CN102232264B - 具有连续传导模式(ccm)和不连续传导模式(dcm)操作的可调恒流源 - Google Patents

具有连续传导模式(ccm)和不连续传导模式(dcm)操作的可调恒流源 Download PDF

Info

Publication number
CN102232264B
CN102232264B CN200980147607.XA CN200980147607A CN102232264B CN 102232264 B CN102232264 B CN 102232264B CN 200980147607 A CN200980147607 A CN 200980147607A CN 102232264 B CN102232264 B CN 102232264B
Authority
CN
China
Prior art keywords
current
inductor
converter power
power level
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200980147607.XA
Other languages
English (en)
Other versions
CN102232264A (zh
Inventor
约翰·L·梅安森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Cirrus Logic Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cirrus Logic Inc filed Critical Cirrus Logic Inc
Publication of CN102232264A publication Critical patent/CN102232264A/zh
Application granted granted Critical
Publication of CN102232264B publication Critical patent/CN102232264B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/375Switched mode power supply [SMPS] using buck topology
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/38Switched mode power supply [SMPS] using boost topology
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Abstract

本文公开了一种转换器系统以及运行一种转换器系统的方法。该转换器系统包括一个转换器功率级,该功率级可以在输出电流的一个范围内以不连续传导模式(DCM)运行,也可在输出电流的另一范围内以连续传导模式(CCM)运行。该转换器功率级包括至少一个具有电感器值的电感器和控制开关。该转换器功率级提供平均电流。有一个电流控制器耦合到该转换器功率级。当以DCM模式运行时,该转换器功率级提供平均电流,其电流控制器被配置用于测量电感器的电感值。此外,电流控制器也可以被配置用于测量转换器功率级的输入-输出转换率。

