浓度废水处理系统内各种操作的容积要求可以明显地小于用于处理相同体积的废水的常规膜生物反应器,并且显著小于未使用膜的常规污水处理系统。
本发明的低浓度废水处理系统的使用允许处理相对低强度的废水,特别是废水中的仅仅溶解的污染物和少量的夹带的固体,并且仍旧导致流出物具有非常低浓度的难处理(难处理的化合物)或简单有机化合物,其初始存在于废水。注意某些优选的实施方案结合低浓度废水的处理来描述,并且称为“低浓度废水处理系统”。然而,获知本公开的益处的本领域技术人员将意识到,本发明的废水处理系统可以有利地用于处理这样的废水,该废水具有一些水平的生物不稳定性化合物以及完全耐受生物降解的化合物、生物抑制性化合物和/或生物难处理的化合物、或这些化合物的组合。例如,溶剂生物不稳定性化合物可以和下列物质一起吸附到吸附性材料上:完全耐受生物降解的化合物、生物抑制性化合物和/或生物难处理的化合物、或这些化合物的组合,并且送至本文所述的吸附性材料生物再生反应器系统。生物不稳定性化合物可以单独或联合次级营养物源作为食物以支持微生物。
本发明有用的吸附性材料包括各类型碳,诸如活性炭。具体地说,粒状活性炭极为有效,原因在于颗粒的大小范围及密度可经选择来允许其保留于系统的预定部分,通过防止其秽垢和/或磨蚀该等膜。
其中粒状活性炭未接受显著剪切力和/或颗粒间碰撞的系统中,粒状活性炭可自木头、椰子、蔗渣、锯木屑、泥炭、制浆厂废料、或其他以纤维素为主的材料制造。一个适当实例为具有标称网眼尺寸14x35(基于美国标准筛列)的MeadWestvacoWV-B。
在额外实施方案中,特别其中剪切力由泵和/或喷射喷嘴内的湍流和/或颗粒间碰撞所提供的例,期望使用有较高硬度值的吸附性材料。例如,衍生自沥青或以煤为主的材料的粒状活性炭为有效。在特定实施方案中,粒状活性炭衍生自褐煤。
也可提供碳材料其经改性和/或其种类提供对废水中的某些化学品类别和/或金属的亲和力。例如,在有相当高浓度汞的废水中,至少一部分吸附性材料优选包括浸渍以碘化钾或硫的粒状活性炭。其他处理和/或浸渍种类可提供来靶定特定金属、其他无机化合物和/或有机化合物。
此外,吸附剂可为活性炭以外的材料。例如,以铁为主的化合物或合成树脂可单独或组合其他吸附性材料,例如组合粒状活性炭而用作为吸附性材料。又进一步,可使用靶定某些金属、其他无机化合物和/或有机化合物的活性炭以外的经处理的吸附性材料。例如,在含相对高浓度铁和/或锰的废水中,至少一部分吸附剂可包括粒状二氧化锰过滤介质。于含砷废水中,至少一部分吸附剂可包括粒状氧化铁复合物。在含铅或重金属的废水中,至少一部分吸附剂可包括粒状铝硅酸盐复合物。
在一个实施方案中,吸附性材料可基于期望的比重范围选用。为了于可接受的能量耗用/成本范围以内维持吸附性材料的悬浮,期望比重范围相对接近废水比重。另一方面,其中分离至少一部分基于材料快速沉积的实施方案中,以较高比重为更为适合。大致上,在20℃水中比重优选大于约1.05。在某些实施方案中,在20℃水中比重大于约1.10。在某些实施方案中,比重的适当上限于20℃水中约为2.65。
因此,选择具有下述比重范围的吸附性材料,该比重提供充分悬浮及因而提供与废水及其污染物的充分接触。此外,在某些实施方案中,比重范围提供足够沉积特性供随后自废水去除吸附性材料。在额外实施方案中,吸附性材料的比重的选择基于维持吸附性材料于悬浮所需的能量为最小化。
此外,期望的吸附性材料诸如粒状活性炭具有下述硬度水平,该硬度可将因颗粒间碰撞及其他工序效应造成的细料及其他微粒的形成减至最低。
分离次系统设计来保有通过防止其进入膜操作系统的吸附性材料的尺寸经最佳化来减少吸附性材料及细料进入膜操作系统的数量。因此,在其中固体分离设备是膜操作系统的实施方案中,因碳颗粒或其他颗粒材料撞击膜所造成的磨蚀及秽垢最小化,同时仍然提供与使用吸附性材料包括活性炭相关联的操作优点。
吸附性材料的适当颗粒大小经选择来弥补所选用的筛选/分离方法,及接受处理的特定废水的需要。在某些优选实施方案中,吸附性材料的有效颗粒大小下限经选择使得其易自进入该等膜所在的膜操作系统槽的混合液流中分离。大致上,吸附性材料的有效颗粒大小具有约0.3毫米的下限,此处大于约99.5重量%吸附性材料高于下限;优选具有约0.3毫米下限至约2.4毫米上限(基于美国标准筛列,对应于筛号50至筛号8),此处大于99.5重量%吸附性材料落在下限至上限间;以及在某些优选实施方案中约0.3毫米至约1.4毫米(基于美国标准筛列,对应于筛号50至筛号14),此处大于99.5重量%吸附性材料落在下限至上限间。业已证实具有约0.5毫米至约0.6毫米的最低有效颗粒大小的粒状活性炭容易且有效地使用适当分离系统自混合液筛选,及于具有适当密度的粒状活性炭,此种有效尺寸也可有效维持悬浮。
使用吸附性材料来吸附完全耐受生物降解的化合物、生物抑制性化合物和/或生物难处理的化合物、或这些化合物的组合会允许该方法来处理较之常规系统更高流速的废水,因为生物降解有机化合物的有机物将不会受到常规系统的水压残留时间的限制。生物抑制性化合物和/或某些生物难处理的化合物保留在吸附性材料上延长的时间,并且因此微生物具有数倍水压残留时间来使它们分裂。和不添加吸附性材料所要求的情况相比,这允许明显更小的单元来处理废水流。
使用本发明的低浓度废水处理系统而不是常规系统或添加粉末活性炭的常规系统消除了和固体沉积有关的问题,该问题将在高流速常规系统(其不使用膜用于从流出物分离固体)中发生。
通过使用已经特殊处理以选择性吸附关注的特定污染物的吸附性材料,本发明的低浓度废水处理系统可以改进以处理特定污染物(其可存在于任何特定废水中)。例如,已经特殊处理以吸附金属的颗粒活性炭或其他吸附性材料可以用于具有高浓度金属的废水。该溶解的金属可以优选吸附到处理的颗粒活性炭上,然后从流出物除去。吸附性材料的定期替换允许金属从系统除去并且使吸附能力保持期望的水平。
本发明提供低成本选择方案至高成本活性炭吸附柱或昂贵操作的任何数量的其他三级处理系统的永久安装。另外,本发明提供更简单、更小足迹、更低操作成本的废水处理系统,其可以以较短时间来安装和操作,并且如果需要,可以被构造为可携带的系统/设备。其可以在失常状况期间或当废水处理工厂要求处理正常不能处理的废物的期间配置。
本发明的系统和方法避免在昂贵三级处理系统中处理整个流出物流。其从低浓度废水吸附污染物并且在与低通量吸附性材料生物再生反应器一体的高通量吸附性材料处理系统中处理它们。
之前开发的三级系统尝试处理来自具有低浓度的污染物的现有废水处理工厂的流出物,该工厂具有昂贵的活性炭吸附系统或一些其他昂贵的三级处理系统。在所有这些情况中,整个废水流用三级处理方法来处理。本发明的系统和方法通过吸附从全部废水流中除去污染物,然后在低通量生物再生系统(其相对廉价操作)中处理吸附性材料。
本发明的方法及系统已经如前文及于附图说明;但修改为本领域技术人员显然易知,及本发明的保护范围由随附的权利要求限定。

