CN102387755A - 具有多管远端部分的单相液体致冷剂冷冻消融系统及相关方法 - Google Patents

具有多管远端部分的单相液体致冷剂冷冻消融系统及相关方法 Download PDF

Info

Publication number
CN102387755A
CN102387755A CN2010800153971A CN201080015397A CN102387755A CN 102387755 A CN102387755 A CN 102387755A CN 2010800153971 A CN2010800153971 A CN 2010800153971A CN 201080015397 A CN201080015397 A CN 201080015397A CN 102387755 A CN102387755 A CN 102387755A
Authority
CN
China
Prior art keywords
liquid refrigerant
cryoprobe
microtubule
liquid
cryogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2010800153971A
Other languages
English (en)
Inventor
阿莱克谢·巴布金
彼得·利特拉普
威廉·尼达姆
巴龙·尼达姆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cryomedix LLC
Original Assignee
Cryomedix LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cryomedix LLC filed Critical Cryomedix LLC
Publication of CN102387755A publication Critical patent/CN102387755A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/02Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/02Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
    • A61B2018/0212Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques using an instrument inserted into a body lumen, e.g. catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/02Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
    • A61B2018/0231Characteristics of handpieces or probes
    • A61B2018/0262Characteristics of handpieces or probes using a circulating cryogenic fluid

Abstract

这里描述了单相液体致冷剂冷冻消融系统和方法。所述冷冻消融系统沿着封闭的流体通道驱动液体冷冻剂或致冷剂,而所述液体冷冻剂不会蒸发。冷冻探头包括用以将能量传递至组织的远端能量传递部分。位于所述冷冻探头的远端部分内的多个冷却微管将低温能量传递给所述组织。所述远端部分中的所述多个微管由在低温范围内呈现出柔性的材料制成,从而能使所述冷冻探头的所述远端部分弯曲并匹配各种形状的目标组织。