Description

具有连续传导模式(CCM)和不连续传导模式(DCM)操作的可调恒流源
相关申请的交叉引用
本申请涉及并且交叉引用2008年4月22日提交的美国申请序列号12/107,613题为“Power Factor Correction(PFC)Controller and Method Using a Finite State Machine to Adjust the Duty Cycle of a PWM Control Signal(使用有线状态机来调节PWM控制信号的占空因数的功率因数校准(PFC)控制器和方法)”(发明者:John Melanson;Cirrus Docket No.1684-IPD);2008年4月28日提交的美国申请序列号12/110,714题为“Discontinuous Conduction Mode(DCM)Using Sensed Current for a Switch-Mode Converter(切换式转换器的使用所感测电流的不连续传导模式(DCM))”(发明者:John Melanson;Cirrus Docket No.1679-IPD);以及2008年5月1日提交的美国申请序列号12/113,536题为“Switch-Mode Converter Operating in a Hybrid Discontinuous Conduction Mode(DCM)/Continuous Conduction Mode(CCM)That Uses Double or More Pulses in a Switching Period(在开关周期中使用双脉冲或更多脉冲的以不连续传导(DCM)/连续传导(CCM)混合模式运行的切换式转换器)”(发明者:John Melanson;Cirrus Docket No.1674-IPD)。
技术领域
本发明大体上涉及信号处理领域,并且特别涉及提供支持不连续传导模式(DCM)和连续传导模式(CCM)的可调恒流源的装置和方法。
背景技术
切换式系统在技术上是众所周知的。图1所示是一个示例切换式系统100。切换式系统100包括切换式转换器功率级102、转换器电流控制器104和负载106。功率101被馈入切换式转换器功率级102。切换式系统100使用切换式转换器功率级102来将交流(AC)电压(诸如线路/电源电压)转换成直流(DC)电压或直流-直流,其中,输入电流与输入电压是成比例的。转换器电流控制器104控制切换式转换器功率级102的电流,切换式转换器功率级102从而驱动负载106。图中示例性切换式转换器功率级102可以是一个降压转换器也可以是一个升压转换器。切换式转换器功率级102有两种开关级运行模式:不连续传导模式(DCM)和连续传导模式(CCM)。
在CCM中,切换式转换器功率级102的开关在转换器电流控制器104为非零时由转换器电流控制器104打开到“开”,并且转换器电流控制器104的能量转移电感器的电流在开关循环期间从不达到零。图2A所示是具大小为3安培值的(电感器电流iL的)示例性目标电流itarget。图2A还表明电感器电流iL的周期是10微秒,并且其值总为非零。在CCM中,电流摆幅小于DCM中的电流摆幅,使电感器电流iL的I2R功率损耗较小,脉动电流较低,结果得到较低的电感器磁芯损耗。较低电压摆幅还降低电磁干扰(EMI),从而可以使用较小的输入滤波器。在电感器电流iL不等于零时,切换式转换器功率级102的开关被置于“关”,所以切换式转换器功率级102的二极管需要能够非常快速地反向恢复,以尽可能降低损耗。在DCM中,在切换式转换器功率级102的电感器的电感器电流iL等于零时,切换式转换器功率级102的开关由转换器电流控制器104打开(例如,“开”)。图2B的示例是0.8 安培的目标电流itarget。图2B还表明电感器电流iL具有10微秒的周期,并且在每个周期的某一阶段降为零。
举例说明,为了使用切换式系统100来驱动发光二极管(LED)发光系统,很重要的一点是它必须具有在宽动态范围内可调的精确恒流输出,比如在100比1(100:1)的范围内。这种精确可调的恒定输出需要一个切换式转换器功率级102,以在CCM模式与DCM模式间平稳转换,并且在CCM模式和DCM模式中都能提供可控的输出。对于为电感器电流iL设定的高目标电流值itarget,电流脉动需要被控制在最小的范围。这种低电流脉动一般需要在CCM模式下运行切换式转换器功率级102。除非切换式转换器功率级102的电感器大很多,否则切换式转换器功率级102将以DCM运行,其电感器电流iL的平均电流iaverage较低。假设电感器以线性(非饱和)运行,如果在CCM模式中的切换式转换器功率级102的控制方式中,电流大于目标电流itarget的时间与小于目标电流itarget的时间相等,则平均电流iaverage等于目标电流itarget。切换式转换器功率级102的CCM运行一般不需要知道电感器值L(或成比例的电感器常数F*L乘积,其中,F可以是接通时间周期除以接通时间周期的计数值),也不需要知道输入/输出比率D,用以提供这种精确恒定平均电流输出。
然而,为转换器功率级102提供在CCM与DCM之间的平稳转换也有难度。例如,在DCM中需要知道电感器值L(或成比例的电感器F*L乘积)和输入/输出比率D,因为它们对电流校准有直接影响。任何误差将在有效电流数字-模拟转换器(DAC)中导致微分非线性(DNL)误差。因此,为了在CCM与DCM之间至少提供一个较平稳的转换,有必要检测,观察,并且/或者导出切换式转 换器系统的电感器值L(或成比例的电感器常数F*L乘积)和输入/输出比率D,特别是当该切换式转换器系统以DCM模式运行时。这种测量方法能够控制切换式转换器102的开关的接通时间或总运行周期,从而提供电感器电流iL的精确、可调恒定平均电流输出。
发明内容
本发明公开了一种转换器系统和运行转换器系统的方法。该转换器系统包括转换器功率级,该转换器功率级可以在输出电流的一个范围内以不连续传导模式(DCM)运行,并且可以在输出电流的另一范围内以连续模式(CCM)运行。该转换器功率级包括至少一个具有电感器值的电感器和控制开关。该转换器功率级提供平均电流。有电流控制器耦合到该转换器功率级。当转换器功率级以DCM运行时,该转换器功率级提供平均电流,并且电流控制器被配置用于测量电感器的电感器值。此外,电流控制器还可以被配置用于测量转换器功率级的输入-输出转换率。
附图说明
参照附图,本领域的技术人员会更好地理解本发明,以及本发明的许多目的、特征和优点。在多个图中使用相同的标号来标明相同或相似的元件。
图1描述了示例性的切换式系统。
图2A描述了以连续传导模式(CCM)运行的切换式转换器102的电感器电流iL和目标电流itarget的电流波形示例,时间单位为10微秒。
图2B描述了以不连续传导模式(DCM)运行的切换式转换器102的电感器电流iL和目标电流itarget的电流波形示例,时间单位为10微秒。
图3描述了由驱动LED的发光二极管(LED)电流控制器控制的切换式降压转换器功率级示例的细节。
图4描述了包括一个目标电流发生器和一个LED电流控制器的LED发光控制器示例的细节。
图5描述了一个切换式降压转换器示例的电感器电流iL的电流波形示例。该切换式降压转换器演示出第一项技术示例,该技术可在示例性切换式降压转换器功率级以DCM运行时提供精确恒定平均电感器电流输出,有助于使切换式降压转换器功率级在CCM与DCM之间平稳转换。
图6描述了由驱动LED的LED电流控制器控制的另一种切换式降压转换器功率级示例的细节。
图7描述了示例性切换式降压转换器功率级的控制信号CS0、电感器电流iL和感测电流isense的示例性电流波形。这些电流波形演示出当示例性切换式降压转换器功率级在开关周期中使用双脉冲或更多脉冲的不连续传导(DCM)/连续传导(CCM)混合模式时,第二和第三示例性技术各自可以提供精确恒定的平均电感器电流输出,从而有助于切换式降压转换器功率级在CCM与DCM之间进行平稳转换。
具体实施方式
图3描述了发光二极管(LED)发光系统300的细节,该发光二极管发光系统300具有由驱动LED308的发光二极管(LED)电流控制器310控制的示例性切换式降压转换器功率级301。LED发光系统300是表现本发明的演示性系统,本发明 并不局限于LED发光系统,也不局限于使用降压转换器、LED电流控制器和LED。本发明可以用于其它适用的应用,也可使用其它转换器/转换器功率级(例如,升压转换器)或控制器。
如图3所示,切换式降压转换器功率级301包括一个控制开关(例如,场效应晶体管(FET))302,该开关具有与电感器304串联耦合的源极和漏极。FET302的源极耦合到输入电压Vin的正极。二极管306跨接输入电压Vin耦合,其中,二极管306的第一端耦合在FET302的漏极与电感器304之间,而二极管306的第二端耦合到输入电压Vin的负极。一串LED308跨接输出电压Vout而耦合(例如,从输出电压Vout的正极耦合到输出电压Vout的负极)。例如,该串LED308可以包括20到100个串联耦合在一起的LED。
感测电阻器Rsense的一端耦合到输入电压Vin的负极,而感测电阻器Rsense的另一端耦合到二极管306的第二端。感测电阻器Rsense用于检测流经FET302的感测电流isense。如图3所示,由于感测电流isense从FET302的漏极的节点被提供到LED电流控制器310,所以感测电阻器Rsense可以位于电流回路312中的任意位置。或者,如以虚线所示的,感测电阻器Rsense的一端耦合到二极管306的第二端,且感测电阻器Rsense的另一端耦合到输出电压Vout的负极。如图3所示,由于感测电流isense从电感器304的输入端的节点被提供到LED电流控制器310,所以感测电阻器Rsense可以位于电流回路314中的任意位置。LED电流控制器310输出一个开关控制信号CS0,该开关控制信号CS0被馈入FET302的门极,并且作为开关来控制FET302的开启和关闭。
例如,在全亮度的示例LED发光系统300的输出电压Vout可以为400毫安或在400毫安左右。当输出电压Vout为至少50到100毫安时,切换式降压转换器功率级301以CCM运行。当输出电压Vout下降到50到100毫安以下时,切换式降压转换器功率级301以DCM运行。
在LED发光系统300中,负载电感器电流iL总是可测量的,即,FET302的高边开关是可测量的。现在参考图3和图4,目标电流发生器412耦合到LED电流控制器310,将目标电流itarget馈入LED电流控制器310。如图4所示,目标电流发生器412和LED电流控制器310一起构成LED发光控制器400。LED电流控制器310包括局部电源402,该局部电源402向LED电流控制器310的各种部件提供功率。LED电流控制器310还包括状态机410,该状态机410接收从目标电流发生器412馈入的目标电流itarget。状态机410提供数字信号,该数字信号是进入数字-模拟转换器404的目标电流itarget的反映或表示。DAC404将表示的数字信号转换成相应的模拟信号。该模拟信号和感测电流isense被馈入比较器(COMP)406用于比较,并且比较的结果被馈入状态机410。LED电流控制器310还包括时钟(振荡器)408,并且时钟(osc)408耦合到状态机410,并被状态机410使用。本发明的涉及当转换器以DCM运行时提供精确可调恒定平均电感器电流输出iavg的技术(例如,第一、第二和第三技术),在状态机410中实现。此外,LED控制器310可以在单个集成电路(IC)或单个IC衬底上实现。目标电流发生器412可以是单个IC的一部分也可以独立于IC。
现在参考图3和图5,当LED电流控制器310的时钟(振荡器)408的时钟周期开始时,FET302被打开。参考电流iref被调至预先设置的在零到峰值电流ipeak之 间的某个电流值。参考电流iref的设定值可以精确测量,但也允许负载电感器电流iL坡升到峰值电流ipeak
图5描述了示例性切换式降压转换器功率级301的电感器电流iL的示例性电流波形500。该电流波形500演示当示例性切换式降压转换器以DCM运行时提供精确可调恒定平均电感器电流输出iavg的第一示例性技术。第一示例性技术使切换式降压转换器功率级在CCM与DCM之间平稳转换。如图5所示,当负载电感器电流iL在时刻TA达到参考电流iref时,第一接通周期T1被确定。换句话说,时间周期T1是从FET302打开到负载电感器(电流)iL达到参考电流iref的时间。FET302在n*TA时刻被关闭。因此,第二接通周期T2被确定为从当负载电感器(电流)iL达到参考电流iref(例如,在时刻TA)的FET302接通时刻到负载电感器(电流)iL达到峰值电流ipeak(例如,在时刻n*TA)的时刻。n是比率值,并且优先选为2(例如,2:1)。负载电感器电流iL不断降低,越过参考电流iref,并且在时刻TB下降到零。断开时间周期T3从负载电感器(电流)iL达到峰值电流ipeak(例如,在时刻n*TA)时开始,到负载电感器(电流)iL达到零(例如,在时刻TB)时结束。图5中的电感器电流iL的总周期被定义为时间周期TT。在该LED发光系统300的实施方案中,接通时间Ton(等于时间周期T1+T2)和断开时间Toff(等于时间周期T3)都可以观测或测量到,但仅有接通周期Ton和总周期TT可以被控制。因此,在实现LED发光系统300中,通过控制接通周期Ton或者控制总周期TT,以将精确恒定平均电流输出iavg用作电感器电流iL
