Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberCN102335742 A
Publication typeApplication
Application numberCN 201110344241
Publication date1 Feb 2012
Filing date4 Nov 2011
Priority date4 Nov 2011
Also published asCN102335742B
Publication number201110344241.4, CN 102335742 A, CN 102335742A, CN 201110344241, CN-A-102335742, CN102335742 A, CN102335742A, CN201110344241, CN201110344241.4
Inventors何新波, 曲选辉, 路新, 颉芳霞
Applicant北京科技大学
Export CitationBiBTeX, EndNote, RefMan
External Links: SIPO, Espacenet
Method for preparing complexly shaped biomedical porous titanium molybdenum alloy implant body
CN 102335742 A
Abstract
The invention provides a method for preparing a complexly shaped biomedical porous titanium molybdenum alloy implant body and belongs to the technical field of biomedical porous metallic material preparation. The method comprises the following steps of: taking a mixture of titanium and molybdenum metallic element powder and organic polymer powder as raw materials, and then preparing the biomedical porous titanium molybdenum alloy implant body by adopting the processes, such as three-dimensional modeling, selective laser-firing rapid forming, thermal de-greasing, vacuum sintering, and the like. The processing steps are simple, the period is short, the use ratio of materials is high, the cost is low, any complexly shaped porous titanium alloy implant body can be conveniently manufactured, and the method has efficiency and economic advantages in individual design and rapid manufacturing of the implant body. A titanium molybdenum alloy material prepared by using the method has the advantages that pore space is uniform, adjustment scopes of porosity, aperture ratio and aperture are wide, elasticity modulus and compression strength are in close proximity to natural bone, and the demand on biomechanical compatibility required by a biomedical material is met.
Claims(4)  translated from Chinese
1. 一种制备复杂形状生物医用多孔钛钼合金植入体的方法,其特征在于:首先采用Auto CAD、Pro/E绘图软件,或将通过CT扫描、MRI技术获得的医学摄影图形进行数据化, 设计出植入体的三维模型;将Ti、Mo金属元素粉末与有机高分子粉末进行机械均勻混合, 金属元素粉末中Mo含量为2〜15wt%,余量为Ti,有机高分子的含量占金属粉末总量的3wt%-15wt% ;在氩气保护下,采用(X)2激光束将混合粉末进行选择性激光烧结成形,得到具有特定形状的Ti-Mo合金材料植入体的预成形坯;在真空或氩气保护下,将成形坯进行热脱脂及高温烧结,烧结温度为800〜1500C,即得到生物医用多孔Ti-Mo合金植入体。 1. A method for the preparation of complex biological body shape porous titanium-molybdenum alloy medical implants comprising: first use Auto CAD, Pro / E drawing software, or by CT scans, MRI medical imaging graphics technologies of acquired data design a three-dimensional model of the implant body; to be Ti, Mo powder and organic metal elements are uniformly mixed mechanically polymer powder, metal powder elements Mo content 2~15wt%, the balance being Ti, the content of the organic polymer accounts 3wt% -15wt% of the total metal powder; under argon, using (X) 2 powder was mixed laser beam selectively laser sintered, to obtain the preform having a specific shape Ti-Mo alloy material of the implant billet; under vacuum or argon, the shaped billet hot degreasing and high temperature sintering, sintering temperature 800~1500 C, to obtain biomedical porous Ti-Mo alloy implants.
2.根据权利要求1所述的制备复杂形状生物医用多孔钛钼合金植入体的方法,其特征在于:具体工艺流程和参数如下:(1)采用球磨工艺对原料粉末进行机械混合,其工艺参数为:球料比为3:1〜1:1,球磨时间3〜12h,转速30〜100r/min ;(2)根据不同患者的需要,采用ftx) Ε, CAD或CT扫描、MRI技术,构建植入体的三维模型,可对任意复杂形状的植入体进行个性化的三维模型设计;(3)在纯度为99. 0%〜99. 9%的惰性氩气保护下,以(X)2激光器为热源,按照预先设计好的加工路线对混合粉末进行选择性激光烧结成形,得到所需植入体的生坯件;SLS工艺参数为:激光功率:10〜40W,扫描速度为1500〜2500mm/s,扫描间距为0. 08〜0. 25mm,切片厚度为0. 08〜0. 25mm,粉床预热温度为45〜160C ;(4)在真空或惰性气体保护下,将植入体生坯件放入脱脂炉内,直接进行热脱脂;脱脂主要工艺参数为:脱脂温度为20〜750C,保温时间为0. 5〜3h,脱除速率为1〜5C /min ;(5)在真空或惰性气体保护下,将植入体脱脂件放入烧结炉内,进行高温烧结,最终得到钛钼合金植入体;烧结主要工艺参数为:烧结温度800〜1500C,保温时间为0. 5〜3h, 升温速率为1〜5C /min。 2. The preparation of complex shapes to claim 1, wherein the biological medical porous titanium-molybdenum alloy implant method comprising: a specific process and parameters are as follows: (1) the use of raw material powder milling process on mechanical mixing, the process parameters: ball to powder ratio of 3: 1~1: 1, the milling time 3~12h, speed 30~100r / min; (2) according to the needs of different patients, using ftx) Ε, CAD or CT scan, MRI technology, constructing three-dimensional model of the implant, any complex shape can be personalized implant dimensional model design; (3) at a purity of 99.0% ~99 at 9% of an inert argon atmosphere, with (X. ) 2 laser as heat source, in accordance with the pre-designed mixed powder processing routes selectively laser sintered, to obtain the desired green ware implant; SLS process parameters: Laser power: 10~40W, the scanning speed was 1,500 ~2500mm / s, the scan pitch of 0. 08~0 25mm, slice thickness of 0. 08~0 25mm, powder bed preheating temperature of 45~160 C;.. (4) under vacuum or inert gas, The implant is placed in the green parts degreasing furnace, direct thermal degreasing; degreasing main process parameters: degreasing temperature 20~750 C, holding time is 0. 5~3h, the removal rate of 1~5 C / min; (5) in a vacuum or inert gas, the implant is placed in the sintering furnace degreasing parts, high temperature sintering, and ultimately get the titanium-molybdenum alloy implants; sintering main process parameters: sintering temperature 800~ 1500 C, holding time is 0. 5~3h, heating rate of 1~5 C / min.
3.根据权利要求1所述的制备复杂形状生物医用多孔钛钼合金植入体的方法,其特征在于:所述原料Ti粉、Mo粉和高分子粉末的粒径分别为:100〜325目、100〜500目和100 〜800 目。 3. Preparation of porous titanium complex shapes biomedical implant of molybdenum alloy according to claim 1, wherein: said raw Ti powder, Mo powder and polymer powders of particle size are: 100~325 mesh , 100~500 ~800 mesh and 100 mesh.
4.根据权利要求1所述的制备复杂形状生物医用多孔钛钼合金植入体的方法,其特征在于:所述有机高分子材料为热塑性树脂和热固性树脂;热塑性树脂包括聚乙烯、高密度聚乙烯、聚丙烯、聚苯乙烯、聚酰胺、聚甲基丙烯酸甲酯、聚碳酸酯或乙烯-醋酸乙烯共聚物;热固性树脂包括酚醛树脂、三聚氰胺、氨基树脂或环氧树脂。 4. Preparation of complex shape biological molybdenum alloy medical implant of porous titanium method according to claim 1, wherein: the organic polymer material is a thermoplastic resin and a thermosetting resin; a thermoplastic resin include polyethylene, high density polyethylene ethylene, polypropylene, polystyrene, polyamide, polymethyl methacrylate, polycarbonate, or an ethylene - vinyl acetate copolymer; thermosetting resins include phenolic resins, melamine, amino resin or epoxy resin.
Description  translated from Chinese

