CN101511445B - 用于从分子组合体中提取和收集物质的系统和方法 - Google Patents

用于从分子组合体中提取和收集物质的系统和方法 Download PDF

Info

Publication number
CN101511445B
CN101511445B CN2007800282805A CN200780028280A CN101511445B CN 101511445 B CN101511445 B CN 101511445B CN 2007800282805 A CN2007800282805 A CN 2007800282805A CN 200780028280 A CN200780028280 A CN 200780028280A CN 101511445 B CN101511445 B CN 101511445B
Authority
CN
China
Prior art keywords
cation
anion
conduit
magnetic field
particle stream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2007800282805A
Other languages
English (en)
Other versions
CN101511445A (zh
Inventor
蒂莫西·O·尼克斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Elementary Energy Inc
Original Assignee
Elementary Energy Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elementary Energy Inc filed Critical Elementary Energy Inc
Publication of CN101511445A publication Critical patent/CN101511445A/zh
Application granted granted Critical
Publication of CN101511445B publication Critical patent/CN101511445B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J19/088Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/023Separation using Lorentz force, i.e. deflection of electrically charged particles in a magnetic field
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/28Magnetic plugs and dipsticks
    • B03C1/288Magnetic plugs and dipsticks disposed at the outer circumference of a recipient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/30Combinations with other devices, not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • C01B13/0203Preparation of oxygen from inorganic compounds
    • C01B13/0207Water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • C01B13/0229Purification or separation processes
    • C01B13/0248Physical processing only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • C01B3/045Decomposition of water in gaseous phase
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/22Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/22Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
    • C01B3/24Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0871Heating or cooling of the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0266Processes for making hydrogen or synthesis gas containing a decomposition step
    • C01B2203/0272Processes for making hydrogen or synthesis gas containing a decomposition step containing a non-catalytic decomposition step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0043Impurity removed
    • C01B2210/0053Hydrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

本发明涉及一种用于从分子组合体中提取物质的系统和方法。所述方法包括:加热分子组合体从而将该分子组合体解离成阳离子和阴离子;使所述阳离子和阴离子移动通过磁场来分离所述阳离子和阴离子;以及利用屏障将所述阳离子与阴离子分隔开。所述系统包括:用于引导包括阳离子和阴离子的离子化粒子流的非导电性导管;用于产生磁场的磁场源,其中所述离子化粒子流移动通过所述磁场;和被定位于所述导管中的屏障。该离子化粒子流具有相对于所述导管的速度,并且所述磁场源相对于所述离子化粒子流的速度定向使得当所述离子化粒子流移动通过磁场时阳离子与阴离子被分离。所述屏障在导管中被定向使得分离后阳离子与阴离子被分隔开。