以下数学关系式可以测量并/或确定与电感器304的电感器值(电感)L相关的输入/输出比率D和比率C1:
峰值电流ipeak=Ton*(Vin-Vout)/L    公式A
断开时间周期Toff=((Vin-Vout)/Vout)*Ton    公式B
  D=Vout/Vin=Ton/(Ton+Toff)    公式C
参考电流iref=T1*(Vin-Vout)/L    公式D
比率C1=iref/T1=(Vin-Vout)/L    公式E
在本发明中,电感器304的电感器值(电感)L的测量和确定不局限于测量和确定电感器304的实际电感(例如,测量为毫亨),也可以测量或确定任何代表或反映电感值的量值。例如,这种代表或反映电感值的量值可以遵从与电感相关的上升的数学速率、电感的缩放版本、电感的二进制形式或者与电感直接正比、间接正比或反比的关系(例如,L;1/L等)。
比率C1表示一种关系,其中,当FET302打开时电感器值L根据电流的上升的速率(例如,iref/T1)确定。转换器301的输入-输出转换率D根据电感器电流iL的接通时间(坡升时间)Ton(=T1+T2)和电感器电流iL的断开时间(坡降时间)Toff(=T3)来计算。由于上述值可以被确定,所以电感器电流iL的平均恒定输出电感器电流iAVG可以确定如下:
iAVG=ipeak/2*((Ton+Toff)/TT)    公式F
=(Ton*(Vin-Vout)/L)/2*((Ton+((Vin-Vout)/Vout)*Ton))/TT)) 
=Ton 2/2*(Vin-Vout)/L)*(1+(Vin-Vout)/Vout))/TT 
=Ton 2/2*(Vin-Vout)/L)*(Vin/Vout)*(1/TT) 
=Ton 2/2*C1/D*(1/TT) 
接通时间Ton可以被确定并且以如下方式分别控制:
T on = 2 * i AVG * D / C 1 * TT     公式G
公式G如公式G所示,利用已知或是测得的电感器电流iL的输入/输出比率D、比率C1和总周期TT,可以控制FET302的接通时间Ton,从而产生一个给定的可调平均恒流输出电感器电流iAVG用作供电感器电流iL
图6详细描述了另一种发光二极管(LED)发光系统600,该系统有另一种示例性切换式降压转换器功率级601,且该转换器功率级601在发光二极管(LED)电流控制器310的控制下驱动LED308。图6还示出耦合到目标电流发生器412的LED电流控制器310,并且如前文讨论图4时所述的,目标电流发生器412和LED电流控制器310构成LED发光控制器400。LED发光系统600是演示本发明的另一种应用领域的另一个示例系统,并且本发明并不局限于LED发光系统,也不局限于降压转换器功率级、LED电流控制器和LED的应用。本发明还可以应用于其它合适的领域,也可以使用其它转换器/转换器功率级(例如,升压转换器)或控制器。如图6所示,切换式降压转换器功率级601包括串联耦合在一起并且跨接在输出电压Vout两端的LED308、电感器304、FET(控制开关)302和感测电阻器Rsense。如图6所示,二极管306的一端耦合到输入电压Vin的正极,并且二极管306的另一端耦合到电感器304与FET302之间的节点。所示输出电流iout流过输出电压Vout的正极。电感器电流iL流经电感器304,而感测电流isense流经电阻器Rsense。此外,感测电阻器Rsense被用于检测流经FET302的感测电流isense。LED电流控制器310输出开关控制信号CS0,该开关控制信号CS0被馈入FET302的门极,并且作为开关来控制FET302的启动和关闭。切换式降压转换器功率级601仅在当FET302打开时允许测量或检测电感器电流iL,当FET302关闭时不允许测量或检 测电感器电流iL。因此,仅在当FET302打开时,切换式降压转换器功率级601需要感测电流isense,并且可以用低边开关302对感测电流isense进行感测。
现在参考图7。图中显示出用于表示示例切换式降压转换器功率级601的控制信号CS0、电感器电流iL和感测电流isense的示例性电流波形700、702和704,用这些电流波形显示出在开关周期中使用双脉冲或更多脉冲的不连续传导(DCM)/连续传导(CCM)混合模式运行的示例性切换式降压转换器601各自提供精确可调恒定平均电感器电流输出iavg的第二和第三示例性技术。该技术使切换式降压转换器功率级在CCM与DCM之间平稳转换。2008年5月1日提交的题为“Switch-Mode Converter Operatingina Hybrid Discontinuous Conduction Mode(DCM)/Continuous Conduction Mod(CCM)That Uses Double or More Pulses in a Switching Period(在开关周期中使用双脉冲或更多脉冲的不连续传导(DCM)/连续传导(CCM)混合模式运行的切换式转换器)”(发明者:John Melanson;Cirrus Docket No.1674-IPD)的美国申请序列号12/113,536(下文称为536专利申请)在细节上讨论了在开关周期中使用双脉冲或更多脉冲的这种混合DCM/CCM模式的切换式转换器的运行,并且536专利申请特此引用并使用。
现在参考图7的波形700、702和704,该图讨论了用示例切换式降压转换器功率级601提供精确的可调恒定平均电感器电流输出iavg的第二示例性技术。控制信号CS0在时间周期T1期间转换到高值并且打开FET302。电感器电流iL坡升且超过参考电流iref,并且在周期T1的终点达到峰值电流ipeak。感测电流isense在时间周期T1期间坡升到峰值感测电流值。在时间周期T2期间,控制信号CS0降到低值并且关闭FET302。在该时间周期T2期间,切换式降压转换器601不允许检测电感器电流iL的值,并且感测电流isense下降到零值。控制信号CS0在时间周期T3期间回 到高值并且打开FET302。电感器电流iL又坡升且超过参考电流iref,并且又达到峰值电流ipeak。在该时间周期T3期间,切换式降压转换器601可以允许测量电感器电流iL的值,并且感测电流isense坡升到峰值感测电流值。控制信号CS0在时间周期T4期间又回到低值并且关闭FET302。电感器电流iL在时间周期T4期间坡降到零。在该时间周期T4期间,切换式降压转换器功率级601不允许测量电感器电流iL的值,并且感测电流isense下降到零值。
如果时间周期T3小于时间周期T1,则切换式降压转换器功率级601则已进入在开关周期中使用双脉冲或更多脉冲的混合DCM/CCM模式。然而,如果时间周期T3近似等于时间周期T1,则需要调节时间周期T2(例如,减小),使得时间周期T3小于时间周期T1
现在参考图7,电感器电流iL的正常单个脉冲的总电荷将涉及正常开关时间周期,该正常开关时间周期仅包括时间周期T1和T4。单个脉冲的总电荷在时间周期T1期间将是总电荷Q1,并且在时间周期T4期间将是总电荷Q2。因此,正常单个脉冲的总电荷的这种关系可表达为以下数学关系式:
总电荷Qsingle=Q1+Q2=(T1+T4)*ipeak/2                     公式H
然而,在时间周期T4期间不可以观测或测量电感器电流iL。因此,
T4/T1=T2/T3                                    公式I
T4=T1/T3*T2                                    公式J
如电流波形702所示,电感器电流iL的开关周期的双脉冲或更多脉冲基本上为两个单个脉冲(每个仅涉及时间周期T1和T4)的重叠。如电流波形702所示,重叠充满区域A1是三角形区域。重叠充满区域A1的左边长是时间周期T1与T3 的差的反映,而重叠充满区域A1的右边长是时间周期T4与T2的差的反映。因此,电流波形702下的总电荷QT计算如下: 
总电荷QT=2*Qsingle-A1                           公式K
重叠充满区域A1=((T1-T3)/T1*Q1+((T4-T2)/T4)*Q2
如图7所示,峰值电流ipeak被设定为等于1安培,并且在图7的示例波形中,几何和三角形区域被设定为彼此相等,使得T1=T4且T3=T2,则数学关系式可以被简化。
重叠充满区域A1=((T1-T3)/T1*Q1+((T1-T3)/T1)*Q2                  公式L
=(Q1+Q2)*((T1-T3)/T1)2
=Qsingle*((T1-T3)/T1)2
=Qsingle*(1-2*T3/T1+(T3/T1)2
总电荷QT=2*Qsingle-(Qsingle*(1-2*T3/T1+(T3/T1)2))               公式M
=Qsingle+2*T3/T1*Qsingle-(T3/T1)2*Qsingle
=Qsingle*(1+2*T3/T1-(T3/T1)2
=ipeak/2*(T1+T4)*(1+2*T3/T1-(T3/T1)2
=ipeak/2*(T1+T1/T3*T2)*(1+2*T3/T1-(T3/T1)2
iavg=总电荷QT/TT                                 公式N
=ipeak/2*(T1+T1/T2*T3)*(1+2*T3/T1-(T3/T1)2)/(T1+T2+T3+T4
=ipeak/2*(T1+T1/T2*T3)*(1+2*T3/T1-(T3/T1)2)/(T1+T2+T3+T1/T3*T2
由于时间周期T1可以测量,时间周期T2可以预置(例如,由用户预置),时间周期T3可以测量,等待的时间周期T4可以从时间周期T1、T2和T3获得,峰值电流ipeak是已知值,所以平均电流iavg可以通过上述的公式N计算和确定。如果T1/T2比率被选为2的幂,则匹配是简单的。用时间周期T1、T2和T3计算总电荷QT=(iavg*TT) 变得直接。基于已知的时间周期T1、T2和T3,可以产生足够的脉冲把平均电流iavg设定至任意值,因此,可以对恒定平均输出电流iavg的进行控制。
由于可以得出时间周期T4,所以用一定数量的单个脉冲(例如,具有坡升时间周期T1和坡降时间周期T4)可以提供各个平均电流。可以持续地或者间断地(以修正D=输入/输出比率)使用开关周期的双脉冲或更多脉冲,还可以以任何频率方式与单个脉冲一起使用。
在该第二示例性技术中,比率C1提供的关系与在第一示例性技术的关系相同,其中,当转换器601的FET302被打开时,电流上升(例如,iref/T1)的速率决定了电感器值L。从电感器电流iL的总接通时间(坡升时间)Ton(=T1+T3)和电感器电流iL的总断开时间(坡降时间)Toff(=T2+T4=T2+T1/T3*T2)来计算转换器601的输入-输出转换率D。该第二示例性技术反映了以下事实:在电感器电流iL下降到零之前,FET302在开关周期TT内至少再次被打开。
再次参考图7的波形700、702和704,该图进一步讨论了用于通过示例性切换式降压转换器功率级601来提供精确的可调恒定平均电感器电流输出iavg的第三示例性技术。第三示例性技术与第二示例性技术是相同的,除了如电流波形700所示,第三示例性技术在时间周期T4的终点触发一个接通时间时间周期T5=T1-T3的额外补偿脉冲(虚线所示),用于控制信号CS0。由已知的时间周期T1和T3可以得出一个具有已知电荷面积A1(例如,与重叠电荷面积A1相同的)的单个三角形脉冲,且该三角形脉冲被加入电感器电流iL的电流波形702。数学计算可进一步简化,因为总电荷QT由下式确定:
总电荷QT=2*Qsingle-A1+A1=2*Qsingle                 公式O
因此,本发明的原理和技术使得转换器功率级在CCM与DCM之间平稳转换运行。当转换器功率级301或601以DCM运行时,转换器功率级301或601能够提供平均恒定输出电流,该平均恒定输出电流由电感器值控制和调节,该电感器值由输入-输出转换率测量并/或检测,并且被所测量的并和/或检测的输入-输出转换率进一步控制。本发明的示例性技术允许精确地测量、测定或发现电感器值(例如,电感器值L)和输入-输出转换率(例如,输入-输出比率D)。确定转换器的电感器值和/或输入-输出比率的精确性直接影响电流校准,并有助于避免或减少有效电流数字-模拟转换器(DAC)中的微分非线性(DNL)误差。因此,当切换式转换器以DCM运行时,为切换式转换器的电感器电流iL提供精确可调恒定平均电流输出是重要的。本发明提供了供应这种恒定电流输出的方法。
尽管已详细描述了本发明,应当理解:在不脱离由附加的权利要求所限定的本发明的精神和范围之内,允许作出各种更改、替换和变更。