一种复杂形状生物医用多孔钛钼合金植入体的制备方法 Method for preparing porous titanium complex shapes biomedical molybdenum alloy implants

技术领域 FIELD

[0001] 本发明属于生物医用多孔金属材料制备技术领域,提供了一种快速制备复杂形状生物医用多孔钛钼合金植入体的方法。 [0001] The present invention pertains to a porous metal material preparation of biomedical technology, provides a method for complex shapes biomedical rapid preparation of porous titanium-molybdenum alloy implants.

背景技术 BACKGROUND

[0002] 钛及钛合金具有高的比强度、优良的耐蚀性、足够的耐磨性及良好的生物相容性,被认为是目前最有发展前途的生物金属材料。 [0002] titanium and titanium alloy with high specific strength, good corrosion resistance, wear resistance and adequate biocompatibility, is considered the most promising bio-metallic materials. 但是,致密钛及钛合金的弹性模量(55〜 IlOGPa)与自然骨(3. 21〜30GPa)不匹配,使得载荷不能由植入体很好地传递到相邻骨组织,即出现“应力屏蔽”现象,造成植入体周围出现骨应力吸收,导致植入体松动或断裂,而使植入手术失败。 However, dense titanium and titanium elastic modulus (55~ IlOGPa) and natural bone (3. 21~30GPa) do not match, so that the load can not be delivered by the implant well to the adjacent bone tissue, namely a "stress shielding "phenomenon, caused by the stress of bone around the implant absorbed, leading to implant loosening or fracture, leaving the implant failure. 多孔结构的金属材料,由于孔隙的存在,不仅可以有效降低其弹性模量和强度,使其与自然骨的生物力学性能相匹配,而且还能促进细胞长入,并为营养物质的运输与体液的交换提供了便利的通道,是一种更为理想的生物植入材料。 Metallic material a porous structure, due to the presence of pores, not only can reduce the elastic modulus and strength, so that the mechanical properties of the bone with natural biological match, but also to promote cell ingrowth, and for the transport of nutrients and fluids The exchange provides a convenient channel, is a more desirable biological implant material.

[0003] Ti-6A1-4V是目前使用最广泛也是最早被用于生物医学领域的钛合金,近年来随着研究不断深入,发现Al和V对人体有害,Al会引起精神紊乱和诱发老年痴呆症,V可与人体组织反应,形成黑水。 [0003] Ti-6A1-4V is currently the most widely used is the first to be used in the field of biomedical titanium alloys, in recent years, along with the deepening of research and found that Al and V harmful, Al can cause mental disorder and induced dementia disease, V can react with human tissue, forming Blackwater. 因此,研发新型的钛合金材料显得越来越重要。 Therefore, the development of new titanium material becomes more and more important. Mo是Ti的β相稳定元素,且与Ti属于同晶型结构,能与Ti形成无限固溶体,不仅降低α-Ti向β-Ti转变的温度和弹性模量,而且能够提高Ti的强度和耐磨性,制备Ti-Mo多孔植入材料是一种很有吸引力的选择。 Mo is Ti of β stabilizing element, and with Ti belong to the same crystal structure, with Ti forms infinite solid solution, not only reduces the α-Ti to β-Ti transition temperature and elastic modulus, but also can improve Ti strength and corrosion grindability prepared Ti-Mo porous implant materials is an attractive option.

[0004] 生物医用的多孔金属材料形状复杂,且其尺寸因人而异,需要个性化设计和快速制造。 [0004] Biomedical porous metal material of complex shape, and its size varies, need personalized design and rapid manufacturing. 目前,多孔钛合金的制备技术多采用传统的粉末冶金模压法、浆料发泡法和凝胶注模法。 Currently, the preparation of porous titanium technology to use more conventional powder metallurgy molding method, paste and gel foam injection molding. 其中,模压法采用添加造孔剂的钛粉压制而成,制备工艺简单,组织结构均勻,但是孔尺寸小,孔隙率低;浆料发泡法,虽可获得高孔隙率的多孔钛,但只通过发泡剂的加入量很难控制孔隙结构(如孔径大小和分布);凝胶注模法在制备多孔钛时,加入了有机物、消泡剂和分散剂等多种添加剂,不仅污染环境,增加成本,而且为后续脱除工艺带来很多问题。 Among them, the molding method using a pore-forming agent is added titanium powder repression, preparation process is simple, uniform structure, but the small pore size, low porosity; slurry foaming method, although availability of high porosity porous titanium, but only difficult to control the amount of blowing agent by adding pore structure (such as pore size and distribution); gel injection molding in the preparation of porous titanium, adding organic matter, defoamers and dispersant additives, not only pollute the environment increased costs, and bring a lot of problems for the subsequent removal process. 总之, 多孔钛的传统制备方法,均需要专用模具,成本高且成形精度无法保证,不适合单件或小批量生产,更是无法获得形状复杂的多孔结构植入体,快速成形技术能够有效解决这个问题。 In short, the traditional preparation of porous titanium, require special tooling, high cost and forming accuracy can not be guaranteed, are not suitable for single or small batch production, it is unable to obtain the complex shape of the porous structure of the implant, rapid prototyping technology can effectively solve This problem.