Description

用于从分子组合体中提取和收集物质的系统和方法
技术领域
本发明一般性地涉及能量产生,更具体地涉及用于从分子组合体(molecular combination)中提取和收集物质的系统和方法。
背景技术
世界对能源的需求正快速地持续增涨,同时对矿物燃料供给稳定性的担忧也在持续增加。因此,矿物燃料的成本和对矿物燃料替代品的渴望都在急剧增涨。对矿物燃料替代品的渴望的部分原因也是由于越来越担心通过矿物燃料的燃烧产生能量的方式对环境造成的影响。
氢气和氢动力燃料电池被广泛认为是提供清洁、可靠的能量的有前景的能源。根据一些统计,燃料电池的潜在市场价值超过一千亿美元。然而,目前基于氢的技术仍然很不成熟。制造燃料电池的成分仍然非常高,同样地氢气的生产成本也非常高。而且,目前的大多数氢气生产工艺本身对环境具有不利的影响。
因此,人们需要一种改进的用于生产氢气和其它燃料的系统和方法。
发明内容
根据本发明的方案,与能量生产的复杂性和环境影响相关的缺陷和问题被基本消除或减少了。
根据本发明的一个实施方式,提供了一种从分子组合体中提取物质的方法。该方法包括加热分子组合体从而将该分子组合体解离成阳离子和阴离子,使所述阳离子和阴离子移动通过磁场来分离阳离子和阴离子,并且利用屏障将阳离子与阴离子分隔开。
根据本发明的另一个实施方式,提供了一种从分子组合体中提取物质的系统。该系统包括用于引导包括阳离子和阴离子的离子化粒子流的非导电性导管,还包括用于产生磁场的磁场源,其中所述离子化粒子流移动通过所述磁场,还包括定位于所述导管中的屏障。该离子化粒子流相对于所述导管具有速度,并且所述磁场源相对于所述离子化粒子流的速度定向,从而在所述离子化粒子流移动通过磁场时使阳离子与阴离子分离。所述屏障在导管中被定向使得分离后阳离子与阴离子被分隔开。
本发明的各个实施方式相对于现有的系统和方法具有显著的优势。例如,某些实施方式可提供提取氢的高效技术工艺。此外,这些实施方式几乎不含移动部件。因此,它们提供了可靠性非常高的、成本非常低的操作方式。
某些实施方式还显著减少或消除了与许多现有已知的氢生产工艺相关的环境成本。
通过阅读下面的具体描述、附图和权利要求,本领域技术人员可以容易地知悉本发明的其它技术效果。此外,尽管上面列出了一些具体的技术效果,但是不同的实施方式可能具有上面列出的技术效果中的全部或一部分或可能不具有上面列出的技术效果。
附图说明
为了更全面地理解本发明及其有益效果,下面参照附图和后文的详细描述进行解释,其中:
图1是示出了本发明的一个实施方式的俯视截面图的简化示意图;
图2是示出了图1的系统的侧视截面图的简化示意图;
图3是示出了本发明的一个实施方式的方法的流程图;
图4是示出了本发明的一个替代实施方式的简化示意图,其中反应器被组合在一起。
具体实施方式
图1是示出了本发明的用于从分子组合体中提取物质的系统一个实施方式的俯视截面图的简化示意图。在这个实施方式中,反应器2包括导管4,屏障(barrier)6,以及排气端口8和10。如图1所示,反应器2可以耦合导热源12、电极14和冷却系统15。电极14通常由导体16连接。在本文中,包括反应器2和热源12的系统通常被称为发生器系统17。发生器系统17还可以包括可选的部件,如电极14、冷却系统15以及导体16。
导管4通常由电绝缘(非导电性的)材料构成,所述材料能在通常3000F至14000F的温度(或者对于某些应用,更高的温度)下保持结构完整性。用于导管4的合适的材料的例子包括但不限于:熔凝石英(fusedquartz)、高温陶瓷、玻璃。
类似地,屏障6通常是由能在高温下保持结构完整性的非导电材料构成的实体屏障物。如图1所示,这种实体的实施方式可以具有三角形的截面,其被定向成使得顶点在底边的上游。用于屏障6的合适的材料的例子包括但不限于:熔凝石英、高温陶瓷、玻璃。
热源12包括任何具有足够的加热能力来解离被操作的分子组合体(例如对于水为3000F)的热源或系统。热源12可以包括但不限于:太阳能热源、电弧或核热源。
导体16表示任何能在电极14之间提供电流通路的导电材料。导体16可以是金属的或非金属的。合适的金属导体材料的例子包括但不限于:由铜、银或金构成的导线。
冷却系统15表示任何用于冷却或致冷的主动或被动的系统或装置。用于冷却的合适结构的例子包括但不限于:水夹套、干冰、醇、珀耳帖效应装置(Peltier device)。类似的冷却系统可以被耦合到导管4和屏障6用于操作过程中的冷却。
图2是示出了图1的系统的侧视截面图的简化示意图。如图2所示,相对的磁体18被放置于靠近导管4以便在导管4内生成磁场B。
磁体18表示任何类型的永久磁体或电磁体。适合于操作反应器2的永久磁体的例子包括但不限于:稀土磁体,包括钕磁体。磁体18可以在导管4内产生静磁场B或动磁场B。合适的动磁场的例子包括但不限于:任何旋转(正弦的)磁场、同步磁场或脉冲磁场。