Claims (24)

1.一种转换器系统,包括:
转换器功率级,能够在输出电流的一个范围内以不连续传导模式(DCM)运行,并且在输出电流的另一范围内以连续传导模式(CCM)运行,其中,所述转换器功率级包括至少一个具有电感器值的电感器和控制开关,并且所述转换器功率级提供平均电流;以及
电流控制器耦合到所述转换器功率级;
其中,当所述转换器功率级以不连续传导模式运行时,所述转换器功率级提供所述平均电流,并且,所述电流控制器被配置用于测量所述电感器的所述电感器值;
其中,所述电感器值的测量和确定指测量和确定电感器的实际电感、与电感相关的上升的数学速率、电感的缩放版本、电感的二进制形式。
2.根据权利要求1所述的转换器系统,其中,所述电感器值在所述控制开关打开时由经过所述电感器的电感器电流的上升速率确定。
3.根据权利要求1所述的转换器系统,其中,所述电流控制器被配置用于测量所述转换器功率级的输入-输出转换率。
4.根据权利要求3所述的转换器系统,其中,所述输入-输出转换率根据电感器电流的坡升时间和电感器电流的坡降时间确定。
5.根据权利要求3所述的转换器系统,其中,感测电流被在所述控制开关检测到,并且,所述输入-输出转换率由电感器电流下降到零之前,在开关周期内将控制开关至少再次打开来确定。
6.根据权利要求5所述的转换器系统,其中,在所述电感器电流下降到零之后将触发至少一个附加脉冲,使得贯穿所述开关周期的所述电感器电流的总电荷是贯穿所述电感器电流的正常开关周期的正常单个脉冲的电荷的简单倍数。
7.根据权利要求1所述的转换器系统,其中,所述转换器功率级是一种切换式降压转换器功率级。
8.根据权利要求7所述的转换器系统,其中,所述切换式降压转换器功率级的输出耦合到发光二极管(LED)负载,并且驱动所述发光二极管(LED)负载。
9.一种运行转换器系统的方法,包括:
在输出电流的一个范围内以不连续传导模式(DCM)运行转换器功率级,并且在输出电流的另一范围内以连续传导模式(CCM)运行所述转换器功率级,其中,所述转换器功率级包括至少一个具有电感器值的电感器和控制开关;
通过所述转换器功率级,提供平均电流;
通过电流控制器,控制所述转换器功率级中的电流;以及
当所述转换器功率级以不连续传导模式运行时,通过所述转换器功率级,提供所述平均电流,并且配置所述电流控制器以测量所述电感器的所述电感器值;
其中,所述电感器值的测量和确定指测量和确定电感器的实际电感、与电感相关的上升的数学速率、电感的缩放版本、电感的二进制形式。
10.根据权利要求9所述的方法,还包括:
当所述控制开关打开时,通过经过所述电感器的电感器电流的上升速率,确定所述电感器值。
11.根据权利要求9所述的方法,还包括:
配置所述电流控制器,以测量所述转换器功率级的输入-输出转换率。
12.根据权利要求11所述的方法,还包括:
根据电感器电流的坡升时间和所述电感器电流的坡降时间,确定所述输入-输出转换率。
13.根据权利要求11所述的方法,还包括:
在所述控制开关检测感测电流;以及
在电感器电流下降到零之前在开关周期内将所述控制开关至少再次打开来确定所述输入-输出转换率。
14.根据权利要求13所述的方法,其中,确定所述输入-输出转换率的过程还包括:
在所述电感器电流下降到零之后触发至少一个附加脉冲,使得贯穿所述开关周期的所述电感器电流的总电荷是贯穿所述电感器电流的正常开关周期的正常单个脉冲的电荷的简单倍数。
15.根据权利要求9所述的方法,其中,运行转换器功率级还包括运行切换式降压转换器功率级。
16.根据权利要求15所述的方法,还包括:
将所述切换式降压转换器功率级的输出耦合到发光二极管(LED)负载并且驱动所述发光二极管负载。
17.一种用于控制转换器功率级的电感器电流的电流控制器,其中,所述转换器功率级包括至少一个具有电感器值的电感器和控制开关,并且能够在输出电流的一个范围内以不连续传导模式(DCM)运行,以及能够在输出电流的另一范围内以连续传导模式化运行;包括:
以可操作的方式耦合在一起的局部电源、状态机、数字-模拟转换器、比较器和时钟,其中,所述状态机接收目标电流,并且所述比较器将来自所述转换器的感测电流与所述目标电流进行比较,并且所述比较被馈入所述状态机以将控制信号分别提供给开关;
所述状态机能够从所述转换器功率级接收并且测量所述电感器值,使得所述转换器功率级能够在所述转换器功率级以不连续传导模式运行时提供所述转换器功率级的平均电流;
其中,所述电感器值的测量和确定指测量和确定电感器的实际电感、与电感相关的上升的数学速率、电感的缩放版本、电感的二进制形式。
18.根据权利要求17所述的电流控制器,其中,在所述控制开关打开时,所述电感器值能够通过经过所述电感器的电感器电流的上升速率来确定。
19.根据权利要求17所述的电流控制器,其中,所述状态机能够从所述转换器功率级接收和测量输入-输出转换率。
20.根据权利要求19所述的电流控制器,其中,通过所述电感器电流的坡升时间和所述电感器电流的坡降时间能够测量所述输入-输出转换率。
21.根据权利要求19所述的电流控制器,其中,在所述控制开关能够检测感测电流,并且其中,在所述电感器电流下降到零之前,在开关周期内将所述控制开关至少再打开一次,以确定所述输入-输出转换率。
22.根据权利要求21所述的电流控制器,其中,所述电感器电流下降到零之后会触发至少一个附加脉冲,使得贯穿所述开关周期的所述电感器电流的总电荷是贯穿所述电感器电流的正常开关周期的正常单个脉冲的电荷的简单倍数。
23.根据权利要求17所述的电流控制器,其中,所述电流控制器是发光二极管(LED)电流控制器。
24.根据权利要求17所述的电流控制器,其中,所述电流控制器以单个集成电路实现。
CN200980147607.XA 2008-09-30 2009-09-25 具有连续传导模式(ccm)和不连续传导模式(dcm)操作的可调恒流源 Expired - Fee Related CN102232264B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/242,009 2008-09-30
US12/242,009 US8179110B2 (en) 2008-09-30 2008-09-30 Adjustable constant current source with continuous conduction mode (“CCM”) and discontinuous conduction mode (“DCM”) operation
PCT/US2009/058298 WO2010039588A2 (en) 2008-09-30 2009-09-25 Adjustable constant current source with continuous conduction mode ("ccm") and discontinuous conduction mode ("dcm") operation

Publications (2)

Publication Number Publication Date
CN102232264A CN102232264A (zh) 2011-11-02
CN102232264B true CN102232264B (zh) 2015-07-08

Family

ID=41651473

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200980147607.XA Expired - Fee Related CN102232264B (zh) 2008-09-30 2009-09-25 具有连续传导模式(ccm)和不连续传导模式(dcm)操作的可调恒流源

Country Status (4)

Country Link
US (1) US8179110B2 (zh)
CN (1) CN102232264B (zh)
GB (1) GB2475668B (zh)
WO (1) WO2010039588A2 (zh)