Claims (68)

1.一种处理包含生物难处理化合物和/或生物抑制性化合物的废水的方法,所述方法包括:
在混合区段中使包含生物难处理化合物和/或生物抑制性化合物的废水和吸附性材料混合足够时间,以使来自所述废水的所述生物难处理化合物和/或生物抑制性化合物吸附到所述吸附性材料上去;
从废水和具有其上吸附的生物难处理化合物和/或生物抑制性化合物的吸附性材料的混合物中分离和除去大部分所述废水;
将具有其上吸附的生物难处理化合物和/或生物抑制性化合物的吸附性材料和少部分所述废水送至生物再生反应器;
使所述吸附性材料和所述废水在所述生物再生反应器中呈悬浮一定时间,该时间足以允许所述生物再生反应器中的微生物对吸附的生物难处理化合物和/或生物抑制性化合物的至少一部分产生生物作用;
从所述生物再生反应器排放生物处理的水流出物;以及
使再生的吸附性材料循环至所述混合区段。
2.权利要求1所述的方法,其中所述吸附性材料的特征在于吸附生物难处理化合物和生物抑制性化合物的吸附能力和微生物附着在所述吸附材料上的能力,其中综合的吸附材料特征有利于所述吸附性材料的生物再生。
3.权利要求1所述的方法,其中所述吸附性材料选自粒状活性炭、粒状以铁为主的化合物、粒状以锰为主的化合物、粒状硅酸铝复合物、合成树脂和上述吸附性材料的至少一种的组合。
4.权利要求1所述的方法,其中所述吸附性材料包括粒状活性炭。
5.权利要求4所述的方法,其中所述粒状活性炭经过处理以提供对被发现存在于待处理的废水中的预定化学物质、金属或其它化合物的亲和力。
6.权利要求4所述的方法,其中所述吸附性材料还包括一种或多种选自粒状以铁为主的化合物、粒状以锰为主的化合物、粒状硅酸铝复合材料和合成树脂的吸附性材料。
7.权利要求1所述的方法,其中所述废水包括低浓度废水,该低浓度废水是上游废水处理过程的流出物。
8.权利要求1所述的方法,其中所述废水是低浓度废水,该低浓度废水的生物需氧量化合物的浓度低于在活性淤泥反应器中支持生物活性所需要的流入物物料的生物需氧量化合物的浓度。
9.权利要求1所述的方法,进一步包括从所述生物再生反应器的水流出物除去固体。
10.权利要求9所述的方法,其中所述固体使用膜操作系统来除去。
11.权利要求10所述的方法,其中使所述生物再生反应器水流出物通过所述生物再生反应器中或所述生物再生反应器下游和所述生物再生反应器和所述膜操作系统之间的分离子系统以将基本上不含吸附性材料的所述生物再生反应器水流出物引入所述膜操作系统。
12.权利要求10所述的方法,其中所述膜操作系统排出渗透物作为处理的废水和活性淤泥作为截留物,其中所述活性淤泥被循环至所述生物再生反应器。
13.权利要求11所述的方法,其中所述吸附性材料的有效粒径为至少约0.3毫米。
14.权利要求11所述的方法,其中所述吸附性材料的有效粒径为至少约0.5毫米。
15.权利要求9所述的方法,其中所述固体使用澄清池和/或沉积器来除去。
16.权利要求1所述的方法,其还包括在循环所述吸附性材料至所述混合区段之前,从所述吸附性材料剪切所有积聚的生物质。
17.权利要求16所述的方法,进一步包括在使所述吸附性材料循环至所述混合区段之前,从所述吸附性材料分离所述生物质。
18.权利要求1所述的方法,进一步包括抛光已从处理的废水和具有其上吸附的污染物的吸附性材料的混合物分离的处理的废水。
19.权利要求18所述的方法,其中抛光在吸附性材料过滤系统中进行。
20.权利要求19所述的方法,进一步包括从所述生物再生反应器中的吸附性材料过滤系统再生吸附性材料。
21.权利要求1所述的方法,进一步包括:
提供经构造及配置以测定处理的废水和/或生物处理的水流出物的参数的传感器;
提供与所述传感器电子通讯且经编程以基于所测得的参数来指导动作表现的控制器;
测定处理的废水和/或生物处理的水流出物的参数;和
基于所测得的参数来进行动作。
22.权利要求21所述的方法,其中所测得的参数是处理的废水和/或生物处理的水流出物中的一种或多种预定化合物的浓度。
23.权利要求22所述的方法,其中所述动作包括从所述生物再生反应器除去至少一部分所述吸附性材料。
24.权利要求22所述的方法,其中所述动作包括将吸附性材料加入所述生物再生反应器。
25.权利要求7所述的方法,进一步包括将从所述低浓度废水分离的废水引入所述生物再生反应器,所述低浓度废水是上游水处理过程的流出物。
26.权利要求7所述的方法,进一步包括将简单碳源引入所述生物再生反应器。
27.一种用于处理废水的系统,包括:
混合区段,包括:
废水入口,
吸附性材料入口,和
排放出口;
吸附性材料沉积和液体分离区段,包括:
和所述混合区段的排放出口相连的浆料入口,
处理的水出口,和
污染的吸附性材料出口;
吸附性材料生物再生反应器系统,包括:
生物再生反应器,包括和所述吸附性材料沉积和液体分离区段的污染的吸附性材料出口相连且具有吸附性材料的分散团块的污染的吸附性材料入口,所述吸附性材料是多孔的且特征在于吸附生物难处理化合物和生物抑制性化合物的吸附能力和微生物附着在所述吸附材料上的能力,其中综合的吸附材料特征有利于所述吸附性材料的生物再生,
生物处理的水出口,和
和所述混合区段的吸附性材料入口相连的再生的吸附性材料出口。
28.权利要求27所述的方法,其中所述吸附性材料选自粒状活性炭、粒状以铁为主的化合物、粒状以锰为主的化合物、粒状硅酸铝复合物、合成树脂和上述吸附性材料的至少一种的组合。
29.权利要求27所述的方法,其中所述吸附性材料包括粒状活性炭。
30.权利要求29所述的方法,其中所述粒状活性炭经过处理以提供对被发现存在于待处理的废水中的预定化学物质、金属或其它化合物的亲和力。
31.权利要求29所述的方法,其中所述吸附性材料还包括一种或多种选自粒状以铁为主的化合物、粒状以锰为主的化合物、粒状硅酸铝复合材料和合成树脂的吸附性材料。
32.权利要求27所述的系统,进一步包括和所述生物处理的水出口相连的固体分离设备。
33.权利要求32所述的系统,其中所述固体分离设备是膜操作系统。
34.权利要求33所述的系统,进一步包括用于将来自所述膜操作系统的至少一部分活性淤泥回送至所述生物再生反应器的回送活性淤泥管线。
35.权利要求33所述的系统,进一步包括其中在所述生物再生反应器中或所述生物再生反应器下游和所述生物再生反应器和所述膜操作系统之间的分离子系统以将基本上不含吸附性材料的所述生物再生反应器水流出物引入所述膜操作系统。
36.权利要求35所述的方法,其中所述吸附性材料的有效粒径为至少约0.3毫米。
37.权利要求35所述的方法,其中所述吸附性材料的有效粒径为至少约0.5毫米。
38.权利要求32所述的系统,其中所述固体分离设备是澄清池和/或沉积器。
39.权利要求27所述的系统,进一步包括剪切区段,所述剪切区段包括与所述生物再生反应器的再生的吸附性材料出口相连的入口、和与所述混合区段的吸附性材料入口相连的出口。