在操作过程中,分子流20移动通过热源12,在此它被解离成离子化粒子,并以阳离子(带正电的离子)22和阴离子(带负电的离子)24的流的形式离开热源,所述的阳离子22和阴离子24的流相对于导管4具有速度V。根据公知的磁流体动力学(MHD)原理,离子化粒子会感应出垂直于磁场的电场。感应电场对每个离子化粒子施加作用力F。因此,当离子化粒子流移动通过磁场时,阳离子22和阴离子24被分离,并且感应电场使阳离子22和阴离子24向相反方向偏转。屏障6被定位于导管4中下游足够远的地方,从而在阳离子22和阴离子24于磁场中分离之后,使阳离子22和阴离子24分隔开进入不同的通道。
在一个实施方式中,电极14和导体16提供了使电荷从离子化粒子消散的手段。在分离之后消散电荷和分隔开离子化粒子的操作防止了粒子间的相互吸引以及它们在分隔开之后向上游移动,从而增强了反应器性能。此外,这种实施方式能够在提取工艺中产生电流作为副产品。
阳离子22和阴离子24分隔开之后,粒子可以被冷却从而使粒子重新结合成中性原子或分子组合体,例如粒子26和28。这种冷却可以是被动的,允许粒子在远离热源12的作用区后自然散热;或者这种冷却也可以是主动的,通过外部影响加速散热过程。粒子26和28然后可以在离开各自的排气端口时在不同的现有技术已知的冷却压缩装置中被收集。
图1和图2示出了对于公知为水的分子组合体进行处理的系统的操作。当然,水由两个氢原子和一个氧原子组成。因此,在这种操作中,热源12将水分子解离成氢阳离子22和氧阴离子24。然后被解离的离子化粒子在穿过磁场B时被分离。具体地,感应出的正电作用力F+使氢阳离子22向导管4的一个壁偏转,同时负电作用力F-使氧阴离子24向导管4的相反的壁偏转。然后当氢阳离子22和氧阴离子24继续移动穿过导管4时,屏障6使氢阳离子22和氧阴离子24分隔开,从而防止氢和氧重新结合。氢阳离子22在继续移动通过排气端口8时冷却。当氢阳离子22冷却时,它们重新结合形成双原子的氢气分子26。类似地,氧阴离子24在继续移动通过排气端口10时冷却,于氢阳离子22分隔开,并形成双原子的氧气分子28。结果,氢气分子26和氧气分子28可以在它们离开导管4分别通过端口8和10时被各自收集起来。
尽管图1和图2利用水演示说明了本发明额实施方式的操作,但是这个系统的原理可以广泛地用于各种不同的输入组合物。这种输入组合物可以改变,从而改变粒子26和28的组成,或者可以生成额外的物质。例如,包括碳原子的分子组合体可以与含有氢的其它物质(包括水)一同使用,从而产生碳氢化合物。在一个具体的实施方式中,水可以与二氧化碳组合使用。于是热源将物质解离成氢阳离子、碳阳离子、氧阴离子。结果得到从排气端口8排出的双原子氢气分子和甲烷气体,以及从排气端口10排出的氧气。按照需要,可以使用公知的工艺和结构对这些流进行收集和过滤。
图3是示出了本发明的一个实施方式的方法的流程图。如同图1和图2,尽管利用水作为被操作的分子组合体来描述这个方法,但是这里描述的原理可以用于各种不同的分子组合体。具体地,这个方法考虑到了包括氢原子、碳原子或两者兼有的分子组合体的操作。这样的组合的例子包括但不限于:碳酸(二氧化碳的水溶液)。
参见图3,热源12被施加于分子组合体20,使分子组合体解离(步骤100)。得到的氢阳离子22和氧阴离子以速度V继续移动通过导管4。当氢阳离子22和氧阴离子24的流移动通过导管4时,磁场B被施加到氢阳离子22和氧阴离子24的流。磁场B于是感应出电场将阳离子22和阴离子24分离(步骤102)。更具体地,感应电场施加作用力F将阳离子22和阴离子24在导管4内推向不同的方向。当这个流继续移动通过导管4时,被分离的阳离子22和阴离子24经过屏障6。屏障6表示任何能在流被分离后防止阳离子22和阴离子24重新结合成分子组合体20的结构或系统,如图1所示。因此,屏障6在分离后有效地将阳离子22和阴离子24分隔开形成不同的粒子流(步骤104)。当分离的粒子流冷却(主动冷却或被动冷却)后,氢阳离子22组合形成双原子的氢气分子26和氧阴离子24组合形成双原子的氧气分子28。然后,氢气粒子26和氧气粒子28被分别收集(步骤106)用于随后的存储、运输或进一步处理。
图4是示出了本发明的一个替代实施方式的简化示意图,其中反应器被组合在一起以便扩展系统和/或改进工艺。例如,两个或更多个反应器2可以串联在一起从而使来自第一系统的一个或两个排气端口的流直接进入第二系统的导管。或者,一个这样的流可以被循环或重定向到第一系统或中间系统作为进料,成为被操作的分子组合体的一部分。
尽管上面用几个实施方式描述了本发明,但是本领域技术人员可以想到一些修改、变化、替换、转换和修饰形式,所有这些修改、变化、替换、转换和修饰形式都落入本发明的权利要求的范围内。