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8232742B2 (en) 2008-11-27 2012-07-31 Arkalumen Inc. Method, apparatus and computer-readable media for controlling lighting devices
US8742744B2 (en) * 2009-01-13 2014-06-03 University Of Alabama Sensor-less operation and detection of CCM and DCM operation modes in synchronous switching power converters
US8269422B2 (en) * 2010-04-20 2012-09-18 Chien-Chih Kuo Output controllable frequency modulation electronic ballast
US8964413B2 (en) * 2010-04-22 2015-02-24 Flextronics Ap, Llc Two stage resonant converter enabling soft-switching in an isolated stage
US9089024B2 (en) 2010-05-11 2015-07-21 Arkalumen Inc. Methods and apparatus for changing a DC supply voltage applied to a lighting circuit
US8564214B2 (en) 2010-05-11 2013-10-22 Arkalumen Inc. Circuits for sensing current levels within lighting apparatus
US9086435B2 (en) 2011-05-10 2015-07-21 Arkalumen Inc. Circuits for sensing current levels within a lighting apparatus incorporating a voltage converter
US9510401B1 (en) 2010-08-24 2016-11-29 Cirrus Logic, Inc. Reduced standby power in an electronic power control system
US9192009B2 (en) 2011-02-14 2015-11-17 Arkalumen Inc. Lighting apparatus and method for detecting reflected light from local objects
US8941308B2 (en) 2011-03-16 2015-01-27 Arkalumen Inc. Lighting apparatus and methods for controlling lighting apparatus using ambient light levels
US8939604B2 (en) 2011-03-25 2015-01-27 Arkalumen Inc. Modular LED strip lighting apparatus
WO2012137130A2 (en) * 2011-04-04 2012-10-11 Sgm A/S Method for driving leds
CN103636109B (zh) 2011-06-03 2016-08-17 塞瑞斯逻辑公司 用于操作开关电力转换器的方法和装置以及电力分配系统
US9060400B2 (en) 2011-07-12 2015-06-16 Arkalumen Inc. Control apparatus incorporating a voltage converter for controlling lighting apparatus
JP5960817B2 (ja) * 2011-08-01 2016-08-02 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 負荷、特にledユニット、を駆動するドライバ装置及び駆動方法
US8680783B2 (en) 2011-08-10 2014-03-25 Cree, Inc. Bias voltage generation using a load in series with a switch
EP2573575B1 (en) * 2011-09-23 2016-04-13 Infineon Technologies AG Digital switching converter control
SG189603A1 (en) 2011-11-04 2013-05-31 Opulent Electronics Internat Pte Ltd System for driving a plurality of high powered led units
DE102011088966A1 (de) * 2011-12-19 2013-06-20 Tridonic Gmbh & Co. Kg Betriebsschaltung für Leuchtdioden und Verfahren zum Betrieb von Leuchtdioden
US8829871B2 (en) * 2012-05-11 2014-09-09 Texas Instruments Deutschland Gmbh Current mode control for DC-DC converter having peak current dependent variable off-time
US20140203790A1 (en) * 2013-01-23 2014-07-24 Fairchild Semiconductor Corporation Hybrid Continuous and Discontinuous Mode Operation
AT14041U1 (de) * 2013-04-30 2015-03-15 Tridonic Gmbh & Co Kg Betriebsschaltung für Leuchtdioden mit Filterelement
GB2514380A (en) * 2013-05-22 2014-11-26 Bernard Frederick Fellerman LED driver circuit
TWI524811B (zh) * 2013-08-14 2016-03-01 Richtek Technology Corp Light emitting diode system and voltage conversion device
JP6262557B2 (ja) * 2014-02-12 2018-01-17 株式会社小糸製作所 車両用灯具およびその駆動装置、その制御方法
US9647558B2 (en) * 2014-05-02 2017-05-09 Intersil Americas LLC System and method for maintaining a constant output voltage ripple in a buck converter in discontinuous conduction mode
DE102014111451A1 (de) * 2014-08-12 2016-02-18 Ebm-Papst Mulfingen Gmbh & Co. Kg System zur Anhebung des netzseitigen Leistungsfaktors von dreiphasig gespeisten EC-Motoren
FR3025868B1 (fr) 2014-09-16 2020-10-30 Koito Mfg Co Ltd Circuit d'eclairage et lampe pour vehicule le comportant
CN104619092B (zh) * 2015-02-12 2017-03-29 辉芒微电子(深圳)有限公司 一种led驱动电路
US10568180B2 (en) 2015-05-05 2020-02-18 Arkalumen Inc. Method and apparatus for controlling a lighting module having a plurality of LED groups
US9992836B2 (en) 2015-05-05 2018-06-05 Arkawmen Inc. Method, system and apparatus for activating a lighting module using a buffer load module
US9992829B2 (en) 2015-05-05 2018-06-05 Arkalumen Inc. Control apparatus and system for coupling a lighting module to a constant current DC driver
US10225904B2 (en) 2015-05-05 2019-03-05 Arkalumen, Inc. Method and apparatus for controlling a lighting module based on a constant current level from a power source
US9775211B2 (en) 2015-05-05 2017-09-26 Arkalumen Inc. Circuit and apparatus for controlling a constant current DC driver output
JP6687425B2 (ja) * 2015-07-31 2020-04-22 株式会社小糸製作所 点灯回路およびそれを用いた車両用灯具
FR3039741B1 (fr) 2015-07-31 2020-11-27 Koito Mfg Co Ltd Circuit d'eclairage et lampe de vehicule l'utilisant
TWI607669B (zh) * 2015-11-25 2017-12-01 凌通科技股份有限公司 單一電池紅外線電路以及使用其之遙控器
CN107347222B (zh) * 2016-05-04 2019-02-12 台达电子企业管理(上海)有限公司 调光驱动电路及其控制方法
US10405381B2 (en) * 2016-06-02 2019-09-03 Semiconductor Components Industries, Llc Light emitting diode control circuit with wide range input voltage
US10056828B2 (en) * 2016-07-11 2018-08-21 Infineon Technologies Austria Ag System and method for controlling current in a switching regulator
US9775205B1 (en) 2017-02-20 2017-09-26 Nxp B.V. Discontinuous mode buck converter and method therefor
US10201052B1 (en) * 2017-09-22 2019-02-05 Linear Technology Holding, LLC LED dimming
US10123384B1 (en) * 2017-09-22 2018-11-06 Linear Technology Holding, LLC LED dimming
US10136488B1 (en) 2017-10-05 2018-11-20 Linear Technology Holding, LLC LED dimming
US10715045B1 (en) 2019-01-25 2020-07-14 Semiconductor Components Industries, Llc Methods and systems of operating power converters
CN113767558A (zh) 2019-04-24 2021-12-07 电力集成公司 包括有源非耗散箝位电路以及相应控制器的功率转换器
US11632054B2 (en) 2019-04-24 2023-04-18 Power Integrations, Inc. Mode operation detection for control of a power converter with an active clamp switch
US11728731B2 (en) * 2020-05-09 2023-08-15 Intel Corporation Accurate load current sensing apparatus and method
CN111682764B (zh) * 2020-05-20 2021-09-17 珠海格力节能环保制冷技术研究中心有限公司 一种可自动调节的dc-dc降压电路及控制方法
US11496060B2 (en) 2020-11-18 2022-11-08 Power Integrations, Inc. Pulse sharing control for enhancing performance in a multiple output power converter system
US11811314B2 (en) * 2020-12-30 2023-11-07 Texas Instruments Incorporated Multi-mode power converter with programmable control
US11706853B2 (en) * 2021-10-06 2023-07-18 Microsoft Technology Licensing, Llc Monitoring an emission state of light sources
GB2614089A (en) * 2021-12-21 2023-06-28 Cirrus Logic Int Semiconductor Ltd Current estimation in a power converter

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1780512A (zh) * 2004-10-01 2006-05-31 松下电器产业株式会社 发光二极管驱动用半导体电路及具有它的发光二极管驱动装置