40.权利要求36所述的系统,进一步包括吸附性材料/生物质分离区段,包括与所述剪切区段的出口相连的入口、和与所述混合区段的吸附性材料入口相连的出口。
41.权利要求27所述的系统,进一步包括用于从吸附性材料剪切和分离生物质的设备,该设备包括与所述生物再生反应器的再生的吸附性材料出口相连的入口、和与所述混合区段的吸附性材料入口相连的出口。
42.权利要求27所述的系统,其中所述生物再生反应器经构造及配置以从吸附性材料剪切和分离生物质。
43.权利要求27所述的系统,进一步包括排放低浓度废水的上游废水处理系统,并且其中所述混合区段的废水入口是低浓度废水入口。
44.一种废水处理系统,包括:
高通量吸附系统,包括:
用于接纳废水的入口,
用于接触所述废水和来自所述废水的污染物的吸附性材料源,所述吸附性材料是多孔的且特征在于吸附生物难处理化合物和生物抑制性化合物的吸附能力和微生物附着在所述吸附材料上的能力,其中综合的吸附材料特征有利于所述吸附性材料的生物再生,
用于排放已经接触所述吸附性材料的大部分接纳的废水的液体出口,和
用于排放具有吸附的污染物和少部分接纳的废水的吸附性材料的吸附性材料出口;以及
低通量吸附性材料生物再生反应器系统,其用于使具有吸附的污染物的吸附性材料保持呈悬浮一定时间,该时间足以允许微生物消化吸附的生物难处理化合物和/或生物抑制性化合物,所述低通量吸附性材料生物再生反应器系统包括:
生物再生反应器,包括:
用于从所述高通量吸附系统的吸附性材料出口接纳具有吸附的生物难处理化合物和/或生物抑制性化合物的吸附性材料的入口,
混合液出口,和
与所述高通量吸附系统的吸附性材料源相连的吸附性材料出口。
45.权利要求44所述的系统,其中所述吸附性材料选自粒状活性炭、粒状以铁为主的化合物、粒状以锰为主的化合物、粒状硅酸铝复合物、合成树脂和上述吸附性材料的至少一种的组合。
46.权利要求44所述的系统,其中所述吸附性材料包括粒状活性炭。
47.权利要求46所述的系统,其中所述粒状活性炭经过处理以提供对被发现存在于待处理的废水中的预定化学物质、金属或其它化合物的亲和力。
48.权利要求46所述的系统,其中所述吸附性材料还包括一种或多种选自粒状以铁为主的化合物、粒状以锰为主的化合物、粒状硅酸铝复合材料和合成树脂的吸附性材料。
49.权利要求44所述的系统,其中所述低通量吸附性材料生物再生反应器系统还包括和所述生物处理的水出口相连的固体分离设备,所述固体分离设备选自膜操作系统、澄清池、沉积器、或澄清池和沉积器的组合。
50.权利要求49所述的系统,其中所述固体分离设备是膜操作系统。
51.权利要求50所述的系统,进一步包括用于将来自所述膜操作系统的至少一部分活性淤泥回送至所述生物再生反应器的回送活性淤泥管线。
52.权利要求50所述的系统,进一步包括其中在所述生物再生反应器中或所述生物再生反应器下游和所述生物再生反应器和所述膜操作系统之间的分离子系统以将基本上不含吸附性材料的所述生物再生反应器水流出物引入所述膜操作系统。
53.权利要求50所述的方法,其中所述吸附性材料的有效粒径为至少约0.3毫米。
54.权利要求50所述的方法,其中所述吸附性材料的有效粒径为至少约0.5毫米。
55.权利要求44所述的系统,其中所述低通量吸附性材料生物再生反应器系统还包括:
剪切设备,其用于从吸附性材料剪切过量积聚的生物质,所述剪切设备位于所述生物再生反应器内和/或从所述生物再生反应器分离,并且连接所述吸附性材料出口以接纳来自所述生物再生反应器的吸附性材料,
吸附性材料/生物质分离区段,其用于从吸附性材料和游离生物质的混合物中分离游离生物质;
吸附性材料管道,其用于将所述分离的吸附性材料从所述吸附性材料/生物质分离区段送至所述高通量吸附系统;以及
生物质管道,其用于将分离的生物质从所述吸附性材料/生物质分离区段送至所述生物再生反应器或所述生物再生反应器的位置下游。
56.权利要求44所述的系统,其中所述低通量吸附性材料生物再生反应器系统还包括:
合并设备,其用于从吸附性材料剪切和分离积聚的生物质,所述合并设备位于所述生物再生反应器内和/或从所述生物再生反应器分离,并且连接所述吸附性材料出口以接纳来自所述生物再生反应器的吸附性材料,并且具有用于排放分离的吸附性材料的出口和用于排放游离生物质的出口;
与所述合并设备的吸附性材料出口相连的吸附性材料管道,其用于使吸附性材料返回所述高通量吸附系统;以及
与所述合并设备的生物质出口相连的生物质管道,其用于使分离的生物质送至所述生物再生反应器或所述生物再生反应器的位置下游。
57.权利要求44所述的系统,其中所述低通量吸附性材料生物再生反应器系统还包括与所述生物再生反应器的混合液出口流体相连的膜操作系统。
58.权利要求44所述的系统,其中所述低通量吸附性材料生物再生反应器系统还包括与所述生物再生反应器的混合液出口流体相连的澄清池和/或沉积器。
59.权利要求44所述的系统,其中所述高通量吸附系统包括混合区段和沉积区段。
60.权利要求59所述的系统,其中所述沉积区段具有容器,所述容器构造有反相锥形或截头圆锥底部,所述吸附性材料出口位于所述反相锥形或截头圆锥底部内。
61.权利要求44所述的系统,其中所述高通量吸附系统包括吸附性材料过滤设备。
62.权利要求44所述的系统,其中所述高通量吸附系统包括连续回冲过滤器。
63.权利要求44所述的系统,其中所述高通量吸附系统包括连续再生过滤系统或连续再生核桃壳过滤器。
64.权利要求44所述的系统,进一步包括排放低浓度废水的上游废水处理系统,并且其中所述高通量吸附系统的废水入口是低浓度废水入口。
65.权利要求44所述的系统,进一步包括:
经构造及配置以测定所述系统参数的传感器;以及
与所述传感器电子通讯、且经编程以基于所测得的所述的系统参数来指导动作表现的控制器。
66.权利要求65所述的废水处理系统,其中所述测量的参数为一种或多种预定化合物的浓度。
67.权利要求65所述的废水处理系统,其中所述动作包括从所述生物再生反应器除去至少一部分吸附性材料。
68.权利要求65所述的废水处理系统,其中所述动作包括将吸附性材料加入所述生物再生反应器。
CN201410616152.4A 2009-07-08 2010-07-08 低浓度废水处理系统和方法 Expired - Fee Related CN104386816B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US22401109P 2009-07-08 2009-07-08
US61/224011 2009-07-08
CN201080030092.8A CN102639450B (zh) 2009-07-08 2010-07-08 低浓度废水处理系统和方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201080030092.8A Division CN102639450B (zh) 2009-07-08 2010-07-08 低浓度废水处理系统和方法