Description

具有多管远端部分的单相液体致冷剂冷冻消融系统及相关方法
相关申请的交叉参考
本申请要求2009年4月6日提交的、名称为“用于改进的冷冻消融处理的低温系统(Cryogenic System for Improved CryoablationTreatment)”的申请No.61/167,057的权益。
技术领域
本发明涉及用于处理生物组织的冷冻消融系统,更具体而言是涉及采用液态致冷剂的冷冻消融探头,以及具有多管远端的冷冻治疗探头。
背景技术
冷冻消融疗法包括采用极其低温而且复杂的冷却系统适当地冷冻待处理的目标生物组织。大多数这些系统采用具有特定形状和尺寸的冷冻探头或导管,这些冷冻探头或导管被设计成接触组织的选定部分,而不会对附近的任何健康组织或器官造成不利影响。利用经由冷冻探头的远端引入的某些类型的致冷剂来实现极端冷冻。冷冻探头的此部分必须与待处理的目标生物组织直接热接触。
如今有各种已知的冷冻消融系统,它们例如包括液氮和一氧化二氮式系统。液氮具有大约-200℃的非常理想的低温,但在其被引入与周围的温暖生物组织热接触的冷冻探头的远端冷冻区时,其温度升高超过沸点温度(-196℃),而且其在大气压力下蒸发且体积膨胀几百倍,并快速吸收冷冻探头的远端的热量。这样的巨大体积增加在冷冻探头的尖针的内部空间被气态氮“阻塞”时导致“汽堵”效应。以外,在这些系统中,气态氮在使用中仅直接排到大气中,这在暴露于手术室的大气湿度时产生大量的冷凝物并需要频繁地补充或更换液氮贮槽。
一氧化二氮和氩系统一般利用焦耳-汤姆逊膨胀元件通过压缩气体的膨胀来实现冷却,所述焦耳-汤姆逊膨胀元件比如是布置于冷冻探头的末梢的小孔、节流阀或其它类型的流动压缩装置。例如,普通一氧化二氮系统将气体加压到大约5MPa至5.5MPa而达到在0.1MPa左右的压力下不低于-85℃至-65℃左右的温度。对氩气而言,利用大约21MPa的初始压力来实现0.1MPa的相同压力下的大约-160℃的温度。一氧化二氮冷却系统不能达到由液氮系统实现的温度和冷却能力。一氧化二氮和冷却系统因为室温高压气体的入口而具有某些优点,在其到达位于探头尖端的焦耳-汤姆逊节流部件或其它膨胀装置时,免除了系统隔热的必要。但是,由于操作温度不够低,而且初始压力较高,冷冻外科应用受到严格的限制。除此以外,焦耳-汤姆逊系统通常采用换热器,通过往外排的膨胀气体来冷却进入的高压气体,以此通过使压缩气体膨胀来实现必要的降温。这些换热器系统与需要直径小于3mm的探头尖端要求的微型尺寸不兼容。虽然氩系统能实现理想的冷冻消融温度,但氩系统不提供足够的冷却能力,而且需要极高的气体压力。这些限制是不合乎需要的。
另一冷冻消融系统采用处于亚临界或超临界状态的流体。美国专利No.7,083,612和No.7,273,479中阐述了此类冷冻消融系统。这些系统较之上述系统具有某些优点。诸多好处归结于具有像气体一样的粘性的流体。具有接近氮气临界点的工作条件使得系统能避免上述不理想的汽堵,同时还提供优良的热容。除此以外,此类冷冻消融系统能使用小型沟道探头。
但是,在冷冻消融系统中采用亚临界致冷剂极富挑战性。具体而言,一旦氮气经过其临界点(大约8倍),氮气的密度显著变化——从而导致需要延长仪器的预冷时间。热容仅在接近临界点时较高,而且系统的效率在更高温度下很低,因为需要长的预冷时间的。另外,系统不能有效加热(或解冻)冷冻探头。而且,亚临界致冷剂系统需要定制的低温泵,这更难以制造。
专利文献中说明了其它类型的冷冻消融系统。2008年11月19日提交的美国专利No.5,957,963、No.6,161,543、No.6,241,722、No.6,767,346、No.6,936,045和国际专利申请No.PCT/US2008/084004描述了可锻柔性冷冻探头。说明用于通过与焦耳-汤姆逊效应结合供给液氮、一氧化二氮、氩、氪及其它致冷剂或它们的不同组合的冷冻外科系统的专利的示例包括美国专利No.5,520,682、No.5,787,715、No.5,956,958、No.6074572、No.6,530,234和No.6,981,382。
但无论上述系统怎样,采用低压以及使用能够消除冷冻探头的多管远端中的蒸发和“汽堵”的深冷温度的改进的冷冻消融系统仍然是合乎需要的。
发明内容
冷冻消融系统使液体致冷剂沿着流道循环。流道为封闭式的,而且不允许液体致冷剂沿着流道蒸发,抑或改变状态。上述冷冻消融系统沿流道包括多个部件。提供将液体致冷剂保持在初始压力和初始温度的容器。一个实施例中,初始压力较低,而初始温度为正常的环境温度或室内温度。该系统还包括液泵,该液泵可操作用以沿着流道驱动液体致冷剂,并将液体致冷剂的压力增大到预定压力,从而形成压缩液体致冷剂。冷却装置或制冷设备将压缩液体致冷剂冷却到低于初始温度的预定低温。该预定低温与组织致死的温度相等。另一实施例中,预定低温小于或等于-100℃,而又一实施例中,温度小于或等于-140℃。
该系统还包括适于接收压缩液体致冷剂的冷冻探头。冷冻探头具有多个部分,包括细长轴和远尖端部,该细长轴具有远端能量传递部分。远端能量传递部分包括一束冷却微管和一束回流微管。液体致冷剂分别经由冷却微管和回流微管朝向和远离所述远尖端部流动。
一个实施例中,回流微管流体地联接至将液体致冷剂输送至容器的至少一个致冷剂回流管路,以此实现液体致冷剂的循环流道而不使液体致冷剂蒸发。能够沿着流道将止回阀或另一减压器定位在回流管路与容器之间,从而在液体致冷剂进入容器之前减小其压力。
该远端部分可以是刚性或可成形的。刚性实施例中,微管由诸如不锈钢之类的刚性材料形成。
另一实施例中,远端为可成形、可弯曲或柔性的。微管能够由在-200℃至环境温度的整个温度范围内保持柔性的材料制成,由此,远端部分在操作过程中保持柔性。
能够基于直径、壁厚和材料来调整和选择创造性的可成形性。一个实施例中,每个微管具有介于0.05mm到2.0mm之间的内径、介于大约0.01mm到0.3mm之间的壁厚,而且或者由聚酰亚胺材料形成。
另一实施例中,隔热的入口管路沿着冷冻探头的轴延伸,并将液体致冷剂输送至成束的或者多个冷却微管。冷却进入管路与排空的空间或真空空间隔热。
另一实施例中,系统在较低的压力下运行。初始压力介于0.4Mpa到0.9MPa之间,而且在压缩之后沿着流道的压缩压力介于0.6Mpa到1.0MPa之间。这具有利用小型液泵就能操作的优点。
另一实施例中,冷冻消融系统的制冷设备包括被浸入具有预定低温的液体致冷剂中的换热器。
另一实施例中,微管束足以增大冷却面的表面积,从而增强对目标组织的热传递(冷却)。微管的数量介于5到100个微管的范围内。能够将多个冷却微管周向定位在回流微管束周围而形成环状构造。
另一实施例中,冷冻探头适于使压缩液体致冷剂朝向和离开其其远尖端部循环,同时将致冷剂保持在仅液体状态。冷冻探头具有多个部分,包括细长轴和远尖端部,该细长轴具有远端能量传递部分。该远端能量传递部分包括一束冷却微管和一束回流微管。液体致冷剂分别经由冷却微管和回流微管朝向和远离所述远尖端部流动。