Family Cites Families (219)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3316495A (en) 1964-07-06 1967-04-25 Cons Systems Corp Low-level commutator with means for providing common mode rejection
US3423689A (en) 1965-08-19 1969-01-21 Hewlett Packard Co Direct current amplifier
US3586988A (en) 1967-12-01 1971-06-22 Newport Lab Direct coupled differential amplifier
US3725804A (en) 1971-11-26 1973-04-03 Avco Corp Capacitance compensation circuit for differential amplifier
US3790878A (en) * 1971-12-22 1974-02-05 Keithley Instruments Switching regulator having improved control circuiting
US3881167A (en) * 1973-07-05 1975-04-29 Pelton Company Inc Method and apparatus to maintain constant phase between reference and output signals
US4075701A (en) * 1975-02-12 1978-02-21 Messerschmitt-Bolkow-Blohm Gesellschaft Mit Beschrankter Haftung Method and circuit arrangement for adapting the measuring range of a measuring device operating with delta modulation in a navigation system
US4334250A (en) * 1978-03-16 1982-06-08 Tektronix, Inc. MFM data encoder with write precompensation
US4337441A (en) 1980-02-11 1982-06-29 Tektronix, Inc. Supply-voltage driver for a differential amplifier
US4414493A (en) 1981-10-06 1983-11-08 Thomas Industries Inc. Light dimmer for solid state ballast
US4476706A (en) * 1982-01-18 1984-10-16 Delphian Partners Remote calibration system
US4700188A (en) * 1985-01-29 1987-10-13 Micronic Interface Technologies Electric power measurement system and hall effect based electric power meter for use therein
DE3528046A1 (de) 1985-08-05 1987-02-05 Bbc Brown Boveri & Cie Rundsteuerempfaenger
US4677366A (en) * 1986-05-12 1987-06-30 Pioneer Research, Inc. Unity power factor power supply
US4683529A (en) * 1986-11-12 1987-07-28 Zytec Corporation Switching power supply with automatic power factor correction
US4797633A (en) * 1987-03-20 1989-01-10 Video Sound, Inc. Audio amplifier
US4994952A (en) * 1988-02-10 1991-02-19 Electronics Research Group, Inc. Low-noise switching power supply having variable reluctance transformer
GB8817684D0 (en) 1988-07-25 1988-09-01 Astec Int Ltd Power factor improvement
GB8821130D0 (en) 1988-09-09 1988-10-12 Ml Aviation Co Ltd Inductive coupler
US4941078A (en) 1989-03-07 1990-07-10 Rca Licensing Corporation Synchronized switch-mode power supply
US4973919A (en) 1989-03-23 1990-11-27 Doble Engineering Company Amplifying with directly coupled, cascaded amplifiers
US4940929A (en) * 1989-06-23 1990-07-10 Apollo Computer, Inc. AC to DC converter with unity power factor
US4980898A (en) 1989-08-08 1990-12-25 Siemens-Pacesetter, Inc. Self-oscillating burst mode transmitter with integral number of periods
US5109185A (en) 1989-09-29 1992-04-28 Ball Newton E Phase-controlled reversible power converter presenting a controllable counter emf to a source of an impressed voltage
US4992919A (en) * 1989-12-29 1991-02-12 Lee Chu Quon Parallel resonant converter with zero voltage switching
US5278490A (en) * 1990-09-04 1994-01-11 California Institute Of Technology One-cycle controlled switching circuit
US5121079A (en) 1991-02-12 1992-06-09 Dargatz Marvin R Driven-common electronic amplifier
US5477481A (en) 1991-02-15 1995-12-19 Crystal Semiconductor Corporation Switched-capacitor integrator with chopper stabilization performed at the sampling rate
US5206540A (en) * 1991-05-09 1993-04-27 Unitrode Corporation Transformer isolated drive circuit
EP0580923B1 (en) 1992-07-30 1997-10-15 STMicroelectronics S.r.l. Device comprising an error amplifier, a control portion and a circuit for detecting voltage variations in relation to a set value
US5264780A (en) 1992-08-10 1993-11-23 International Business Machines Corporation On time control and gain circuit
US5313381A (en) 1992-09-01 1994-05-17 Power Integrations, Inc. Three-terminal switched mode power supply integrated circuit
US5359180A (en) * 1992-10-02 1994-10-25 General Electric Company Power supply system for arcjet thrusters
JPH06209569A (ja) 1993-01-05 1994-07-26 Yokogawa Electric Corp スイッチング電源装置
US5323157A (en) * 1993-01-15 1994-06-21 Motorola, Inc. Sigma-delta digital-to-analog converter with reduced noise
US5481178A (en) * 1993-03-23 1996-01-02 Linear Technology Corporation Control circuit and method for maintaining high efficiency over broad current ranges in a switching regulator circuit
US5638265A (en) * 1993-08-24 1997-06-10 Gabor; George Low line harmonic AC to DC power supply
US5383109A (en) * 1993-12-10 1995-01-17 University Of Colorado High power factor boost rectifier apparatus
US5479333A (en) 1994-04-25 1995-12-26 Chrysler Corporation Power supply start up booster circuit
US5565761A (en) * 1994-09-02 1996-10-15 Micro Linear Corp Synchronous switching cascade connected offline PFC-PWM combination power converter controller
US5747977A (en) * 1995-03-30 1998-05-05 Micro Linear Corporation Switching regulator having low power mode responsive to load power consumption
JPH09140145A (ja) 1995-11-15 1997-05-27 Samsung Electron Co Ltd 力率補償回路を備えた昇圧型コンバータ
GB2307802B (en) 1995-12-01 2000-06-07 Ibm Power supply with power factor correction circuit
KR0154776B1 (ko) 1995-12-28 1998-12-15 김광호 역률 보상 회로
US6072969A (en) * 1996-03-05 2000-06-06 Canon Kabushiki Kaisha Developing cartridge
US5798635A (en) 1996-06-20 1998-08-25 Micro Linear Corporation One pin error amplifier and switched soft-start for an eight pin PFC-PWM combination integrated circuit converter controller
US5781040A (en) * 1996-10-31 1998-07-14 Hewlett-Packard Company Transformer isolated driver for power transistor using frequency switching as the control signal
US5783909A (en) * 1997-01-10 1998-07-21 Relume Corporation Maintaining LED luminous intensity
US6084450A (en) * 1997-01-14 2000-07-04 The Regents Of The University Of California PWM controller with one cycle response
US5960207A (en) 1997-01-21 1999-09-28 Dell Usa, L.P. System and method for reducing power losses by gating an active power factor conversion process
US5793625A (en) * 1997-01-24 1998-08-11 Baker Hughes Incorporated Boost converter regulated alternator
JP3644615B2 (ja) 1997-02-17 2005-05-11 Tdk株式会社 スイッチング電源
US5952849A (en) * 1997-02-21 1999-09-14 Analog Devices, Inc. Logic isolator with high transient immunity
US6442213B1 (en) * 1997-04-22 2002-08-27 Silicon Laboratories Inc. Digital isolation system with hybrid circuit in ADC calibration loop
US5901176A (en) 1997-04-29 1999-05-04 Hewlett-Packard Company Delta-sigma pulse width modulator control circuit
US6211627B1 (en) * 1997-07-29 2001-04-03 Michael Callahan Lighting systems
US5963086A (en) * 1997-08-08 1999-10-05 Velodyne Acoustics, Inc. Class D amplifier with switching control
US6211626B1 (en) * 1997-08-26 2001-04-03 Color Kinetics, Incorporated Illumination components
US6967448B2 (en) 1997-08-26 2005-11-22 Color Kinetics, Incorporated Methods and apparatus for controlling illumination
US7014336B1 (en) * 1999-11-18 2006-03-21 Color Kinetics Incorporated Systems and methods for generating and modulating illumination conditions
US6016038A (en) * 1997-08-26 2000-01-18 Color Kinetics, Inc. Multicolored LED lighting method and apparatus
US6888322B2 (en) * 1997-08-26 2005-05-03 Color Kinetics Incorporated Systems and methods for color changing device and enclosure
US6806659B1 (en) 1997-08-26 2004-10-19 Color Kinetics, Incorporated Multicolored LED lighting method and apparatus
US7064498B2 (en) * 1997-08-26 2006-06-20 Color Kinetics Incorporated Light-emitting diode based products
US6975079B2 (en) 1997-08-26 2005-12-13 Color Kinetics Incorporated Systems and methods for controlling illumination sources
JPH1172515A (ja) * 1997-08-28 1999-03-16 Iwatsu Electric Co Ltd 広帯域アナログ絶縁回路
US6873065B2 (en) * 1997-10-23 2005-03-29 Analog Devices, Inc. Non-optical signal isolator
US5929400A (en) * 1997-12-22 1999-07-27 Otis Elevator Company Self commissioning controller for field-oriented elevator motor/drive system
US5900683A (en) * 1997-12-23 1999-05-04 Ford Global Technologies, Inc. Isolated gate driver for power switching device and method for carrying out same
US6509913B2 (en) * 1998-04-30 2003-01-21 Openwave Systems Inc. Configurable man-machine interface
US6043633A (en) * 1998-06-05 2000-03-28 Systel Development & Industries Power factor correction method and apparatus
US6083276A (en) * 1998-06-11 2000-07-04 Corel, Inc. Creating and configuring component-based applications using a text-based descriptive attribute grammar
DE19827755A1 (de) * 1998-06-23 2000-03-02 Siemens Ag Hybridfilter für ein Wechselspannungsnetz
IL125328A0 (en) * 1998-07-13 1999-03-12 Univ Ben Gurion Modular apparatus for regulating the harmonics of current drawn from power lines
US6140777A (en) 1998-07-29 2000-10-31 Philips Electronics North America Corporation Preconditioner having a digital power factor controller
EP1014563B1 (en) 1998-12-14 2006-03-01 Alcatel Amplifier arrangement with voltage gain and reduced power consumption
US6495964B1 (en) 1998-12-18 2002-12-17 Koninklijke Philips Electronics N.V. LED luminaire with electrically adjusted color balance using photodetector
US6064187A (en) 1999-02-12 2000-05-16 Analog Devices, Inc. Voltage regulator compensation circuit and method
US6344811B1 (en) * 1999-03-16 2002-02-05 Audio Logic, Inc. Power supply compensation for noise shaped, digital amplifiers
DE10032846A1 (de) * 1999-07-12 2001-01-25 Int Rectifier Corp Leistungsfaktor-Korrektursteuerschaltung
US6317068B1 (en) 1999-08-23 2001-11-13 Level One Communications, Inc. Method and apparatus for matching common mode output voltage at a switched-capacitor to continuous-time interface
US6181114B1 (en) 1999-10-26 2001-01-30 International Business Machines Corporation Boost circuit which includes an additional winding for providing an auxiliary output voltage
US7158633B1 (en) * 1999-11-16 2007-01-02 Silicon Laboratories, Inc. Method and apparatus for monitoring subscriber loop interface circuitry power dissipation
US6229271B1 (en) * 2000-02-24 2001-05-08 Osram Sylvania Inc. Low distortion line dimmer and dimming ballast
US6246183B1 (en) * 2000-02-28 2001-06-12 Litton Systems, Inc. Dimmable electrodeless light source
US6636107B2 (en) 2000-03-28 2003-10-21 International Rectifier Corporation Active filter for reduction of common mode current
US6970503B1 (en) 2000-04-21 2005-11-29 National Semiconductor Corporation Apparatus and method for converting analog signal to pulse-width-modulated signal
US6693571B2 (en) 2000-05-10 2004-02-17 Cirrus Logic, Inc. Modulation of a digital input signal using a digital signal modulator and signal splitting
US6304473B1 (en) * 2000-06-02 2001-10-16 Iwatt Operating a power converter at optimal efficiency
US6882552B2 (en) * 2000-06-02 2005-04-19 Iwatt, Inc. Power converter driven by power pulse and sense pulse
DE60101978T2 (de) 2000-06-15 2004-12-23 City University Of Hong Kong Dimmbares EVG
US6373340B1 (en) 2000-08-14 2002-04-16 K. S. Waves, Ltd. High-efficiency audio power amplifier
US6636003B2 (en) 2000-09-06 2003-10-21 Spectrum Kinetics Apparatus and method for adjusting the color temperature of white semiconduct or light emitters
US6407691B1 (en) * 2000-10-18 2002-06-18 Cirrus Logic, Inc. Providing power, clock, and control signals as a single combined signal across an isolation barrier in an ADC
FR2815790B1 (fr) 2000-10-24 2003-02-07 St Microelectronics Sa Convertisseur de tension a circuit de commande autooscillant
US6583550B2 (en) * 2000-10-24 2003-06-24 Toyoda Gosei Co., Ltd. Fluorescent tube with light emitting diodes
US6343026B1 (en) 2000-11-09 2002-01-29 Artesyn Technologies, Inc. Current limit circuit for interleaved converters
JP3371962B2 (ja) 2000-12-04 2003-01-27 サンケン電気株式会社 Dc−dcコンバ−タ
DE10061563B4 (de) 2000-12-06 2005-12-08 RUBITEC Gesellschaft für Innovation und Technologie der Ruhr-Universität Bochum mbH Verfahren und Vorrichtung zum Ein- und Ausschalten von Leistungshalbleitern, insbesondere für ein drehzahlvariables Betreiben einer Asynchronmaschine, ein Betreiben einer Zündschaltung für Ottomotoren, sowie Schaltnetzteil
US6441558B1 (en) 2000-12-07 2002-08-27 Koninklijke Philips Electronics N.V. White LED luminary light control system
EP1215808B1 (en) 2000-12-13 2011-05-11 Semiconductor Components Industries, LLC A power supply circuit and method thereof to detect demagnitization of the power supply
DE60210217T2 (de) 2001-01-31 2006-11-16 Matsushita Electric Industrial Co., Ltd., Kadoma Schaltnetzteilgerät
EP1360877A1 (en) 2001-02-02 2003-11-12 Koninklijke Philips Electronics N.V. Integrated light source
EP1239575A3 (en) * 2001-03-08 2003-11-05 Shindengen Electric Manufacturing Company, Limited DC stabilised power supply
US6452521B1 (en) 2001-03-14 2002-09-17 Rosemount Inc. Mapping a delta-sigma converter range to a sensor range
US6510995B2 (en) * 2001-03-16 2003-01-28 Koninklijke Philips Electronics N.V. RGB LED based light driver using microprocessor controlled AC distributed power system
US6917504B2 (en) 2001-05-02 2005-07-12 Supertex, Inc. Apparatus and method for adaptively controlling power supplied to a hot-pluggable subsystem
EP1388276B1 (en) 2001-05-10 2011-08-10 Philips Solid-State Lighting Solutions, Inc. Systems and methods for synchronizing lighting effects
US6674272B2 (en) 2001-06-21 2004-01-06 Champion Microelectronic Corp. Current limiting technique for a switching power converter
US6628106B1 (en) 2001-07-30 2003-09-30 University Of Central Florida Control method and circuit to provide voltage and current regulation for multiphase DC/DC converters