Publications (2)

Publication Number Publication Date
CN104386816A true CN104386816A (zh) 2015-03-04
CN104386816B CN104386816B (zh) 2017-06-27

Family

ID=43426692

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201080030092.8A Expired - Fee Related CN102639450B (zh) 2009-07-08 2010-07-08 低浓度废水处理系统和方法
CN201410616152.4A Expired - Fee Related CN104386816B (zh) 2009-07-08 2010-07-08 低浓度废水处理系统和方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201080030092.8A Expired - Fee Related CN102639450B (zh) 2009-07-08 2010-07-08 低浓度废水处理系统和方法

Country Status (19)

Country Link
US (2) US8557111B2 (zh)
EP (2) EP2703362A3 (zh)
JP (1) JP5814916B2 (zh)
KR (1) KR101791704B1 (zh)
CN (2) CN102639450B (zh)
AR (1) AR078057A1 (zh)
AU (1) AU2010271391B2 (zh)
BR (1) BR112012000346A2 (zh)
CA (1) CA2764112C (zh)
CL (1) CL2012000035A1 (zh)
CO (1) CO6491097A2 (zh)
EA (2) EA201300643A1 (zh)
HK (2) HK1172314A1 (zh)
MX (1) MX2012000386A (zh)
MY (1) MY156850A (zh)
SG (1) SG176844A1 (zh)
TW (1) TWI491568B (zh)
WO (1) WO2011005927A1 (zh)
ZA (1) ZA201108795B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108348891A (zh) * 2015-09-30 2018-07-31 西门子能源有限公司 具有再循环流的多级活性炭系统和方法
CN108483801A (zh) * 2018-03-26 2018-09-04 华南理工大学 一种基于氨氮吸附和强化生物再生脱除低温废水中氨氮的方法