本发明的另一实施例中,冷冻消融系统包括在液体致冷剂进入冷冻探头之前对其进行加热的第二流道。冷冻探头将热量传递至目标组织。开关、阀门或其它装置控制选定哪一个流道,并因此控制是否经由冷冻探头的能动管对组织实施加热或冷冻消融。
另一实施例中,一种用于对组织实施低温能量的冷冻消融方法包括使液体致冷剂沿着密闭的流道移动,而不改变液体致冷剂的状态。该方法还包括将冷冻探头的远端部分定位在目标组织的附近,并经由沿着冷冻探头的远端部分延伸的多个冷却微管的壁将低温能量传递至组织。多个微管可弯曲而使远端部分匹配要消融的目标组织,从而增强对组织的能量传递。
一个实施例中的微管沿轴呈环状延伸,并同心地环绕一组内部回流微管。回流微管使得更热的液体致冷剂回流到冷冻探头的附近。
本发明的另一实施例包括用于对具有曲面的组织实施能量的冷冻消融方法,其中,该方法包括沿着冷冻消融系统的流道驱动液体致冷剂的步骤。液体致冷剂保持在单一状态,而且沿着流道移动时不会到达其临界状态。
该方法还包括将冷冻探头的远端部分定位在目标组织的附近,并使远端部分围绕曲面弯曲。该方法还包括在远端部分周围形成冰结构的步骤,其中通过利用存在于远端部分中的多个冷却微管施加低温能量来形成上述冰结构。冰结构的形状能够采取由操作人员选择的细长构件形状、环形状、挂钩形状或其它形状的形式。
本发明的另一实施例是采用非氮致冷剂。又一实施例是使液体致冷剂循环,从而消除常见的焦耳-汤姆逊效应。还有一个实施例是使液体致冷剂在非亚临界状态下循环,从而,随着致冷剂沿其流道移动,流体的粘度为流体在其液态下的粘度。另外一个实施例是使致冷流体循环,其中,流体在其沿着流道移动时基本保持不可压缩。
通过以下详细说明和附图,本发明的文字说明、目的和优点将变得显而易见。
附图说明
图1A和图1B是与根据本发明的冷冻消融系统中使用的液体致冷剂的冷却和加热周期相对应的相图。
图2是作为压力的函数的液氮的沸点温度的图。
图3是用于冷冻消融处理的冷却系统的示意图,其包括冷冻探头中的多个微管。
图4a是根据本发明的冷冻探头的远端部分的剖面图。
图4b是图4a所示的远尖端部的放大图。
图4c是图4a所示的冷冻探头的过渡部分的放大图。
图4d是图4a所示的冷冻探头的端视图。
图4e是示出沿4e-4e线截取的多个微管的剖面图,所述多个微管用以输入液体致冷剂进入和离开冷冻探头的远尖端部。
图5至图7示出了闭合回路单相液体致冷剂冷冻消融系统,该系统包括操作用以沿其远端部分形成各种形状的冰的冷冻探头。
图8是用于冷冻消融处理的另一冷却系统的示意图,其包括冷冻探头中的多个微管以及用于加热液体致冷剂的第二流道。
具体实施方式
在详细描述本发明之前,应理解的是,此发明不限于本文阐述的特定变型,在不背离本发明的精神和范围的前提下,能够对本发明做各种更改和改型,而且等同物能够被代替。在阅读此公开时,本领域的技术人员将明白,在不背离本发明的范围或精神的前提下,本文所阐述和例举的各个实施例中的每一个都具有独立于其它任何多个实施例的特征或能够与其组合的单独部件和特征。除此以外,能够进行多种改型以使特定的情况、材料、物质成分、处理、(多个)处理过程或(多个)步骤适应本发明的(多个)目的、精神或范围。所有这些改型都属于本文阐述的权利要求的范围。
可以以逻辑上可能的任意所述事件次序,以及所提到的事件次序来执行本文所述的方法。另外,设置一定范围的数值,应理解的是,该范围以及其它任何规定范围的上下限之间的每个中间值或者规定范围内的中间值囊括在本发明中。而且,能够想到的是,能够独立或者与本文中说明的一个或多个特征相结合来阐述和要求所述的本发明变型的任何可选特征。
通过引用将本文提到的所有主题(例如,公开、专利、专利申请和硬件)的全部内容并入本文,除非该主题可能与本发明的主题相冲突(在此情况下,本文出现的内容应当优先)。仅给出在本申请的提交日期之前公开的参考项。这里并不认为未授权本发明借助先前的发明来使文献的日期提前。
介绍单个对象时,包括存在多个相同对象的可能性。更具体而言,除上下文清楚地阐明以外,如此处以及所附权利要求中所使用的,单一形式“一”、“所述”和“该”包括多个指示对象。还应注意,权利要求可以拟定为排除任何可选要素。如此,此陈述用以作为结合权利要求要素的陈述或者“否定”限制的使用而使用诸如“单独”、“”等等之类的排他性术语的先行条件。最后,应理解,除作了限定以外,此处所使用的全部技术和科学术语与本发明领域的技术人员普遍了解的含义相同。
用于冷冻消融处理的本发明冷却系统利用低压和深冷温度的液体致冷剂来实现对冷冻探头的远端以及将被切除的周围生物组织的可靠冷却。将液体致冷剂用作与冷冻探头的多管远端相结合的冷却介质消除了致冷剂蒸发,而且显著地简化了冷冻外科的程序。
图1A中示出了采用低压和低温致冷剂的示例。具体而言,示出了R218致冷剂(八氟丙烷)的相图,所述R218致冷剂具有大约-150℃的熔化温度。图1A中的轴对应于R218致冷剂的压力p和温度T,并包括画出固态、液态和气态同时存在的点的轨迹(p、T)的相线11和12。尽管结合此实施例示出R218,但本发明能够包括其它液体致冷剂的使用。
在图1A的点A处,致冷剂在储槽或容器中处于“液-汽”平衡状态。在大约0.4MPa的初始压力下,致冷剂具有环境温度T0或更低的温度。闭合回路循环或致冷剂流道起始于液体致冷剂流出容器或储槽所在的点。为使致冷剂在整个冷却循环过程中保持液体状态,并为致冷剂流过冷冻探头或导管提供必需的压力,保持介于大约0.7MPa到0.8MPa(或者此示例中为大约0.75MPa)范围内的略高压力。这对应于图1A中的B点。B点位于R218致冷剂的液相区域内。此外,液体从B点至C点被冷却装置(例如但不限于制冷设备)冷却到图1A中的路径13示出的温度Tmin。此温度将比致冷剂的处于高压下的冷冻温度略高(更高)。
位于C点的冷液体致冷剂用于冷冻消融处理,并被导入冷冻探头的与待处理的生物组织热接触的远端。此热接触致使液体致冷剂的温度升高,同时由于冷冻探头的微通道远端的流阻(阻抗)的原因而产生从点C到点D的压降。因为此环境,回流液体的温度升高。具体而言,温度由于与周围环境的热连通以及由装置例如止回阀保持的略高压力而升高(点A*)。理想的是,大约6kPa的小压降用以保持使液体致冷剂回流至储槽的回流管路中的液相条件。最终,在液体致冷剂进入储槽所在的点结束循环或流道。液体致冷剂能够经由对应容器中的孔或入口再次进入而再一次对应于图1A的点A。能够根据需要连续地重复上述冷却循环。
在某些实施例中,冷却装置或制冷设备能够是浸入在加压液氮中的换热器,所述加压液氮具有依赖于其压力的预定温度Tmin。该压力能够介于大约1.0MPa到3.0MPa之间。液氮能够用液氩或液氪来替代。在这些情况下,将在低至大约0.1MPa到0.7MPa的压力下获得预定温度Tmin。液氮的“压力p-温度T”图的示例在图2中示出,其限定了液体致冷剂的必需预定温度Tmin以及对应压力。