[0005] 快速成形技术(Rapid Prototyping,简称RP技术)始于20世纪80年代,是集计算机辅助设计、激光加工技术、数控技术和新材料技术为一体的一种新型制造技术。 [0005] Rapid Prototyping technology (Rapid Prototyping, called RP technology) began in the 1980s, is a set of computer-aided design, laser processing technology, digital technology and new materials technology for the integration of a new manufacturing technology. 通过CAD、 Pro E等绘图软件,或将CT扫描、MRI技术及其他方法得到的医学影像进行数据化处理,得到三维模型;采用离散/堆积成形原理,激光束在计算机控制下,按照预先设计好的加工参数并根据每个层片的二维轮廓信息进行加工,并将这一系列层片按成形次序堆积在一起, 生成三维实体。 By CAD, Pro E and other graphics software, medical imaging or CT scan, MRI technology and other methods for data processing to obtain a three-dimensional model; discrete / accumulation forming principle, the laser beam under computer control, in accordance with the pre-designed The processing parameters and processed according to two-dimensional profile information of each ply, and this series of layers are stacked by forming order to generate three-dimensional solid. 选择性激光烧结(selective laser sintering,简称SLS)是一种重要的快速成形技术,采用CO2激光器为热源,在成形过程中,粉体受到的压力很小,所以SLS工艺制备的材料通常是多孔结构,且表面粗糙,而这正是生物医用植入材料为促进细胞长入和粘附所需要的,植入体的外观形状可通过三维建模来任意改变,能够实现植入体的个性化设计和快速制造,且具有原材料选择广泛、工艺过程简单、成形效率高、无需支撑等优点,近年来在医学领域的应用价值越来越被受到重视。 Selective laser sintering (selective laser sintering, called SLS) is an important rapid prototyping technology, the use of CO2 laser as a heat source, during the forming process, the pressure on the powder is very small, so the material SLS process for the preparation of porous structures are usually , and surface roughness, which is the biological medical implant material for promoting cell ingrowth and adhesion required, the external shape of the implant can be arbitrarily changed by the three-dimensional modeling, can be achieved individual design of the implant and rapid manufacturing, and has a wide selection of raw materials, the process is simple, high forming efficiency, without support, etc., in recent years, the value of the medical field is increasingly being taken seriously.

[0006] 采用SLS技术制备的多孔生物医用材料多数是聚合物材料或聚合物/陶瓷的复合材料(Tan KH, Chua CK, Leong KF, et al. Selective laser sintering of biocompatible polymers for applications in tissue engineering[J]. Biomedical materials and engineering,2005,15 (1-2):113-124 ;Zhang Y,Hao L,Savalani MM,et al. Characterization and dynamic mechanical analysis of selective laser sintered hydroxyapatite filled polymeric composites[J]. Journal of Biomedical Materials Research Part A,2008,86 (3):607-616; Eosoly S, Brabazon D, Lohfeld S, et al. Selective laser sintering of hydroxyapatite/poly-ε-caprolactone scaffolds[J]. Acta Biomaterialia,2010,6 (7):2511_2517),这些材料力学性能普遍偏低,不能满足生物医用材料的力学相容性要求,而钛钼合金具有良好的生物相容性和力学性能,目前还没有见到有关将SLS技术应用于制备多孔钛钼合金材料的报道。 [0006] The technique for preparing porous biomaterials SLS mostly polymeric material or polymer / ceramic composite material (Tan KH, Chua CK, Leong KF, et al. Selective laser sintering of biocompatible polymers for applications in tissue engineering [ . J] Biomedical materials and engineering, 2005,15 (1-2): 113-124; Zhang Y, Hao L, Savalani MM, et al Characterization and dynamic mechanical analysis of selective laser sintered hydroxyapatite filled polymeric composites [J].. Journal of Biomedical Materials Research Part A, 2008,86 (3):.. 607-616; Eosoly S, Brabazon D, Lohfeld S, et al Selective laser sintering of hydroxyapatite / poly-ε-caprolactone scaffolds [J] Acta Biomaterialia, 2010,6 (7): 2511_2517), the mechanical properties of these materials is generally low, can not meet the mechanics of biomedical materials compatibility requirements, and titanium-molybdenum alloy has good biocompatibility and mechanical properties, has not yet seen For information on SLS technology for the preparation of porous titanium-molybdenum alloy material reported.

发明内容 SUMMARY

[0007] 本发明的目的在于提供一种制造任意复杂形状的生物医用多孔钛合金植入体的方法,以弥补传统制备技术的不足,扩大选择性激光烧结技术的应用领域,高效制备出满足医用材料生物相容性和力学相容性要求的复杂形状的钛合金植入体。 [0007] The present invention is to provide a method of manufacturing any biomedical porous titanium implants complex shape to compensate for the deficiencies of traditional preparation technology, expanding applications of selective laser sintering technology, efficient preparation to meet the medical complex shapes biocompatibility and mechanical compatibility requirements of titanium implants.