IL147578A (en) * 2002-01-10 2006-06-11 Lightech Electronics Ind Ltd Lamp transformer for use with an electronic dimmer and method for use thereof for reducing acoustic noise
US7006367B2 (en) 2002-01-11 2006-02-28 Precisionh2 Power Inc. Power factor controller
US6980446B2 (en) 2002-02-08 2005-12-27 Sanken Electric Co., Ltd. Circuit for starting power source apparatus
GB0204212D0 (en) * 2002-02-22 2002-04-10 Oxley Dev Co Ltd Led drive circuit
SE0201432D0 (sv) 2002-04-29 2002-05-13 Emerson Energy Systems Ab A Power supply system and apparatus
US7358679B2 (en) 2002-05-09 2008-04-15 Philips Solid-State Lighting Solutions, Inc. Dimmable LED-based MR16 lighting apparatus and methods
JP2005527854A (ja) 2002-05-28 2005-09-15 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ デューティサイクルの変化におけるモーションブラーの減少
JP4175027B2 (ja) 2002-05-28 2008-11-05 松下電工株式会社 放電灯点灯装置
US6728121B2 (en) 2002-05-31 2004-04-27 Green Power Technologies Ltd. Method and apparatus for active power factor correction with minimum input current distortion
EP1367703A1 (en) * 2002-05-31 2003-12-03 STMicroelectronics S.r.l. Method of regulation of the supply voltage of a load and relative voltage regulator
US6753661B2 (en) 2002-06-17 2004-06-22 Koninklijke Philips Electronics N.V. LED-based white-light backlighting for electronic displays
EP1525656A1 (en) 2002-06-23 2005-04-27 Powerlynx A/S Power converter
US6756772B2 (en) 2002-07-08 2004-06-29 Cogency Semiconductor Inc. Dual-output direct current voltage converter
US6860628B2 (en) * 2002-07-17 2005-03-01 Jonas J. Robertson LED replacement for fluorescent lighting
US6781351B2 (en) * 2002-08-17 2004-08-24 Supertex Inc. AC/DC cascaded power converters having high DC conversion ratio and improved AC line harmonics
US6940733B2 (en) * 2002-08-22 2005-09-06 Supertex, Inc. Optimal control of wide conversion ratio switching converters
US6724174B1 (en) 2002-09-12 2004-04-20 Linear Technology Corp. Adjustable minimum peak inductor current level for burst mode in current-mode DC-DC regulators
KR100470599B1 (ko) 2002-10-16 2005-03-10 삼성전자주식회사 전자기기의 회로를 보호할 수 있는 전원공급장치
US6744223B2 (en) * 2002-10-30 2004-06-01 Quebec, Inc. Multicolor lamp system
US6727832B1 (en) * 2002-11-27 2004-04-27 Cirrus Logic, Inc. Data converters with digitally filtered pulse width modulation output stages and methods and systems using the same
US6741123B1 (en) * 2002-12-26 2004-05-25 Cirrus Logic, Inc. Delta-sigma amplifiers with output stage supply voltage variation compensation and methods and digital amplifier systems using the same
US6768655B1 (en) 2003-02-03 2004-07-27 System General Corp. Discontinuous mode PFC controller having a power saving modulator and operation method thereof
JP3947720B2 (ja) * 2003-02-28 2007-07-25 日本放送協会 白熱灯用調光制御照明装置の使用方法
JP4082672B2 (ja) 2003-03-06 2008-04-30 株式会社デンソー 電気絶縁型スイッチング素子駆動回路
US7078963B1 (en) * 2003-03-21 2006-07-18 D2Audio Corporation Integrated PULSHI mode with shutdown
EP2302850A1 (en) * 2003-04-30 2011-03-30 Analog Devices, Inc. Signal isolators using micro-transformers
US7126288B2 (en) 2003-05-05 2006-10-24 International Rectifier Corporation Digital electronic ballast control apparatus and method
JP4072765B2 (ja) 2003-05-12 2008-04-09 日本ビクター株式会社 電力増幅回路
WO2004103027A2 (en) 2003-05-13 2004-11-25 Universal Plastics Products, Inc. Electroluminescent illumination for a magnetic compass
US6956750B1 (en) 2003-05-16 2005-10-18 Iwatt Inc. Power converter controller having event generator for detection of events and generation of digital error
US6944034B1 (en) * 2003-06-30 2005-09-13 Iwatt Inc. System and method for input current shaping in a power converter
AU2004254642B8 (en) 2003-07-02 2009-02-26 S.C. Johnson & Son, Inc. Lamp and bulb for illumination and ambiance lighting
US7345458B2 (en) 2003-07-07 2008-03-18 Nippon Telegraph And Telephone Corporation Booster that utilizes energy output from a power supply unit
US6839247B1 (en) 2003-07-10 2005-01-04 System General Corp. PFC-PWM controller having a power saving means
US6933706B2 (en) 2003-09-15 2005-08-23 Semiconductor Components Industries, Llc Method and circuit for optimizing power efficiency in a DC-DC converter
JP4107209B2 (ja) * 2003-09-29 2008-06-25 株式会社村田製作所 リップルコンバータ
US6958920B2 (en) 2003-10-02 2005-10-25 Supertex, Inc. Switching power converter and method of controlling output voltage thereof using predictive sensing of magnetic flux
ITMI20031987A1 (it) 2003-10-14 2005-04-15 Archimede Elettronica S R L Dispositivo e metodo per il controllo del colore di una sorgente di illuminazione
US7009543B2 (en) * 2004-01-16 2006-03-07 Cirrus Logic, Inc. Multiple non-monotonic quantizer regions for noise shaping
US7034611B2 (en) 2004-02-09 2006-04-25 Texas Instruments Inc. Multistage common mode feedback for improved linearity line drivers
US7142142B2 (en) * 2004-02-25 2006-11-28 Nelicor Puritan Bennett, Inc. Multi-bit ADC with sigma-delta modulation
WO2005086245A2 (en) 2004-03-03 2005-09-15 S.C. Johnson & Son, Inc. Led light bulb with active ingredient emission
US7557521B2 (en) 2004-03-15 2009-07-07 Philips Solid-State Lighting Solutions, Inc. LED power control methods and apparatus
US7266001B1 (en) * 2004-03-19 2007-09-04 Marvell International Ltd. Method and apparatus for controlling power factor correction
US7569996B2 (en) 2004-03-19 2009-08-04 Fred H Holmes Omni voltage direct current power supply
US6977827B2 (en) 2004-03-22 2005-12-20 American Superconductor Corporation Power system having a phase locked loop with a notch filter
US7317625B2 (en) 2004-06-04 2008-01-08 Iwatt Inc. Parallel current mode control using a direct duty cycle algorithm with low computational requirements to perform power factor correction
US7259524B2 (en) 2004-06-10 2007-08-21 Lutron Electronics Co., Inc. Apparatus and methods for regulating delivery of electrical energy
DE602004022518D1 (de) * 2004-06-14 2009-09-24 St Microelectronics Srl LED-Ssteuergeräte mit Lichtintensitätsänderung
US7109791B1 (en) * 2004-07-09 2006-09-19 Rf Micro Devices, Inc. Tailored collector voltage to minimize variation in AM to PM distortion in a power amplifier
US7088059B2 (en) * 2004-07-21 2006-08-08 Boca Flasher Modulated control circuit and method for current-limited dimming and color mixing of display and illumination systems
JP4081462B2 (ja) * 2004-08-02 2008-04-23 沖電気工業株式会社 表示パネルの色合い調整回路
JP2006067730A (ja) 2004-08-27 2006-03-09 Sanken Electric Co Ltd 力率改善回路
US7276861B1 (en) 2004-09-21 2007-10-02 Exclara, Inc. System and method for driving LED
US7292013B1 (en) 2004-09-24 2007-11-06 Marvell International Ltd. Circuits, systems, methods, and software for power factor correction and/or control
CA2521973C (en) 2004-09-29 2013-12-10 Tir Systems Ltd. System and method for controlling luminaires
US20060125420A1 (en) * 2004-12-06 2006-06-15 Michael Boone Candle emulation device
GB2421367B (en) 2004-12-20 2008-09-03 Stephen Bryce Hayes Lighting apparatus and method
US7221130B2 (en) * 2005-01-05 2007-05-22 Fyrestorm, Inc. Switching power converter employing pulse frequency modulation control
US7102902B1 (en) * 2005-02-17 2006-09-05 Ledtronics, Inc. Dimmer circuit for LED
WO2006092040A1 (en) 2005-03-03 2006-09-08 Tir Systems Ltd. Method and apparatus for controlling thermal stress in lighting devices
US7378805B2 (en) 2005-03-22 2008-05-27 Fairchild Semiconductor Corporation Single-stage digital power converter for driving LEDs
US7855864B2 (en) * 2005-03-31 2010-12-21 Semtech Corporation Switched mode power supply method and apparatus
US7064531B1 (en) 2005-03-31 2006-06-20 Micrel, Inc. PWM buck regulator with LDO standby mode
US7375476B2 (en) 2005-04-08 2008-05-20 S.C. Johnson & Son, Inc. Lighting device having a circuit including a plurality of light emitting diodes, and methods of controlling and calibrating lighting devices
US7323828B2 (en) * 2005-04-25 2008-01-29 Catalyst Semiconductor, Inc. LED current bias control using a step down regulator
US7317305B1 (en) * 2005-05-18 2008-01-08 Volterra Semiconductor Corporation Method and apparatus for multi-phase DC-DC converters using coupled inductors in discontinuous conduction mode
KR100587022B1 (ko) 2005-05-18 2006-06-08 삼성전기주식회사 디밍 회로를 갖는 led 구동회로
US7106603B1 (en) * 2005-05-23 2006-09-12 Li Shin International Enterprise Corporation Switch-mode self-coupling auxiliary power device
DE102006022845B4 (de) 2005-05-23 2016-01-07 Infineon Technologies Ag Ansteuerschaltung für eine Schaltereinheit einer getakteten Leistungsversorgungsschaltung und Resonanzkonverter
US7336127B2 (en) 2005-06-10 2008-02-26 Rf Micro Devices, Inc. Doherty amplifier configuration for a collector controlled power amplifier
US7388764B2 (en) 2005-06-16 2008-06-17 Active-Semi International, Inc. Primary side constant output current controller
US7145295B1 (en) 2005-07-24 2006-12-05 Aimtron Technology Corp. Dimming control circuit for light-emitting diodes
WO2007016373A2 (en) 2005-07-28 2007-02-08 Synditec, Inc. Pulsed current averaging controller with amplitude modulation and time division multiplexing for arrays of independent pluralities of light emitting diodes
TWI277225B (en) * 2005-08-03 2007-03-21 Beyond Innovation Tech Co Ltd Apparatus of light source and adjustable control circuit for LEDs
EP1922905B1 (en) * 2005-08-17 2012-07-04 Koninklijke Philips Electronics N.V. Digitally controlled luminaire system
WO2007026170A2 (en) 2005-09-03 2007-03-08 E-Light Limited Improvements to lighting systems
US7249865B2 (en) * 2005-09-07 2007-07-31 Plastic Inventions And Patents Combination fluorescent and LED lighting system
CN101305330A (zh) * 2005-11-11 2008-11-12 L&L工程公司 用于开关电源的非线性控制器
US7856566B2 (en) 2005-11-29 2010-12-21 Power Integrations, Inc. Standby arrangement for power supplies
US7518350B2 (en) * 2005-12-16 2009-04-14 Silicon Laboratories Inc. MCU/driver point of load digital controller with optimized voltage
US7183957B1 (en) * 2005-12-30 2007-02-27 Cirrus Logic, Inc. Signal processing system with analog-to-digital converter using delta-sigma modulation having an internal stabilizer loop
US7656103B2 (en) 2006-01-20 2010-02-02 Exclara, Inc. Impedance matching circuit for current regulation of solid state lighting
US7310244B2 (en) 2006-01-25 2007-12-18 System General Corp. Primary side controlled switching regulator
KR100755624B1 (ko) * 2006-02-09 2007-09-04 삼성전기주식회사 필드 순차 칼라 모드의 액정 표시 장치
KR101300007B1 (ko) 2006-02-10 2013-08-27 필립스 솔리드-스테이트 라이팅 솔루션스, 인크. 부하마다 단일 스위칭 스테이지를 사용하는 고역률 제어 전력 전달 방법 및 장치
US7598682B2 (en) * 2006-05-26 2009-10-06 Nexxus Lighting, Inc. Current regulator apparatus and methods
WO2007141741A1 (en) * 2006-06-08 2007-12-13 Koninklijke Philips Electronics N.V. Circuitry for dimming led illumination devices
CN101127495B (zh) 2006-08-16 2010-04-21 昂宝电子(上海)有限公司 用于为开关式电源提供控制的系统和方法
US7733034B2 (en) 2006-09-01 2010-06-08 Broadcom Corporation Single inductor serial-parallel LED driver
US7902771B2 (en) * 2006-11-21 2011-03-08 Exclara, Inc. Time division modulation with average current regulation for independent control of arrays of light emitting diodes
US7864546B2 (en) * 2007-02-13 2011-01-04 Akros Silicon Inc. DC-DC converter with communication across an isolation pathway
US7667986B2 (en) 2006-12-01 2010-02-23 Flextronics International Usa, Inc. Power system with power converters having an adaptive controller
US7675759B2 (en) 2006-12-01 2010-03-09 Flextronics International Usa, Inc. Power system with power converters having an adaptive controller
KR101357006B1 (ko) 2007-01-18 2014-01-29 페어차일드코리아반도체 주식회사 컨버터 및 그 구동 방법
US8362838B2 (en) 2007-01-19 2013-01-29 Cirrus Logic, Inc. Multi-stage amplifier with multiple sets of fixed and variable voltage rails
US7652459B2 (en) * 2007-02-23 2010-01-26 Intel Corporation Adaptive controller with mode tracking and parametric estimation for digital power converters
US7288902B1 (en) 2007-03-12 2007-10-30 Cirrus Logic, Inc. Color variations in a dimmable lighting device with stable color temperature light sources
US7804256B2 (en) 2007-03-12 2010-09-28 Cirrus Logic, Inc. Power control system for current regulated light sources
US7560677B2 (en) 2007-03-13 2009-07-14 Renaissance Lighting, Inc. Step-wise intensity control of a solid state lighting system
GB2447873B (en) 2007-03-30 2009-07-29 Cambridge Semiconductor Ltd Forward power converter controllers
US7480159B2 (en) 2007-04-19 2009-01-20 Leadtrend Technology Corp. Switching-mode power converter and pulse-width-modulation control circuit with primary-side feedback control
US7554473B2 (en) 2007-05-02 2009-06-30 Cirrus Logic, Inc. Control system using a nonlinear delta-sigma modulator with nonlinear process modeling
US7974109B2 (en) 2007-05-07 2011-07-05 Iwatt Inc. Digital compensation for cable drop in a primary side control power supply controller
US7656687B2 (en) * 2007-12-11 2010-02-02 Cirrus Logic, Inc. Modulated transformer-coupled gate control signaling method and apparatus
US7821333B2 (en) 2008-01-04 2010-10-26 Texas Instruments Incorporated High-voltage differential amplifier and method using low voltage amplifier and dynamic voltage selection
US7759881B1 (en) * 2008-03-31 2010-07-20 Cirrus Logic, Inc. LED lighting system with a multiple mode current control dimming strategy
US7750738B2 (en) 2008-11-20 2010-07-06 Infineon Technologies Ag Process, voltage and temperature control for high-speed, low-power fixed and variable gain amplifiers based on MOSFET resistors
US7994863B2 (en) 2008-12-31 2011-08-09 Cirrus Logic, Inc. Electronic system having common mode voltage range enhancement