本发明的一个实施例是使致冷剂在冷却循环过程中、在闭合回路内、以不蒸发的方式、在低压和低温下、在其操作液态下循环。图3中示意性示出了用于冷冻消融处理的该冷却系统,其中在容器30内处于初始压力p0的液体致冷剂在T0的环境温度下被液泵31压缩。与通过在高度压缩蒸汽之后使致冷剂蒸发来实现冷却的一般闭合冷却循环相反,上述泵的尺寸由于泵驱动不可压缩的液体而能够很小。另外,液体致冷剂经由卷绕部分33被输送到制冷设备32中,该卷绕部分被浸入由输送管路36供应并被止回阀37保持在预定压力下的汽化致冷剂34、35中。
汽化致冷剂具有预定温度Tmin。制冷设备32的卷绕部分33与柔性远端311的多管入口流体输送微管流体连接,从而,具有最低操作温度Tmin的冷却液体致冷剂经由形成真空空间310的真空壳体39封装的冷却输入管路38流入冷冻探头的远端311。位于流体输送微管末端的端盖312将流体从入口流体输送微管输送至含有回流的液体致冷剂的出口流体输送微管。然后,回流液体致冷剂经过止回阀313,该止回阀用以将回流致冷剂的压力减小到略高于初始压力p0。最后,致冷剂经由结束液体致冷剂流道的孔或开口315再次进入容器30。该系统提供致冷剂的连续流动,而且图3中的路径A-B-C-D-A*-A对应于图1A示出的相物理位置。致冷剂从其经由开口317离开容器的点到通过开口315回流到储槽或容器所在的点沿整个流道或路径保持其液态。
采用液体致冷剂的闭合回路冷冻探头的示例在2009年4月17日提交的名为“用于冷冻消融处理的方法和系统(Method and System forCryoablation Treatment)”的专利申请No.12/425,938中得以说明。
在本冷却系统中,所述处理的最小可实现温度Tmin不低于所使用的液体致冷剂的冷冻温度。对冷冻手术的许多实际应用而言,冷冻探头的远端的温度必须至少为-100℃或更低,而且更优选的是-140℃或更低,以有效地执行冷冻消融处理。已知的许多常用的无毒致冷剂具有大约-150℃或更低的常压冷冻温度,如下面的表1所示。
表1
Figure BDA0000096335500000101
参照图4a,示出了根据本发明一个实施例的冷冻探头的远端部分400。远端部分400包括由多个管440、442组成的能量传递部分。
参照图4c和图4e,远端部分400包括两组管:入口流体输送微管440和出口流体输送微管442。入口输送管440将液体致冷剂引导至冷冻探头的远端部分,从而形成低温能量传递区域,以此处理探头附近的组织。这些冷却(或能动)微管以环状形式示出。出口流体输送(或回流)微管442引导液体致冷剂远离目标点。
图4b是图4a所示能量传递部分400的远端的放大图。端盖443位于入口微管440的末端和出口流体微管442的末端,从而限定了流体过渡室444。过渡室444实现入口流体输送微管与出口流体输送微管之间的液密连接。端盖能够被固定和利用粘结剂或胶合剂被流体密封。一个实施例中,套管446用于将塞子448附接至远端部分。能够用其它制造工艺来制造所述部件并使所述部件互连,而且这些制造工艺属于本发明的范围。
图4c示出了过渡区域450的放大图,其中,多个冷却微管440被流体联接至一个或多个更大的入口通道460,而回流微管被流体联接至一个或多个更大的回流通道452。一个或多个回流管路最终将液体致冷剂导回致冷剂源或容器,例如图3中所述的容器30,并由此结束液体致冷剂的流道或回路,而不会使致冷剂蒸发或溢出。
在一个优选实施例中,入口管路460为隔热的。可以利用由隔热材料形成的涂层和层来实现隔热。优选的隔热构造包括提供环绕入口管路的抽空空间,即,真空层。
流体输送微管能够由各种材料形成。刚性微管的适用材料包括退火不锈钢。柔性微管的适用材料包括但不限于聚酰亚胺(Kapton)。这里使用的柔性是指冷冻探头的多管远端在用户期望的方向上弯曲的能力,其中不用施加过大的作用力而且不引起裂缝或导致显著的性能降低。这用以在弯曲组织结构的周围操纵冷冻探头的远端部分。
另一实施例中,柔性微管由在-200℃到环境温度的整个温度范围内保持柔性的材料形成。另一实施例中,选择在-200℃到100℃的整个温度范围内保持柔性的材料。
流体输送微管的尺寸可以改变。每个流体输送微管优选地具有介于大约0.05mm到2.0mm之间的、更优选地介于0.1mm到1mm之间的、而最优选地介于0.2mm到0.5mm之间的内径。每个流体输送微管优选地具有介于大约0.01mm到0.3mm之间的、而且更优选地介于大约0.02mm到0.1mm之间的壁厚。
本发明实现了优于先前探头的、热交换区域的显著增大。本发明的热交换区域因为远端的多管性质而较大。与使用单轴的具有类似大小的直径的先前的远端相比,根据使用的微管的数量,该远端能使先前远端上方的热接触面积大若干倍。微管的数量能够随意改变。优选的是,轴远端部分中的微管的数量介于5到100之间,更优选地介于20到50之间。
如图5至图7所示,可在冷冻探头的多管远端部分311周围形成不同形状的冰结构和冰球500a、500b和500c。能够看到,通过在要求的方向上弯曲所述远端能够形成需要形状的冰球。这些形状能够随意改变,而且例如包括图5的细长构件500a、图6的挂钩500b、如图7所示的闭环500c,或者甚至是半径更小的螺旋状(“蕨菜”)。另见,2008年11月19日提交的国际专利申请No.PC/US2008/084004,其讲述了另一种类型的多管冷冻探头。
本发明的另一实施例包括对冷冻探头的远端部分进行加热。对冷冻探头的远端部分进行加热能够用以解冻冰结构,便于拆除探头,或者提供外科手术应用,例如但不限于基于消融的电烙、凝结或加热。
图8示出了一种冷冻消融系统,该冷冻消融系统包括以上结合图1A和图3说明的第一冷却流道ABCDA*以及用于加热液体的第二加热流道ABHCHDHA*。具体而言,加热流道开始于图8的储槽30,并对应于图1B的点A*。液体致冷剂被液泵31压缩,从而对应于图1B的点BH
如图8所示,液体致冷剂绕过制冷设备32,并进入加热单元504。例如能够利用阀门500、502执行绕过制冷设备或切换流道。但是,也能够采用本领域的技术人员已知的其它手段。
加热器504可以是升高液体的温度并且与与图1B的点CH相对应的内置加热器。
液体流出该加热器部分,并进入冷冻探头或导管600。温度更高的液体通过远端部分602和多管结构与组织/切片热连通。
液体致冷剂流出导管,并具有与图1B的点DH所示的温度和压力相对应的温度和压力。接着,液体在其通过孔315流回储槽之后在点A*具有环境温度。可以并入止回阀或其它装置313用以在A*与A之间提供小的压力差,其在整个流道和循环过程中将致冷剂保持为处于其液态下。
冷冻探头的多管远端的能力使冷冻消融从刚性针状应用扩展到几乎任何现有装置,所述现有装置用于协助包括但不限于外部和内部心脏应用、内窥镜应用、外科手术器械、血管内应用、皮下和浅表皮肤应用、放射性应用的现行诊断和治疗。
应理解,在不背离本发明的精神和范围的前提下,能够进行各种更改和改变。