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100213123A1 (en) * 2007-01-09 2010-08-26 Marston Peter G Ballasted sequencing batch reactor system and method for treating wastewater
US20110036771A1 (en) * 2007-01-09 2011-02-17 Steven Woodard Ballasted anaerobic system and method for treating wastewater
TWI568687B (zh) * 2009-06-15 2017-02-01 沙烏地阿拉伯油品公司 包含懸浮系統與多重生物反應器區域的經懸浮介質膜生物反應器系統及方法
EA201300643A1 (ru) 2009-07-08 2013-09-30 Сауди Арабиан Ойл Компани Система и способ обработки сточных вод с низким содержанием загрязняющих веществ
JP5620485B2 (ja) 2009-07-08 2014-11-05 サウジ アラビアン オイル カンパニー 1次固形物の照射を含む廃水処理システムおよびプロセス
WO2012137069A2 (en) * 2011-04-05 2012-10-11 Butters Brian E Decontamination system with insoluble additives
TWI464401B (zh) * 2011-11-15 2014-12-11 Univ Yuanpei Sampling device and method for rapid detection of volatile organic matter and odor substances in water
CN102642985A (zh) * 2012-04-23 2012-08-22 南京师范大学 一种畜禽养殖粪污化能与回用方法及系统
CA2873081C (en) 2012-06-11 2020-12-29 Evoqua Water Technologies Llc Treatment using fixed film processes and ballasted settling
WO2014052674A1 (en) 2012-09-26 2014-04-03 Evoqua Water Technologies Llc System for measuring the concentration of magnetic ballast in a slurry
EP2911984A1 (en) * 2012-10-26 2015-09-02 Siemens Energy, Inc. Methods and systems for treating spent caustic and regenerating media
EP2947163A4 (en) * 2013-01-21 2016-05-11 Mitsubishi Rayon Co METHODS AND DEVICES FOR METAL CONCENTRATION AND RECOVERY
US9988290B1 (en) * 2013-04-24 2018-06-05 William D McGowan, III Method and apparatus for operation of aerobic biological solids digester
CA2867730C (en) * 2013-10-15 2022-05-03 William Bloomfield Filter media recycling system
CN105642241A (zh) * 2014-11-15 2016-06-08 中国科学院理化技术研究所 一种用于除去水中有害阴离子的生物质基吸附材料及其制备方法
US20160236957A1 (en) * 2015-02-17 2016-08-18 Symphonic Water Solutions, Inc. Membrane Enhancement for Wastewater Treatment
CN105771912B (zh) * 2016-03-15 2019-03-29 中南大学 一种多功能生物吸附材料及其制备方法
FR3050200B1 (fr) * 2016-04-13 2018-04-13 Veolia Water Solutions & Technologies Support Procede de traitement d'eau par adsorption sur charbon actif et clarification, et installation correspondante.
CN107758908A (zh) * 2016-08-18 2018-03-06 宜兴市天马环保工程有限公司 一种汽车制造业废水处理系统
US20190047875A1 (en) * 2017-08-11 2019-02-14 Shun Tsung Lu Sewage purifying apparatus
KR102000156B1 (ko) * 2018-12-14 2019-10-01 주식회사 자동기 제설제 살포장치 내부의 이물질 제거 시스템 및 그 방법
US20210170363A1 (en) * 2019-12-09 2021-06-10 Regenesis Bioremediation Products Methods for the Destruction of Contaminants Adsorbed to Activated Carbon
EP4171778A1 (en) * 2020-06-25 2023-05-03 University Of South Florida Systems and methods for treating a wastewater stream
US20220380241A1 (en) * 2021-05-25 2022-12-01 Shun-Tsung Lu Sewage and Seawater Purification Apparatus
FR3124744A1 (fr) * 2021-07-02 2023-01-06 Suez Groupe Procede de regeneration in situ d’un media adsorbant
TWI790142B (zh) * 2022-03-15 2023-01-11 臺灣塑膠工業股份有限公司 氫氟酸處理監控系統和監控氫氟酸處理方法
CN115010328B (zh) 2022-07-15 2022-11-11 金科环境股份有限公司 一种印刷电路板废水的处理系统和方法
EP4328195A1 (en) * 2022-08-24 2024-02-28 Indian Oil Corporation Limited An automated process for treatment of refinery wastewater

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000308895A (ja) * 1999-04-26 2000-11-07 Ebara Corp 有機性汚水の処理方法
CN1454852A (zh) * 2002-10-15 2003-11-12 上海子征环境技术咨询有限公司 沸石生物联合吸附再生污水处理工艺
CN1689994A (zh) * 2004-04-27 2005-11-02 上海市城市排水有限公司 剩余污泥中无机粉末物料回用工艺
US20070209999A1 (en) * 2006-03-08 2007-09-13 Siemens Water Technologies Corp. Wastewater treatment system and method