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1780512A (zh) * 2004-10-01 2006-05-31 松下电器产业株式会社 发光二极管驱动用半导体电路及具有它的发光二极管驱动装置

Also Published As

Publication number Publication date
CN102232264A (zh) 2011-11-02
GB2475668B (en) 2012-12-19
GB201105424D0 (en) 2011-05-18
US8179110B2 (en) 2012-05-15
WO2010039588A2 (en) 2010-04-08
WO2010039588A3 (en) 2010-05-27
US20100079124A1 (en) 2010-04-01
GB2475668A (en) 2011-05-25

Similar Documents

Publication Publication Date Title
CN102232264B (zh) 具有连续传导模式(ccm)和不连续传导模式(dcm)操作的可调恒流源
CN105305818B (zh) 用于开关电源电流采样的系统和方法
US7443700B2 (en) On-time control for constant current mode in a flyback power supply
TWI457740B (zh) 電流感測裝置與電壓轉換裝置
CN103529269B (zh) 开关稳压器逐周期电流估计
CN101932170B (zh) 驱动负载的电路和方法、电子系统及控制器
US7505287B1 (en) On-time control for constant current mode in a flyback power supply
EP2123122B1 (en) Current source with indirect load current signal extraction
CN102340911B (zh) 一种led驱动器的控制电路及其控制方法
US7598685B1 (en) Off line LED driver with integrated synthesized digital optical feedback
CN101982935B (zh) 用于一次侧调节电源转换器的控制装置及方法
CN102931841B (zh) 多相直流对直流电源转换器
CN106054995B (zh) 一种原边反馈反激式电源ccm与dcm模式的恒流控制系统
US9490719B2 (en) System and method for a power converter
US20160336857A1 (en) Switching-mode power supplies
CN102132478A (zh) 具有动态阈值的磁滞降压变换器
CN104822195A (zh) 用于开关电源的调光控制
US20100157635A1 (en) Predictive current control in driving a load in a pwm mode
CN105305805A (zh) 功率因数修正装置
CN102751864B (zh) 基于Cuk的电流源
US11632061B2 (en) Power supply and method of supplying power to load
CN104066246A (zh) 发光元件驱动方法和发光元件驱动器及其控制器
CN103580508B (zh) Ac/dc转换器电路
CN113949267B (zh) 一种基于平均电流模的四开关buckboost控制器
EP3996266A1 (en) Load current feedforward schemes for current-mode controlled power converters

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20160118

Address after: The city of Eindhoven in Holland

Patentee after: Koninkl Philips Electronics NV

Address before: Austen, Texas, USA

Patentee before: Cirrus Logic Inc.

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20170309

Address after: The city of Eindhoven in Holland

Patentee after: KONINKL PHILIPS NV

Address before: The city of Eindhoven in Holland

Patentee before: Koninkl Philips Electronics NV

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150708

Termination date: 20170925