Claims (26)

1.一种用于处理组织的闭环单相液体致冷剂冷冻消融系统,包括:
容器,所述容器将所述液体致冷剂保持在初始压力和初始温度;
液泵,所述液泵可操作用以将所述液体致冷剂的压力增加至预定压力,从而形成压缩液体致冷剂;
冷却装置,所述冷却装置可操作用以将所述压缩液体致冷剂冷却至预定低温,所述预定低温低于所述初始温度;以及
冷冻探头,所述冷冻探头联接至所述冷却装置,并适于容纳所述压缩液体致冷剂,所述冷冻探头还包括具有远端能量传递部分和远尖端部的细长轴,所述能量传递部分包括多个冷却微管和多个回流微管,其中所述液体致冷剂分别通过所述冷却微管和回流微管朝向和远离所述远尖端部流动,并且其中所述多个回流微管被流体地联接至所述容器,从而完成所述液体致冷剂的回路,而在沿着所述回路输送所述致冷剂时所述液体致冷剂不会蒸发。
2.根据权利要求1所述的系统,其中所述多个冷却微管周向环绕所述多个回流微管。
3.根据权利要求1所述的系统,其中所述多个冷却微管和所述多个回流微管形成缠绕束。
4.根据权利要求1所述的系统,其中每个所述微管都由在-200℃至周围环境温度的温度范围内保持柔性的材料制成,使得所述远端部分在操作过程中保持柔性。
5.根据权利要求1所述的系统,其中所述冷却微管连接至冷却输入管路,并且所述输入管路通过真空空间隔热。
6.根据权利要求1所述的系统,其中所述预定低温小于或等于-140℃。
7.根据权利要求1所述的系统,其中所述初始压力介于0.2MPa到1.5MPa之间,而所述预定压力介于0.6MPa到2.0MPa之间。
8.根据权利要求6所述的系统,其中所述冷却装置为制冷设备,并包括盘管换热器,所述盘管换热器被浸入具有所述预定低温的液体致冷剂中。
9.根据权利要求6所述的系统,其中所述冷却装置是选自斯特林低温冷却器和脉冲管低温冷却器中的一种。
10.根据权利要求1所述的系统,其中每个所述微管都具有介于0.1mm和1.0mm之间的范围内的内径。
11.根据权利要求1所述的系统,其中每个所述微管都具有介于大约0.01mm和0.3mm之间的范围内的壁厚。
12.根据权利要求1所述的系统,其中每个所述微管都由聚酰亚胺材料形成。
13.根据权利要求1所述的系统,其中所述液体致冷剂为R218。
14.一种用于处理组织的单相液体致冷剂冷冻消融系统,包括:
液体致冷剂;
容器,所述容器将所述液体致冷剂保持在初始压力和初始温度,所述容器包括分别用于所述液体致冷剂进入和排出的入口和出口,所述入口限定液体致冷剂流道的起点,而所述出口限定所述致冷剂流道的终点;
液泵,所述液泵与所述容器流体连通,并且所述液泵可操作用以从所述容器沿着所述流道驱动所述液体致冷剂,并将所述液体致冷剂的压力增加到预定压力,从而形成压缩液体致冷剂;
冷却装置,所述冷却装置沿所述流道且在所述泵的下游布置,并且所述冷却装置可操作用以将所述压缩液体致冷剂冷却至预定低温,所述预定低温低于所述初始温度;以及
冷冻探头,所述冷冻探头沿所述流道且在所述制冷设备的下游布置,所述冷冻探头还包括具有远端能量传递部分的细长轴,所述能量传递部分包括用于朝所述组织输送所述液体致冷剂的多个能动微管以及用于远离所述组织输送所述液体致冷剂的多个回流微管,并且其中所述液体致冷剂沿所述流道保持在仅液体状态。
15.根据权利要求14所述的系统,还包括可控制冷却旁通回路,所述旁通回路包括变暖管路,所述变暖管路引导所述液体致冷剂离开所述冷却装置,并使得所述液体致冷剂的温度在进入所述冷冻探头之前增加成高于环境温度。
16.一种用于对组织施加低温能量的冷冻消融方法,包括如下步骤:
沿着起始于致冷剂容器的出口、通过具有能量传递远端部分的冷冻探头、并返回到所述致冷剂容器的入口的第一流道驱动液体致冷剂,其中所述液体致冷剂沿着所述第一流道保持在仅液体状态;
将所述冷冻探头的所述远端部分定位在所述组织的附近;
通过沿着所述冷冻探头的所述远端部分延伸的多个微管的壁,将低温能量传递至所述组织。
17.根据权利要求16所述的方法,还包括:使得所述冷冻探头的所述远端部分匹配所述组织,以增大对所述组织的能量传递,其中,通过使得所述多个微管弯曲来进行所述匹配步骤。
18.根据权利要求16所述的方法,其中所述多个微管以所述远端部分的环状形式延伸。
19.根据权利要求16所述的方法,其中通过选自由内窥镜、显示装置和转向装置组成的组中的一种装置来执行定位步骤。
20.根据权利要求16所述的方法,还包括通过所述微管的壁将热量传递至所述组织的步骤。
21.根据权利要求20所述的方法,包括:将所述液体致冷剂从所述第一流道切换到第二流道,其中所述第二流道包括用于使所述液体致冷剂变暖的加热元件。
22.一种用于对具有曲面的组织施加能量的冷冻消融方法,所述方法包括:
沿着冷冻消融系统的封闭的第一流道驱动液体致冷剂,而所述液体致冷剂不改变状态,所述冷冻消融系统包括具有远端部分的冷冻探头;
将所述冷冻探头的所述远端部分定位在所述组织的附近;
使得所述远端部分弯曲;
在所述远端部分周围并与所述组织接触地形成冰结构,其中,通过经由所述远端部分中的多个微管施加低温能量来形成所述冰结构。
23.根据权利要求22所述的方法,其中所述冰结构的形状为选自由闭环、挂钩和蕨菜组成的组中的一种形状。
24.根据权利要求22所述的方法,还包括通过经由所述微管的壁将热能施加给所述冰来熔化所述冰结构的步骤。
25.根据权利要求23所述的方法,包括:将所述液体致冷剂从所述第一流道切换到第二流道,其中所述第二流道包括用于使所述液体致冷剂变暖的加热元件。
26.根据权利要求1所述的系统,其中所述液体致冷剂为丙烷。
CN2010800153971A 2009-04-06 2010-04-05 具有多管远端部分的单相液体致冷剂冷冻消融系统及相关方法 Pending CN102387755A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US16705709P 2009-04-06 2009-04-06
US61/167,057 2009-04-06
PCT/US2010/029953 WO2010117945A1 (en) 2009-04-06 2010-04-05 Single phase liquid refrigerant cryoablation system with multitubular distal section and related method