Family Cites Families (104)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3455820A (en) 1967-05-05 1969-07-15 Calgon Corp Carbon treatment of raw sewage
IT965525B (it) * 1968-11-21 1974-02-11 Fram Corp Depurazione di materiali
US3803029A (en) 1968-11-21 1974-04-09 Fram Corp Materials purification
US3776853A (en) 1971-08-19 1973-12-04 Westinghouse Electric Corp Dry-cleaning composition and method
IL46494A (en) 1974-01-22 1977-10-31 Ontario Research Foundation Adsorption - biooxidation treatment of waste waters to remove contaminants therefrom
JPS584596B2 (ja) * 1974-09-18 1983-01-27 スイドウキコウ カブシキガイシヤ カツセイタンニヨル リユウドウセツシヨクシヨリホウ
GB1579623A (en) 1976-06-08 1980-11-19 Clough G F G Filtration medium for the biological treatment of waste water
JPS5326464A (en) * 1976-08-20 1978-03-11 Toyobo Co Ltd Method of purifying waste water
JPS54105897A (en) 1978-02-06 1979-08-20 Kureha Chemical Ind Co Ltd Adsorber for artificial organ
US4237002A (en) * 1979-01-24 1980-12-02 Zurn Industries, Inc. Multi sorption process and system
US4265747A (en) 1979-05-22 1981-05-05 Sterling Drug Inc. Disinfection and purification of fluids using focused laser radiation
US4371454A (en) 1979-11-02 1983-02-01 Kureha Kagaku Kogyo Kabushiki Kaisha Process for preparing spherical carbon material and spherical activated carbon
JPS58110412A (ja) 1981-12-24 1983-07-01 Nakajima Kagaku Sangyo Kk 廃粉末活性炭素を原料とした粒状活性炭素の製造法
US4495056A (en) 1982-04-16 1985-01-22 Standard Oil Company (Indiana) Oil shale retorting and retort water purification process
US4656153A (en) 1983-02-28 1987-04-07 Standard Oil Company (Indiana) Active carbon containing a dispersion of a metal component and method for making same
JPS59206090A (ja) * 1983-05-11 1984-11-21 Nippon Kokan Kk <Nkk> 有機性廃液の処理方法
US4623464A (en) 1985-03-21 1986-11-18 Occidental Chemical Corporation Removal of dioxins, PCB's and other halogenated organic compounds from wastewater
US4626354A (en) 1985-09-30 1986-12-02 Zimpro Inc. Method for anaerobic treatment of high strength liquors
US5057284A (en) 1986-02-07 1991-10-15 Envirotech Bioslurry reactor for treatment of slurries containing minerals, soils and sludges
JPS62286591A (ja) 1986-06-05 1987-12-12 Ebara Infilco Co Ltd 有機性廃水の処理方法
JPS6316096A (ja) 1986-07-08 1988-01-23 Ebara Infilco Co Ltd 有機性廃水の処理方法
JPH0729105B2 (ja) * 1986-07-12 1995-04-05 清水建設株式会社 水処理法
US4956093A (en) 1986-08-22 1990-09-11 Massoud Pirbazari Wastewater treatment process
JPS63185497A (ja) * 1987-01-27 1988-08-01 Hidenori Nishimura 屎尿浄化処理水の再利用システム
US4778598A (en) 1987-02-02 1988-10-18 Zimpro Inc. Separation of ash from regenerated adsorbent
US4749492A (en) 1987-07-06 1988-06-07 Zimpro/Passavant Process for recovering regenerated adsorbent particles and separating ash therefrom
JPS6475089A (en) * 1987-09-16 1989-03-20 Aqua Renaissance Gijutsu Waste water treatment method
US4810386A (en) 1988-01-04 1989-03-07 Zimpro/Passavant Inc. Two-stage wastewater treatment
US4897196A (en) 1988-02-17 1990-01-30 Zimpro/Passavant Inc. Two-stage batch wastewater treatment
JPH0294600A (ja) * 1988-09-30 1990-04-05 Nec Corp 電子回路基板製造不良の集中補修システム
US4919815A (en) 1989-02-06 1990-04-24 Zimpro/Passavant Inc. Two-stage anaerobic/aerobic treatment process
US5560819A (en) 1990-04-19 1996-10-01 Mori-Gumi Co., Ltd. Treating system for organic wastes and waste water
US5126050A (en) 1990-05-10 1992-06-30 Sbr Technologies, Inc. Granular activated carbon-sequencing batch biofilm reactor (GAC-SBBR)
US5505841A (en) 1991-03-11 1996-04-09 Pirbazari; Massoud Microfiltration and adsorbent particle suspension for removing contaminants from water
GB9124404D0 (en) 1991-11-16 1992-01-08 Southern Water Services Ltd Removing pesticide residues from water
US5192442A (en) 1991-12-02 1993-03-09 Zimpro Passavant Environmental Systems, Inc. Multiple zone batch treatment process
DE4231628C1 (de) * 1992-09-22 1994-02-17 Forschungszentrum Juelich Gmbh Verfahren zur Abwasserreinigung mit Stickstoffelimination und dafür geeignete Anlage
US5649785A (en) 1993-03-03 1997-07-22 Djerf; Tobin Method of treating solid waste, recovering the constituent materials for recycling and reuse, and producing useful products therefrom
US5302288A (en) 1993-03-19 1994-04-12 Zimpro Environmental, Inc. Treatment of highly colored wastewaters
US5447630A (en) 1993-04-28 1995-09-05 Rummler; John M. Materials treatment process and apparatus
BR9505641A (pt) 1994-01-13 1996-01-09 Boris M Khudenko Processos para o tratamento biológico em multiplos estagios de um material influentes para sequenciar processamento em batelada de refugo liquido em um reator de pelo menos um estágio anearóbico e um aeróbico e para tratar mateirais fluidos e aparelho de tratamento de água de refugo e de gás
AU1603795A (en) 1994-02-14 1995-08-29 Envirex Inc. Integrated adsorption/advanced oxidation fluidized bed reactor
US5486292A (en) 1994-03-03 1996-01-23 E. I. Du Pont De Nemours And Company Adsorbent biocatalyst porous beads
US5653883A (en) 1994-03-14 1997-08-05 Newman; William A. Stirred tank biological activated carbon adsorption-desorption process
CN1098815C (zh) 1995-05-23 2003-01-15 株式会社荏原制作所 需氧处理污水的方法与处理池
US5932099A (en) * 1995-07-25 1999-08-03 Omnium De Traitements Et De Valorisation (Otv) Installation for biological water treatment for the production of drinkable water
US6110728A (en) * 1995-08-25 2000-08-29 Appropriate Innovative Technologies, Inc. Method for regeneration of adsorptive material
JP3442205B2 (ja) 1995-09-29 2003-09-02 株式会社荏原製作所 リン含有汚水の処理方法
AU712455B2 (en) 1996-02-15 1999-11-04 Siemens Industry, Inc. Granular media filter including media settler assembly
JP3491125B2 (ja) 1996-07-11 2004-01-26 日立造船株式会社 浄水処理装置
JPH10202280A (ja) * 1997-01-20 1998-08-04 Ebara Corp 軽量活性炭を用いた有機性汚水の生物処理方法
JP3385306B2 (ja) * 1997-02-28 2003-03-10 株式会社クラレ 排水処理装置
JPH1147747A (ja) * 1997-08-07 1999-02-23 Kurita Water Ind Ltd 浸漬式膜処理装置
KR100248874B1 (ko) * 1998-01-10 2000-03-15 박형인 하수의 정화처리방법 및 장치
US5972211A (en) * 1998-03-19 1999-10-26 Jones; Terry L. Water filtration system
KR100302469B1 (ko) 1999-03-05 2001-09-22 염병호 입상활성탄여과지의 활성탄입자 유실방지방법 및 그 장치