[0008] 一种制备复杂形状生物医用多孔钛钼合金植入体的方法,其特征在于:首先采用Auto CAD、Pro/E绘图软件,或将通过CT扫描、MRI技术获得的医学摄影图形进行数据化, 设计出植入体的三维模型;将Ti、Mo金属元素粉末与有机高分子粉末进行机械均勻混合, 金属元素粉末中Mo含量为2〜15wt%,余量为Ti,有机高分子的含量占金属粉末总量的3wt%-15wt% ;在氩气保护下,采用(X)2激光束将混合粉末进行选择性激光烧结成形,得到具有特定形状的Ti-Mo合金材料植入体的预成形坯;在真空或氩气保护下,将成形坯进行热脱脂及高温烧结,烧结温度为800〜1500C,即得到生物医用多孔Ti-Mo合金植入体。 [0008] A method for complex shapes biomedical porous titanium-molybdenum alloy implant preparation comprising: first use Auto CAD, Pro / E drawing software, or by CT scans, MRI medical imaging graphics technology available for data , design a three-dimensional model of the implant; to Ti, Mo powder and organic metal elements are uniformly mixed mechanically polymer powder, metal powder elements Mo content 2~15wt%, the balance being Ti, the content of the organic polymer accounting 3wt% -15wt% of the total metal powder; under argon, using (X) 2 powder was mixed laser beam selectively laser sintered, having a specific shape to obtain a pre-Ti-Mo alloy material of the implant forming blanks; under vacuum or argon, the shaped billet hot degreasing and high temperature sintering, sintering temperature 800~1500 C, to obtain biomedical porous Ti-Mo alloy implants.

[0009] 具体工艺流程和参数如下: [0009] The specific process and parameters are as follows:

(1)采用球磨工艺对原料粉末进行机械混合,其工艺参数为:球料比为3 : 1〜1 : 1,球磨时间3〜12h,转速30〜100r/min ; (1) the use of raw material powder milling process on mechanical mixing, the process parameters are: ball to powder ratio of 3: 1~1: 1, milling time 3~12h, speed 30~100r / min;

(2)根据不同患者的需要,采用ftx) Ε, CAD或CT扫描、MRI技术,构建植入体的三维模型,可对任意复杂形状的植入体(如悬臂、中空和内嵌结构等)进行个性化的三维模型设计; (2) According to the needs of different patients, using ftx) Ε, CAD or CT scan, MRI techniques to build three-dimensional model of the implant, can be of any complex shape of the implant (e.g. a boom, and the embedded hollow structure, etc.) personalized three-dimensional model of the design;

(3)在纯度为99. 0%〜99. 9%的惰性氩气保护下,以(X)2激光器为热源,按照预先设计好的加工路线对混合粉末进行选择性激光烧结成形,得到所需植入体的生坯件。 (3) In the purity of 99.0% ~99 9% inert argon to (X) 2 laser as a heat source, according to the pre-designed mixed powder processing line for selective laser sintering, to obtain the green pieces of body implants required. SLS工艺参数为:激光功率:10〜40W,扫描速度为1500〜2500mm/s,扫描间距为0. 08〜0. 25mm,切片厚度为0. 08〜0. 25mm,粉床预热温度为45〜160C ; SLS process parameters: Laser power: 10~40W, scanning speed 1500~2500mm / s, the scan pitch of 0. 08~0 25mm, slice thickness of 0. 08~0 25mm, powder bed preheating temperature of 45. ~160 C;

(4)在真空或惰性气体保护下,将植入体生坯件放入脱脂炉内,直接进行热脱脂;脱脂主要工艺参数为:脱脂温度为20〜750C,保温时间为0. 5〜3h,脱除速率为1〜5C /min ; (4) under vacuum or inert gas, the implant is placed in the green parts degreasing furnace, direct thermal degreasing; degreasing main process parameters: degreasing temperature 20~750 C, holding time of 0.5 ~3h, the removal rate of 1~5 C / min;

(5)在真空或惰性气体保护下,将植入体脱脂件放入烧结炉内,进行高温烧结,最终得到钛钼合金植入体。 (5) in a vacuum or inert gas protection, the implant member into a degreasing furnace sintering, high temperature sintering, the finally obtained titanium-molybdenum alloy implants. 烧结主要工艺参数为:烧结温度800〜1500C,保温时间为0.5〜池, 升温速率为1〜5C /min。 Sintering main process parameters: sintering temperature 800~1500 C, holding time 0.5~ pool heating rate of 1~5 C / min.

[0010] 所述原料Ti粉、Mo粉和高分子粉末的粒径分别为:100〜325目、100〜500目和100 〜800 目。 [0010] The raw material powder Ti, Mo powder and polymer powder particle size were: 100~325 mesh, 100~500 mesh and 100 mesh ~800.

[0011] 所述有机高分子材料为热塑性树脂和热固性树脂;热塑性树脂包括聚乙烯、高密度聚乙烯、聚丙烯、聚苯乙烯、聚酰胺、聚甲基丙烯酸甲酯、聚碳酸酯或乙烯-醋酸乙烯共聚物,热固性树脂包括酚醛树脂、三聚氰胺、氨基树脂或环氧树脂。 [0011] The organic polymer material is a thermoplastic resin and a thermosetting resin; a thermoplastic resin include polyethylene, high density polyethylene, polypropylene, polystyrene, polyamide, polymethyl methacrylate, polycarbonate, or an ethylene - vinyl acetate copolymers, thermosetting resins include phenolic resins, melamine, amino resin or epoxy resin.

[0012] 本发明的优势在于: [0012] advantages of the present invention is:

(1)面对不同患者的需求,能够个性化设计,并直接制备出任意复杂形状和高尺寸精度的生物医用植入体; (1) face different requirements of the patient, can be personalized design, and directly prepare any complex shape and high dimensional precision biomedical implants;

(2)易于调节合金成分、材料利用率高,添加剂含量少、对材料及环境污染小; (2) easy to adjust the alloy composition, material utilization, low additive content of the materials and environmental pollution;

(3)成形工艺具有数字化及无模化的技术特点,制备工艺步骤简单,可操作性及重复性 (3) forming process has digitized and no modeling of the technical characteristics of the preparation process simple steps, operability and repeatability

强; Strong;

(4)通过调节Mo含量、SLS成形工艺及烧结工艺参数,可实现多孔Ti-Mo合金材料的孔隙特征、基体显微组织和力学性能的控制; (4) by adjusting the Mo content, SLS forming process and sintering process parameters, enabling the pore characteristics of the porous Ti-Mo alloys, controlled microstructure and mechanical properties of the matrix microstructure;

(5)所制备出的钛钼合金材料孔隙组织均勻、孔隙率、开孔率和孔径可调节范围广,力学性能优异,其弹性模量和强度与自然骨匹配,可满足作为生物医用材料所需要的生物力学相容性要求。 (5) the preparation of a titanium-molybdenum alloy material homogeneous porosity, porosity, open porosity and pore size can be adjusted a wide range of excellent mechanical properties, the elastic modulus and strength of natural bone and matched to meet as biomedical materials required biomechanical compatibility requirements.