Publications (1)

Publication Number Publication Date
CN102387755A true CN102387755A (zh) 2012-03-21

Family

ID=42826812

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010800153971A Pending CN102387755A (zh) 2009-04-06 2010-04-05 具有多管远端部分的单相液体致冷剂冷冻消融系统及相关方法

Country Status (7)

Country Link
US (1) US20100256621A1 (zh)
EP (1) EP2416723A4 (zh)
JP (1) JP5490218B2 (zh)
CN (1) CN102387755A (zh)
AU (1) AU2010234663A1 (zh)
CA (1) CA2756263A1 (zh)
WO (1) WO2010117945A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104248469A (zh) * 2013-06-28 2014-12-31 上海微创电生理医疗科技有限公司 冷盐水灌注消融导管系统
CN104519940A (zh) * 2012-08-07 2015-04-15 柯惠有限合伙公司 微波消融导管及其使用方法
CN104968289A (zh) * 2013-01-23 2015-10-07 美敦力 用于冷冻消融系统的吹扫阶段
CN105213018A (zh) * 2012-08-03 2016-01-06 康沣生物科技(上海)有限公司 冷冻消融治疗系统
CN106572877A (zh) * 2014-08-14 2017-04-19 克莱米迪克斯有限责任公司 全液体冷冻消融导管
CN107205766A (zh) * 2014-11-13 2017-09-26 艾达吉欧医疗公司 压力调控的冷冻消融系统及相关方法
CN110051420A (zh) * 2015-05-15 2019-07-26 美国宾得公司 低温球囊消融系统
CN110215276A (zh) * 2019-07-16 2019-09-10 孙悦 一种治疗耳前瘘管的冷冻装置
CN112294422A (zh) * 2020-10-08 2021-02-02 苏州优脉瑞医疗科技有限公司 一种带有辅助监控探头的内镜冷冻机

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2807277C (en) 2010-08-05 2020-05-12 Medtronic Ardian Luxembourg S.A.R.L. Cryoablation apparatuses, systems, and methods for renal neuromodulation
US20120143294A1 (en) 2010-10-26 2012-06-07 Medtronic Adrian Luxembourg S.a.r.l. Neuromodulation cryotherapeutic devices and associated systems and methods
US9060754B2 (en) 2010-10-26 2015-06-23 Medtronic Ardian Luxembourg S.A.R.L. Neuromodulation cryotherapeutic devices and associated systems and methods
AU2011319789A1 (en) * 2010-10-27 2013-05-02 Cryomedix, Llc Cryoablation apparatus with enhanced heat exchange area and related method
EP2701623B1 (en) 2011-04-25 2016-08-17 Medtronic Ardian Luxembourg S.à.r.l. Apparatus related to constrained deployment of cryogenic balloons for limited cryogenic ablation of vessel walls
EP2840991B1 (en) 2012-04-27 2019-05-15 Medtronic Ardian Luxembourg S.à.r.l. Cryotherapeutic devices for renal neuromodulation
US9241752B2 (en) 2012-04-27 2016-01-26 Medtronic Ardian Luxembourg S.A.R.L. Shafts with pressure relief in cryotherapeutic catheters and associated devices, systems, and methods
US9095321B2 (en) 2012-11-21 2015-08-04 Medtronic Ardian Luxembourg S.A.R.L. Cryotherapeutic devices having integral multi-helical balloons and methods of making the same
US9017317B2 (en) 2012-12-06 2015-04-28 Medtronic Ardian Luxembourg S.A.R.L. Refrigerant supply system for cryotherapy including refrigerant recompression and associated devices, systems, and methods
CN109846543B (zh) 2013-09-24 2021-09-21 艾达吉欧医疗公司 基于血管内近临界流体的冷冻消融导管及相关方法
US10492842B2 (en) 2014-03-07 2019-12-03 Medtronic Ardian Luxembourg S.A.R.L. Monitoring and controlling internally administered cryotherapy
US10054262B2 (en) * 2014-04-16 2018-08-21 Cpsi Holdings Llc Pressurized sub-cooled cryogenic system
WO2015160574A1 (en) 2014-04-17 2015-10-22 Adagio Medical, Inc. Endovascular near critical fluid based cryoablation catheter having plurality of preformed treatment shapes
WO2017048965A1 (en) 2015-09-18 2017-03-23 Adagio Medical Inc. Tissue contact verification system
WO2017095756A1 (en) 2015-11-30 2017-06-08 Adagio Medical, Inc. Ablation method for creating elongate continuous lesions enclosing multiple vessel entries
US11517365B1 (en) * 2016-02-04 2022-12-06 Meital Mazor Devices and methods for treatment of dermatological conditions
US10813692B2 (en) 2016-02-29 2020-10-27 Covidien Lp 90-degree interlocking geometry for introducer for facilitating deployment of microwave radiating catheter
CN111225626B (zh) 2017-09-05 2023-11-14 艾达吉欧医疗公司 具有形状记忆探针的消融导管
JP7293238B2 (ja) 2018-01-10 2023-06-19 アダージョ メディカル インコーポレイテッド 熱伝導性ライナーを有するアブレーション装置及びアブレーションシステム
CN109350220A (zh) * 2018-07-23 2019-02-19 山前(珠海)医疗科技有限公司 一种制冷设备
CN109009406B (zh) * 2018-07-23 2020-02-21 山前(珠海)医疗科技有限公司 一种冷冻消融装置及冷冻消融方法
RU2713947C2 (ru) * 2018-08-07 2020-02-11 Общество с ограниченной ответственностью "КРИОИНЖИНИРИНГ" Аппарат для лечения холодом
CA3113416A1 (en) * 2018-09-18 2020-03-26 Meital Mazor Thermal devices and methods of visceral fat reduction
US11633224B2 (en) 2020-02-10 2023-04-25 Icecure Medical Ltd. Cryogen pump