Claims (18)

1.一种从分子组合体中提取物质的系统,所述系统包括:
用于引导包括阳离子和阴离子的离子化粒子流的非导电性导管,所述离子化粒子流相对于所述导管具有速度;
用于产生磁场的磁场源,其中所述离子化粒子流移动通过所述磁场,并且所述磁场源相对于所述离子化粒子流的速度定向使得当所述离子化粒子流移动通过所述磁场时阳离子与阴离子被分离;和
被定位于所述导管中使得分离后的阳离子与阴离子被分隔开的屏障;
使得分离后电子从阴离子转移到阳离子的在所述阳离子和阴离子之间的电流通路;其中所述阳离子和阴离子之间的电流通路包括:
被置于所述导管第一侧的第一电极;
被置于所述导管第二侧的第二电极;以及
使得所述离子化粒子流在所述第一电极和第二电极之间移动的、与所属第一电极和第二电极相连接的导体。
2.如权利要求1所述的系统,其中所述阳离子是氢阳离子,所述阴离子是氧阴离子。
3.如权利要求1所述的系统,其中,所述磁场源是电磁体。
4.如权利要求1所述的系统,其中,所述磁场源是永久磁体。
5.如权利要求4所述的系统,其中,所述永久磁体是稀土磁体。
6.如权利要求5所述的系统,其中,所述稀土磁体是钕磁体。
7.如权利要求1所述的系统,其中,所述阳离子包括氢阳离子。
8.如权利要求1所述的系统,其中,所述阴离子包括氧阴离子。
9.如权利要求7所述的系统,其中,所述阳离子还包括碳阳离子。
10.如权利要求1所述的系统,还包括被耦合到所述导管的热源,用于从所述分子组合体中产生离子化的粒子流。
11.如权利要求10所述的系统,其中,所述热源是太阳能热源。
12.如权利要求10所述的系统,其中,所述热源是电弧。
13.如权利要求10所述的系统,其中,所述热源是核热源。
14.如权利要求2所述的系统,还包括:
用于在阳离子和阴离子分离后冷却阳离子和阴离子形成双原子氢气和双原子氧气的冷却元件,和
耦合到所述导管的排气端口用于收集双原子氢气的收集器。
15.如权利要求1所述的系统,其中,所述屏障是实体屏障物。
16.如权利要求15所述的系统,其中,所述实体屏障物由熔凝石英构成。
17.一种从分子组合体中提取物质的系统,所述系统包括:
与第二反应器系统串联的第一反应器系统;
其中每个反应器系统包括:用于引导由所述分子组合体形成的包括阳离子和阴离子的离子化粒子流的非导电性导管,所述离子化粒子流相对于所述导管具有速度;用于产生磁场的磁场源,其中所述离子化粒子流移动通过所述磁场,并且所述磁场源相对于所述离子化粒子流的速度定向使得当所述离子化粒子流移动通过所述磁场时阳离子与阴离子被分离;被定位于所述导管中使得分离后的阳离子与阴离子被分隔开的屏障;和使得分离后电子从阴离子转移到阳离子的在所述阳离子和阴离子之间的电流通路;其中所述阳离子和阴离子之间的电流通路包括:
被置于所述导管第一侧的第一电极;
被置于所述导管第二侧的第二电极;以及
使得所述离子化粒子流在所述第一电极和第二电极之间移动的、与所属第一电极和第二电极相连接的导体;并且
其中由所述第一反应器系统的分子组合体形成的且被分离的阳离子与阴离子中之一被引导到第二反应器系统的导管中。
18.如权利要求17所述的系统,其中,其中由所述第二反应器系统的分子组合体形成的且被分离的阳离子与阴离子中之一被引导到第一反应器系统的导管中。
CN2007800282805A 2006-07-24 2007-07-19 用于从分子组合体中提取和收集物质的系统和方法 Expired - Fee Related CN101511445B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/459,546 2006-07-24
US11/459,546 US8110175B2 (en) 2006-07-24 2006-07-24 System and process for extracting and collecting substances from a molecular combination
PCT/US2007/073836 WO2008014168A2 (en) 2006-07-24 2007-07-19 A system and process for extracting and collecting substances from a molecular combination