US6048459A (en) 1999-04-09 2000-04-11 Mockba Corporation Method and apparatus for fluidization of particulate bed materials
US20070122609A1 (en) 1999-11-23 2007-05-31 Hiltzik Laurence H Porous coatings on adsorbent materials
EP2142480A1 (en) * 2000-04-03 2010-01-13 Richard A. Haase Potable water purification process including biofiltration
KR200197712Y1 (ko) 2000-04-17 2000-09-15 한국건설기술연구원 입상활성슬러지 공법을 이용한 수처리장치
US6630067B2 (en) * 2000-06-13 2003-10-07 Trustees Of The University Of Pennsylvania Methods and apparatus for biological treatment of aqueous waste
US6517723B1 (en) 2000-07-27 2003-02-11 Ch2M Hill, Inc. Method and apparatus for treating wastewater using membrane filters
US20050218074A1 (en) 2004-04-06 2005-10-06 Pollock David C Method and apparatus providing improved throughput and operating life of submerged membranes
RU2184086C1 (ru) 2001-04-02 2002-06-27 Петрик Виктор Иванович Способ удаления нефти, нефтепродуктов и/или химических загрязнителей из жидкости, и/или газа и/или с поверхности
JP3767800B2 (ja) * 2001-04-27 2006-04-19 株式会社荏原製作所 窒素−リン含有排水の処理方法及び装置
US6458276B1 (en) 2001-05-16 2002-10-01 Shell Oil Company Method and apparatus for biodegradation of alkyl ethers and tertiary butyl alcohol
US20030132160A1 (en) 2002-01-11 2003-07-17 Khudenko Boris M. Membrane biotreatment
US6905603B2 (en) 2002-01-18 2005-06-14 Behzad Mirzayi Treatment of contaminated activated charcoal
JP2003261314A (ja) * 2002-03-05 2003-09-16 Panasonic Communications Co Ltd 活性炭とその製造方法及び浄水装置
US20040004038A1 (en) * 2002-07-03 2004-01-08 Jfe Engineering Corporation Method and apparatus for treating sludge, and method and apparatus for treating wastewater utilizing the same
TW593167B (en) 2002-10-25 2004-06-21 Ind Tech Res Inst Method for treating wastewater/water with membrane bioreactor
FR2847572B1 (fr) 2002-11-22 2006-04-21 Omnium Traitement Valorisa Procede de traitement des eaux a l'aide d'un reactif pulverulent inorganique a forte surface specifique incluant une etape de recyclage dudit reactif
WO2004099073A2 (en) 2003-05-09 2004-11-18 Mcgill University Process for the production of activated carbon
CN1458092A (zh) * 2003-05-27 2003-11-26 上海同瑞环保科技有限公司 一种富营养化原水处理方法
CN1215997C (zh) 2003-06-13 2005-08-24 哈尔滨工业大学 强化膜生物反应器水处理方法
US7041213B1 (en) * 2003-07-14 2006-05-09 Quiktrip Corporation Stormwater pretreatment and disposal system
DE10337550B4 (de) * 2003-08-14 2007-10-04 Dr. Ecker Gmbh Verfahren zur kontinuierlichen Regenerierung von Sorptionsmittel bei der Wasserreinigung
FR2865468B1 (fr) 2004-01-22 2006-04-28 Ceca Sa Charbon actif a resistance mecanique amelioree, ses utilisations, notamment comme support de catalyseur.
JP4507628B2 (ja) * 2004-02-19 2010-07-21 株式会社Inax トリハロメタン除去方法
JP2007535398A (ja) * 2004-04-22 2007-12-06 シーメンス ウォーター テクノロジース コーポレイション 有機物質を消化するためのメンブレンバイオリアクタおよび処理槽を含む濾過装置ならびに廃液処理方法
EP1780179B1 (en) * 2004-07-16 2015-09-16 Kuraray Co., Ltd. Method of wastewater treatment with excess sludge withdrawal reduced
JP4470169B2 (ja) * 2004-11-01 2010-06-02 株式会社日立プラントテクノロジー 水処理方法及びその装置
WO2006053402A1 (en) 2004-11-22 2006-05-26 Nubian Water Systems Pty Limited Waste water treatment process system
US7329344B2 (en) 2004-12-22 2008-02-12 Siemens Water Technologies Corp. Grease and scum removal in a filtration apparatus comprising a membrane bioreactor and a treatment vessel for digesting organic materials
US20060175263A1 (en) * 2005-01-19 2006-08-10 Heavy Industry Technology Solutions Methods and systems for treating wastewater
DE102005016677A1 (de) 2005-04-12 2006-10-19 Carl Freudenberg Kg Filterelement und Filteranordnung
US7396453B1 (en) 2005-04-19 2008-07-08 Procorp Enterprises, Llc Hydraulically integrated solids/liquid separation system for wastewater treatment
JP2007021347A (ja) 2005-07-14 2007-02-01 Idemitsu Kosan Co Ltd 難分解性物質含有水の処理方法
PL1910234T3 (pl) * 2005-07-25 2013-03-29 Zenon Tech Partnership Sposób oczyszczania wody pozostałej po odmulaniu instalacji FGD
US20070114182A1 (en) 2005-11-18 2007-05-24 Hydroxyl Systems Inc. Wastewater treatment system for a marine vessel
US20070119777A1 (en) 2005-11-26 2007-05-31 Brown Jess C Process for treatment of organic contaminated water
CN100465105C (zh) 2005-12-02 2009-03-04 北京科技大学 好氧生物流化床与微电解技术结合处理生活污水的方法
CN101054249A (zh) 2006-04-11 2007-10-17 同济大学 多点进水沸石生物联合吸附再生污水处理工艺
WO2008024445A2 (en) 2006-08-23 2008-02-28 Siemens Water Technologies Corp. Sequencing batch reactor with continuous membrane filtration and solids reduction
CN200964368Y (zh) 2006-09-25 2007-10-24 山东建筑大学 膜生物反应器
WO2008076082A1 (en) 2006-12-20 2008-06-26 Nanyang Technological University Microspheric tio2 photocatalyst
BRPI0806315A2 (pt) * 2007-01-09 2011-09-06 Cambridge Water Technology Inc sistema e método para melhorar um processo de lama ativada
US8470172B2 (en) * 2007-01-09 2013-06-25 Siemens Industry, Inc. System for enhancing a wastewater treatment process
AU2008343823B2 (en) 2007-12-19 2012-01-19 Saudi Arabian Oil Company Suspended media granular activated carbon membrane biological reactor system and process
RU74122U1 (ru) 2008-02-27 2008-06-20 Открытое Акционерное Общество Ордена Трудового Красного Знамени Комплексный Научно-Исследовательский И Конструкторско-Технологический Институт Водоснабжения, Канализации, Гидротехнических Сооружений И Инженерной Гидрогеологии "Нии Водгео" (Оао "Нии Водгео") Установка для очистки сточных вод от органических соединений
RU2351551C1 (ru) 2008-04-01 2009-04-10 Открытое Акционерное Общество-Ордена Трудового Красного Знамени Комплексный Научно-Исследовательский И Конструкторско- Технологический Институт Водоснабжения, Канализации, Гидротехнических Сооружений И Инженерной Гидрогеологии (Оао "Нии Водгео") Способ очистки сточных вод от органических соединений, азота и фосфора
TWI568687B (zh) 2009-06-15 2017-02-01 沙烏地阿拉伯油品公司 包含懸浮系統與多重生物反應器區域的經懸浮介質膜生物反應器系統及方法
EA201300643A1 (ru) 2009-07-08 2013-09-30 Сауди Арабиан Ойл Компани Система и способ обработки сточных вод с низким содержанием загрязняющих веществ
JP5620485B2 (ja) 2009-07-08 2014-11-05 サウジ アラビアン オイル カンパニー 1次固形物の照射を含む廃水処理システムおよびプロセス