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2004201679A1 (en) * 1998-01-23 2004-05-20 Innercool Therapies, Inc. Selective organ hypothermia method and apparatus
WO2004064914A2 (en) * 2003-01-15 2004-08-05 Cryodynamics, Llc. Cryotherapy probe and system
US20050261753A1 (en) * 2003-01-15 2005-11-24 Mediphysics Llp Methods and systems for cryogenic cooling
US20080125764A1 (en) * 2006-11-17 2008-05-29 Vancelette David W Cryoprobe thermal control for a closed-loop cryosurgical system

Family Cites Families (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4602628A (en) * 1985-01-17 1986-07-29 Allen Jr Robert E Cryogenic extractor and filler
US4946460A (en) * 1989-04-26 1990-08-07 Cryo Instruments, Inc. Apparatus for cryosurgery
JP2754082B2 (ja) * 1990-06-29 1998-05-20 株式会社前川製作所 クライオプローブ
ZA917281B (en) * 1990-09-26 1992-08-26 Cryomedical Sciences Inc Cryosurgical instrument and system and method of cryosurgery
US5207674A (en) * 1991-05-13 1993-05-04 Hamilton Archie C Electronic cryogenic surgical probe apparatus and method
US5254116A (en) * 1991-09-06 1993-10-19 Cryomedical Sciences, Inc. Cryosurgical instrument with vent holes and method using same
US5520682A (en) * 1991-09-06 1996-05-28 Cryomedical Sciences, Inc. Cryosurgical instrument with vent means and method using same
US5305825A (en) * 1992-11-27 1994-04-26 Thermo King Corporation Air conditioning and refrigeration apparatus utilizing a cryogen
US5573532A (en) * 1995-01-13 1996-11-12 Cryomedical Sciences, Inc. Cryogenic surgical instrument and method of manufacturing the same
GB9506652D0 (en) * 1995-03-31 1995-05-24 Cryogenic Technology Ltd Supplying liquid cryogen to cryosurgical apparatus
US5787715A (en) * 1995-10-12 1998-08-04 Cryogen, Inc. Mixed gas refrigeration method
US6530234B1 (en) * 1995-10-12 2003-03-11 Cryogen, Inc. Precooling system for Joule-Thomson probe
US5733247A (en) * 1995-12-20 1998-03-31 Hewlett-Packard Company MR compatible patient monitor
US5868735A (en) * 1997-03-06 1999-02-09 Scimed Life Systems, Inc. Cryoplasty device and method
US5993844A (en) * 1997-05-08 1999-11-30 Organogenesis, Inc. Chemical treatment, without detergents or enzymes, of tissue to form an acellular, collagenous matrix
ATE419789T1 (de) * 1997-05-23 2009-01-15 Prorhythm Inc Wegwerfbarer fokussierender ultraschallapplikator hoher intensität
US5971979A (en) * 1997-12-02 1999-10-26 Odyssey Technologies, Inc. Method for cryogenic inhibition of hyperplasia
US5978697A (en) * 1998-01-05 1999-11-02 Galil Medical Ltd. System and method for MRI-guided cryosurgery
US6338727B1 (en) * 1998-08-13 2002-01-15 Alsius Corporation Indwelling heat exchange catheter and method of using same
US6530946B1 (en) * 1998-04-21 2003-03-11 Alsius Corporation Indwelling heat exchange heat pipe catheter and method of using same
US6200308B1 (en) * 1999-01-29 2001-03-13 Candela Corporation Dynamic cooling of tissue for radiation treatment
US6432102B2 (en) * 1999-03-15 2002-08-13 Cryovascular Systems, Inc. Cryosurgical fluid supply
US6074572A (en) * 1999-04-06 2000-06-13 Cryogen, Inc. Gas mixture for cryogenic applications
US6139544A (en) * 1999-05-26 2000-10-31 Endocare, Inc. Computer guided cryosurgery
US6471694B1 (en) * 2000-08-09 2002-10-29 Cryogen, Inc. Control system for cryosurgery
US6237355B1 (en) * 1999-06-25 2001-05-29 Cryogen, Inc. Precooled cryogenic ablation system
US7004936B2 (en) * 2000-08-09 2006-02-28 Cryocor, Inc. Refrigeration source for a cryoablation catheter
US6675037B1 (en) * 1999-09-29 2004-01-06 Regents Of The University Of Minnesota MRI-guided interventional mammary procedures
US6519955B2 (en) * 2000-04-04 2003-02-18 Thermal Form & Function Pumped liquid cooling system using a phase change refrigerant
US20020107514A1 (en) * 2000-04-27 2002-08-08 Hooven Michael D. Transmural ablation device with parallel jaws
US6595988B2 (en) * 2000-06-23 2003-07-22 Cryocath Technologies Inc. Cryotreatment device and method
US6537271B1 (en) * 2000-07-06 2003-03-25 Cryogen, Inc. Balloon cryogenic catheter
US6551309B1 (en) * 2000-09-14 2003-04-22 Cryoflex, Inc. Dual action cryoprobe and methods of using the same
US6685720B1 (en) * 2000-10-16 2004-02-03 Interventional Technologies Catheter having improved shaped retention
US20020083717A1 (en) * 2000-12-29 2002-07-04 Mullens Patrick L. Containment system for samples of dangerous goods stored at cryogenic temperatures
GB0111986D0 (en) * 2001-05-16 2001-07-04 Optomed As Cryosurgical apparatus and methods
US7192426B2 (en) * 2001-05-31 2007-03-20 Endocare, Inc. Cryogenic system
US6893433B2 (en) * 2002-12-11 2005-05-17 Cryocor, Inc. System and method for performing a single step cryoablation
US7083612B2 (en) * 2003-01-15 2006-08-01 Cryodynamics, Llc Cryotherapy system
US7410484B2 (en) * 2003-01-15 2008-08-12 Cryodynamics, Llc Cryotherapy probe
US7220252B2 (en) * 2003-07-18 2007-05-22 Polyzen, Inc. Inflatable dual balloon catheter
US6981382B2 (en) * 2003-07-24 2006-01-03 Cryocor, Inc. Distal end for cryoablation catheters
WO2005063137A2 (en) * 2003-12-22 2005-07-14 Ams Research Corporation Cryosurgical devices for endometrial ablation
US7238184B2 (en) * 2004-03-15 2007-07-03 Boston Scientific Scimed, Inc. Ablation probe with peltier effect thermal control
US7850682B2 (en) * 2005-01-10 2010-12-14 Galil Medical Ltd. Systems for MRI-guided cryosurgery
JP2006275477A (ja) * 2005-03-30 2006-10-12 Sumitomo Heavy Ind Ltd パルス管冷凍機
US20070031338A1 (en) * 2005-08-02 2007-02-08 Zabinski Peter P Embolized cryoablation for treatment of tumors
US7413148B2 (en) * 2005-09-07 2008-08-19 The Boeing Company Remotely located cryocooler
CN101355901B (zh) * 2005-11-08 2011-10-05 纽约市哥伦比亚大学理事会 用于将一个或更多个可输送物输送到体内的装置和方法
US20080161784A1 (en) * 2006-10-26 2008-07-03 Hogan Joseph M Method and system for remotely controlled MR-guided focused ultrasound ablation
US20080119834A1 (en) * 2006-11-17 2008-05-22 Vancelette David W Cryosurgical System with Disposable Cryoprobe Portion
US20080119839A1 (en) * 2006-11-21 2008-05-22 Vancelette David W Cryosurgical Applicator
CN101868188B (zh) * 2007-11-21 2013-10-16 恩多凯尔有限公司 柔性的多管式冷冻探针
US8814850B2 (en) * 2008-04-24 2014-08-26 Cryomedix, Llc Method and system for cryoablation treatment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2004201679A1 (en) * 1998-01-23 2004-05-20 Innercool Therapies, Inc. Selective organ hypothermia method and apparatus
WO2004064914A2 (en) * 2003-01-15 2004-08-05 Cryodynamics, Llc. Cryotherapy probe and system
US20050261753A1 (en) * 2003-01-15 2005-11-24 Mediphysics Llp Methods and systems for cryogenic cooling
US20080125764A1 (en) * 2006-11-17 2008-05-29 Vancelette David W Cryoprobe thermal control for a closed-loop cryosurgical system