[0013] [0013]

具体实施方式 DETAILED DESCRIPTION

[0014] 实施方式1 [0014] Embodiment 1

配制原料粉末:首先采用电子天平分别称取300目Ti粉340g、200目Mo粉60g、160目的高密度聚乙烯(HDPE)粉末35g,然后将上述粉末装入球磨机中混合,球料比为3:1,球磨时间为10h,转速为55r/min ; Preparation of the raw material powder: Firstly electronic balance Weigh 300 mesh Ti powder 340g, 200 mesh Mo powder 60g, 160 the purpose of high density polyethylene (HDPE) powder 35g, and then the above powder was mixed in a ball mill, ball to powder ratio is 3 : 1, milling time for 10h, speed is 55r / min;

构建三维模型:使用ftx) E软件,绘制植入体的三维形状,并采用分层软件对三维模型进行切片处理,将处理得到的二维片层信息以STL格式存储到选择性激光烧结的成形机; Construction of three-dimensional model: Use ftx) E software, draw a three-dimensional shape of the body of the implant, and the use of layered software for three-dimensional model slicing, two-dimensional sheet information processing was stored in STL format to the selective laser sintering shaping machine;

选择性激光烧结成形:以成形精度和生坯强度为标准,激光束在计算机控制下,按照二维片层信息进行选择性激光烧结成形,并将所有的片层逐层连接起来,得到植入体。 Selective Laser Sintering: the shaping precision and intensity of the standard green laser beam under computer control, according to a two-dimensional slice of information in Selective Laser Sintering, and all of the sheets together layer by layer connection, get implants body. 选取优化的SLS工艺参数:激光功率34W,扫描速度1650mm/s,扫描间距0. 18mm,切片厚度0. 18mm, 预热温度100C ; Select SLS optimized process parameters: Laser power 34W, scanning speed 1650mm / s, scan spacing 0. 18mm, slice thickness 0. 18mm, preheat temperature 100 C;

热脱脂:在纯度为99. 8%的氩气保护下,将SLS成形的植入体放入脱脂炉,以去除有机高分子,脱脂工艺分为三步:第一步,25〜250C,升温速度5C /min,不需要保温;第二步, 250〜420C,升温速率3C /min,保温Ih ;第三步,420〜600C,升温速率2C /min,保温lh,并随炉冷却; Hot degreasing: The purity of 99.8% under argon protection, will implant into the degreasing furnace SLS formed to remove the organic polymer, degreasing process is divided into three steps: first, 25~250 C heating rate of 5 C / min, the insulation is not required; the second step, 250~420 C, heating rate of 3 C / min, holding Ih; the third step, 420~600 C, heating rate of 2 C / min, holding lh, and furnace cooling;

高温烧结:把经过脱脂的植入体放入真空度为2的烧结炉内,从室温烧结至1200C, 升温速率3C /min,并在1200C保温3h,随炉冷却,得到Ti_15Mo合金的多孔植入体。 High-temperature sintering: The implant degreased placed in a vacuum sintering furnace 2 degrees, sintering from room temperature to 1200 C, heating rate of 3 C / min, and at 1200 C insulation 3h, with furnace cooling to obtain porous Ti_15Mo alloy implant.

[0015] 通过测量分析,该工艺得到的Ti_15Mo合金的孔隙率为52. 8%,开孔率为48. 6%, 孔隙大小为180 μ m ;弹性模量为5. 55GPa,抗压屈服强度为113. 56MPa,与人骨的弹性模量(3. 21〜30GPa)和抗压强度(130〜180MPa)十分接近。 [0015] By measuring analysis, obtained with this process Ti_15Mo alloy porosity of 52.8%, an opening ratio of 48.6%, the pore size of 180 μ m; elastic modulus 5. 55GPa, compressive yield strength for 113. 56MPa, and human bone elastic modulus (3. 21~30GPa) and compressive strength (130~180MPa) very close.

[0016] 实施方式2 [0016] Embodiment 2

在实施例1的基础上,只改变Ti粉和Mo粉的质量配比和高温烧结温度,即Ti/Mo=9/l,从室温按3C /min的升温速率加热到1500C,并保温3小时,之后随炉冷却,得到Ti-IOMo 合金,其孔隙率为18%,开孔率为16. 3%,孔径平均大小为30 μ m,弹性模量为54. 89MPa,抗压屈服强度为486. 38 MPa0 On the basis of the Example 1, changing only the Ti powder and Mo powder mass ratio and high temperature sintering temperatures, i.e., Ti / Mo = 9 / l, from room temperature by 3 C / min heating rate of heating to 1500 C, and incubated for 3 hours, then furnace cooling to obtain a Ti-IOMo alloy having a porosity of 18%, an opening ratio of 16.3%, an average pore size of 30 μ m, the elastic modulus of 54. 89MPa, compression yield strength of 486. 38 MPa0

[0017] 实施方式3 [0017] Embodiment 3

配制原料粉末:首先采用电子天平分别称取100目的Ti粉460g、325目的Mo粉40g、 400目的聚苯乙烯(PS)粉末30g,然后将上述粉末装入球磨机中混合,球料比为2:1,球磨时间为8h,转速为70r/min ; Preparation of the raw material powder: Firstly electronic balance Weigh a 100 mesh Ti powder 460g, 325 Objective Mo powder 40g, 400 purpose polystyrene (PS) powder 30g, and then the above powder was mixed in a ball mill, ball to powder ratio of 2: 1, the milling time for 8h, speed is 70r / min;