Publications (2)

Publication Number Publication Date
CN101511445A CN101511445A (zh) 2009-08-19
CN101511445B true CN101511445B (zh) 2012-02-29

Family

ID=38970411

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007800282805A Expired - Fee Related CN101511445B (zh) 2006-07-24 2007-07-19 用于从分子组合体中提取和收集物质的系统和方法

Country Status (8)

Country Link
US (5) US8110175B2 (zh)
EP (1) EP2049224A4 (zh)
JP (1) JP2009544469A (zh)
CN (1) CN101511445B (zh)
AU (1) AU2007276867B2 (zh)
CA (1) CA2657907C (zh)
MX (1) MX2009000870A (zh)
WO (1) WO2008014168A2 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012079596A1 (de) * 2010-12-14 2012-06-21 Harzim Gmbh Dissoziation und separation von wassermolekülen in einem elektrischen feld
US20130052598A1 (en) * 2011-08-23 2013-02-28 Donald I. Gonser Method of high energy photon production
EP2830740B1 (en) * 2012-03-27 2020-03-11 The Regents of The University of California Continuous whole-chip 3-dimensional dep cell sorter and related fabrication method
BR102014003647A2 (pt) * 2014-02-17 2015-12-01 José Roberto Fernandes Beraldo processo de obtenção e controle de energia limpa a partir da água, conversão da água em combustível através da extração e utilização do hidrogênio, e respectivo equipamento expansor molecular de gás
JP2016019959A (ja) * 2014-07-16 2016-02-04 武次 廣田 重水類含有水の処理方法、及び、重水類含有水処理装置
CN109314037B (zh) * 2016-06-21 2022-04-19 Dh科技发展私人贸易有限公司 用于通过电子捕获解离分析蛋白质的方法和系统
US20210339266A1 (en) * 2020-04-30 2021-11-04 Zeine, Inc. Magnetic Systems And Methods For Oxygen Separation And Purification From Fluids
AT524896A1 (de) * 2021-03-22 2022-10-15 Hettmer Manfred Verfahren und Vorrichtung zur Bereitstellung elementarer Stoffe

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3496092A (en) * 1968-03-28 1970-02-17 Gen Electric Solid state corona generator for chemical - electrical discharge processes
US4419329A (en) * 1980-07-09 1983-12-06 Heller Charles H Device for producing hydrogen and oxygen gases
US4682564A (en) * 1980-11-25 1987-07-28 Cann Gordon L Magnetoplasmadynamic processor, applications thereof and methods
US6128174A (en) * 1997-08-29 2000-10-03 Stereotaxis, Inc. Method and apparatus for rapidly changing a magnetic field produced by electromagnets
US6768109B1 (en) * 2001-09-21 2004-07-27 6×7 Visioneering, Inc. Method and apparatus for magnetic separation of ions
US6939449B2 (en) * 2002-12-24 2005-09-06 General Atomics Water electrolyzer and system

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3942975A (en) * 1971-08-18 1976-03-09 The Boeing Company Method and apparatus for reducing matter to constituent elements and separating one of the elements from the other elements
JPS51117968A (en) * 1975-04-09 1976-10-16 Kunio Takekoshi Apparatus and method for ionizing and separating substances
US4010090A (en) * 1975-08-11 1977-03-01 Westinghouse Electric Corporation Process for converting naturally occurring hydrocarbon fuels into gaseous products by an arc heater
FR2366217A1 (fr) * 1975-08-27 1978-04-28 Comp Generale Electricite Dispositif generateur d'hydrogene
US4095118A (en) 1976-11-26 1978-06-13 Rathbun Kenneth R Solar-mhd energy conversion system
US4233127A (en) * 1978-10-02 1980-11-11 Monahan Daniel E Process and apparatus for generating hydrogen and oxygen using solar energy
US4405594A (en) * 1981-09-21 1983-09-20 Chevron Research Center Photo separatory nozzle
US4851722A (en) 1986-09-24 1989-07-25 Coal Tech Corp. Magnetohydrodynamic system and method
US5260640A (en) 1992-01-28 1993-11-09 The United States Of America As Represented By The United States Department Of Energy Method of and system for producing electrical power
US5254934A (en) 1992-01-28 1993-10-19 The United States Of America As Represented By The United States Department Of Energy Method of and system for producing electrical power
US6583407B1 (en) * 1999-10-29 2003-06-24 Agilent Technologies, Inc. Method and apparatus for selective ion delivery using ion polarity independent control
US6783687B2 (en) * 2002-02-13 2004-08-31 Gordon L. Richard Method and apparatus for separating ions from a fluid stream
US6726893B2 (en) 2002-09-17 2004-04-27 The University Of Chicago Hydrogen production by high-temperature water splitting using electron-conducting membranes
WO2005019100A1 (en) * 2003-08-22 2005-03-03 Syntroleum Corporation Process for production of synthesis gas using an oxygen-containing gas
FR2904832B1 (fr) * 2006-08-08 2012-10-19 Inst Francais Du Petrole Procede de production de gaz de synthese avec conversion de co2 a l'hydrogene