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105213018A (zh) * 2012-08-03 2016-01-06 康沣生物科技(上海)有限公司 冷冻消融治疗系统
CN105213018B (zh) * 2012-08-03 2018-03-16 康沣生物科技(上海)有限公司 冷冻消融治疗系统
CN104519940A (zh) * 2012-08-07 2015-04-15 柯惠有限合伙公司 微波消融导管及其使用方法
CN104968289A (zh) * 2013-01-23 2015-10-07 美敦力 用于冷冻消融系统的吹扫阶段
CN104968289B (zh) * 2013-01-23 2017-08-08 美敦力 用于冷冻消融系统的吹扫阶段
CN104248469A (zh) * 2013-06-28 2014-12-31 上海微创电生理医疗科技有限公司 冷盐水灌注消融导管系统
CN106572877B (zh) * 2014-08-14 2021-06-08 克莱米迪克斯有限责任公司 全液体冷冻消融导管
CN106572877A (zh) * 2014-08-14 2017-04-19 克莱米迪克斯有限责任公司 全液体冷冻消融导管
CN107205766A (zh) * 2014-11-13 2017-09-26 艾达吉欧医疗公司 压力调控的冷冻消融系统及相关方法
CN107205766B (zh) * 2014-11-13 2020-04-14 艾达吉欧医疗公司 压力调控的冷冻消融系统及相关方法
CN110051420A (zh) * 2015-05-15 2019-07-26 美国宾得公司 低温球囊消融系统
CN110051420B (zh) * 2015-05-15 2021-08-24 美国宾得公司 低温球囊消融系统
CN110215276A (zh) * 2019-07-16 2019-09-10 孙悦 一种治疗耳前瘘管的冷冻装置
CN112294422A (zh) * 2020-10-08 2021-02-02 苏州优脉瑞医疗科技有限公司 一种带有辅助监控探头的内镜冷冻机

Also Published As

Publication number Publication date
JP5490218B2 (ja) 2014-05-14
EP2416723A1 (en) 2012-02-15
WO2010117945A1 (en) 2010-10-14
US20100256621A1 (en) 2010-10-07
JP2012522621A (ja) 2012-09-27
EP2416723A4 (en) 2012-08-29
CA2756263A1 (en) 2010-10-14
AU2010234663A1 (en) 2011-10-13

Similar Documents

Publication Publication Date Title
CN102387755A (zh) 具有多管远端部分的单相液体致冷剂冷冻消融系统及相关方法
US9345527B2 (en) Method and system for cryoablation treatment
US6755823B2 (en) Medical device with enhanced cooling power
CN103189011A (zh) 具有增加的热交换面积的冷冻消融装置及相关方法
US5452582A (en) Cryo-probe
AU740049C (en) Precooling system for joule-thomson probe
CN103118613A (zh) 冷冻消融球囊导管和相关的方法
US20100256620A1 (en) Thin flexible cryoprobe operated by krypton
AU2015302253B2 (en) All-liquid cryoablation catheter
JPH07501240A (ja) 通気穴を備えた冷凍手術用器械及び方法
US20150126987A1 (en) Method for feeding a cryogenic agent to a cryogenic instrument and cryosurgical apparatus for implementing same
US20230320772A1 (en) Methods and systems for cooling and heating surgical instruments
CN211934266U (zh) 一种高低温复合式治疗设备

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20120321