构建三维模型:使用CAD绘制植入体的三维形状,并采用分层软件对三维模型进行切片处理,将处理得到的二维片层信息以STL格式存储到选择性激光烧结的成形机; Construction of three-dimensional model: the three-dimensional shape of the implant using a CAD drawing body and hierarchical software slicing 3D model, a two-dimensional sheet information processing was stored in STL format to the selective laser sintering molding machine;

选择性激光烧结成形:以成形精度和生坯强度为标准,激光束在计算机控制下,按照二维片层信息进行选择性激光烧结成形,并将所有的片层逐层连接起来,得到植入体。 Selective Laser Sintering: the shaping precision and intensity of the standard green laser beam under computer control, according to a two-dimensional slice of information in Selective Laser Sintering, and all of the sheets together layer by layer connection, get implants body. 选取优化的SLS工艺参数:激光功率23W,扫描速度1800mm/s,扫描间距0. 20mm,切片厚度0. 20mm, 预热温度130C ; Select SLS optimized process parameters: Laser power 23W, scanning speed 1800mm / s, scan spacing 0. 20mm, slice thickness 0. 20mm, preheat temperature 130 C;

热脱脂:在纯度为99. 8%的氩气保护下,将SLS成形的植入体放入脱脂炉,以去除有机高分子,脱脂工艺分为三步:第一步,25〜30(TC,升温速度5C /min,不需要保温;第二步, 300〜550C,升温速率3C /min,保温2h ;第三步,550〜700C,升温速率2C /min,保温lh,并随炉冷却; Hot degreasing: Under purity of 99.8% of argon, the implant is shaped into a degreasing furnace SLS to remove the organic polymer, degreasing process is divided into three steps: first, 25~30 (TC heating rate of 5 C / min, the insulation is not required; the second step, 300~550 C, heating rate of 3 C / min, incubated 2h; the third step, 550~700 C, heating rate of 2 C / min, holding lh, and furnace cooling;

高温烧结:把经过脱脂的植入体放入真空度为2的烧结炉内,从室温烧结至1250C, 升温速率3C /min,并在1250C保温2h,随炉冷却,得到Ti_8Mo合金的多孔植入体。 High-temperature sintering: The implant degreased placed in a vacuum sintering furnace 2 degrees, sintering from room temperature to 1250 C, heating rate of 3 C / min, and at 1250 C insulation 2h, with furnace cooling to obtain porous Ti_8Mo alloy implant.

[0018] 通过测量分析,该工艺得到的Ti-SMo合金的孔隙率为37. 35%,开孔率为35. 72%, 最大孔径达120 μ m ;弹性模量为17. 76GPa,抗压屈服强度为255. 96MPa [0018] The measurement and analysis, the process to obtain the alloy Ti-SMo porosity of 37.35%, a perforation rate of 35.72%, a maximum pore diameter of 120 μ m; elastic modulus 17. 76GPa, compression yield strength of 255. 96MPa

实施方式4 Embodiment 4

在实施例3的基础上,只改变粘结剂的含量,聚苯乙烯由30g变为10g,即占金属粉末总量的2wt%,按相同的SLS工艺参数成形,得到Ti-SMo预成形坯。 On the basis of Example 3, the only change the content of the binder, 30g of polystyrene by changes 10g, which represents 2wt% of the total metal powder, press molding the same SLS process parameters to obtain a Ti-SMo preform .

[0019] 在SLS成形结束的后续清粉过程中,预成形坯由于粘结剂含量过低致使强度太小,操作时稍不小心或用力过大都会被损坏,对于后面搬运及运输以进行脱脂和烧结工艺就显得更加困难,尤其是薄壁件,更容易损坏。 [0019] In a subsequent clear powder SLS forming process ends, the preform binder content is too low resulting in strength due to too small, a little careless operation or excessive force metropolis is damaged, for handling and transportation back to degreasing and sintering process becomes more difficult, especially thin-walled parts, more prone to damage.

[0020] 由此可见,为了获得足够的生坯强度,以方便后续的操作处理,粘结剂的含量须控制在3wt%及以上;对于复杂形状且大尺寸的薄壁件,粘结剂的含量应相对增加,上限可控制在15wt%以内。 [0020] Thus, in order to obtain sufficient green strength to facilitate subsequent processing operations, the content of the binder shall be controlled in 3wt% or more; for complex shapes and large-size thin-walled member, binder content should be relatively increased, the upper limit can be controlled within 15wt%.

[0021] 实施方式5 [0021] Embodiment 5

配制原料粉末:首先采用电子天平称量200目的Ti粉480g、400目的钼粉20g、300目的聚酰胺(PA)粉末20g,然后将上述粉末装入球磨机中混合,球料比为1:1,球磨时间为他, 转速为40r/min ; Preparation of the raw material powder: Firstly electronic balance 200 mesh Ti powder 480g, 400 object molybdenum powder 20g, 300 object of polyamide (PA) powder 20g, and then the above powder was mixed in a ball mill, ball to powder ratio of 1: 1, milling time for him, speed is 40r / min;

构建三维模型:使用CAD绘制植入体的三维形状,并采用分层软件对三维模型进行切片处理,将处理得到的二维片层信息以STL格式存储到选择性激光烧结的成形机; Construction of three-dimensional model: the three-dimensional shape of the implant using a CAD drawing body and hierarchical software slicing 3D model, a two-dimensional sheet information processing was stored in STL format to the selective laser sintering molding machine;

选择性激光烧结成形:以成形精度和生坯强度为标准,激光束在计算机控制下,按照二维片层信息进行选择性激光烧结成形,并将所有的片层逐层连接起来,得到植入体。 Selective Laser Sintering: the shaping precision and intensity of the standard green laser beam under computer control, according to a two-dimensional slice of information in Selective Laser Sintering, and all of the sheets together layer by layer connection, get implants body. 选取优化的SLS工艺参数:激光功率18W,扫描速度2000mm/s,扫描间距0. 25mm,切片厚度0. 25mm,预热温度; Select SLS optimized process parameters: Laser power 18W, scanning speed 2000mm / s, scan spacing 0. 25mm, slice thickness 0. 25mm, preheat temperature;