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3496092A (en) * 1968-03-28 1970-02-17 Gen Electric Solid state corona generator for chemical - electrical discharge processes
US4419329A (en) * 1980-07-09 1983-12-06 Heller Charles H Device for producing hydrogen and oxygen gases
US4682564A (en) * 1980-11-25 1987-07-28 Cann Gordon L Magnetoplasmadynamic processor, applications thereof and methods
US6128174A (en) * 1997-08-29 2000-10-03 Stereotaxis, Inc. Method and apparatus for rapidly changing a magnetic field produced by electromagnets
US6768109B1 (en) * 2001-09-21 2004-07-27 6×7 Visioneering, Inc. Method and apparatus for magnetic separation of ions
US6939449B2 (en) * 2002-12-24 2005-09-06 General Atomics Water electrolyzer and system

Also Published As

Publication number Publication date
AU2007276867A1 (en) 2008-01-31
EP2049224A4 (en) 2012-04-04
WO2008014168A2 (en) 2008-01-31
US20140301941A1 (en) 2014-10-09
US8110175B2 (en) 2012-02-07
CA2657907A1 (en) 2008-01-31
EP2049224A2 (en) 2009-04-22
JP2009544469A (ja) 2009-12-17
CA2657907C (en) 2012-10-30
CN101511445A (zh) 2009-08-19
US20080017514A1 (en) 2008-01-24
US20120128578A1 (en) 2012-05-24
WO2008014168A3 (en) 2008-03-13
US8986649B2 (en) 2015-03-24
US20130272927A1 (en) 2013-10-17
US8460634B2 (en) 2013-06-11
AU2007276867B2 (en) 2011-10-20
US20150259199A1 (en) 2015-09-17
MX2009000870A (es) 2009-04-07

Similar Documents

Publication Publication Date Title
CN101511445B (zh) 用于从分子组合体中提取和收集物质的系统和方法
US9651032B2 (en) Submersible power generators and method of operating thereof
Ohta Energy Technology: Sources, Systems and Frontier Conversion
CN102723895B (zh) 一种热电气体发电及化工合成装置
US9985299B1 (en) Simultaneous generation of electricity and chemicals using a renewable primary energy source
US6271614B1 (en) Pulsed plasma drive electromagnetic motor generator
RU2340995C1 (ru) Магнитоэлектрический источник тока
JP2002034233A (ja) 発電システム
Bera et al. Magnetohydrodynamic (MHD) power generation systems
CN114038717A (zh) 一种电流转移装置
CN1213883A (zh) 液相磁流体发电方法及装置
CN202117868U (zh) 太阳能水热循环式磁流体发电机
CN217883197U (zh) 一种磁流体热管发电系统
KR101534553B1 (ko) 연료전지
WO2013054156A1 (en) Multiphase thermoelectric converter
CN1203316A (zh) 自发雷电式获取电能的方法及装置
Anumaka Explicit Technology of Magnetohydrodynamic (Mhd) Power Generation
Bolund Electric power generation and storage using a high voltage approach
CN115224907A (zh) 一种磁流体热管发电系统
JP2024501455A (ja) 発電機
GB2468846A (en) A magneto-plasma-dynamic nuclear fusion reactor
Jinhai Dynamics Simulation for Electron 3D Print
WO2008029473A1 (fr) Génératrice d'énergie électronique
JP2002199763A (ja) 水銀と半導体を使った吸熱発電機
Coombe Notes on MHD Generation

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120229

Termination date: 20210719

CF01 Termination of patent right due to non-payment of annual fee