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000308895A (ja) * 1999-04-26 2000-11-07 Ebara Corp 有機性汚水の処理方法
CN1454852A (zh) * 2002-10-15 2003-11-12 上海子征环境技术咨询有限公司 沸石生物联合吸附再生污水处理工艺
CN1689994A (zh) * 2004-04-27 2005-11-02 上海市城市排水有限公司 剩余污泥中无机粉末物料回用工艺
US20070209999A1 (en) * 2006-03-08 2007-09-13 Siemens Water Technologies Corp. Wastewater treatment system and method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108348891A (zh) * 2015-09-30 2018-07-31 西门子能源有限公司 具有再循环流的多级活性炭系统和方法
CN108348891B (zh) * 2015-09-30 2020-12-15 西门子能源美国公司 具有再循环流的多级活性炭系统和方法
CN108483801A (zh) * 2018-03-26 2018-09-04 华南理工大学 一种基于氨氮吸附和强化生物再生脱除低温废水中氨氮的方法
CN108483801B (zh) * 2018-03-26 2021-06-08 华南理工大学 一种基于氨氮吸附和强化生物再生脱除低温废水中氨氮的方法

Also Published As

Publication number Publication date
CN102639450B (zh) 2015-06-03
CN104386816B (zh) 2017-06-27
AU2010271391B2 (en) 2015-12-10
CA2764112C (en) 2018-01-16
EA201200104A1 (ru) 2012-06-29
JP5814916B2 (ja) 2015-11-17
ZA201108795B (en) 2013-03-27
EP2703362A3 (en) 2014-04-16
CL2012000035A1 (es) 2012-09-14
EA025298B1 (ru) 2016-12-30
EP2451751A1 (en) 2012-05-16
US9073764B2 (en) 2015-07-07
HK1208019A1 (zh) 2016-02-19
WO2011005927A1 (en) 2011-01-13
TW201113228A (en) 2011-04-16
US20130233800A1 (en) 2013-09-12
CN102639450A (zh) 2012-08-15
JP2012532747A (ja) 2012-12-20
BR112012000346A2 (pt) 2016-03-22
EA201300643A1 (ru) 2013-09-30
CO6491097A2 (es) 2012-07-31
KR101791704B1 (ko) 2017-10-30
AR078057A1 (es) 2011-10-12
KR20120099626A (ko) 2012-09-11
TWI491568B (zh) 2015-07-11
AU2010271391A1 (en) 2011-12-15
US20110006002A1 (en) 2011-01-13
EP2703362A2 (en) 2014-03-05
EP2451751B1 (en) 2017-09-06
MY156850A (en) 2016-04-15
SG176844A1 (en) 2012-01-30
MX2012000386A (es) 2012-05-23
CA2764112A1 (en) 2011-01-13
US8557111B2 (en) 2013-10-15
HK1172314A1 (zh) 2013-04-19
EP2451751A4 (en) 2013-12-25

Similar Documents

Publication Publication Date Title
CN102639450B (zh) 低浓度废水处理系统和方法
CN102548912B (zh) 包括主要固体的辐射的废水处理系统和方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1208019

Country of ref document: HK

GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170627

Termination date: 20190708

REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1208019

Country of ref document: HK