热脱脂:在纯度为99. 8%的氩气保护下,将SLS成形的植入体放入脱脂炉,以去除有机高分子,脱脂工艺分为三步:第一步,25〜350C,升温速度5C /min,不需要保温;第二步, 350〜500C,升温速率2V /min,保温2h ;第三步,500〜600C,升温速率3C /min,保温lh,并随炉冷却; Hot degreasing: The purity of 99.8% under argon protection, will implant into the degreasing furnace SLS formed to remove the organic polymer, degreasing process is divided into three steps: first, 25~350 C heating rate of 5 C / min, the insulation is not required; the second step, 350~500 C, heating rate of 2V / min, incubated 2h; the third step, 500~600 C, heating rate of 3 C / min, insulation lh, and furnace cooling;

高温烧结:把经过脱脂的植入体放入真空度为2的烧结炉内,从室温升温至1100C, 升温速率3C /min,并在1100C保温2h,随炉冷却,得到Ti_4Mo合金的多孔植入体,其孔隙率为48. 79%,开孔率为47%,最大孔径达160 μ m ;弹性模量为4. ISGPa,抗压屈服强度为103.74MPa0 High temperature sintering of: degreased implant placed in a vacuum sintering furnace 2 degrees, from room temperature to 1100 C, heating rate 3 C / min, and incubated at 1100 C 2h, furnace cooling, to obtain Porous implant Ti_4Mo alloy which has a porosity 48.79%, an opening ratio of 47%, maximum pore size of 160 μ m; elastic modulus 4. ISGPa, compressive yield strength 103.74MPa0

[0022] 实施方式6 [0022] Embodiment 6

本例制备多孔Ti_2Mo合金,选用200目钛粉、325目钼粉,300目酚醛树脂为原料粉末, 采用球磨机混合均勻:球料比2:1,转速40r/min,球磨他;选择性激光烧结成形,粉床温度固定在120C,表一为不同含量的酚醛树脂对应的SLS工艺参数。 Preparation of porous Ti_2Mo alloy in this case, the choice of 200 mesh titanium powder, molybdenum powder 325 mesh, 300 mesh phenolic resin powder as raw material, using a ball mill mix: ball to powder ratio of 2: 1, speed 40r / min, milling him; selective laser sintering forming, powder bed temperature is fixed at 120 C, Table 1 gives the various amounts of phenolic resin corresponding SLS process parameters.

[0023] [0023]

表1混合粉末SLS成形工艺 Table 1 SLS mixed powder forming processes

Figure CN102335742AD00071

通过以上SLS工艺参数得到的预成形坯,在纯度>99. 5%的氩气气氛中脱脂,待粘结剂完全分解和挥发后,放入真空炉烧结至800C,并保温池,之后随炉冷却,得到多孔Ti-2Mo 合金。 SLS process parameters obtained by the above preform, purity> 99.5% of the degreasing atmosphere of argon, until the binder was completely decomposed and volatilized, into the vacuum sintering furnace to 800 C, and incubated pool, after furnace cooling to obtain a porous Ti-2Mo alloy. 经分析,Ti-2Mo合金的孔隙度可达60%,孔径大小50〜200 μ m,弹性模量为3. 25GPa, 抗压屈服强度为78. 84 MPa0 After analysis, porosity Ti-2Mo alloy is up to 60%, the pore size 50~200 μ m, the elastic modulus of 3. 25GPa, compressive yield strength of 78. 84 MPa0

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
CN101249279A *19 Mar 200827 Aug 2008中国人民解放军第四军医大学Method using laser quick forming producing HA/Ti gradient biological activity material
CN101948964A *16 Sep 201019 Jan 2011大连理工大学Method for preparing biomedical porous titanium and titanium alloy material
EP2149414A1 *30 Jul 20083 Feb 2010Nederlandse Centrale Organisatie Voor Toegepast Natuurwetenschappelijk Onderzoek TNOMethod of manufacturing a porous magnesium, or magnesium alloy, biomedical implant or medical appliance.
US20070142914 *6 Dec 200521 Jun 2007Eric JonesLaser-produced porous surface
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
CN102634687A *18 Apr 201215 Aug 2012北京科技大学Method for preparing stainless steel biological porous implant material by selective laser sintering
CN102941343A *16 Nov 201227 Feb 2013西北有色金属研究院Quick manufacturing method of titanium-aluminum alloy composite part
CN102941343B *16 Nov 201224 Dec 2014西北有色金属研究院Quick manufacturing method of titanium-aluminum alloy composite part
CN103420681A *15 May 20124 Dec 2013中南大学Method for realizing secondary sintering preparation of artificial bone by utilizing selective laser and temperature control furnace
CN103420681B *15 May 201216 Dec 2015中南大学利用选择性激光和温控炉实现二次烧结制备人工骨的方法
CN103495731A *3 Sep 20138 Jan 2014广州中国科学院先进技术研究所Method for manufacturing pure titanium porous structure through selective laser melting
CN104758982A *10 Apr 20158 Jul 2015中国人民解放军第二军医大学Individual beta-Ti-15Mo alloy-Co-28Cr-6Mo alloy-Al2O3 ceramic acetabulum artificial bone scaffold
CN105397091A *30 Oct 201516 Mar 2016苏州大学张家港工业技术研究院Preparation method for porous graphene reinforced titanium matrix nanometer composite material based on laser sintering technology
CN105397091B *30 Oct 201511 Aug 2017苏州大学激光烧结的多孔石墨烯增强钛基纳米复合材料的制备方法
US895636429 Aug 201217 Feb 2015Biomet Manufacturing, LlcPatient-specific partial knee guides and other instruments
US897993621 Jun 201317 Mar 2015Biomet Manufacturing, LlcPatient-modified implant
US906078811 Dec 201223 Jun 2015Biomet Manufacturing, LlcPatient-specific acetabular guide for anterior approach
US906673431 Aug 201130 Jun 2015Biomet Manufacturing, LlcPatient-specific sacroiliac guides and associated methods
US908461811 Jun 201221 Jul 2015Biomet Manufacturing, LlcDrill guides for confirming alignment of patient-specific alignment guides
US911397129 Sep 201025 Aug 2015Biomet Manufacturing, LlcFemoral acetabular impingement guide
US91736611 Oct 20093 Nov 2015Biomet Manufacturing, LlcPatient specific alignment guide with cutting surface and laser indicator
US917366627 Jun 20143 Nov 2015Biomet Manufacturing, LlcPatient-specific-bone-cutting guidance instruments and methods
US92049778 Mar 20138 Dec 2015Biomet Manufacturing, LlcPatient-specific acetabular guide for anterior approach
US923795031 Jan 201319 Jan 2016Biomet Manufacturing, LlcImplant with patient-specific porous structure
US924174513 Dec 201226 Jan 2016Biomet Manufacturing, LlcPatient-specific femoral version guide
US927174418 Apr 20111 Mar 2016Biomet Manufacturing, LlcPatient-specific guide for partial acetabular socket replacement
US92892533 Nov 201022 Mar 2016Biomet Manufacturing, LlcPatient-specific shoulder guide
US929549718 Dec 201229 Mar 2016Biomet Manufacturing, LlcPatient-specific sacroiliac and pedicle guides
US930181217 Oct 20125 Apr 2016Biomet Manufacturing, LlcMethods for patient-specific shoulder arthroplasty
US933927821 Feb 201217 May 2016Biomet Manufacturing, LlcPatient-specific acetabular guides and associated instruments
US934554820 Dec 201024 May 2016Biomet Manufacturing, LlcPatient-specific pre-operative planning
US935174317 Oct 201231 May 2016Biomet Manufacturing, LlcPatient-specific glenoid guides
US938699326 Sep 201212 Jul 2016Biomet Manufacturing, LlcPatient-specific femoroacetabular impingement instruments and methods
US939302810 Aug 201019 Jul 2016Biomet Manufacturing, LlcDevice for the resection of bones, method for producing such a device, endoprosthesis suited for this purpose and method for producing such an endoprosthesis
US940861612 May 20149 Aug 2016Biomet Manufacturing, LlcHumeral cut guide
US942732027 Nov 201330 Aug 2016Biomet Manufacturing, LlcPatient-specific pelvic implants for acetabular reconstruction
US943965929 Jun 201513 Sep 2016Biomet Manufacturing, LlcPatient-specific sacroiliac guides and associated methods
US944590716 Sep 201320 Sep 2016Biomet Manufacturing, LlcPatient-specific tools and implants
US945197317 Oct 201227 Sep 2016Biomet Manufacturing, LlcPatient specific glenoid guide
US945683320 Jan 20144 Oct 2016Biomet Sports Medicine, LlcPatient-specific osteotomy devices and methods
US94745397 Mar 201425 Oct 2016Biomet Manufacturing, LlcPatient-specific convertible guides
US948049016 Dec 20131 Nov 2016Biomet Manufacturing, LlcPatient-specific guides
US94805809 Dec 20131 Nov 2016Biomet Manufacturing, LlcPatient-specific acetabular alignment guides
US949823313 Mar 201322 Nov 2016Biomet Manufacturing, Llc.Universal acetabular guide and associated hardware
US951714511 Mar 201413 Dec 2016Biomet Manufacturing, LlcGuide alignment system and method
US952201021 Nov 201320 Dec 2016Biomet Manufacturing, LlcPatient-specific orthopedic instruments
US953901313 Apr 201510 Jan 2017Biomet Manufacturing, LlcPatient-specific elbow guides and associated methods
US955491017 Oct 201231 Jan 2017Biomet Manufacturing, LlcPatient-specific glenoid guide and implants
US95610403 Jun 20147 Feb 2017Biomet Manufacturing, LlcPatient-specific glenoid depth control
US95725902 Oct 200721 Feb 2017Biomet Uk LimitedSurgical instrument
US957910711 Mar 201428 Feb 2017Biomet Manufacturing, LlcMulti-point fit for patient specific guide
US959720115 Sep 201521 Mar 2017Biomet Manufacturing, LlcPatient-specific acetabular guide for anterior approach
US96036131 Aug 201628 Mar 2017Biomet Manufacturing, LlcPatient-specific sacroiliac guides and associated methods
US966212713 Dec 201330 May 2017Biomet Manufacturing, LlcPatient-specific acetabular guides and associated instruments
US966221628 Oct 201330 May 2017Biomet Manufacturing, LlcPatient-specific hip joint devices
US966874725 Sep 20156 Jun 2017Biomet Manufacturing, LlcPatient-specific-bone-cutting guidance instruments and methods
US96872617 Jul 201527 Jun 2017Biomet Manufacturing, LlcDrill guides for confirming alignment of patient-specific alignment guides
US970032512 Jan 201711 Jul 2017Biomet Manufacturing, LlcMulti-point fit for patient specific guide
US970032916 Nov 201611 Jul 2017Biomet Manufacturing, LlcPatient-specific orthopedic instruments
US97175105 May 20141 Aug 2017Biomet Manufacturing, LlcPatient-specific numerically controlled instrument
US974393517 Dec 201529 Aug 2017Biomet Manufacturing, LlcPatient-specific femoral version guide
US974394013 Feb 201529 Aug 2017Biomet Manufacturing, LlcPatient-specific partial knee guides and other instruments
US97572381 Dec 201412 Sep 2017Biomet Manufacturing, LlcPre-operative planning and manufacturing method for orthopedic procedure
Classifications
International ClassificationA61L27/06, B22F3/11, A61L27/56, B22F3/105, C22C14/00
Cooperative ClassificationY02P10/295
Legal Events
DateCodeEventDescription
1 Feb 2012C06Publication
28 Mar 2012C10Entry into substantive examination
30 May 2012C53Correction of patent for invention or patent application
30 May 2012CORChange of bibliographic data
Free format text: CORRECT: INVENTOR; FROM: JIE FANGXIA LU XIN HE XINBO QU XUANHUI TO: HE XINBO LU XIN JIE FANGXIA QU XUANHUI
30 Jan 2013C14Grant of patent or utility model